
Vol.:(0123456789)

Machine Learning (2021) 110:139–184
https://doi.org/10.1007/s10994-020-05905-4

1 3

Statistical hierarchical clustering algorithm for outlier 
detection in evolving data streams

Dalibor Krleža1   · Boris Vrdoljak1 · Mario Brčić1

Received: 16 September 2019 / Revised: 2 July 2020 / Accepted: 11 August 2020 / 
Published online: 4 September 2020 
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020

Abstract
Anomaly detection is a hard data analysis process that requires constant creation and 
improvement of data analysis algorithms. Using traditional clustering algorithms to ana-
lyse data streams is impossible due to processing power and memory issues. To solve this, 
the traditional clustering algorithm complexity needed to be reduced, which led to the crea-
tion of sequential clustering algorithms. The usual approach is two-phase clustering, which 
uses online phase to relax data details and complexity, and offline phase to cluster concepts 
created in the online phase. Detecting anomalies in a data stream is usually solved in the 
online phase, as it requires unreduced data. Contrarily, producing good macro-clustering 
is done in the offline phase, which is the reason why two-phase clustering algorithms have 
difficulty being equally good in anomaly detection and macro-clustering. In this paper, we 
propose a statistical hierarchical clustering algorithm equally suitable for both detecting 
anomalies and macro-clustering. The proposed algorithm is single-phased and uses statis-
tical inference on the input data stream, resulting in statistical distributions that are con-
stantly updated. This makes the classification adaptable, allowing agglomeration of outliers 
into clusters, tracking population evolution, and to be used without knowing the expected 
number of clusters and outliers. The proposed algorithm was tested against typical cluster-
ing algorithms, including two-phase algorithms suitable for data stream analysis. A number 
of typical test cases were selected, to show the universality and qualities of the proposed 
clustering algorithm.

Keywords  Big data · Clustering · Anomaly detection · Fraud detection

Editor: Joao Gama.

This research has been supported by the European Regional Development Fund under the Grant 
KK.01.1.1.01.0009 (DATACROSS).

 *	 Dalibor Krleža 
	 dalibor.krleza@fer.hr

	 Boris Vrdoljak 
	 boris.vrdoljak@fer.hr

	 Mario Brčić 
	 mario.brcic@fer.hr

1	 Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, Zagreb, Croatia

http://orcid.org/0000-0001-7350-8858
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05905-4&domain=pdf


140	 Machine Learning (2021) 110:139–184

1 3

1  Introduction

Today, we create, collect, and process more data than ever before. All this data holds 
many patterns of interest. Most of the patterns are regularly occurring in the data. 
Finding these typical patterns can help to identify outliers, i.e., anomalies that occur 
sparsely. The more data is generated, the more patterns and outliers we are able to find, 
which leads to the big data paradigm, i.e., endless data streams that need to be continu-
ously analysed in search of typical data patterns and outliers.

Data clustering algorithms are one of many solutions that can be used to perform 
analysis of endless data streams. Using clustering algorithms to analyse data in an end-
less data stream encounters typical processing power and memory limitation issues. 
Besides these, there are additional data related considerations. For example, we never 
know how many clusters we can expect. A set of outliers could start forming a new 
cluster. As the data stream evolves, more and more clusters can be formed from outliers. 
Another difficulty is that the underlying data generation processes can be random and 
there is no guarantee of the order in which data are generated, which is different from 
the data processing order mentioned in Silva et al. (2013). This can significantly affect 
how clusters are formed and their evolution. Next, the underlying data generating pro-
cesses can change over time (Gama 2010), generating data whose statistical distribution 
changes over time, which leads to drifting data clusters. This requires a change of the 
cluster statistical distribution, to remain aligned with the related data generating pro-
cess. Cluster drifting can lead to cluster agglomeration or splitting, making clustering 
algorithms more complex.

There are many clustering algorithms that can process endless data streams and 
detect outliers. Our testing of these algorithms shows that clustering algorithms rarely 
perform equally good when detecting both data clusters and outliers. Either outlier 
detection works good and clusters become too fragmented, or clusters are detected cor-
rectly with outliers being included into clusters.

Historically, due to limited processing power and memory, we needed to reduce 
clustering algorithm complexity and find solutions that are capable of processing data 
streams. We cannot move back and forth in the processed data stream, randomly access-
ing data objects, which automatically eliminates clustering algorithms that have dou-
ble iterations and O(n2) complexity, such as k-means. Most of the data stream cluster-
ing algorithms are taking the two-phase approach (Silva et al. 2013). Such an approach 
divides the clustering process into two phases. The first phase, named online phase, 
reduces the complexity of the retrieved data. The online phase consists of an algorithm 
that maps input data into a set of concepts named micro-clusters. This mapping tends 
to simplify calculations and memory needed to store micro-clusters. It seems that many 
algorithms have reduced universality and capabilities because of the overly simplistic 
online phase. While this is historically understandable, hardware processing power and 
memory are constantly advancing since the conception of a first data streaming cluster-
ing algorithm. The set of micro-clusters is then picked up by the second phase, named 
offline phase, and finally clustered into a set of macro-clusters. The offline phase algo-
rithm does the mapping between micro and macro-clusters. These two phases can be 
part of the same algorithm or can be separate algorithms. In any of these cases, anomaly 
detection happens in the online phase, where full data details are available. The offline 
phase algorithm can sometimes reduce the accuracy of the anomaly detection given by 
the online phase, e.g., k-means in the offline phase will most certainly merge outliers 



141Machine Learning (2021) 110:139–184	

1 3

with nearby clusters. Algorithms intended for the online phase are creating simple geo-
metrical, statistical, or density-based micro-clusters, which cannot be taken as the final 
clustering result.

In this paper, we propose Statistical Hierarchical Clustering (SHC) algorithm for out-
lier detection in evolving data streams. SHC is a sequential clustering algorithm suitable 
for use in data stream processing, i.e., it accesses and retrieves each data object from the 
input data stream only once and sequentially. After retrieving data object, SHC is perform-
ing a single-phase clustering, and returns clustering results immediately. The returned 
clustering results comprises a classified component or outlier (micro-cluster level) and 
cluster (macro-cluster level). SHC is capable of performing outlier detection, component 
population forming and updating, and clustering in the same step. This is enabled by the 
statistical agglomeration concept, which allows outliers and components to be agglomer-
ated based on the statistical relations between them. Statistical agglomeration allows form-
ing of new components from a set of outliers, assimilation of outliers by growing compo-
nents, or merging two or more components under the same arbitrarily shaped cluster. This 
sequence of actions is the key for universality of SHC, allowing it to be equally good in 
outlier detection and clustering. Also, the statistical agglomeration allows SHC to work 
without supplying the expected number of clusters k in advance, which is an important 
feature for a data streaming clustering algorithm, since in an endless evolving data stream 
the number of clusters and outliers constantly changes. Statistical agglomeration does not 
come without issues. Outlier assimilation from the growing components seems to be one of 
the most processing power and time consuming tasks. To ease the number of checked out-
liers that can be assimilated, SHC components are keeping track of the statistical neigh-
bourhood, allowing SHC to focus only on outliers and components that are within the 
statistical interaction range. In many cases, we want to know that a newly processed data 
object from the input data stream is part of a population that drifted away or got separated 
into multiple sub-populations from its initial formation. Such information is impossible to 
obtain if we do not allow micro-clusters to follow the population evolution or there is no 
mapping between micro and macro-clusters. With SHC, we propose population evolution 
tracking on the component level. This is achieved through a novel concept of sub-clus-
tering. To analyse and capture the statistical change in the component population, each 
component uses additional child SHC instance to cluster the latest population members. 
The results of such component sub-clustering can be interpreted as population move or 
separation into several sub-populations, i.e., component drift or split. Such an approach 
allows population traceability, i.e., it allows two temporally distant data objects in the 
input data stream to be recognized as members of the same evolving population, which was 
a proposed research by Nguyen et al. (2015). On the cluster level, each component drift or 
split can result in cluster split, hence traceability is supported on the cluster level as well. 
All this is computationally more complex than current two-phase data stream clustering 
algorithms. One of the key questions this paper is going to answer whether it is possible 
to have computationally complex algorithm and still be able to process data stream with 
satisfactory speed.

We performed comparative testing and analysis between SHC and other similar cluster-
ing algorithms. The evaluation was done using synthetic and real-life datasets and data 
streams. Using synthetic data streams we were able to control execution and uniformity of 
testing for all tested clustering algorithms. We executed various testing scenarios to cover 
all SHC functionalities and compare them to other algorithms, which included static clus-
tering, evolving data streams comprising drifting concepts, and outlier detection. The pro-
posed SHC algorithm performed exceptionally well in most of these scenarios.



142	 Machine Learning (2021) 110:139–184

1 3

Many clustering indices (Desgraupes 2017) favor correct clustering instead of outlier 
detection. Due to the low outlier share in the overall data stream, outlier detection errors 
are not significantly affecting most of the clustering indices, such as the corrected Rand 
Index (CRI) (external), or purity (internal). In this paper we proposed a simple framework 
for outlier detection accuracy assessment, for which we used modified Jaccard Index (Des-
graupes 2017; Jaccard 1912), hereby named Outlier Jaccard Index (OJI). For the purpose 
of data stream outlier detection assessment, we used a cumulative variant of OJI (cOJI), 
which counts all the true positive, false positive and undetected outliers across the whole 
tested data stream.

This paper is organized as follows: the next section gives an overview of the related 
work. In Sect. 3 we elaborate how multivariate normal distribution can be used for data 
stream clustering and outlier detection purposes. In Sect. 4 we give detailed definition and 
description of SHC. SHC is evaluated in Sect. 5. The conclusion is given in Sect. 6.

2 � Related work

The most basic sequential clustering algorithms are sequential k-means clustering, 
sequential agglomerative clustering, and sequential nearest-neighbour clustering (Ack-
erman and Dasgupta 2014). These sequential clustering algorithms are giving poorer 
results than their batch variants for obvious reasons: limited processing power and memory 
for given high data volume and velocity are preventing us from optimally realigning clus-
ters. Also, knowing the expected number of clusters k in advance is a drawback for using 
these algorithms in the data stream context.

The purpose of the online phase is to develop data structures that hold micro-cluster 
data and are used by the clustering algorithm in the offline phase. The most notable data 
structures produced in the online phase are cluster feature (CF) vectors, first introduced 
in BIRCH (Zhang et al. 1996). BIRCH represents an attempt to fight limited memory in 
data stream clustering. Data objects from data streams cannot be stored in memory, i.e., 
they need to be processed by the clustering algorithm and dropped. CFs are organized in 
a hierarchical tree following the hierarchical clustering principle (Jain et al. 1999) and are 
storing basic data about a captured micro-cluster, such as center, radius, and density. Later, 
in the offline phase, a batch clustering algorithm, such as hierarchical agglomerative clus-
tering or k-means clustering, can be used on micro-clusters to produce the final clustering 
results or macro-clusters.

There are many extensions of BIRCH, such as BICO (Fichtenberger et al. 2013). While 
BIRCH decides heuristically how to merge points into micro-clusters residing in CF tree 
leaves, BICO refines this process using a k-means coreset. In BICO, each CF stores a rep-
resentative as well. New points are added in the CF tree and merged with existing CFs if 
similar. This means that BICO can store outliers in the CF tree. BICO needs to know the 
expected number of clusters k in advance.

CluStream (Aggarwal et  al. 2003) is another extension of BIRCH. CluStream micro-
clusters are temporal based extension of the CF concept. It allows storing a micro-clus-
ter statistic snapshot at a particular time frame in the input data stream. Additionally, a 
pyramidal time frame concept is used to store micro-cluster snapshots at different levels of 
time frame granularity. This allows CluStream in the online phase to build a set of micro-
clusters, including outliers, capturing temporal and spatial statistics on a different level of 
temporal granularity.



143Machine Learning (2021) 110:139–184	

1 3

DenStream (Cao et al. 2006) uses the same two-phase approach and the CF tree as in 
BIRCH. In the online phase, DenStream creates two types of CFs, core and outlier micro-
clusters. Core micro-clusters have their weight above the defined weight threshold, while 
outlier micro-clusters have their weight below the defined threshold. A time decay function 
is applied to each CF, so micro-clusters make less impact over time. A new data object is 
added to the closest core or outlier micro-cluster only if this addition does not increase the 
radius of the targeted micro-cluster above the radius threshold. If both addition attempts 
fail, the new data object creates a new outlier micro-cluster. Once the weight of an outlier 
micro-cluster gets above the weight threshold, it is promoted to a potential core micro-
cluster. The offline phase in DenStream is done with a variant of the DBSCAN algorithm 
(Ester et al. 1996).

ClusTree (Kranen et al. 2011) is another extension of BIRCH. In the online phase, it 
uses the CF tree as an indexing tree. The closest CF leaf is reached descending down the 
tree by checking which branch is closer to the newest data object. When the closest CF leaf 
is reached, the processed data object is inserted as a child CF. The indexing CF tree main-
tained by ClusTree is regularly reorganized when a CF node gets full. Each CF node has 
an additional buffer, capable of holding data objects. This way, when the input data stream 
delivers data objects faster than ClusTree is capable of processing, data objects keep piling 
up in the CF tree buffers, delaying their processing (descending) for a later time, when the 
input data stream slows down.

Another density based method is D-Stream (Chen and Tu 2007). D-Stream uses a grid 
placed in the attribute space � . In the online phase, D-Stream only calculates density in 
the grid cells. This density decays over time. Sparse cells get removed from the grid after a 
while. In the offline phase, neighbour dense cells are grouped in macro-clusters.

DBSTREAM (Hahsler and Bolaños 2016) is similar to D-Stream. The online phase in 
DBSTREAM updates micro-clusters, which are defined by its center, radius, and density. A 
new data object can update multiple micro-clusters, those in which it falls within a radius 
from the center. If there are micro-clusters that can absorb new data object, their centers 
and densities get updated. If the new data object does not fall within any of the already 
existing micro-clusters, a new micro-cluster is created. Since micro-clusters can overlap, 
they can share some similar density, which is the property used in the offline phase to cre-
ate macro-clusters. DBSTREAM creates a graph that connects overlapping micro-clusters 
sharing similar density, which can result in a set of disjunct sub-graphs. Each sub-graph 
represents one macro-cluster. Similar mechanism is used in the statistical agglomeration 
of SHC. Although data objects can update micro-cluster position, its drifting and moving 
is limited. Instead, DBSTREAM relies on the shared density graphs to resolve population 
drift and separation.

In the k nearest neighbours (kNN) method, a potential outlier can be determined by 
limiting distance needed to reach k nearest neighbours from the new data object. How-
ever, knowing k nearest neighbours means knowing previous data objects obtained from 
the input data stream. The fact that the number of outliers constitutes a small portion of all 
data is used for intelligent windowing and temporal data fading in kNN LEAP (Cao et al. 
2014), which can be applied to data streams.

ScaleKM is a scalable extension of k-means clustering algorithm (Bradley et  al. 1998). 
Although originally intended for processing of large databases, this algorithm can be used for 
data streams as well. Clusters are represented by the CF tree as in BIRCH. In the online phase, 
a compression step is performed that uses the CF tree and Mahalanobis distance (De Maess-
chalck et al. 2000) to discard new data objects that statistically belong to one of the known 
clusters. This is different from all previous distance-based methods, as it uses the multivariate 



144	 Machine Learning (2021) 110:139–184

1 3

normal distribution to model clusters. All remaining data objects are then passed to the offline 
phase, where k-means clustering is applied. Clusters created in the offline phase (their CFs) 
are then merged among themselves and with existing clusters from the online phase using 
hierarchical agglomerative clustering (Rasmussen 1992).

Online Elliptical Clustering (OEC) (Moshtaghi et  al. 2016) is a statistical algorithm 
that, similarly to ScaleKM, uses the multivariate normal distribution to form clusters from 
the input data stream. OEC adds a guard-zone to each cluster, i.e, a statistical area around 
highly-populated clusters to protect them from random noise (random outliers) in the sur-
rounding area. New clusters are formed using a state tracker that absorbs new outliers and 
uses the c-separation measure (Dasgupta 1999) to establish a new cluster.

Another way of detecting an outlier is through comparing data sets histograms (Solaim-
ani et  al. 2014). Using the windowing method, similar to ADWIN (Bifet and Gavalda 
2007), we can select a subset of a data stream and calculate its histogram. By knowing that 
there are no outliers in the captured window, we can collect histograms of windows where 
there were no outliers detected. An outlier is found by detecting a change in histograms of 
two distinctive windows using the chi-square method (Press et al. 2007), knowing that one 
of the windows comprised no outliers. Authors in Solaimani et al. (2014) focus on an inter-
esting modern big data analytic platform..

Continuous Outlier Detection (COD) (Kontaki et al. 2016) and its variants are a set of 
clustering algorithms focused on outlier detection in data streams. COD uses a sliding win-
dow concept for capturing and detecting outliers from the input stream. For newly retrieved 
data object p from the input data stream, a neighbourhood set of data objects Pp is queried 
from the sliding window data objects. All data objects that are closer than R from the new 
data object p are considered to be part of Pp . If this set is smaller than k, the newly retrieved 
object p is considered for an outlier and placed in the set of outliers D(R, k) . Additionally, 
COD keeps track of preceding and succeeding neighbours. Micro-cluster-based Continu-
ous Outlier Detection (MCOD) variant additionally uses a set of statical R/2 wide hyper-
spherical micro-clusters, each having at least k + 1 members. If the new data object p is not 
within any of the established micro-clusters, then it is a candidate for an outlier. All these 
algorithms keep an event queue, which is regularly processed and is a specific implementa-
tion of the fading mechanism found in other clustering algorithms. COD algorithms are 
capable of turning inliers into outliers due to the event queue mechanism. We do not agree 
about retroactive redeclaring of an inlier into an outlier.

3 � Statistics in data stream clustering

SHC classifies the input data into two types of objects: outliers and components made of 
data populations that fit multivariate normal distribution (Gut 2009). Clusters, which are 
formed from components, are arbitrarily shaped through a mixture of their component 
statistical distributions (Dasgupta 1999). Component membership is determined through 
Mahalanobis statistical distance (De Maesschalck et al. 2000). A data object that statisti-
cally does not fit any component is considered to be an outlier.

A data stream is defined as an endless sequence of data objects (Aggarwal 2007; Gama 
and Gaber 2007; Gama 2010; Silva et al. 2013).

(1)
D(t) = {d1, d2, ..., dm}

lim
t→∞

|D(t)| = ∞



145Machine Learning (2021) 110:139–184	

1 3

Every data object in the data stream is a vector of values (attributes) that can belong to 
the same n-dimensional attribute space �n . If a data stream is composed of different data 
sources, then data objects can belong to different attribute spaces.

When saying that a data stream is evolving, we refer to the statistical change of data 
in the processed data stream. In the beginning, all we have is a set of outliers. After a 
while, some outliers start grouping, i.e., forming populations of related data objects. Popu-
lations can disappear after some time, drift away from the starting position, or get divided 
into multiple disconnected populations. All this represents the evolution of data in the pro-
cessed data stream. Depending on the context and the underlying data, there are many ways 
of modelling a data population. The most common research findings suggest that natural 
processes produce normally distributed data. Is normality in such data something to be 
assumed? Some researchers (Micceri 1989; O’Boyle Jr and Aguinis 2012) suggest that the 
natural processes produce contaminated data, which can be only modelled through a mix-
ture of distributions, and that not all natural processes adhere to the mathematical beauty 
of the normal distribution. SHC uses normal multivariate models (Gut 2009) for modelling 
data populations on the component level. Non-normally distributed data can be modelled 
through a mixture of multivariate normal distributions (Baudry et  al. 2010). In SHC, a 
cluster is a set of components, which allows the cluster to be a mixture of multivariate nor-
mal distributions.

3.1 � Statistical component

Let us define a population of data objects �(t1) ⊆ D(t1) in the attribute space 
�n such that |�(t1)| = m . Each data object in the population can be expressed as 
Xk = [x1

k, x2
k, ..., xn

k]⊤ ∈ �(t1) . A multivariate normal distribution over the population is 
defined as

where 𝜇m = E[Xk] = [E(x1
k),E(x2

k), ...,E(xn
k)]⊤ is the mean vector, and 

𝛴m = E[(Xk − 𝜇m)(Xk − 𝜇m)⊤] is the covariance matrix of the population �(t1) . The covar-
iance matrix is

where �(i,j)2 represents covariances between dimensions i and j for ∀i, j ∈ [1, n] ∣ i ≠ j . 
Each covariance can be expressed as �(i,j)2 = �(i,j)�i�j , a product of two dimensional stand-
ard deviations and a correlation factor �(i,j) , where �(i,j) = �(j,i).

A new data object Xm+1 ∈ �(t2) ⊆ D(t2)|t2 > t1 added to this population must update 
distribution to Nm+1

n
(�m+1,�m+1) using some incremental technique, such as Welford’s 

online variance update (Welford 1962).

(2)Xk ∼ N
m

n
(�m,�m)

(3)

�m =

⎡
⎢⎢⎢⎣

�1
2 �(1,2)

2 … �(1,n)
2

�(1,2)
2 �2

2 … �(2,n)
2

… … … …
�(1,n)

2 �(2,n)
2 … �n

2

⎤
⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣

�1
2 �(1,2)�1�2 … �(1,n)�1�n

�(1,2)�1�2 �2
2 … �(2,n)�2�n

… … … …
�(1,n)�1�n �(2,n)�2�n … �n

2

⎤⎥⎥⎥⎦



146	 Machine Learning (2021) 110:139–184

1 3

Previously defined population distribution is used to define a component in SHC.

3.2 � Statistical distance

In the statistical distribution Nn(�,�) , a data object X ∈ �(t) is [X − �] distant from the 
mean value of the distribution. Mahalanobis statistical distance (De  Maesschalck et  al. 
2000) is defined as

The main issue in using the statistical distance in the clustering algorithms is its calcu-
lation expense and volatility. Calculating an inverse of a covariance matrix is an expen-
sive operation. This calculation needs to be done for each data object multiplied by the 
number of components and outliers, which needs high processing power and is the main 
reason why many researchers turn to density-based clustering methods. Another issue 
is when a covariance matrix becomes singular for which we cannot calculate its inverse, 
i.e., only pseudo-inverse can be calculated. This mainly happens in components that have 
low population, and when a dimension in the component population has no variance, i.e., 
∃i ∈ [1, n] ∶ �i

2 = 0 . In the case of singularity, a replacement covariance matrix is defined 
as

where all missing dimension variances are replaced with virtual variance ��2 . For example

We preserve the original covariance matrix � , as each new data object retrieved from 
the processed data stream can update the matrix to become non-singular. Once covari-
ance matrix becomes non-singular, instead of performing (4), we can invert the covari-
ance matrix and then do incremental updates (Nguyen et al. 2015) using Sherman–Morri-
son–Woodbury formula (Sherman and Morrison 1950; Woodbury 1950). A similar update 
is done for OEC (Moshtaghi et al. 2016).

So obtained inverse of the covariance matrix can be used directly in calculating statistical 
distance (5). Though (8) seems to be computationally more demanding than (4), avoid-
ing to calculate the matrix inverse for each and every statistical distance calculation is 

(4)
𝜇m+1 = 𝜇m +

Xm+1 − 𝜇m

m + 1

𝛴m+1 = 𝛴m +
(Xm+1 − 𝜇m)(Xm+1 − 𝜇m+1)⊤ − 𝛴m

m + 1

(5)d𝜎(X,𝜇,𝛴) =
√
[X − 𝜇]⊤𝛴−1[X − 𝜇]

(6)�� = diag(�)

(7)� =
⎡⎢⎢⎣

0.3 0.2 0

0.2 1.3 0

0 0 0

⎤⎥⎥⎦
,�� =

⎡⎢⎢⎣

0.3 0 0

0 1.3 0

0 0 ��
2

⎤⎥⎥⎦

(8)

u =
Xm+1 − 𝜇m

√
m

, v =
Xm+1 − 𝜇m+1

√
m

(𝛴m+1)−1 =
m + 1

m
((𝛴m)−1 −

(𝛴m)−1uv⊤(𝛴m)−1

1 + v⊤(𝛴m)−1u
)



147Machine Learning (2021) 110:139–184	

1 3

beneficial as the number of dimensions n, components, and outliers grow. For matrix inver-
sion using Cholesky decomposition, the computational complexity is O(n3) (Krishnamoor-
thy and Menon 2013). Thus, justification of trading the time needed for the distribution 
update to get faster statistical distance calculation becomes visible in high-dimensional and 
large data sets, i.e., endless data streams. We consider data object Xm+1 to be a part of 
a component with distribution Nn

m(�m,�m) only if its statistical distance is less than a 
threshold � . Membership-wise, we call our components �-bound components, since the 
membership for the component distribution is cut at the statistical distance �.

3.3 � Outlier detection

According to the multivariate normal distribution probability density function, there is a small 
probability that a data object acquired from a data stream can be a member of any component. 
Since SHC is a crisp algorithm, i.e., we are not considering fuzzy clustering, to define what 
is an outlier we need �-bound components as defined in (9). Based on that, we can precisely 
define that a data instance is an outlier if it is not a member of any �-bound component.

An outlier, being a single data object, has no statistic distribution we can use to model it. 
To keep statistic distance (5) calculations consistent, we construct a virtual statistic distribu-
tion around the outlier, the same way as for the missing dimensions in (7). Here, the virtual 
variance ��2 can be fixed or can be calculated from the outlier surroundings, e.g., derived from 
the closest component covariance matrix. The outlier virtual covariance matrix is calculated as

Outlier o can be modelled as a virtual multivariate normal distribution

3.4 � Variance limitation

In certain cases we want to limit outlier and component updates. We define a variance limita-
tion function for the covariance matrix � as

resulting in 1 when the variance limit ��2 has been reached, and 0 when the variance limit 
has NOT been reached.

(9)d�(X
m+1,�m,�m) ≤ �

(10)�� = ��
2In

(11)Nn(o,��)

(12)𝜃lim(𝛴, 𝜎𝜃
2) =

{
0, ∄𝜎(i,j)

2 ∈ 𝛴|𝜎(i,j)2 > 𝜎𝜃
2

1, otherwise



148	 Machine Learning (2021) 110:139–184

1 3

4 � The SHC algorithm

4.1 � Supporting structures and classification objects

Similar to other algorithms, SHC maintains structures that support organization and 
manipulation of main classification objects (co), namely outliers and components. SHC 
supporting structures can be seen in Fig. 1. SHC uses two distinct graphs, one vertical 
and one horizontal.

The vertical graph Gc serves as a container tree and supports grouping of the classifi-
cation objects. We define Gc as an acyclic and directed graph where each node can have 
one or more child nodes. Edges in Gc are directed from parent to child nodes.

We divide container tree nodes into containers T, clusters Cl, components Cm and outliers 
O, where Co = Cm ∪ O are classification objects. Each leaf node in Gc is a classification 
object.

By traversing Gc from a classification object up to the root node, we can find a node that 
represents the cluster of the starting classification object. A cluster node Ci ∈ Cl is a node 
in Gc that has only leafs, as defined in (14) and seen in Fig. 1. All other nodes above clus-
ters are containers that define the structure.

The horizontal graph Ga serves as an agglomeration graph and supports the statistical 
agglomeration mechanism in SHC. Nodes of Ga can only be components. This graph is 
similar to the shared-density graph in DBSTREAM. In case of SHC, there is no density 
measure. Instead, edges of Ga store shared population between two population-sharing 
components. We define the agglomeration graph as a cyclic undirected graph

(13)
Gc = (Nc,Ec),Ec = Nc × Nc

Nc = T ∪ Cl ∪ Cm ∪ O

(14)
∄(ns, nt) ∈ Ec ∶ ns ∈ Co

∀nt ∈ Co∃(ns, nt) ∈ Ec ∶ ns ∈ Cl

(15)∀ni ∈ T∃nj ∈ (T ∪ Cl) ∶ (ni, nj) ∈ Ec

Fig. 1   SHC supporting structures



149Machine Learning (2021) 110:139–184	

1 3

where sp(s,t) ∈ ℕ is the number of shared population members between components cms 
and cmt . It is important to notice that some components do not need to be included in 
the agglomeration graph Ga , which means they are not currently connected to any other 
component.

Definition 1  Component A component is a tuple derived from its modelling multivariate 
normal distribution Nn(�,�)

where �i is the mean of the component distribution, �i is the covariance matrix, pi is the 
component population number, Ni is the statistical neighbourhood of the component, cbi 
is the component baseline and SHCi is the child SHC used for analysing of the compo-
nent drift and split, Ri is the redirection component, �i is the component decay counter, 
and �i are component flags. The component is �-bound (9), meaning that all data object 
statistically closer to the mean �i than � , are considered to be members of the component 
population.

Definition 2  Outlier An outlier is a tuple derived from its modelling virtual multivariate 
normal distribution Nn(X

k,��)

where �i is the outlier value, i.e., data object Xk , �i is the virtual covariance matrix, �i is 
the outlier decay counter, and �i are outlier flags. All the other elements in the tuple are not 
applicable to outliers. Tuple similarity between components and outliers is obvious and 
intentional, to allow consistent algebraic calculations for SHC.

4.2 � Statistical agglomeration

4.2.1 � Classification

For each new data object Xm+1 retrieved from the input data stream, we query classification 
objects to find those that contains the new data object within the � statistical distance, i.e., 
within their populations as defined in (9). Our statistical distance query results with two sets

where Qc is the set of classification objects having the new data object Xm+1 within the 
statistical distance � , named classified set, and Qn is the set of classification objects in 
the neighbourhood that do not directly comprise Xm+1 in their populations, but are close 
enough for some future interactions, named neighbourhood set. Classification objects in Qc 
are named classified objects as the input data object Xm+1 can be classified to any of them. 

(16)
Ga = (Na,Ea),Na ⊆ Cm,Ea = Na × Na × ℕ

cc(s,t) = (cms, cmt, sp(s,t)) ∈ Ea

(17)cmi = (�i,�i, pi,Ni, cbi, SHCi,Ri, �i,�i) ∈ Cm

(18)oi = (�i = Xk,�i = �� , pi = 1,Ni = �, cbi = ∅, SHCi = ∅,Ri = ∅, �i,�i) ∈ O

(19)

Qc,Qn ⊆ Co

∀coi ∈ Qc ∶ d𝜎(X
m+1,𝜇(coi),𝛴(coi)) ≤ 𝜃

∀coj ∈ Qn ∶ 𝜃 < d𝜎(X
m+1,𝜇(coj),𝛴(coj)) ≤ pn𝜃



150	 Machine Learning (2021) 110:139–184

1 3

pn > 1 represents an SHC parameter that defines the maximal statistical neighbourhood 
distance.

The example in Fig. 2 shows new data object Xm+1 being classified. With pn = 3 , the result 
of the statistical distance query is Qc = {co2, co3},Qn = {co1, o1}.

In case we get an empty classified set Qc = � , we consider data object Xm+1 for an outlier. 
In this case we need to create a new outlier descriptor (11), add it to the set O and container 
tree Gc . If we get exactly one component in the classified set |Qc| = 1 , this can be either a 
component or an outlier, which can be directly updated as defined in Sect. 3. For an outlier, 
this means promotion to a component when (12) is satisfied. This way we want to prevent that 
repetitive or close data objects promoting outliers to small components.

If we get more classified objects in the classified set |Qc| > 1 , this means that data object 
Xm+1 is a shared member in the Qc populations. In such case we look for the minimal statistical 
distance in the classified set

For all outliers in the classified set O ∩ Qc this means forming a single component with 
coc , no matter if coc was originally a component or an outlier. For all other components it 
means potential agglomeration under the same cluster.

4.2.2 � Shared population agglomeration

Having |Qc| > 1 means that we have more classified objects that share the new data object 
Xm+1 . As already mentioned, all outliers in the classified set O ∩ Qc are merged into one 
resulting component coc . After this, we assume that Qc comprises only existing components 
Qc ⊆ Cm , i.e., Xm+1 is truly a shared member of multiple populations. Agglomeration of such 
remaining components in Qc is resolved by the agglomeration graph Ga . Each pair of compo-
nents in Qc must have an edge in Ga

where sp(i,j) is the total number of a shared population members previously encountered 
between components coi and coj . This is consistent with Ga definition (16) where nodes of 
the agglomeration graph can be comprised only of components. Here we introduce a SHC 
parameter �sp which is a required minimal number of shared population members between 
two components for their agglomeration under the same cluster. The final agglomeration 
under the same cluster is done in the container tree Gc as seen in Fig. 3. Therefore, each 
pair of components under the same cluster Ci ∈ Cl in the container tree Gc must satisfy

(20)coc = arg min
coi∈Qc

d�(X
m+1,�(coi),�(coi))

(21)∀coi, coj ∈ Qc∃(coi, coj, sp(i,j)) ∈ Ea ∶ coi ≠ coj ∧ sp(i,j) ≥ 1

Fig. 2   Query example



151Machine Learning (2021) 110:139–184	

1 3

When agglomerating two components under the same cluster, we retain the cluster that 
has more population members

In Fig. 3 case, we had p(C1) ≥ p(C2) , which resulted in agglomeration of C2 components 
under the cluster C1.

4.2.3 � Statistical neighbourhood processing

Every time component grows, or outlier gets promoted to a component, we need to test 
and process component statistical neighbourhood. Since the statistical distance does not 
have the same properties as Euclidean, using some well-established mechanisms such as 
M-trees (Ciaccia et  al. 1997) cannot be used. The statistical distance is always relative, 
observed from a specific component or population. This would mean that calculating the 
component statistical neighbourhood in a naïve attempt would require to calculate the 
statistical distance to all other classification objects, which would be very expensive. As 
part of the classification we already detect statistical neighbourhood in (19). Using Qn on 
coc ∈ Cm we can define statistical neighbourhood as

Outlier inclusion: Each time the classified component coc grows, a nearby outlier can join 
its population if the outlier statistical distance to the center of the component is ≤ � . We 
define the outlier inclusion as

(22)
∃Ci ∈ Cl,∃coi, coj ∈ Cm ∶ (coi ≠ coj ∧ (Ci, coi) ∈ Ec ∧ (Ci, coj) ∈ Ec∧

∃(coi, coj, sp(i,j)) ∈ Ea ∶ sp(i,j) ≥ �sp)

(23)p(Ci ∈ Cl) =
∑

∀coj∈Cm∶(Ci ,coj)∈Ec

p(coj)

(24)N(coc) ← N(coc) ∪ Qn

(25)∀oi ∈ (N(coc) ∩ O) ∶ d�(�(oi),�(coc),�(coc)) ≤ �

Fig. 3   Shared population member agglomeration example



152	 Machine Learning (2021) 110:139–184

1 3

This means iterating through the classified component coc statistical neighbourhood N(coc) 
to re-check outlier statistical distances. If any of the outliers satisfies the �-bound com-
ponent membership defined in (9) we add it to the component coc and remove it from the 
container tree Gc and outlier set O.

Component inclusion: Sometimes components can overlap in such extent that center 
of one component falls in the population of the other component. In this case, both 
components share the same population. We can discover such situation when iterating 
through the statistical neighbourhood of the classified component coc . Each component 
in the statistical neighbourhood of the classified component N(coc) , whose center is 
within � statistical distance of the component coc center, are called included compo-
nents. Such components are redirected to the classified component coc by updating their 
redirection target component

When updating population of the classified component coc that has been redirected, i.e., 
R(coc) ≠ ∅ , the redirection target component R(coc) is updated instead. The redirection 
exists as long as both of the involved components exists. By removing one of the involved 
components, we remove the redirection between them as well. Also, both components 
involved in the redirection get agglomerated under the same cluster no matter how much 
shared population members they have.

Such mechanism obviously stops all updates on the redirected component coc ∈ Cm 
and enables the population of the redirection target component R(coc) to grow. Once the 
population of the redirected component falls significantly behind the population of the 
redirection target component

we can declare the redirected component coc as obsolete, and remove it as soon as possible. 
We introduce an SHC parameter prr which represents the allowed ratio between popula-
tions of the redirected and redirection target components.

4.2.4 � Statistical agglomeration example

In Fig. 4 we can see an example of statistical agglomeration over a single population of 
200 data objects, defined with variance �(i,i)2 = 13 . The statistical agglomeration pro-
cessing was done in 7 slices, seen in Figs. 4a–g. Figure 4h shows the final result with all 
population members.

After the first slice, in Fig. 4a, we can see a number of �-bound components and out-
liers. The virtual covariance (10) gives outliers circular statistical area around them. In 
Fig. 4b we can already observe outlier and component inclusions, and shared population 
member agglomerations. Components at this point do not have big populations, there-
fore it is easy to include them in bigger populations. Component inclusions happening 
from Fig. 4c take more time, since at this point we have bigger components. All com-
ponent inclusions are done in Fig. 4g, where we look at the final component, modelling 
the example population. In Fig. 4g we can see occurrence of an outlier, which would be 
probably included in the final component as the input data stream continues. This is a 
static example, since the population does not evolve over time.

(26)∀coi ∈ (N(coc) ∩ Cm) ∶ d�(�(coi),�(coc),�(coc)) ≤ � ⇒ R(coi) ← coc

(27)p(coc) < prrp(R(coc))



153Machine Learning (2021) 110:139–184	

1 3

4.3 � Population drift and split

Population evolution can lead to uncontrolled component growth. Such growth can be lim-
ited by (12), or by adding population drift and split mechanism we can closely track the 
population evolution. After promoting an outlier into a component, the newly formed com-
ponent needs to acquire enough members to become stable. In the moment when a com-
ponent becomes stable we can take its snapshot, named component baseline. A component 
baseline can be taken when a component gets specific number of population members, or 
grows above certain variance (12).

We define SHC parameters pcb as the minimal component population and �cb2 and the 
minimal component variance needed for a component to become stable. If pcb = 0 and 
�cb

2 = 0 , SHC component drift and split tracking is switched off.
The component baseline is taken after the component coc is updated with newly 

retrieved data object Xm+1 from the input data stream

The novel concept introduced in SHC is using a hierarchy of clustering algorithm 
instances for tracking and analysing component drift and split. Each component has a child 
SHC instance that can be used for periodic analysis whether the component population 
evolves in such way it starts drifting from the original position, or splitting in several dis-
tinct sub-populations. In Fig.  5a we can see a timeline of the component coc . After the 
component initialization at time t1 , we need to wait until the component baseline cb(coc) is 
taken. Then we can use the child SHC instance SHC(coc) to sub-cluster a window of newly 
added data objects to the component. In Fig. 5a this sub-clustering is occurring between 
time points t2 and t. We can take that t is the current time and the moment when Xm+1 was 
retrieved from the input data stream. In this window, the child SHC instance can capture a 

(28)p(coc) ≥ pcb ∨ �lim(�(coc), �cb
2) = 1 ⇒ cb(coc) ← coc

Fig. 4   Statistical agglomeration example



154	 Machine Learning (2021) 110:139–184

1 3

number of components, depending on how the component coc population evolves. Assum-
ing that data object Xm+1 at time t updated the component coc , we can start analysing 

Fig. 5   Sub-clustering in component drift and split



155Machine Learning (2021) 110:139–184	

1 3

component population drift and split by selecting the biggest component of the child SHC 
instance SHC(coc).

Outliers in the child SHC instance are not taken in account as they do not represent the 
component evolution. We additionally define a drift index as

which represents weighted average statistical distance between component baseline center 
and sub-clustered component centers. Weights used in the drift index calculation are sub-
clustered components populations, so that bigger components have bigger contribution to 
the drift index.

For drifting we define two SHC parameters: drifting size ratio pd and drifting index 
ratio �d . The drifting size ratio is used to check the population ratio between the biggest 
sub-clustered component and the component coc baseline. Tracking and analysing compo-
nent drift and split by sub-clustering newly added data objects to the component coc is done 
until the size of the biggest sub-clustered component reaches

At this moment the decision about component drift and split is taken by evaluating drift 
index di . The drifting index ratio is used to check the ratio between drifting index and sta-
tistical distance threshold �.

Component drifting or splitting detected: After the size condition in (31) is met, we 
consider component drifting or splitting detected when

In Fig. 5b we can see an example of a component drift and split into three distinct sub-
populations. The agglomeration graph Ga between ordinary and sub-clustered components 
must be kept updated at all times. This is possible due to having Qc (19) for classifying new 
data object Xm+1 in both parent and child SHC instances. The newly processed data object 
Xm+1 is a shared population member between normal and sub-clustered components for

Pairs of normal and sub-clustered components from Easub
 create agglomeration graph edges 

as defined in (21). After detecting component drift or split, we adjust the container tree 
Gc by moving sub-clustered components from the child SHC instance into normal compo-
nents and declaring the component coc obsolete. In such move, we retain the edges of the 
agglomeration graph Ga between normal and sub-clustered components that are according 
to (21). Figure 5c shows the final result, after moving the sub-clustered components into 
normal components, removing the component coc and restructuring the container tree Gc 
for all component connections in the agglomeration graph Ga that are above the threshold 
�sp (22). Figure 5d–g show component drift and split example processing done by SHC. 
Sub-clustered components are marked with black background.

Component drifting or splitting NOT detected After the size condition in (31) is met, 
we consider that component is NOT drifting or splitting when

(29)coc,biggest = arg max
coc,i∈Cm(SHC(coc))

p(coc,i)

(30)di(coc) =
∑

coc,i∈Cm(SHC(coc))

p(coc,i)d�(�(coc,i),�(cb(coc)),�(cb(coc)))

(31)p(coc,biggest) ≥ pdp(cb(coc))

(32)di(coc) ≥ �d�

(33)Easub
= ((Qc ∩ Cm) ⧵ {coc}) × (Qc(SHC(coc)) ∩ Cm(SHC(coc)))



156	 Machine Learning (2021) 110:139–184

1 3

In this case, we can remove the child SHC instance SHC(coc) and all of the sub-clustered 
components. Component drift and split tracking can be delayed for p(cb(coc)) new data 
objects, after which we can start performing sub-clustering again.

4.4 � Decay mechanism

We define an SHC decay parameter � . If a classifier object co ∈ Co did not update after

data objects retrieved from the input data stream, it is marked as obsolete and eventu-
ally removed. Component decay depends on the population size within the interval 
[pcb, �maxpcb] . Outliers decay at �o = 20 times lower pace, as we give them a chance to get 
promoted to components, or get examined by user in search for fraudulent behaviour. If 
� = 0 , SHC does not use the decay mechanism, i.e., classification objects do not decay.

4.5 � Removing obsolete classification objects

Obsolete classification objects get removed eventually, which can result in container tree 
Gc and agglomeration graph Ga restructuring. The agglomeration graph Ga is discon-
nected, having as many connected subgraphs as the number of clusters. Having K clus-
ters in Gc means that Ga can be separated into M ≤ K connected subgraphs, taking in 
consideration threshold �sp . Components Na (16) can be separated into a set of partitions

where each partition is a set of connected components under the same cluster. The obsolete 
component coo is a member of partition Nai

By removing coo , we test the partition Nai
 , and if it can be further partitioned into a set of 

new L partitions

we can conclude that due to removal of the obsolete component coo , cluster Ci divided into 
L separate clusters, which must be reflected in the container tree Gc . Figure 6 shows such 
a situation. In Fig. 6a we can see seven connected components, all under the same cluster 
C1 . By removing component co3 , our partition Na1

= {co1, co2, ..., co7} is fragmented into 
L = 3 new partitions Na1,1

= {co1, co2},Na1,2
= {co4, co5},Na1,3

= {co6, co7} . This results 
in division of the cluster C1 into clusters {C1,C2,C3} as seen in Fig. 6b.

Removing an obsolete outlier does not affect the agglomeration graph Ga and requires 
only removals in the container tree Gc.

(34)di(cmc) < 𝜃d𝜃

(35)∀cm ∈ Cm ∶ �min(max(pcb, p(cm)), �maxpcb),∀o ∈ O ∶ �o�pcb

(36)Na = {Na1
,Na2

, ...,NaM
}

(37)coo ∈ Nai

(38)Nai
= {Nai,1

,Nai,2
, ...,Nai,L

}



157Machine Learning (2021) 110:139–184	

1 3

4.6 � Traceability

To support traceability, we need a traceability tree Gt for all obsolete classification objects. 
The traceability tree is an acyclic directed graph whose nodes are obsolete and current clas-
sification objects. Edges of the traceability tree form a transitional time line, which helps us 
reconstruct transitions between obsolete classification objects Ob and current classification 
objects Cl ∪ Co . Current classification objects Cl ∪ Co are leafs of the traceability tree Gt . 
Once a current classification object becomes obsolete, a transition between it and the new cur-
rent classification object is created.

A classification object nti ∈ Ob is a predecessor of the current classification 
object ntj ∈ (Cl ∪ Co) if there is a directed path in Gt from node nti to node ntj , or 
Pt(Gt) = nti − ntj . The drift and split example in Fig. 5 creates the traceability tree Gt seen 
in Fig. 7.

(39)
Gt = (Nt,Et),Ob = Nt ⧵ (Cl ∪ Co)

∀(nti, ntj) ∈ Et∄(ntj, ntk) ∈ Et ∶ nti ∈ Ob ∧ ntj ∈ (Cl ∪ Co)

Fig. 6   Removing obsolete components, traceability tree



158	 Machine Learning (2021) 110:139–184

1 3

4.7 � SHC algorithm details

4.7.1 � SHC input parameters

Table 1 contains all SHC parameters. Parameters are divided into several sections: gen-
eral, limitation, and drift, depending on where and how parameters are used. General 
SHC parameters are used always. There are some significant notable parameter values:

•	 � = 0 : no decay
•	 ��min

2 = 0 : no variance limit when promoting outliers to components
•	 ��max

2 = 0 : no variance limit on component growth
•	 pcb = 0 ∧ �cb

2 = 0 : analysing drift and split is switched off

SHC limitation and drifting mechanisms are generally not needed unless we have some 
specific dataset or data stream.

To make SHC more configurable and less parameter-dependent, we introduced sev-
eral generic parameter templates. Table 2 gives some agglomeration related templates. 
Aggressive agglomeration template tends to agglomerate more population members than 
the Relaxed agglomeration template. Similarly, Table 3 contains drifting templates.

4.7.2 � SHC detailed description

SHC is a single-pass algorithm, which means that each time a new data object X is 
retrieved from the input data stream, SHC undertakes the same set of steps to return the 
classification. Figure 8 shows a high-level overview of SHC. On the left side in Fig. 8, 
we can see the major steps of the algorithm, and each step detailed on the right side. We 
additionally give detailed pseudo-code for each of the major steps in the Appendices. 
Throughout the processing SHC maintains the container tree Gc (13), agglomeration 
graph Ga (16), and traceability tree Gt (39). All classification objects (17,18) are kept 
in the container tree Gc . The main procedure pseudo-code is given in Appendix A. Here 
we give brief descriptions of each step in the main procedure.

Step 1: Decay This step is described in Sect. 4.4, and pseudo-code is given in Appen-
dix B. We iterate through all classification objects ∀co ∈ Co and decrement their decay 
counters �(co) (17, 18). After decrementing, all classification objects that have expired 
decay counter �(co) ≤ 0 are marked obsolete.

Step 2: Classification This step is described in Sect. 4.2.1, and pseudo-code is given 
in Appendix C. In this step we perform a query on classification objects Co that are 
not obsolete and are below the variance limit threshold ��max

2 (12). In a naïve query, 
we iterate through all these classification objects and create the classified set Qc and 
neighbourhood set Qn as described in (19). Once the classification is done, we search for 

Fig. 7   A traceability tree



159Machine Learning (2021) 110:139–184	

1 3

Ta
bl

e 
1  

S
H

C
 m

ai
n 

pa
ra

m
et

er
s

Pa
ra

m
et

er
N

am
e

D
ef

au
lt 

va
lu

e
D

et
ai

ls

G
en

er
al

�
St

at
ist

ic
al

 d
ist

an
ce

 b
ou

nd
3.

0
M

an
da

to
ry

. S
ta

tis
tic

al
 d

ist
an

ce
 th

at
 m

ak
es

 c
om

po
ne

nt
 o

r o
ut

lie
r c

la
ss

ifi
ca

tio
n 

bo
un

d 
(9

).
�
�
2

V
irt

ua
l v

ar
ia

nc
e

0.
5

M
an

da
to

ry
. V

ar
ia

nc
e 

us
ed

 to
 c

re
at

e 
ou

tli
er

 v
irt

ua
l c

ov
ar

ia
nc

e 
m

at
rix

 (1
0)

.
�
sp

Sh
ar

ed
 p

op
ul

at
io

n 
th

re
sh

ol
d

1
M

an
da

to
ry

. D
efi

ne
s h

ow
 m

an
y 

sh
ar

ed
 p

op
ul

at
io

n 
m

em
be

r i
s n

ee
de

d 
fo

r c
on

ne
ct

ed
 c

om
po

ne
nt

 
ag

gl
om

er
at

io
n 

(2
1)

.
p
rr

Re
di

re
ct

ed
 c

om
po

ne
nt

 re
m

ov
al

 ra
tio

0.
2

M
an

da
to

ry
. R

at
io

 b
et

w
ee

n 
re

di
re

ct
ed

 a
nd

 re
di

re
ct

io
n 

ta
rg

et
 c

om
po

ne
nt

s t
ha

t i
ni

tia
te

 re
di

re
ct

ed
 c

om
-

po
ne

nt
 re

m
ov

al
 a

s d
efi

ne
d 

in
 S

ec
t. 

4.
2.

3.
p
n

St
at

ist
ic

al
 n

ei
gh

bo
ur

ho
od

 d
ist

an
ce

3
O

pt
io

na
l. 

M
ax

im
al

 st
at

ist
ic

al
 n

ei
gh

bo
ur

ho
od

 d
ist

an
ce

 a
s d

efi
ne

d 
in

 (1
9)

.
�

D
ec

ay
10

O
pt

io
na

l. 
D

ec
ay

 p
ar

am
et

er
 a

s d
efi

ne
d 

in
 S

ec
t. 

4.
4.

Li
m

ita
tio

n
�
�
m
in

2
M

in
im

al
 v

ar
ia

nc
e 

fo
r c

om
po

ne
nt

s
0
.1

∗
�
�
2

O
pt

io
na

l. 
M

in
im

al
 v

ar
ia

nc
e 

ne
ed

ed
 fo

r p
ro

m
ot

in
g 

ou
tli

er
s t

o 
co

m
po

ne
nt

 (1
2)

.
�
�
m
a
x

2
M

ax
im

al
 v

ar
ia

nc
e 

fo
r c

om
po

ne
nt

s
0

O
pt

io
na

l. 
M

ax
im

al
 a

llo
w

ed
 v

ar
ia

nc
e 

fo
r c

om
po

ne
nt

s (
12

).
D

ri
ft

p
cb

C
om

po
ne

nt
 b

as
el

in
e 

m
in

im
al

 p
op

ul
at

io
n

40
O

pt
io

na
l. 

M
in

im
al

 p
op

ul
at

io
n 

fo
r d

efi
ni

ng
 th

e 
co

m
po

ne
nt

 b
as

el
in

e 
(2

8)
.

�
cb

2
C

om
po

ne
nt

 b
as

el
in

e 
m

in
im

al
 v

ar
ia

nc
e

8
O

pt
io

na
l. 

M
in

im
al

 v
ar

ia
nc

e 
fo

r d
efi

ni
ng

 th
e 

co
m

po
ne

nt
 b

as
el

in
e 

(2
8)

.
p
d

D
rif

tin
g 

si
ze

 ra
tio

0.
7

O
pt

io
na

l. 
U

se
d 

to
 d

et
ec

t w
he

th
er

 d
rif

tin
g 

as
se

ss
m

en
t c

an
 b

e 
pe

rfo
rm

ed
, a

s d
efi

ne
d 

in
 S

ec
t. 

4.
3.

�
d

D
rif

tin
g 

in
de

x 
ra

tio
0.

5
O

pt
io

na
l. 

U
se

d 
to

 d
et

ec
t d

rif
tin

g.
 D

efi
ne

d 
in

 S
ec

t. 
4.

3.



160	 Machine Learning (2021) 110:139–184

1 3

the classified object in Qc whose center is statistically the closest to the new data object 
(20).

Step 3: Agglomeration We perform the shared population agglomeration described in 
Sect. 4.2.2. Detailed pseudo-code is given in Appendix D. The shared population agglom-
eration is done on the previously created classified set Qc . The agglomeration function 
receives pairs of classified objects from Qc , as defined in (22). If one of the classified 
objects in the agglomerated pair is an outlier, we include this outlier in the other classified 
object by updating its model according to (8). If both classified objects are components, 
we need to create or update a connection edge between them in the agglomeration graph 
Ga , and increment the shared population counter sp, as defined in (22). Only when shared 
population member counter sp reaches the threshold �sp , we restructure the container tree 
Gc so that both components are under the same cluster. In this case, we agglomerate under 
the bigger cluster (23). If the original closest classified object coc was an outlier, it is cer-
tain that it was removed by the agglomeration procedure, hence, we need to find a new 
closest classification object coc , which is updated in the next step. A smart implementation 
keeps the statistical distances calculated in the classification step as part of the classified 
set Qc . This way, we need to recalculate the statistical distance to the new data object X 
only for components that were updated in the agglomeration procedure and save significant 
processing time.

Step 4: Model update The model update is described in Sect. 3. Detailed pseudo-code 
is given in Appendix E. If coc is an outlier, we promote it to a component only if the newly 
formed component would have the variance (12) > 𝜎𝜃min

2 . If coc is a component, we update 
it only if its variance is < 𝜎𝜃max

2 . Besides the model update according to (8), we need to 
increment the population counter p(coc) (17,18) and reset the decay counter �(coc).

Drift and split If the component baseline is not formed, we track whether the pop-
ulation counter p(coc) and component variance �(coc) satisfy the conditions defined 
in (28). When these conditions are satisfied, we clone the current component model 
into the baseline cb(coc) ← coc . Drift and split evaluation is done periodically, done by 
implementing a component population counter. A child SHC is instanced every time 
we begin drift and split evaluation and data objects that updated the coc component 
model are passed to the child SHC instance. We keep connections between normal and 

Table 2   SHC agglomeration 
templates

Parameter Aggressive Normal Relaxed

� 3.5 3.2 2.9
��

2 1.2 1.0 0.8
pn 4 2 2

Table 3   SHC drifting templates

Parameter No drift Slow drift Normal drift Fast drift Ultra fast drift

pcb 0 120 80 40 20
�cb

2 0 9 8 6 6
pd - 2.0 1.3 1.0 0.5
�d - 1.0 0.8 0.6 0.5



161Machine Learning (2021) 110:139–184	

1 3

sub-clustered components at any time when we perform drift and split evaluation. We 
do it as defined in (33). Once the biggest sub-clustered component (29) reaches the 
threshold (31), we are certain that the population evolution can be correctly assessed. 
Drift and split is then assessed by calculating drift index di (30). If drift and split was 
not detected (34), we remove the child SHC, clean the agglomeration graph Ga , and wait 
another number of component data objects to begin another drift and split evaluation. If 
drift and split was detected (32), we move sub-clustered components into normal com-
ponents and simultaneously cluster in cases where there is a sufficient number of shared 

Fig. 8   SHC overview



162	 Machine Learning (2021) 110:139–184

1 3

population members (22). After we moved all the components, we make the updated 
component coc obsolete and remove the child SHC.

Step 5: Neighbourhood processing We process the statistical neighbourhood of the 
closest classified object coc . The neighbourhood processing is described in Sect. 4.2.3 and 
pseudo-code is given in Appendix F. Only components can have neighbourhood (19). We 
process neighbourhood for components that have variance < 𝜎𝜃max

2 . For all component 
neighbours, we check whether the neighbour center is within the component � bound. If the 
neighbour is an outlier, we perform the outlier inclusion (25) by adding it to the component 
model. If the neighbour is another component, we perform the component inclusion (26) 
by redirecting the neighbour model updates to the component coc . Eventually, if the redi-
rected neighbour falls behind the component coc in the population size (27), we mark the 
redirected neighbour as obsolete.

Step 6: Removing obsolete The whole removal process is described in Sect.  4.5. 
Detailed pseudo-code is given in Appendix G. We remove all classification objects that 
were marked as obsolete coo . First we try to find a vertex-induced subgraph Ga

′ of the 
agglomeration graph Ga that comprises the obsolete classification object coo . If we are able 
to find such a subgraph, we remove the obsolete classification object coo from it. After this, 
we try to partition nodes of the subgraph, and if the partitioning results in several new dis-
junct partitions (38), we need to decluster all the partitions in the container tree Gc . The rest 
of the removal procedure is performing cleaning after removing coo , such as the agglom-
eration graph Ga , container tree Gc , other component neighbourhoods and redirections.

4.8 � Computational complexity

SHC is made of several steps, which all have their own computational complexities. To 
asses the SHC complexity means summing complexities of all individual steps.

The decay mechanism iterates over all classification objects. The number of classifica-
tion objects k = |Co| is limited by SHC parameters. The calculation of the worst case sce-
nario for k is given in Appendix H and can be taken as k = �o�pcb for the maximal number 
of outliers, which greatly affect later neighbourhood processing. For the decay mechanism 
we have complexity O(k). However, a decay counter recalculation is a simple and fast cal-
culation, which we did not want to make more complex by introducing additional auxiliary 
structures.

For the naïve query approach we used, the complexity is O(k). By using some of the 
indexing techniques, this can be reduced to O(log k) . The query could be also parallelized, 
which would bring its complexity down to O(1) given that we have at least k parallel nodes. 
The most important results of the query are classified and neighbourhood sets, Qc,Qn , 
whose results directly affect the subsequent SHC phases. The maximal number of potential 
classified objects in the Qc can be resolved by the kissing number k2 , which is detailed in 
the Appendix I (Conway and Sloane 2013). The most classified objects we can get in the 
classified set Qc is k2 outliers, as they can be packed densely. Any combination of compo-
nents and outliers will certainly be less than k2 , which sets the complexity of the agglom-
eration procedure to O(k2).

When calculating the maximal neighbourhood Qn , we estimate that the worst case sce-
nario is to have only outliers in the neighbourhood. This leads to conclusion that assessing 
the potential neighbourhood is a combination of the sphere-packing and neighbourhood 
size problems. Simple method includes assessing the maximal number of outliers in the 
neighbourhood that would not be included in the classified component according to the 



163Machine Learning (2021) 110:139–184	

1 3

normal distribution. For pn = 3 , we can take that a component could assimilate its neigh-
bourhood when the number of outliers in the neighbourhood is greater than ��=0,�=1(−1) , 
where � is the cumulative normal distribution function, which could be the good approxi-
mation of the maximal outlier number that could still be taken as the neighbourhood, and 
not as part of the classified component coc . Thus, the maximal neighbourhood can be cal-
culated as k3 = ��=0,�=1(−1) max

coc∈Cm
p(coc) , and the complexity of the neighbourhood pro-

cessing procedure is O(k3).
The updating procedure is done for the classified component coc , hence, the basic com-

plexity is O(1). In case of the drift and split evaluation, the worst case in the child SHC is 
to have only outliers. In particular this is k4 = pn max

coc∈Cm
p(coc) outliers, which sets the updat-

ing procedure complexity to O(k4).
Finally, the removal procedure must remove all obsolete classification objects. This can 

be due to decay of a classified object or splitting of a component. According to the decay 
function (35), in each step we can have at most one outlier and at most (�max − 1)pcb com-
ponents that are obsolete due to decay. If we add one potential splitting classified compo-
nent, the complexity of the removal procedure is O(2 + (�max − 1)pcb).

The overall complexity of SHC estimates at

which is positioning SHC well below the k-means complexity. However, if we check one 
of the similar algorithms, such as DBSTREAM (Hahsler and Bolaños 2016), SHC has 
slightly higher complexity. Adjusting some procedures, and by introducing additional aux-
iliary structures, we could lower the SHC computational complexity even more.

5 � Evaluation

The proposed SHC algorithm is implemented in the C++ programming language. We 
used Eigen (Jacob et al. 2013) to support algebraic calculations for the multivariate normal 
distribution. The C++ code was interfaced to R using Rcpp R package (Eddelbuettel and 
Balamuta 2018).

For the evaluation purposes, we have used the stream and streamMOA R packages 
(Hahsler et al. 2017, 2018). These packages provide various data stream clustering algo-
rithms such as BIRCH, BICO, DenStream, CluStream, ClusTree, D-Stream, DBSTREAM, 
and others. Additionally, these two packages provide many clustering indices (Desgraupes 
2017) that can be used to compare clustering algorithms, as already done by the previ-
ous work (Carnein et al. 2017). streamMOA R package is only an interface between MOA 
package (Bifet et al. 2018) written in Java and stream R package, providing access to MOA 
clustering algorithms. We extended the streamMOA R package to provide access to the 
MCOD clustering algorithm available in the MOA Java package.

We have created an interface between SHC R interface and abstract classes in the stream 
package, to allow testing all relevant clustering algorithms on the same test cases and data 
streams. Since the stream package was not intended for the outlier testing, given synthetic 
data stream generators did not generate and label outliers and there were no outlier accu-
racy indices implemented. We extended the stream package to add these features.

(40)
O(m(2k + 2)) ≤ O(m(2k + k2 + k3 + k4 + (𝛿max − 1)pcb + 2)) < O(m(6k + 2))

6k + 2 ≪ m



164	 Machine Learning (2021) 110:139–184

1 3

We used CRI for most of the algorithm comparisons, which shows to be a very good 
external clustering indicator. In some cases, we used the purity clustering index. However, 
both CRI and purity do not consider or penalize outlier mismatches, which are important 
for this paper. Even if a clustering algorithm does not recognize any of the outliers from the 
input stream, the difference in the final CRI and purity values is minor because of the small 
outlier proportion and does not reflect the algorithm difference in the outlier recognition 
accuracy. Since the extended synthetic data stream generator is capable of labeling gener-
ated outliers, we applied Jaccard Index (Jaccard 1912; Desgraupes 2017) for the outlier 
detection accuracy assessment. We used true positive (TP), false positive (FP) and unde-
tected (UND) for elementary detections when calculating the Outlier Jaccard Index (OJI)

which we also implemented in R and added to the indices in the stream R package. Assess-
ing whether a tested clustering algorithm correctly recognizes a marked outlier turns out 
to be quite ambiguous since many clustering algorithms do not mark outliers explicitly. 
In fact, the only algorithm that explicitly marks detected outliers, except SHC, is MCOD. 
For others, we considered a macro-cluster, or a micro-cluster for BIRCH, comprising only 
the marked outlier, as a minimal condition and evidence that the tested clustering algo-
rithm can isolate outliers and anomalies even if it is not explicitly designed for the outlier 
recognition.

For data streams, all tests were done in small data object batches. First, we performed 
only classification for a batch of data objects, then we did the model update for the same 
batch. The size of the data stream batch was variable and depended on the tested clus-
tering algorithm. Of all tested clustering algorithms, SHC is the only single-phase algo-
rithm, providing us with the ability to classify and update model for each data object sepa-
rately. In this case, the coincidence matrix needed for calculating CRI, purity, and OJI was 
updated gradually, after each data object classification. For all other clustering algorithms, 
a bigger data stream batches were selected, as suggested by the stream package authors 
(Hahsler et al. 2017), which made data stream processing more coarse than for the SHC 
algorithm. This is due to the fact that the final classification and macro-cluster assignments 
are obtained only after invoking the offline phase, which greatly affects how the clustering 
indices are calculated, i.e., they need to be calculated for the whole data stream batch at 
once.

Calculating OJI for continuous data streams turns out to be an incremental problem. 
After processing each data stream subset, we obtain TP, FP, and UND values for that sub-
set only. We need to sum these values continuously for all previously processed data stream 
subsets. OJI can be calculated from these values at any point in the processed data stream, 
which makes it incrementally cumulative when processing data streams. In the testing, we 
call it cumulative Outlier Jaccard Index (cOJI). cOJI can show outlier detection accuracy 
trend throughout data stream processing.

For the hyper-parameter tuning, we used model-based Bayesian optimization (MBO). 
For this purpose we used mlrMBO R package (Bischl et al. 2017; Horn et al. 2015). Hyper-
parameter tuning was done for each test case separately.

(41)OJI(generated, detected) =
|generated ∩ detected|
|generated ∪ detected| =

TP

TP + FP + UND



165Machine Learning (2021) 110:139–184	

1 3

5.1 � Test case 1: Static testing with Seeds dataset

For this test, we obtained the Seeds dataset (Dua and Graff 2017). This small dataset com-
prises 210 measurements of 3 distinct seed types. Each seed type is measured 70 times. 
It is a small dataset that has 3 significantly overlapping clusters. This dataset favors batch 
clustering algorithms and data stream clustering algorithms that can handle cluster over-
lapping, such as DBSTREAM and SHC. The dataset is sorted by the seeds type and must 
be manipulated for usage in clustering algorithm testing. Therefore, we performed 7-fold 
cross-validation testing on this dataset. 10 seeds of each type were used as a learning set 
for all clustering algorithms. The rest of the 60 seeds of each type were used as a testing 
set. We repeated this for all 7 learning sets and calculated average CRI for all tests. Each 
algorithm went through the hyper-parameter tuning to obtain the best results. Parameters 
obtained this way are available in Table 4.

In Fig. 9a we can see the testing results for the seeds dataset. In this testing, BIRCH 
seems to be the best clustering algorithm, followed by SHC and k-means. All other cluster-
ing algorithms that are not in Fig. 9a did not show any significant results for this test case.

5.2 � Test case 2: Chameleon DS3 dataset

For testing SHC variance limitation capability, we selected the Chame-
leon DS3 dataset (Karypis et  al. 1999). SHC was initialized manually by using 
� = 2.84, ��

2 = 0.4, ��min
2 = 0.1, ��max

2 = 6.5 . The final result was cleaned by removing 

(a)
(b)

Fig. 9   Seeds and Chameleon DS3 datasets clustering

Table 4   Algorithm parameters 
for the seeds dataset

Algorithm Setting

SHC � = 7, ��
2
= 2.87, �sp = 24, � = 0, ��min

2
= 0.58, ��max

2
= 0.604

DBSTREAM r = 3.11,Cm = 0.657, shared_density = true

DBCAN eps = 1.33

BIRCH T = 3, branching = 3,maxLeaf = 3

D-Stream gridsize = 1.15,Cm = 1.19

MCOD r = 4.17, t = 15, k = 3



166	 Machine Learning (2021) 110:139–184

1 3

outliers and components having small populations ∀cm ∈ Cm ∶ p(cm) < 7 . The final clus-
tering result can be seen in Fig. 9b.

5.3 � Test case 3: Synthetically generated statistic clusters and outliers

We used a generic synthetic stream generator, capable of generating normally distributed 
populations. In this test case, we generated 20 normally distributed clusters and 500 outli-
ers, forming a data stream made of 30000 data objects. All cluster populations had vari-
ance �2 ∈ [0.5, 8] , and outliers were generated to be within ��2 = 1 . Covariance correla-
tion was also randomly selected for each cluster in values �(i,j) ∈ [0, 0.2] , as we wanted our 
components to be more spherical. The whole space was limited to (0, 0) − (240, 240) . For 
smaller space than that, we would not be able to generate 20 clusters and 500 outliers sta-
tistically correctly distributed, so that the generated problem is solvable by the clustering 
algorithms. We generated 10 random datasets using previously defined parameters and pro-
cessed them by the compared clustering algorithms. This means 300000 data objects in 
total for all 10 generated datasets. The final displayed result is the average of all 10 random 
tests.

In Table 5 we can see parameters tuned for the synthetically generated dataset. For SHC, 
we used templates from Table 2, to compare how different parameters affect the final clus-
tering result. All clustering algorithms, except MCOD and BIRCH, were multi-objective 
hyper-parameter tuned for CRI and OJI, as we wanted to get the best possible result in both 
clustering and outlier detection. We were unable to do such tuning for MCOD since micro-
clusters are tied to the radius r, which made MCOD performing poorly when multi-objec-
tive tuned. Therefore, MCOD was tuned only for OJI, as it is a specialized outlier detection 
algorithm. We had a similar issue with BIRCH, however, we created two distinct settings 
for BIRCH, one tuned for cluster detection, and one for outlier detection.

In Fig. 10a we can see an example of the generated dataset. We can visually identify 
clusters among points that look like noise. In Fig. 10b we can see the model generated 
by SHC parametrized with normal agglomeration template from Table 2. Average CRI 
is available in Fig. 10c. In this case SHC is the most accurate algorithm. Since we tuned 
MCOD for best outlier detection results, its CRI is not among the best algorithms. Fig-
ure 10d presents average OJI results for all algorithms. As expected, MCOD achieves 
excellent results in the outlier detection context. It is interesting to observe the differ-
ence between the BIRCH cluster and outlier setting. Whereas BIRCH cluster setting 
achieves very high CRI, the outlier setting achieves higher OJI. We would get similar, 

Table 5   Algorithm parameters 
for the synthetic clusters and 
outliers

Algorithm Setting

SHC agg. SHC aggressive template in Table 2
SHC nor. SHC normal template in Table 2
SHC rel. SHC relaxed template in Table 2
DBSTREAM r = 2.833,Cm = 0.766, lambda = 0

DBSCAN eps = 1.47

BIRCH out. T = 1.833, branching = 520,maxLeaf = 520

BIRCH clus. T = 4.927, branching = 520,maxLeaf = 520

D-Stream gridsize = 1.017,Cm = 0.1,Cl = 0.02

MCOD r = 7.3, t = 100



167Machine Learning (2021) 110:139–184	

1 3

but poorer results for MCOD, since MCOD operates only on the micro-cluster level and 
has no macro-cluster related second stage. We did not add a second stage for MCOD as 
it would only diminish good outlier detection results.

As we increase proportion of outliers in the overall dataset, we can see that standard 
clustering algorithms, such as k-means, start performing very poorly. This is a clear sign 
that more complex clustering algorithms are needed to deal with modern data science 
challenges. Modern hardware is quite adequate for such a raise of the clustering algo-
rithms complexity, which can be seen in Fig. 10e. All tests were conducted on 8 core 

(a) (b)

(c)

(e)

(d)

Fig. 10   Synthetically generated clusters and outliers results



168	 Machine Learning (2021) 110:139–184

1 3

Intel processor with 16GB of RAM. The aggressive SHC template is the slowest, due to 
the bigger neighbourhood (19) that needs to be processed.

5.4 � Test case 4: Evolving data stream

The final synthetic test case is an evolving data stream, whose scenario is shown in 
Fig. 11a. Each scenario step involves 300 data instances. The evolving scenario includes 
one stationary and two drifting clusters. Drifting clusters begin their movement in the same 
place and move in opposite directions. At some point in the testing data stream, two drift-
ing clusters get separated and become stationary. Eventually, in the last step of the evolving 
scenario, we introduce five individual data objects on the path of drifting clusters. Cluster-
ing algorithms should recognize these five data objects as outliers.

We performed the multi-objective hyper-parameter tuning for CRI and OJI. Used 
parameters are given in Table 6. CRI and OJI assessments were performed only for the last 
step of the evolving scenario. Figure 11b shows cluster recognition, while Fig. 11c shows 
outlier detection by the tested clustering algorithms. SHC and DBSTREAM are showing 

Table 6   Algorithm parameters 
for the evolving data stream test

Algorithm Setting

SHC SHC normal agglo. template in Table 2 
and fast drift template in Table 3

DBSTREAM r = 4,Cm = 0.209, shared_density = true

DBSCAN eps = 1.3

BIRCH T = 2.613, branching = 8,maxLeaf = 8

D-Stream gridsize = 3.5764,Cm = 1.06,Cl = 0.1

MCOD r = 2.215, t = 13

(a)

(b) (c)

Fig. 11   Evolving data stream test case



169Machine Learning (2021) 110:139–184	

1 3

the best results overall. Due to the low threshold parameter T, BIRCH results are better 
in the outlier detection than in clustering. MCOD does not perform too well when hyper-
parameter tuned both for CRI and OJI, a situation that we already described in the previous 
test case.

5.5 � Test case 5: Intel Berkeley Laboratory sensor data

As one of the real testing data streams, we have used the Intel Berkeley Laboratory sensor 
data1. The placement of the sensors can be seen in Fig. 12. 54 sensors that record tempera-
ture, humidity, and light were placed on a floor of the lab. Each sensor also recorded its 
own accumulator voltage. Sensors were deployed and recording values in over a month 
period. The main idea is to be able to distinguish and classify distinct sensors. Daily events 
such as day or night, the sun passing around the building, heating, turning lights on and off, 
can greatly help to distinguish a part of the building. Many sensors are having missing val-
ues due to their power source. This requires some data cleaning. We removed only readings 
that had missing timestamps. All missing values that can cause errors in some clustering 

Fig. 12   Sensor placement

Table 7   Algorithm parameters for the sensor data stream

Algorithm Setting

SHC � = 4, ��
2 = 0.789, � = 31, pcb = 20, pd = 0.732, �d = 0.258, ��min

2 = 0.476

DBSTREAM r = 0.743,Cm = 0.41, alpha = 0.0964, shared_density = true

D-Stream gridsize = 2.45,Cm = 11,Cl = 0.553, attraction = true

MCOD r = 1.1, t = 20

1  http://db.csail​.mit.edu/labda​ta/labda​ta.html

http://db.csail.mit.edu/labdata/labdata.html


170	 Machine Learning (2021) 110:139–184

1 3

algorithms, were replaced by zero values. We scaled the data stream the same way as in 
Hahsler and Bolaños (2016).

We included only algorithms that processed the sensor data stream within the time limit 
of 2 hours. All algorithms were hyper-parameter tuned for CRI on the first 200000 data 
objects in the data stream. Parameters used for the test are given in Table 7.

Figure 13a shows continuous CRI for all four major algorithms. SHC is the only contin-
uous algorithm that immediately returns classification for each data object retrieved from 
the data stream. All other algorithms were processed in batches consisting of 1000 data 
objects. In Fig. 13b we can see average CRI for the whole sensor data stream. We can see 
that SHC is the best algorithm when it comes to classification accuracy. Figure 13c shows 
continuous purity values throughout sensor data stream processing. Continuous execution 
time was done in 1000 data object steps for all algorithms. Figure 13d shows that SHC is 
the slowest algorithm to process the sensor data stream, within algorithms that succeeded 
to process it under the imposed time limit.

5.6 � Test case 6: Anomaly detection in KDDCup ’99 data stream

KDDCup ’99 data stream (Dua and Graff 2017) is one of the most used in testing cluster-
ing algorithms. This is a data stream made of network traffic that was used to detect and 
analyse network intrusions. Most of the KDDCup ’99 data stream consists of normal net-
work traffic. Each attack has its own type. An attack can occur is fast bursts, i.e., a set of 
network communications in a short time frame belongs to the same attack. By modifying 
the stream R package, we can mark outliers in the input data stream, similar to how classes 
are marked. We marked each attack first occurrence as an outlier, or anomaly that needs to 
be detected by the clustering algorithms.

(a) (b)

(c) (d)

Fig. 13   Sensors data stream test case



171Machine Learning (2021) 110:139–184	

1 3

KDDCup ’99 is not the best data stream for testing clustering algorithms since its 
classes do not correlate tightly with most external clustering indices, such as CRI (Des-
graupes 2017), because there are big data stream sections where only one class can be 
found in data objects, e.g., normal network traffic. On the other side, internal clustering 
indices do not accurately reflect clustering algorithm accuracy for this data stream.

We use this data stream to demonstrate anomaly detection capabilities of clustering 
algorithms. For this purpose, we use the cumulative OJI on the KDDCup ’99 data stream 
having marked attack outliers as previously described. We performed hyper-parameter tun-
ing for all involved clustering algorithms for the first 200000 data objects in the KDD-
Cup’99 data stream. Parameters are available in Table 8.

The window size for MCOD plays a crucial role in hyper-parameter tuning, especially 
since we have 4 million data objects in the data stream. Contrarily to SHC where decay is 
beneficial, shortening window size in MCOD did not bring better outlier detection accu-
racy, it only improved speed and memory consumption. The best result for MCOD is 
obtained for a very wide window, comprising the whole data stream.

Figure 14a shows the cumulative OJI. Since OJI (41) takes into account false positive 
and undetected outliers, algorithm parameters, especially decay and fading functions, can 
have great influence over the cOJI results. Shortening decay means a greater generation of 
false positive detections, while prolonging decay means less true positive outliers. In the 

Table 8   Algorithm parameters 
for the KDDCup ’99 data stream

Algorithm Setting

SHC � = 34, ��
2 = 14.4, � = 194, ��min

2 = 0.144, �sp = 19

DBSTREAM r = 1.91,Cm = 3.99, shared_density = true

MCOD r = 97.8, t = 100

(a) (b)

(c) (d)

Fig. 14   KDDCup ’99 data stream test case



172	 Machine Learning (2021) 110:139–184

1 3

case of MCOD, window size (w) is the only vague parameter that could potentially, cor-
rectly tuned, give better results. Figure 14b shows the final cOJI for the whole KDDCup 
’99 data stream. Figure 14c shows continuous purity throughout data stream processing, 
characterized by occasional drops in purity when the concentration of outliers and attacks 
rises. Finally, Fig. 14d shows execution time for all algorithms. MCOD seems to slower 
than DBTSTREAM. SHC is the slowest in cases when the algorithm starts processing 
bursts of outliers. Although it looks like cOJI values are quite small, this depends on the 
processed data stream.

5.7 � Evaluation summary

We divided our testing into five distinct major categories, each representing notable capa-
bility, or a set of capabilities. The capability categories are:

•	 Static clustering - Capability of clustering finite datasets that do not exhibit population 
evolution and fading or decay is not needed,

•	 Stream clustering - Clustering of endless data streams that comprise population evolu-
tion and fading or decay is needed,

•	 Outlier detection - Capability to accurately detect outliers,
•	 Evolution tracking - Capability of accurately tracking population evolution, including 

appearance of outliers,

Table 9   Capability to test case mapping

Static clustering Stream 
clustering

Outlier detection Evolution 
tracking

Speed

Seeds ✓

Static clusters and outliers ✓ ✓ ✓

Evolving stream ✓ ✓ ✓

Sensor ✓ ✓ ✓ ✓

KDDCup ’99 ✓ ✓ ✓ ✓

Table 10   Algorithm capability grades

a Did not process sensor dataset under 2 hours limit

Supply k Static cluster-
ing

Stream cluster-
ing

Outlier detec-
tion

Evolution 
tracking

Speed

SHC × ★★★★ ★★★★★ ★★★★★ ★★★★★ ★★★

DBSTREAM × ★★★★ ★★★★★ ★★ ★★★ ★★★★★

DBSCANa × ★★★★★ ★★★★ ○ ★★ ★★

MCOD × ★★ ★★ ★★★★★ ★★ ★★★

CluStreama ✓ ★★ ★★ ○ ★ ★★★★★

D-Stream × ★★★ ★★★ ★★ ★★★ ★★★★

DenStream × × ★★ × × ★★★★

BIRCHa × ★★★★ ★★★★ ★ ★★ ★★★★★

k-meansa ✓ ★★★★★ ★★ ○ ★ ★



173Machine Learning (2021) 110:139–184	

1 3

•	 Speed - Capability of timely processing data coming from a dataset or data stream.

In Table 9 we can see mapping between clustering algorithm capabilities and performed 
testing. The testing results, CRI, OJI and execution speed were summarized, and algorithm 
grades were calculated from these results, which can be seen in Table 10. We used indi-
ces absolute range for grading, and for that specific reason there are no algorithms graded 
with one ★ in the clustering capabilities, as all of them are performing clustering more or 
less successfully, i.e., none of the tested algorithms did not perform with CRI close to 0. 
Some of the tested algorithms were graded with ○ in the outlier detection capability, since 
they did not manage to get OJI > 0 . Overall, two best data streaming clustering algorithms 
are DBSTREAM and SHC, since they perform equally good in all areas, with SHC being 
slightly better in the outlier detection and population evolution tracking, and DBSTREAM 
being overall faster than SHC.

 
Finally, Table 11 gives mapping between SHC major steps and capabilities. In the same 

table we have the computational complexity for all SHC major steps.

6 � Conclusion

In this paper, we proposed a statistical hierarchical clustering algorithm, capable of pro-
cessing evolving data streams and detecting anomalies. The proposed SHC algorithm com-
prises all modern clustering algorithm features. It is capable of detecting normally distrib-
uted populations and their outliers. Also, drift and split allow SHC to process evolving data 
streams. The ultimate goal behind creating SHC was to get a general purpose clustering 
algorithm that performs equally well in clustering and outlier detection, which is experi-
mentally confirmed with several test cases. The classification results match top clustering 
algorithms in this area.

The big difference is the way SHC works. It is a sequential clustering algorithm that 
works in a single phase, giving immediate classification on the component, outlier, and 
cluster levels. This is important from the anomaly detection point of view, as outliers 
should be further investigated as soon as possible. The single-phase approach also signifi-
cantly contributes to all sequential calculations, such as building the coincidence matrix. 

Table 11   SHC major steps to capability mapping

Static clustering Stream 
clustering

Outlier detection Evolution 
tracking

Complexity

Decay ✓ ✓ ✓ O(mk)
Classification ✓ ✓ ✓ O(mk)
Agglomeration ✓ ✓ ✓ O(mk2)

Model update ✓ ✓ ✓ O(m)
Drift and split ✓ ✓ O(mpn max

coc∈Cm
p(coc))

Neighbourhood 
processing

✓ ✓ O(m�(−1) max
coc∈Cm

p(coc))

Removing obsolete ✓ ✓ ✓ ✓ O(m(2 + (�max − 1)pcb))



174	 Machine Learning (2021) 110:139–184

1 3

This might be perceived as an unfair advantage over the two-phase clustering algorithms 
regarding the accuracy of classification since the offline phase is not supposed to be 
invoked for every data object retrieved from the processed data stream. We have to look 
at the trade-off in the speed of the data stream processing. Due to the algebraic simplic-
ity, two-phase clustering algorithms have a fast online phase, which does not give the final 
classification.

An interesting novel concept developed for SHC is the hierarchical clustering used for 
detecting and analysing component population evolution. A window of newly retrieved 
component sub-population is clustered by another child SHC instance, to analyse how the 
component is evolving and whether it is stationary, drifting, or even splitting into several 
sub-populations. All the big components from the child SHC instance are then taken and 
assessed. By calculating the drift index we can detect whether new sub-clustered compo-
nents are moving away from the original parent component position. If so, we restructure 
the components and outliers to accommodate population evolution.

Component agglomeration and growth are often accompanied by outlier and component 
inclusions. To limit the space needed for searching outliers and components that can be 
included, forming and using the statistical neighbourhood is used to speed up the search. 
Forming the statistical neighbourhood is linked to data objects classification step by reus-
ing classification calculations. SHC could be further advanced by forming a complete sta-
tistical tree, similar to M-tree, that could be used for each initial query. Statistical neigh-
bourhood concept could be used to achieve this goal. Creating a statistical query tree for 
algorithms such as SHC is a topic for the follow-up research.

Another advantage of SHC is classifier identifier traceability. Once a classifier identifier 
has been returned, it represents a unique class that does not change. This allows data stream 
evolution tracking, which might not be supported by all two-phase algorithms, especially 
those that use another external algorithm in the offline phase. Using an independent clus-
tering algorithm in the offline phase, such as DBSCAN or k-means, does not ensure that 
assigned macro-clusters can be tracked between two offline phase invocations, especially 
if an online phase was invoked between them, i.e., a model update happened. Potentially, 
a streaming clustering algorithm could establish traceability between stateful micro-cluster 
level and stateless macro-cluster level.

While the complexity of SHC is higher compared to other algorithms mentioned in 
this paper, its execution can be further optimized. Some of the SHC procedures, such 
as the statistical distance calculations and sub-clustering, can be massively parallelized. 
Also, modern data science problems require somewhat more complex solutions than old 
clustering algorithms, such as k-mean. Some of the newer clustering algorithms, such as 
DBSTREAM, represent a step ahead. Modern hardware certainly offers enough process-
ing power and memory for hosting complex clustering algorithms. This is a prospective 
research subject, especially from the massive parallel processing point of view.



175Machine Learning (2021) 110:139–184	

1 3

Appendix A: Main procedure detailed pseudo‑code

Detailed pseudo-code of the SHC main processing procedure is given in Algorithm 1. The 
main procedure takes two parameters: an input data object X and a classification only flag 
cOnly ∈ {0, 1} . The classification only flag indicates whether there is learning or not. For 
cOnly = 1 SHC performs only classification of the input data object X.

If cOnly allows model update and decay factor is set 𝛿 > 0 we perform decay check for 
all classification objects in Co as the first step. After decay has been performed, we select 
a subset of classification objects V ⊆ Co suitable and eligible for the classification, which 
have to be classification objects under the variance limit ��max

2 and not marked obsolete 
by the previous decay procedure. After the classification has been performed, we get back 
classified and neighbourhood sets Qc and Qn . Since the classification procedure returns the 
statistical distance d�(X,�(co),�(co)) for each classified object co ∈ Qc , we are able to 
select the closest classified object coc according to (20).

For all the following steps we must have cOnly = 0 , since after the classification we 
mostly update SHC structures and classification objects. The classified set Qc is then used 
to agglomerate all classified objects. If the agglomeration procedure removes one of the 
classified objects, usually an outlier, we need to remove this object from the classified set 
Qc as well, and to recalculate the closest classified object coc . If the classification proce-
dure did not find any classified objects, X can be considered for an outlier and we need 
to create a new outlier object for it. The creation of a new outlier must be according to 
(11). Otherwise, the closest classified object coc model can be updated. The model update 
procedure contains drifting and splitting steps as well. After updating the model for coc , 



176	 Machine Learning (2021) 110:139–184

1 3

the main processing procedure adds neighbourhood from Qn to the same coc and initiates 
the processing of the neighbourhood. In the last step, all obsolete classification objects are 
removed.

The SHC main procedure returns the closest classified object coc as the immediate result 
of the classification. The model update does not change the previously chosen closest clas-
sified object coc , so the classification is considered to be performed prior to the model 
update.

Appendix B: Decay procedure detailed pseudo‑code

The decay procedure in Algorithm 2 is a simple iteration through all classification objects 
in Co to decrease decay counters. Decay counters are initially set when a new outlier is 
created or reset when the closest classified object coc model update is performed. When 
the decay counter for the processed classification object expires, we mark the classification 
object as obsolete.

Appendix C: Classification function detailed pseudo‑code

The classification procedure in Algorithm  3 is described in Sect.  4.2.1. The goal of the 
classification procedure is to produce classified and neighbourhood sets Qc,Qn for the input 
data object X, using the set of eligible classification objects V. The set of eligible classifica-
tion objects V is prepared in the main SHC processing procedure. We iterate through the 
set of eligible classification objects co ∈ V  and test the statistical distance X has to each 
eligible classification object co. Based on the calculated statistical distance we place the 
classification object either in the classified set Qc , in the neighbourhood set Qn or nowhere. 



177Machine Learning (2021) 110:139–184	

1 3

The classified set Qc comprises pairs of classified objects and calculated statistical distance 
d, which can be later used to recalculate the closest classified object coc again.

Appendix D: Agglomeration function detailed pseudo‑code

The agglomeration procedure in Algorithm 4 is described in Sect. 4.2.2. After we detected 
the classified set Qc , and there are multiple classified objects where X could be classified 
into, i.e., |Qc| > 1 , this potentially means that X can be classified to a single cluster Ci ∈ Cl , 
which can be deducted from the container tree Gc . The agglomeration procedure must 
ensure the correct cluster structure taking into account the shared population threshold �sp . 
The input parameters for the agglomeration procedure are two distinct classified objects, 
whose distinctiveness is ensured in the main SHC processing procedure.

If at least one of the input classified objects is an outlier, we perform the outlier inclu-
sion, as described in Sect. 4.2.3, into the other classified object without ensuring �sp thresh-
old. Outliers usually have low virtual covariance (10), and in the case of a shared popu-
lation member appearance, we can be highly confident that the outlier is a member of a 
bigger population. After the outlier inclusion by updating the model od the other classified 
object, we mark the outlier as obsolete and return back the removed outlier to know that the 
recalculation of the closest classified object coc is needed.

In case we need to agglomerate two components, we need to work on the agglomeration 
graph Ga . We test for a connection between components by invoking the agglomeration 
graph CONNECTION method. If there is no connection between components co1 and co2 , 
the CONNECTION method creates a new connection Ea = Ea ∪ {cc = (co1, co2, sp = 0)} 
in the agglomeration graph. The shared member population counter sp(cc) is initially set 
to 0, as it will be immediately incremented by the agglomeration procedure. If the shared 
member population sp(cc) is above the threshold �sp , we need to restructure the container 



178	 Machine Learning (2021) 110:139–184

1 3

tree Gc , so that components co1 and co2 belong to the same cluster. This is done by invok-
ing the container tree CLUSTER method. The CLUSTER method must also clean up all 
vertical container tree paths that are not according to (14), i.e., do not have a classification 
object for the leaf.

Appendix E: Model update detailed pseudo‑code

Model update in Algorithm 5 is described in Sects. 3 and 4.3. The model updating proce-
dure is guarded by the ��min

2 and ��max
2 variance limits. ��min

2 is used to limit outlier to com-
ponent promotion, to ensure that a newly formed component has some minimal variance. 
��max

2 is optional and used only when we want to limit component growth, to achieve .
The classification object co distribution model update is done by updating �(co) and 

�(co) according to (8) and incrementing the population p(co). At the same time we reset 
the decay counter �(co).

Drift and split
Drift and split mechanism is part of the model updating procedure in Algorithm  5, 

described in Sect. 4.3. First, we need to create the component co baseline. If the baseline 
is not created, we wait for the component to grow to satisfy (28). Before starting sub-clus-
tering in the child SHC, i.e., drift and split evaluation, we use a counter to wait for another 
p(cb(co)) data objects that update the component. We process data objects in the child 
SHC, to achieve component sub-clustering, which is then used to detect significant popu-
lation evolution. We maintain the connections between classified components in Qc and 
Qc(SHC(co)) in the agglomeration graph. Once the biggest component in the child SHC 
reaches threshold (31), we calculate the drift index (30) and take the final drift and split 
decision based on (32,34).

If drifting is detected, we move all components from the child SHC into normal com-
ponents, as in Figs. 5b, c. After this, we restructure the container tree Gc using the connec-
tions made in the agglomeration graph Ga . Eventually, we mark the original component co 
as obsolete and let the sub-clustered components reflect the population(s) evolution.

If drifting is not detected, we remove the child SHC and all connections to the sub-
clustered components in the agglomeration graph Ga . We re-instantiate the child SHC for 
future use. The waiting counter is reset and we wait for p(Update procedurecb(co)) new 
data objects until new drift and split evaluation.

In Algorithm 5 we introduced some additional methods for the agglomeration graph Ga . 
ADJACENT_NODES returns a set of adjacent connected components in Ga for the sup-
plied component. REMOVE method is used to remove a set of nodes and their adjacent 
edges from the agglomeration graph Ga . 



179Machine Learning (2021) 110:139–184	

1 3



180	 Machine Learning (2021) 110:139–184

1 3

Appendix F: Neighbourhood processing detailed pseudo‑code

Neighbourhood processing in Algorithm 6 is described in Sect. 4.2.3. The neighbourhood 
set Qn produced in the classification procedure, Algorithm  3, is constantly updating the 
neighbourhood of components in Cm. We process entire neighbourhood of the closest clas-
sified component co ∈ Cm that did not reach the variance limit ��max

2 . If the variance limit 
��max

2 has been reached for co, we clean all redirections to co and neighbourhood N(co), 
since the neighbourhood processing for these components is not performed.

If we are still below the variance limit ��max
2 , or component growth is not limited by 

��max
2 = 0 , we iterate through the whole neighbourhood n ∈ N(co) . If the neighbour n is 

redirected to component co and its population falls behind the population of co (27), we 
mark this neighbour as obsolete.

In case if neighbour n is an outlier we perform the outlier inclusion, adding the outlier n 
to the component co population. If neighbour n is a component whose center �(n) is statis-
tically closer than � we do the component inclusion by redirecting the component n to the 
component co.



181Machine Learning (2021) 110:139–184	

1 3

Appendix G: Removing obsolete classification objects detailed 
pseudo‑code

Removing obsolete classification objects is detailed in Algorithm  7 and described in 
Sect. 4.5. We iterate through all obsolete classification objects. First, we partition Ga nodes 
and find the partition Nai

 having the obsolete object coo we are about to remove. Then we 
remove coo from the partition Nai

 and create a vertex-induced subgraph Ga
′ from it. We 

partition Ga
′ , and if there are more partitions in it, we de-cluster Gc according to partitions 

found in Ga
′ . De-clustering is done by restructuring Gc so that partitions of Ga

′ reside in 
separate clusters within Gc . For this purpose, we need the container tree Gc DECLUSTER 
method, which takes two partitions as input parameters. We separate these partitions in the 
container tree, leaving the more populated one in the old cluster node. Eventually, after 
separating all distinct partition pairs, the most populated partition must remain in the origi-
nal, starting cluster node.

After this, we remove the obsolete classification object coo from both the container 
tree and agglomeration graph. We introduce the container tree Gc REMOVE method that 
helps us removing classification objects and adjacent edges from the container tree. The 
REMOVE method must also clean up all vertical container tree paths that are not accord-
ing to (14), i.e., do not have a classification object for the leaf.

In the end, we iterate through all remaining classification objects, i.e., those that are 
not obsolete, and remove the obsolete classification object coo from all redirections and 
neighbourhoods.

Appendix H: The maximum number of components and outliers

All current classification objects k = |Co| = kc + ko can be divided into components 
kc = |Cm| and outliers k = |O| . Estimating the maximal number of classification objects is a 
combinatorial problem of analysing the worst case scenario for components and outliers in the 



182	 Machine Learning (2021) 110:139–184

1 3

processed data stream. The maximal number of outliers can be achieved only when there is a 
window w1 of the latest data objects, such that w1 = ko all of them are outliers, and the oldest 
outlier decay counter is set to �(o) = 1 at the end of the window w1 . According to (35) this 
window can comprise w1 = �o�pcb data objects.

For all components that were formed before this window, we know that they needed to 
have population big enough not to decay in the outlier forming window w1 , i.e., 
min

cm∈Cm
�(cm) = w1 + 1 . Before window w1 we need to have a window w2 where we reset all 

decay counters for formed components. The oldest component, i.e., the one appearing at 
the beginning of the window w2 , must not decay through both windows w2 + w1 . The ques-
tion is how many components we can create before reaching windows w2 + w1 ? According 
to (35), we have set boundaries for component decay to [�pcb, �max�pcb] . This means that 
we will eventually hit the upper limit of

components, since there is no combination of the input data objects in the processed stream 
that would allow us to have more components. In case 𝛿max > 𝛿o the combination of win-
dows w2 + w1 cannot be bigger than kc , otherwise the oldest component would decay. 
This means that we can have either w2 = kc ∧ w1 = 0 or w2 = kc − ko ∧ w1 = ko . Other-
wise, if we have �max ≤ �o , the only possibility is to have only outliers in the combination 
w2 = 0 ∧ w1 = ko , as none of the previously formed components would not decay in the 
window w1 . Finally, the maximal number of classification objects is

However, to meet the worst case scenario in the neighbourhood processing, we prefer the 
window w1 to be fully populated with outliers.

(42)ko = �o�pcb

(43)kc = �max�pcb

(44)k = max(�o, �max)�pcb

Fig. 15   Two-dimensional outlier 
kissing number example



183Machine Learning (2021) 110:139–184	

1 3

Appendix I: Outliers packing and kissing number

When we estimate the maximal number of classified objects in the classified set Qc , we start 
from the most dense packed set. This is most definitely a set of outliers, where each outlier is 
being characterized by a � bound �� hypersphere.

To solve this, we consult the kissing number K(d) (the Newton’s number) of an outlier 
hypersphere reduced to �∕2 , where d is the number of space dimensions. Such kissing number 
gives the possible number of outliers that can be packed around the outlier hypersphere. Such 
example can be seen in Fig. 15a. By fully expanding outliers back to � , the central outlier can 
be perceived as a data object that can be classified to all kissing outliers. This can be seen in 
Fig. 15b. This also means that the maximal classified set is the set of outliers packed this way, 
having |Qc| = K(d).

If we replace only one outlier in the Fig. 15 with component having 𝛴 > 𝛴𝜈 , then the num-
ber of kissing classification objects will be less than K(d) , as we expect the component hyper-
sphere radius to be bigger than the outlier hypersphere.

References

Ackerman, M., & Dasgupta, S. (2014). Incremental clustering: The case for extra clusters. In Advances in Neu-
ral Information Processing Systems (pp. 307–315).

Aggarwal, C. C. (2007). Data streams: Models and algorithms (Vol. 31). New York: Springer.
Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving data streams. In 

Proceedings of the 29th international conference on Very large data bases-Volume 29, VLDB Endowment 
(pp. 81–92).

Baudry, J. P., Raftery, A. E., Celeux, G., Lo, K., & Gottardo, R. (2010). Combining mixture components for 
clustering. Journal of Computational and Graphical Statistics, 19(2), 332–353.

Bifet, A., & Gavalda, R. (2007). Learning from time-changing data with adaptive windowing. In Proceedings of 
the 2007 SIAM international conference on data mining, SIAM (pp. 443–448).

Bifet, A., Read, J., Holmes, G., & Pfahringer, B. (2018). Streaming data mining with massive online analytics 
(MOA). Series in Machine Perception and Artificial Intelligence, 83(1), 1–25.

Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., & Lang, M. (2017). mlrMBO: A modular framework 
for model-based optimization of expensive black-box functions. 1703.03373

Bradley, P. S., Fayyad, U. M., Reina, C., et al. (1998). Scaling clustering algorithms to large databases. In KDD-
98 (pp. 9–15).

Cao, F., Estert, M., Qian, W., & Zhou, A. (2006). Density-based clustering over an evolving data stream with 
noise. In Proceedings of the 2006 SIAM international conference on data mining, SIAM (pp. 328–339).

Cao, L., Yang, D., Wang, Q., Yu, Y., Wang, J., & Rundensteiner, E. A. (2014). Scalable distance-based outlier 
detection over high-volume data streams. In 2014 IEEE 30th international conference on data engineering 
(ICDE), IEEE (pp. 76–87).

Carnein, M., Assenmacher, D., & Trautmann, H. (2017). An empirical comparison of stream clustering algo-
rithms. In Proceedings of the computing frontiers conference, ACM (pp. 361–366).

Chen, Y., & Tu, L. (2007). Density-based clustering for real-time stream data. In Proceedings of the 13th ACM 
SIGKDD international conference on knowledge discovery and data mining, ACM (pp. 133–142).

Ciaccia, P., Patella, M., & Zezula, P. (1997). M-tree: An efficient access method for similarity search in metric 
spaces. In Proceedings of the 23rd VLDB conference, Athens, Greece, Citeseer (pp. 426–435).

Conway, J. H., & Sloane, N. J. A. (2013). Sphere packings, lattices and groups (Vol. 290). New York: Springer.
Dasgupta, S. (1999). Learning mixtures of gaussians. In 40th annual symposium on Foundations of computer 

science, 1999, IEEE (pp. 634–644).
De Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. L. (2000). The mahalanobis distance. Chemometrics 

and Intelligent Laboratory Systems, 50(1), 1–18.
Desgraupes, B. (2017). Clustering indices. University of Paris Ouest-Lab Modal’X, 1, 34.
Dua, D., & Graff, C. (2017). UCI machine learning repository. http://archi​ve.ics.uci.edu/ml.
Eddelbuettel, D., & Balamuta, J. J. (2018). Extending R with C++: A brief introduction to Rcpp. The American 

Statistician, 72(1), 28–36. https​://doi.org/10.1080/00031​305.2017.13759​90.

http://archive.ics.uci.edu/ml
https://doi.org/10.1080/00031305.2017.1375990


184	 Machine Learning (2021) 110:139–184

1 3

Ester, M., Kriegel, H. P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for discovering clusters in 
large spatial databases with noise. In KDD-96, AAAI (pp. 226–231).

Fichtenberger, H., Gillé, M., Schmidt, M., Schwiegelshohn, C., & Sohler, C. (2013). BICO: BIRCH meets core-
sets for k-means clustering. In European symposium on Algorithms (pp. 481–492). New York: Springer.

Gama, J. (2010). Knowledge discovery from data streams. Boca Raton: CRC Press.
Gama, J., & Gaber, M. M. (2007). Learning from data streams: Processing techniques in sensor networks. New 

York: Springer.
Gut, A. (2009). An intermediate course in probability (2nd ed.). New York: Springer. https​://doi.

org/10.1007/978-1-4419-0162-0.
Hahsler, M., & Bolaños, M. (2016). Clustering data streams based on shared density between micro-clusters. 

IEEE Transactions on Knowledge and Data Engineering, 28(6), 1449–1461.
Hahsler, M., Bolanos, M., Forrest, J., et al. (2017). Introduction to stream: An extensible framework for data 

stream clustering research with r. Journal of Statistical Software, 76(14), 1–50.
Hahsler, M., Bolanos, M., & Forrest, J. (2018). streamMOA: Interface for MOA Stream Clustering Algorithms. 

https​://CRAN.R-proje​ct.org/packa​ge=strea​mMOA, R package version 1.1-4.
Horn, D., Wagner, T., Biermann, D., Weihs, C., & Bischl, B. (2015). Model-based multi-objective optimization: 

Taxonomy, multi-point proposal, toolbox and benchmark. In A. Gaspar-Cunha, C. Henggeler Antunes, & 
C. C. Coello (Eds.), Evolutionary multi-criterion optimization (pp. 64–78). Cham: Springer.

Jaccard, P. (1912). The distribution of the flora in the alpine zone.1. New Phytologist, 11(2), 37–50. https​://doi.
org/10.1111/j.1469-8137.1912.tb056​11.x.

Jacob, B., Guennebaud, G., et al. (2013). Eigen: C++ template library for linear algebra.
Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys (CSUR), 

31(3), 264–323.
Karypis, G., Han, E. H., & Kumar, V. (1999). Chameleon: Hierarchical clustering using dynamic modeling. 

Computer, 32(8), 68–75.
Kontaki, M., Gounaris, A., Papadopoulos, A. N., Tsichlas, K., & Manolopoulos, Y. (2016). Efficient and flex-

ible algorithms for monitoring distance-based outliers over data streams. Information Systems, 55, 37–53.
Kranen, P., Assent, I., Baldauf, C., & Seidl, T. (2011). The clustree: Indexing micro-clusters for anytime stream 

mining. Knowledge and Information Systems, 29(2), 249–272.
Krishnamoorthy, A., & Menon, D. (2013). Matrix inversion using cholesky decomposition. In 2013 signal pro-

cessing: Algorithms, architectures, arrangements, and applications (SPA), IEEE (pp. 70–72).
Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 

105(1), 156.
Moshtaghi, M., Leckie, C., & Bezdek, J. C. (2016). Online clustering of multivariate time-series. In Proceed-

ings of the 2016 SIAM international conference on data mining, SIAM (pp. 360–368).
Nguyen, H. L., Woon, Y. K., & Ng, W. K. (2015). A survey on data stream clustering and classification. Knowl-

edge and Information Systems, 45(3), 535–569. https​://doi.org/10.1007/s1011​5-014-0808-1.
O’Boyle, E, Jr., & Aguinis, H. (2012). The best and the rest: Revisiting the norm of normality of individual per-

formance. Personnel Psychology, 65(1), 79–119.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes 3rd edition: The 

art of scientific computing. Cambridge: Cambridge University Press.
Rasmussen, E. M. (1992). Clustering algorithms. Information Retrieval: Data Structures & Algorithms, 419, 

442.
Sherman, J., & Morrison, W. J. (1950). Adjustment of an inverse matrix corresponding to a change in one ele-

ment of a given matrix. The Annals of Mathematical Statistics, 21(1), 124–127.
Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., de Carvalho, A. C., & Gama, J. (2013). Data stream 

clustering: A survey. ACM Computing Surveys (CSUR), 46(1), 13.
Solaimani, M., Iftekhar, M., Khan, L., & Thuraisingham, B. (2014). Statistical technique for online anomaly 

detection using spark over heterogeneous data from multi-source vmware performance data. In 2014 IEEE 
international conference on Big Data (Big Data), IEEE (pp. 1086–1094).

Welford, B. P. (1962). Note on a method for calculating corrected sums of squares and products. Technometrics, 
4(3), 419–420.

Woodbury, M. A. (1950). Inverting modified matrices. Memorandum Report, 42(106), 336.
Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: an efficient data clustering method for very large 

databases. In ACM Sigmod Record, ACM (pp. 103–114).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1007/978-1-4419-0162-0
https://doi.org/10.1007/978-1-4419-0162-0
https://CRAN.R-project.org/package=streamMOA
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1007/s10115-014-0808-1

	Statistical hierarchical clustering algorithm for outlier detection in evolving data streams
	Abstract
	1 Introduction
	2 Related work
	3 Statistics in data stream clustering
	3.1 Statistical component
	3.2 Statistical distance
	3.3 Outlier detection
	3.4 Variance limitation

	4 The SHC algorithm
	4.1 Supporting structures and classification objects
	4.2 Statistical agglomeration
	4.2.1 Classification
	4.2.2 Shared population agglomeration
	4.2.3 Statistical neighbourhood processing
	4.2.4 Statistical agglomeration example

	4.3 Population drift and split
	4.4 Decay mechanism
	4.5 Removing obsolete classification objects
	4.6 Traceability
	4.7 SHC algorithm details
	4.7.1 SHC input parameters
	4.7.2 SHC detailed description

	4.8 Computational complexity

	5 Evaluation
	5.1 Test case 1: Static testing with Seeds dataset
	5.2 Test case 2: Chameleon DS3 dataset
	5.3 Test case 3: Synthetically generated statistic clusters and outliers
	5.4 Test case 4: Evolving data stream
	5.5 Test case 5: Intel Berkeley Laboratory sensor data
	5.6 Test case 6: Anomaly detection in KDDCup ’99 data stream
	5.7 Evaluation summary

	6 Conclusion
	References




