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Abstract
Many real-world large datasets correspond to bipartite graph data settings—think for 
example of users rating movies or people visiting locations. Although there has been some 
prior work on data analysis with such bigraphs, no general network-oriented methodology 
has been proposed yet to perform node classification. In this paper we propose a three-
stage classification framework that effectively deals with the typical very large size of such 
datasets. The stages are: (1) top node weighting, (2) projection to a weighted unigraph, and 
(3) application of a relational classifier. This paper has two major contributions. Firstly, 
this general framework allows us to explore the design space, by applying different choices 
at the three stages, introducing new alternatives and mixing-and-matching to create new 
techniques. We present an empirical study of the predictive and run-time performances for 
different combinations of functions in the three stages over a large collection of bipartite 
datasets with sizes of up to 20million × 30million nodes. Secondly, thinking of classifi-
cation on bigraph data in terms of the three-stage framework opens up the design space 
of possible solutions, where existing and novel functions can be mixed and matched, and 
tailored to the problem at hand. Indeed, in this work a novel, fast, accurate and comprehen-
sible method emerges, called the SW-transformation, as one of the best-performing combi-
nations in the empirical study.
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1  Introduction

Many relational, behavioral and transactional datasets can be modeled as bipartite graphs 
(bigraphs, sometimes also referred to as 2-mode or affiliation networks), which are defined 
by having (1) two types of nodes and (2) edges that exist only between nodes of differ-
ent types. Think for example of relationships based on companies sharing board members 
(Seierstad and Opsahl 2011), users meeting at locations or events (Eagle and Pentland 
2006), users rating different products (Ziegler et  al. 2005), consumers making payments 
to merchants (Martens and Provost 2011), mobile devices visiting locations (Provost et al. 
2012, 2015), authors collaborating on scientific papers (Newman 2001b), people communi-
cating on online forums (Opsahl 2011), actors playing in the same movies (Guillaume and 
Latapy 2006), words occurring in the same sentence/search query (Guillaume and Latapy 
2006; Cancho and Solé 2001) or even proteins involved in the same metabolic processes 
(Guillaume and Latapy 2006). These datasets are typically high-dimensional and sparse: 
although the number of possible top nodes is large (e.g., the possible number of webpages 
to like or products to rate), due to limited ‘behavioral capital’ any individual can only take 
a very small fraction of all the possible actions (Junqué de Fortuny et al. 2013).

The analysis of bigraph data has been mainly limited to measuring descriptive statistics, 
link prediction for recommender systems, and clustering. In this study, we take a different 
approach and focus on the task of node classification within bigraphs, where nodes for 
which the class is known are related to nodes for which the class must be estimated (Mac-
skassy and Provost 2007). As an example of node classification, we consider a bigraph of 
users and locations, where the users are connected to the locations they have visited (e.g., 
logged into a WiFi IP address (Provost et al. 2012, 2015) or checked in using a social net-
work app (Cho et al. 2011). An interesting node classification task would be to predict the 
brand interest of the users, in order to target them with mobile ads. For this example, brand 
interest is defined as whether a user would demonstrate brand affinity actions, like visiting 
a brand loyalty club page or a purchase page. Based on the brand interest of other users 
visiting the same locations we can infer the (likelihood of the) class of the unknown user 
(Provost et al. 2012, 2015). The rationale behind this idea is the concept of cross-domain 
similarity  (Martens and Provost 2011; Provost et  al. 2009, 2012, 2015): users that have 
similar preferences for some locations, like specific bars or restaurants, are likely interested 
in the same brands.

For this task, there has been no general network-based methodology proposed yet in 
prior work. Most of the previous studies that have looked at node classification for this 
type of data formulate it simply as a standard classification problem, which results in mas-
sive, sparse feature data. Some examples include predicting personality traits from datasets 
of Facebook users liking pages (Kosinski et al. 2013), predicting demographic attributes 
(Goel et  al. 2012; Hu et  al. 2007) and brand interest (Raeder et  al. 2012) from people’s 
browsing history, predicting political views from history of videos watched on YouTube 
(Weber et al. 2013), etc. In many of these applications, a linear Support Vector Machine 
(SVM) is used because of its efficiency for classifying large sparse datasets (Li et al. 2015). 
In this paper, we examine an alternative, and more concise, network-based formulation. We 
compare this method on a collection of large bigraph datasets to the frequently used linear 
SVM and show that it outperforms the standard formulation both in terms of predictive 
performance and scalability to large datasets.

Generally, two main approaches to analyse bigraphs exist with the aim of obtaining sum-
mary metrics and summary graphs. The first one is using techniques and metrics that are 
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specially designed for bipartite graphs (Latapy et al. 2008). This direct approach takes into 
account the bipartite nature of this particular type of graph, but unfortunately there are only 
few techniques that can be applied directly on the bigraph. Therefore a second, indirect 
approach is often used, which is the basis of the methodology that we propose. Let us sepa-
rate the two subsets of nodes in the bigraph into a set of top nodes and a set of bottom nodes. 
Choosing the nodes to focus on (i.e., to classify) as the bottom nodes, a bigraph can be ana-
lyzed by transforming it to a homogeneous unigraph of the bottom nodes, called a projection, 
where nodes are linked if they share a common top node (see Fig. 1, left) (Latapy et al. 2008). 
This projection approach allows the application of existing network analysis techniques for 
unigraphs to the bipartite case. It is very convenient for the problem of node classification, as 
numerous relational classifiers for network data exist for homogeneous graphs. 

To the best of our knowledge, this paper presents a first, general study of node classification 
within bigraphs by transforming the bigraph into a unigraph projection. The main contribu-
tions of this work are: (1) we provide a general framework for performing node classification 
within bipartite data via projection, which allows us to explore the design space and mix-and-
match components to create new techniques; and (2) in doing so, we introduce a fast, compre-
hensible model, called the SW-transformation, that calculates the label scores directly on the 
bigraph. This method allows easy scaling to big datasets of up to millions of nodes and it is 
convenient for most of today’s big datasets that are very sparse, with nodes being connected to 
only few other nodes in the projection.

The rest of the paper is structured as follows. Section 2 summarizes the related literature 
on bigraph data analysis and node classification. Next, Sect. 3 presents a range of functions 
that can be employed in the different framework stages. Section 4 describes the datasets used 
and Sect. 5 presents our findings. Limitations and future research are discussed in Sect. 6 and 
finally, Sect. 7 concludes.

Fig. 1   Bigraph, top node projec-
tion and bottom node projection 
(left), adjacency matrix represen-
tation of the bigraph (right)
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2 � Related work

To the best of our knowledge, this paper presents the first systematic study of node clas-
sification within bigraphs by transforming the bigraph into a unigraph projection. In the 
following sections we will first present prior literature on bigraph analysis and unigraph 
projections. Next, we will briefly discuss existing node classification techniques.

2.1 � Bigraph data analysis

The literature regarding bigraphs has so far been focused on measuring descriptive statis-
tics, link prediction for recommender systems, and clustering. There has been some ini-
tial research that explores the properties of the bigraphs and that extended several global 
network metrics for unigraphs to the bipartite case. Centrality measures, which determine 
the varying importance of nodes within the graph, like betweenness, degree, closeness and 
eigenvector centralities (Borgatti and Halgin 2011; Borgatti and Everett 1997; Faust 1997), 
as well as the clustering coefficient  (Latapy et  al. 2008; Lind et  al. 2005; Opsahl 2011; 
Robins and Alexander 2004) have been adapted for bigraphs. The second research area, 
link prediction, has been applied in prior literature to recommender systems for online 
music shops (Benchettara et al. 2010), online book stores (Huang et al. 2005), movies rec-
ommendation (Zhou et al. 2007), hypotheses generation (Kim 2017) etc. Finally, clustering 
has been used for discovering community structures in bigraphs of companies and board 
directors  (Barber 2007), women attending events   (Barber 2007; Doreian et  al. 2004), 
supreme court voting (Doreian et al. 2004), finding similar users or genres of music (Lam-
biotte and Ausloos 2005), clustering documents based on the occurring terms (Zha et al. 
2001), looking for similar actors based on the movies they have played in Sun et al. (2005), 
similar authors based on the papers they collaborated (Sun et al. 2005), conferences based 
on the authors that published, etc.

In addition, there exist many studies that essentially use unigraph projections of bipar-
tite data. For instance, the datasets used to create networks based on scientific collabo-
rations (Liben-Nowell and Kleinberg 2007), co-occurrence of companies in text docu-
ments (Macskassy and Provost 2007), web page co-citation (Lu and Getoor 2003), movies 
linked if they share the same production company or crew (Macskassy and Provost 2003, 
2007), book co-purchase (Gallagher et al. 2008) and so on, in the unigraph literature are 
in fact bigraph projections. Projecting bigraphs into unigraphs results in loss of informa-
tion (Latapy et al. 2008). Studies exists that explore the problem of how to most accurately 
represent the bigraph with a transformation to unipartite graph. For example, Zweig and 
Kaufmann (2011) take the approach of connecting nodes in the projection if they have a 
much higher number of occurrences of motifs (recurrent and statistically significant sub-
graphs or patterns) compared to the random graph model of the given bigraph. Further-
more, Zhou et al. (2007) propose a method for projecting bigraphs into asymmetrical uni-
graphs, where the weight from one node to another in the projection is not necessarily 
the same as in the opposite direction. They calculate the weights in the projection by first 
assigning an initial weight to the bottom nodes in the bigraph and then equally distributing 
them over the neighboring top nodes. In the next phase, the weights are once more distrib-
uted, this time from the top to the bottom nodes. This results in a linear equation for each 
bottom node, where the coefficients signify the link weight in the projection with direction 
from the specific bottom node. Gupte and Eliassi-Rad (2012) consider a wide range of 
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measures for weighting unigraph projections. They define a set of axioms which approxi-
mate intuition and examine how well the weighting measures in previous literature satisfy 
this characterization.

This paper looks at bigraphs from a different angle: we compare different projection 
methods based on their performance on a particular task—node classification. We propose 
a range of measures for determining the weights of the unigraph and assess how well they 
represent the relevant underlying structure by comparing the predictive performance of 
relational classifiers on the unigraph projections. As such, we have an objective function 
that determines to what extent the predictive information present in a bigraph is also con-
tained in the projected unigraph.

2.2 � Node classification techniques

In this paper, we use bigraph data for node classification. Specifically, given a bipartite 
network with labels on some nodes, how do we classify the other nodes. A traditional 
approach for node classification in bigraphs is to extract features from the network struc-
ture and apply a standard classifier. The bigraph data is represented by the corresponding 
adjacency matrix, with as many rows as there are bottom nodes and as many columns as 
there are top nodes. This typically results in a high-dimensional and very sparse matrix as 
most elements in this matrix will be zero (Junqué de Fortuny et al. 2013). To this dataset, 
standard classification techniques can be applied. Linear SVMs are often used to classify 
such large sparse datasets efficiently (Li et al. 2015). Moreover, according to a large bench-
mark study of de Cnudde et al. (2017), comparing 11 classification techniques on 43 fine-
grained behavioral data sets, linear SVM with L2 regularization is one of the best perform-
ing techniques in terms of predictive performance. However, scalability issues impede the 
easy application of this technique on very large datasets. To train an SVM on such a huge 
dataset can require sampling and dimensionality reduction, which also scale badly to these 
settings (Martens et al. 2013). In our empirical study, below, we further discuss this scal-
ability requirement and include SVM as a benchmark for comparison. A full comparison 
among all techniques that could be applied to the adjacency matrix is outside the scope of 
this paper, which focuses on bigraph projections.

In this paper, we present a different approach for node classification in bigraph data, 
based on the unigraph projection. Seeing that typical bigraph datasets often are very large 
transactional datasets, our proposed method is designed to scale up easily to millions and 
even billions of nodes. First, the bigraph is transformed into a unigraph using a projection 
approach, as was discussed in the previous section. Next, a relational classifier is applied 
to the unigraph. In a graph where nodes with known class labels are connected to nodes 
with unknown class labels, relational classifiers make use of the graph structure to estimate 
the unknown labels. Unlike traditional, non-relational models, which make use only of the 
local information about a node, univariate relational classifiers use information about the 
target variable for the related nodes (their labels or predictions thereof)  (Macskassy and 
Provost 2007). Macskassy and Provost (2007) compared various relational classifiers for 
univariate, unipartite node classification and found that the network-only Link-Based clas-
sifier (nLB) dominates when many labels are known, whereas the weighted-vote Relational 
Neighbor (wvRN) classifier and class-distribution Relational Neighbor (cdRN) classifier 
dominate when fewer labels are known. The network-only Bayes Classifier (nBC) was 
almost always significantly worse than the other three relational classifiers. These rela-
tional classifiers will be used in our study, although other techniques might fit into our 
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framework as well. For example, other methods for Statistical Relational Learning (SRL) 
go beyond just using the univariate, unipartite network, combining statistical learning to 
address uncertainty in the data and relational learning to deal with relational structures 
(Getoor and Taskar 2007). Khosravi and Bina (2010) review four well-known SRL models: 
Probabilistic Relational Models (PRM), Relational Dependency Network (RDN), Bayes-
ian Logic Programming (BLP) and Markov Logic Networks (MLN). They argue that the 
biggest limitation shared between SRL methods is their computational complexity, which 
is proportional to the size of the graph and limits the scalability for many realistic datasets. 
Thus, these techniques are not suitable for many applications, including our benchmark 
study that consists of very large datasets of up to millions of nodes.

Recently, network embeddings increasingly have been used to extract node features 
based on network structure. Network embeddings represent nodes by a vector in a low-
dimensional space, while incorporating information about the original structure of the net-
work (Liu et al. 2018). Classifiers built on these embeddings have shown high precision for 
node classification (Goyal and Ferrara 2018). The most commonly used methods are based 
on matrix factorization (e.g., singular value decomposition (SVD) and multiple dimen-
sional scaling (MDS)), random walks [e.g., DeepWalk (Perozzi et al. 2014) and node2vec 
(Grover and Leskovec 2016)], edge modeling [e.g., LINE (Tang et al. 2015) and Graph-
gan (Wang et  al. 2018)] or deep neural networks [e.g., structural deep network embed-
ding (SDNE) (Cui et al. 2018; Wang et al. 2016) and graph convolutional networks (GCN) 
(Kipf and Welling 2016)] and can be performed unsupervised or semi-supervised (Cui 
et al. 2018; Zhang et al. 2018). Random walk and edge modeling methods adopt stochas-
tic gradient descent optimization and the time complexity of these algorithms is often lin-
ear with respect to the number of vertices or edges. This makes them much more efficient 
than matrix factorization based methods that are solved by eigenvector decomposition and 
involve quadratic time complexity in the number of vertices, or higher. However, random 
walks and edge modeling only capture the local structure of the network. Deep learning 
based methods can capture non-linearity in networks, but their computational cost is usu-
ally high (Zhang et al. 2018).

Most network representation studies have proposed methods for homogeneous network 
embeddings, where vertices are of the same type. However, more recent work has also 
focused on bipartite network embeddings for the task of node classification. Gao et  al. 
(2018) developed Bipartite Network Embedding (BiNE), that accounts for both the explicit 
relations (observed links) and implicit relations (transitive links) in learning the node rep-
resentations. Since it is based on random walks and can be applied to the bipartite network 
structure directly, it has the potential to be scalable to large networks. Also methods that 
are developed for heterogeneous networks; such as Metapath2vec (Dong et al. 2017), IGE 
(Zhang et al. 2017), GPSP (Du et al. 2018), activeHNE (Chen et al. 2019) and FeatWalk 
(Huang et al. 2019) are applicable to bipartite networks.

Next to the expensive storage and computation costs for most network embedding 
techniques, these techniques suffer mainly from another important drawback: the results 
of network embeddings are difficult to understand. The goal of network embedding is to 
represent nodes by a vector in a low-dimensional space, so that the embeddings implic-
itly preserve certain structural and content information of the original networks. Nodes 
that are similar to each other in the network are mapped closely together in the embed-
ding space. Network embeddings have been shown to generate feature representations that 
can be effective for particular tasks, but they have not been shown to be comprehensible 
regarding how the constructed dimensions in the embedding space related to the important 
properties for a particular task. For example, when these representations are used as input 
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to a classification algorithm it is difficult to explain why a certain node (represented by its 
embedding) is classified as positive or negative (Liu et al. 2018). Unfortunately, interpret-
ability is often crucial for real-world applications where a model needs to be validated and 
trusted before implementation (Martens et al. 2011; Martens and Provost 2014).

The goal of this paper is to develop a framework that allows the systematic explora-
tion of the design space of bigraph projection and classification methods. We propose vari-
ous options that can be mixed and matched and show how these design choices can be 
compared easily and on equal footing using our flexible framework. Of course, our list 
of proposed options contains just a small fraction of all possible techniques that could be 
examined. We encourage practitioners and researchers to experiment with different design 
choices for a particular problem and apply our framework for empirical evaluation.

3 � Methods

Let us now describe the technical details of the framework, defining bigraphs and projec-
tions more formally, defining the framework based on these definitions, presenting the vari-
ous functions used within the framework, and finally discussing scalability in more detail.

3.1 � Bigraphs and projections

A bigraph can formally be defined as the triplet G = (⊤,⟂,E) , where ⊤ denotes a set of top 
nodes, ⟂ is a set of bottom nodes and E ⊆ ⊤× ⟂ is a set of links (edges). In this study, we 
use several basic metrics for describing the bigraphs that were introduced in the work 
of Latapy et al. (2008). For each bigraph dataset G = (⊤,⟂,E) , n⊤ denotes the number of 
top nodes n⊤ =∣ ⊤ ∣ , n

⟂
 the number of bottom nodes n

⟂
=∣⟂∣ and m the total number of 

edges. The average degree of the top and the bottom nodes can be calculated as k⊤ =
m

n⊤
 

and k
⟂
=

m

n
⟂

 respectively, and the total average degree k over the whole bigraph as 
k =

2m

n⊤+n⟂
 . The density of the graph, which represents the probability that two randomly 

chosen nodes from the distinct node sets are connected, is equal to 𝛿(G) = m

n⊤⋅n⟂
.

In order to make use of the existing relational classifiers, we can transform a bigraph 
into a unigraph using the projection approach. A projection is created by interconnecting 
the nodes of one of the two sets of the bigraph, if they share at least one neighboring node 
from the other set of nodes. This means that the projection of the bottom nodes ( ⟂ projec-
tion), defined as G�

= (⟂,E�
) with a set of edges E� ⊆⟂ × ⟂ , can be obtained by connect-

ing the nodes in ⟂ that share at least one common neighbor in ⊤ . The projection of the top 
nodes can be defined similarly, but for consistency in what follows we will only consider 
the bottom node projection. Figure 1 (left) depicts a bigraph, along with its ⊤-projection 
and its ⟂-projection. The adjacency matrix A of the same bigraph can be seen on Fig. 1 
(right), with rows representing the bottom nodes and columns representing the top nodes. 
An element xij in the adjacency matrix has value of 1 if the corresponding bottom node i 
and top node j are connected and otherwise 0. Since every top node with degree d creates 
a clique in the ⟂ projection with d(d − 1)∕2 links (analogously for the bottom nodes in the 
⊤ projection), the process of projecting the bigraph can result in very dense projections, 
even in cases where the bigraph itself is not very dense (Latapy et al. 2008). Guillaume and 
Latapy (2006) have looked at the projections of random bipartite graphs with prescribed 
degree distributions in order to analyse the properties that are induced by the underlying 
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structure of the bigraphs. They observed that the projections have a low average distance 
between the nodes (“small world effect”), with a diameter on the order of �(log| ⟂ |) (or 
𝜃(log|⊤|) for the top node projections). Moreover, if the bottom (or top) node set follows 
a power-law distribution, the projection as well follows a power law distribution with the 
same exponent. The authors also observed high clustering coefficients in the projections, 
which suggests that this property can be seen as a consequence of the projecting step, 
rather than a property of the particular network under study.

Projecting the bigraph gives the advantage of using the powerful methods for unipar-
tite graph analysis, but is also an irreversible process that results in loss of information. 
For instance, in the projections of Fig.  1 we lose information associated to the opposite 
node set, like the degree distributions, numbers of shared nodes and their identities, etc. 
By intelligently assigning weights to the edges in the projection graph, we can incorpo-
rate some information about the top nodes and better reflect the underlying structure of the 
bigraph. In light of this, we propose a general three-step framework for projecting and clas-
sifying bigraphs aimed at dealing flexibly with the incorporation of the appropriate infor-
mation for node classification: 

1.	 First we calculate a weight for each of the top nodes in the bigraph. This weight repre-
sents the importance of the top node and the distinctiveness it has for the target variable. 
All the top node weights are a function of the node degree and thus retain information 
about the degree distributions in the projections.

2.	 Next, we determine the weights of the edges in the projection by combining the weights 
of the top nodes shared by the bottom nodes. This additionally includes information 
about the number of shared nodes in the projection’s weights.

3.	 Finally, we use relational (unipartite network) classifiers on the weighted unigraphs in 
order to predict the values for the target variables. For this paper, the relational classi-
fiers use only the graph structure to make predictions.1

We continue this section by proposing specific functions for each of the steps in the frame-
work and explaining the rationale behind the choices. Of course, these are not the only 
possible choices—the list can be extended to other functions as well. This generality and 
flexibility is a key advantage of the framework.

3.2 � Determining importance of top nodes

Functions for calculating the weights of the top nodes, sk , are listed in Table 1 and visu-
alised in Fig. 2. This list is not meant to be exhaustive—various other ways may exist to 
weight top nodes. An advantage of the component-based framework is that other methods 
could be introduced easily (e.g., one might have an application where it would make sense 
to weight based on PageRank or centrality).

Clearly, the simplest weighting scheme would be to assign equal importance, sk = 1 , to 
all the top nodes. Although this is an easy and basic method to use, it does not make any 
distinction between the top nodes. Other, more complex weighting methods can be pro-
posed based on some property of the top node k, like the number of connections (degree) 

1  This is not a fundamental limitation of the framework—additional features could be constructed and 
more sophisticated relational classifiers could be used. We leave that for future work.
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dk—e.g., inverse degree, referred to as “linear” by Gupte and Eliassi-Rad (2012). Adding 
complexity, consider inverse degree frequency (Martens and Provost 2011), defined in anal-
ogy to a commonly used measure in information retrieval (inverse document frequency or 
IDF) (Jones 1972) and closely related to measures of entropy (Provost and Fawcett 2013). 
With IDF, very common terms that occur in many documents are assigned lower weights 
since they are less likely to be good discriminators. Inverse degree frequency defines the 
weight of a top node as a logarithmic function of the ratio between the total number of 
bottom nodes n

⟂
 and the number of bottom nodes that are connected to that particular top 

node dk . In the context of, for example, the users-movies network, the movies connect-
ing fewer users provide more information for the target variable than those linking many. 
Users rating films noirs are more likely to have preferences in common than users rating a 
current blockbuster. An alternative method for weighting the top nodes is the hyperbolic 
tangent function. As an input to the function, we use the inverse degree of the node, based 
on the intuition that lower-degree nodes tend to provide higher discriminability. To our 
knowledge, this weighting method has not been used in prior literature and this is a first 
study that experiments with it. A different approach to determine the importance of the top 
nodes is the use of the delta function as defined in Allali et al. (2011). This function takes 
into account that each top node has influence on the similarity between all pairs of bottom 
nodes that are connected to it. Therefore, a top node with a degree d, has an equal impact 
on d(d−1)

2
 pairs of bottom nodes. The Adamic–Adar measure (Adamic and Adar 2003) can 

be decomposed into a combination of the aggregation function sum of shared nodes, dis-
cussed in the next section and the associated Adamic–Adar top-node function (Table 1).

As one can observe from Fig. 2, all the functions discussed so far with the exception of 
the simple sk = 1 assignment, follow the intuition that a top node with fewer connections 
creates stronger ties between the connected bottom nodes (Gupte and Eliassi-Rad 2012). 
In contrast, one might argue that the top nodes with very few edges are nothing more than 

Fig. 2   Functions for determining the top nodes weight. Most of the functions follow the intuition that the 
lower-degree nodes are more discriminable for the target variable and therefore assign them higher weights
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noise in the data and hence should not receive a high weight. Inaccuracies in data collec-
tion or the way the data are sampled could lead to a top node having a misleadingly high 
weight. A more flexible weighting scheme could automatically fit a function to choose an 
appropriate trade-off between specificity and noise tolerance (Martens et al. 2013). To this 
end, we employ the beta distribution density function, defined by Eq. 1, over the interval 
x ∈ [0, 1] , where x is the normalized top node degree (Eq. 2). Here, � and � are two param-
eters of the density function, which are positive numbers and define the shape of the den-
sity curve (see examples for different values in Fig. 2). The beta distribution is commonly 
used in Bayesian analysis as a prior distribution for binominal proportions (Forbes et al. 
2011). For our purpose, the beta function provides a method for tuning the “rarity” weight 
to fit each dataset individually. This is done by applying a grid search to find the optimal � 
and � parameters for the specific dataset that provide the best predictive performance (e.g., 
the area under the ROC curve) on a held-out validation set.

The likelihood ratio function, finally, takes a different approach to weighting the top nodes. 
It introduces supervised weighting in the projection, by taking into account how the top 
nodes are connected to the different classes, rather than just how they are connected in gen-
eral (Martens and Provost 2011; Martens et al. 2013). The weight of a top node presents 
a ratio between the number of connected bottom nodes with positive class dc

k
 and the total 

degree of the top node dk.

3.3 � Determining the link weights in the projection

Once we have determined the weights sk of the top nodes, we continue with the second 
stage of the framework which calculates the link weights wij between the bottom nodes 
i and j in the unipartite projection. In Table  2, we present several methods for calculat-
ing wij as an aggregation of the weights from the shared top nodes sk . The most straight-
forward way to combine the common top nodes is to simply sum their weights  (Adamic 
and Adar 2003; Allali et  al. 2011; Gupte and Eliassi-Rad 2012; Macskassy and Provost 
2007; Martens and Provost 2011; Martens et al. 2013; Newman 2001b; Provost et al. 2009, 
2012, 2015). Another approach is to select the maximum weight of the shared top nodes 
as a weight for the projection edges  (Gupte and Eliassi-Rad 2012). We can also use an 
extended, weighted version of the Jaccard index, that is defined as the sum of the weights 
of the top nodes that are shared by both the bottom nodes, divided by the sum of the 
weights of the top nodes that are connected to at least one of the bottom nodes (Allali et al. 
2011; Gupte and Eliassi-Rad 2012; Provost et al. 2012, 2015). A problem can arise with 
the Jaccard index in the case when one of the bottom nodes is connected to many top nodes 
and the other node is connected to only few. In that case, even when all the neighbors of 
one of the nodes are also neighbors of the other node, the similarity will be low. Another 
option for aggregating the top node weights is by employing the cosine similarity function, 

(1)
Beta(�, �, x) =

{
(1∕B(�, �))x�−1(1 − x)�−1, if 0 ≤ x ≤ 1

0, otherwise

B(�, �) =�
1

0

x�−1(1 − x)�−1dx

(2)x =
dk − min(dk)

max(dk) − min(dk)
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which calculates the similarity between pairs of vectors as the cosine value of the angle 
between them (Provost et al. 2009, 2012, 2015). Using this measure, the similarity between 
two bottom nodes will be the highest and equal to one when they share exactly the same 
top nodes and equal to zero when they don’t have any neighbors in common. Finally, a very 
simple weighting measure assigns the value of 0 or 1 to the links in the projection, depend-
ing on whether the bottom nodes have at least one shared top node or not (Guillaume and 
Latapy 2006; Newman 2010a; Provost et al. 2009). This corresponds to an unweighted ver-
sion of the projection graph, so it loses all the information related to the strength of the 
bonds between pairs of bottom nodes.

3.4 � Relational classifiers

The third step of the framework for node classification within bigraphs is to use a relational 
(network) classifier over the unigraph projection. We consider methods for within-network 
classification in univariate networks, as defined by Macskassy and Provost (2007) (see 
Sect. 2.2). Based on the performance of the classifiers in their analysis, we will consider 
the following relational classifiers which dominated in the study.

The weighted-vote Relational Neighbor (wvRN) classifier  (Macskassy and Provost 
2003) is a straightforward classifier that uses the known class labels of the related nodes (or 
predictions thereof) to make a probability estimation (score) of the node’s own class label 
(see Eq. 3). It is based on the assumption of assortativity, that the linked nodes in the graph 
are likely to be of the same class. The classifier calculates the node’s score P(li = c|N(i)) as 
a weighted average of the neighbors’ scores.

In this equation, Z is the normalizing factor and is equal to the sum over the link weights to 
all neighboring nodes ( 

∑
j∈N

(
i) wij).

The second relational classifier used in this study is the class-distribution Relational 
Neighbor (cdRN) classifier (Macskassy and Provost 2007). Unlike the previous classifier, it 
takes into account the class distribution linkages of the whole training set, and not only the 
neighborhood of the focal node, through class-specific “reference vectors”. First, a class 
vector CV(i) is created for each node as a sum of the links’ weights to other nodes with 
each known class ( lj ) (Eq. 4). The class vectors of the training nodes are then aggregated 
into reference vectors for the different classes RV(c) and represent an average of the CV(i) 
for nodes known to be of class c (Eq. 5).

In this equation, ⟂c denotes the bottom nodes in the bigraph known to have label li = c.
The probability of a node i having class c can then be estimated as the normalized vector 

similarity between the class vector of node i (CV(i)) and the reference vector RV (Eq. 6). 

(3)P(li = c|N(i)) = 1

Z

∑
j∈N(i)

wij ⋅ P(lj = c)

(4)CV(i)c =
∑

j∈N(i),lj=c

wij

(5)RV(c) =
1

| ⟂c |
∑
i∈⟂c

CV(i)
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The vector similarity function we use is cosine similarity, but other functions such as L1 or 
L2 similarity, scaled to the range of [0,1], can also be applied.

A more complex relational classifier is the network-only Link-Based classifier (nLB) (Mac-
skassy and Provost 2007; Lu and Getoor 2003). This classifier builds a class vector CV(i) 
for every training node i in the network, that contains scores for each label class c. Since 
we only consider binary bigraphs, the class vector for a training node is a vector with two 
elements, that are the scores for both classes c0 and c1 . The class-specific scores are cal-
culated in the same way as for the wvRN classifier, also known as the count model in the 
study of Lu and Getoor (2003) (Eq. 7). In the next step, the nLB classifier builds a logistic 
regression model based on these class vectors (Eq. 8).

3.5 � Decomposition of metrics

In this study, we consider a wide range of functions for creating the weights of the projec-
tion. To the best of our knowledge, we apply all the methods that were previously used in 
the literature for defining the link weights in bigraph projections and that can be decom-
posed within our framework. In Table 3, we present a summary of the measures used in 
prior literature, divided in the three stages: top nodes weighting function, aggregation func-
tion and relational classifier. The formula for decomposition is given in Eq. 10, where g 
represents the aggregation function and f the top node weighting function. As an example, 
the Adamic–Adar coefficient  (Adamic and Adar 2003) (see Eq.  9), can be decomposed 
into the Adamic–Adar top node weighting function (Table 1) and the sum of shared nodes 
aggregation function (Table 2).

This decomposability creates opportunities for combining the existing weighting func-
tions in new ways, resulting in completely new measures. Note that some of the combi-
nations from prior literature do not include a relational classifier, since these studies use 
the unigraph projection for other tasks rather than classification, like link prediction (Allali 
et al. 2011; Gupte and Eliassi-Rad 2012), measuring descriptive statistics (Guillaume and 
Latapy 2006; Newman 2010a, 2001b), etc. Moreover, some studies consider the unweighed 
unigraph projections  (Guillaume and Latapy 2006; Newman 2010a). Since this is inde-
pendent of the top nodes weight, we can apply any top-node function in the first step of the 
framework.

(6)P(li = c|N(i)) = sim(CV(i),RV(c))

(7)CV(i)c =

∑
j∈N(i) wij ⋅ P(lj = c)

∑
j∈N(i) wij

(8)P(li = c|N(i)) = 1

1 + e−�0−�CV(i)

(9)wij =

∑
k∈N(i)∩N(j)

1

log10(dk)

(10)wij =g(sk1, sk2, ..., skn) = g(f (dk1), f (dk2), ..., f (dkn))
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3.6 � Scalability

Above we discussed how bigraphs are a natural and efficient representation for sparse 
feature data, and indeed the sparse representation commonly used by machine learning 
methods is in fact a (possibly weighted) bigraph adjacency list. The projection itself 
can reduce the data size, but only sometimes (e.g., when the connections are sparse 
and the number of top nodes is much larger than the number of bottom nodes). This 
notwithstanding, the scalability of the algorithms nonetheless deserves special attention 
since bigraph data and their corresponding unigraph projections often are very large; 
methods are needed that can deal with massive data. In this section we propose several 
techniques that enable the algorithms to scale up to very large datasets and/or improve 
their run-time performance.

3.6.1 � Batch processing

Large datasets that can not be processed in memory can be divided into smaller, process-
able subsets called batches. In this paper, batch processing means that the label scores 
will be produced by processing the batches one at a time, either sequentially or in parallel, 
instead of processing the whole dataset at once  (Provost and Kolluri 1999). For instance, 
in the case of the network-only Link-Based (nLB) classifier (see Eq. 7), we create a partial 
projection for each batch from the training dataset and then use it to calculate a part of the 
class vector. Subsequently, we assemble all the partial vectors into a whole class vector 
that is used by the logistic regression (see Fig. 3). In the same manner, we create partial 
label scores from each batch of the test set and then we aggregate all the scores into a final 
solution. The sizes of the batches in this study were determined experimentally, by test-
ing different sizes for each dataset. We need to be careful when choosing the size of the 
batch; on one hand if the size is too large it will not be possible to process the dataset in 
main memory. Instead, the CPU will thrash, wasting substantial time swapping memory 
blocks between RAM and disc, which will degrade runtime performance substantially. On 
the other hand, choosing a size of the batch that is too small will add time to the process, 
since each fragment introduces additional calculation overhead. Therefore, the size should 
be a balance between the two. Batch processing would also allow for easy scaling up using 
parallel and distributed computing systems (Provost and Kolluri 1999).

Fig. 3   Overview of the batch process for the nLB classifier. With random sampling a subset of the bigraph 
is selected. The projection is created for each batch, to calculate a part of the class vector. Subsequently, we 
assemble all the partial vectors into a whole class vector that is used by the logistic regression
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3.6.2 � Sampling

Another technique that enables the network-only Link-Based (nLB) classifier to scale to 
larger datasets and improve the run-time performance is sampling. Since the number of 
features used by nLB is usually very small, instead of building class vectors for all the 
training nodes, we can use only a subset of the training nodes to train the classifier. In our 
experiments, we observed that a sample of around 100 training instances was usually suf-
ficient for training the classifier. Therefore, in the experimental set-up we run nLB with and 
without sampling and compare the results.

3.6.3 � Grid search

Fine tuning the parameters of the top nodes beta function (Eq. 1) can require many itera-
tions. In order to reduce the number of iterations, a grid search with multiple levels2 can be 
employed. The idea is that every level of the search performs a more fine-grained lookup 
around the best selected parameters’ values from the previous level. If, for instance, our 
search on level i with step s determined that x is the best value for a parameter, then the 
following level i + 1 will look for a better value in the range [ x − s , x + s ]. The size of the 
step, i.e. the coarseness of the search, decreases in each new level.3 This yields significant 
runtime improvements in comparison to extensive search of the space, while giving the 
same solution granularity. As we discuss further in Sect. 5.2, one can also perform a grid 
search with fewer levels that results in limited performance degradation, or incorporate 
knowledge about the most suitable beta shapes in the search procedure.

3.6.4 � SW transformation

Finally, we introduce a fast method, called SW-transformation, to calculate the label scores 
for the case where wvRN (Eq. 3) is combined with an aggregation function that sums the 
weights of the top nodes. Hence the name SW-transformation, which is an acronym of the 
two methods involved: the sum of shared nodes and the wvRN.

To calculate the projection using the sum of shared nodes we find for each bottom node 
( n

⟂
 ) all the top nodes it is connected to (on average k

⟂
 ) and then look at all the nodes con-

nected by the top node (on average k⊤ ). This results in a time complexity of O(n
⟂
⋅ k

⟂
⋅ k⊤ ) 

= O(m ⋅ k⊤ ), with m the number of edges. For sparsely connected graphs, or any graph 
where a node has no more than some constant maximum number of connections (i.e. k

⟂
 

and k⊤ are bounded by a constant), this scales linearly with the number of bottom nodes 
(O(n

⟂
)). In the case of fully connected graphs ( k

⟂
= n⊤ and k⊤ = n

⟂
 ) however, the com-

plexity is O(n2
⟂
⋅ n⊤ ). Consequently, the wvRN is applied to this projection, which calcu-

lates the node’s score as a weighted average of the neighbors’ scores. The time complexity 
of the wvRN classifier scales linearly with the number of edges in the projection (O(n

⟂
⋅ kp ) 

= O(mp )) and is no larger than the time complexity of the projection. Again, when the aver-
age degree in the projection ( kp ) is bounded by a constant this becomes O(n

⟂
 ) and when 

the graph is fully connected it is O(n2
⟂
).

2  In our case the beta function is tuned in three levels.
3  The grid we use searches for the optimal � and � in the range between 0.1 and 12.1 with steps of 3 in the 
first level. We decrease the step size in each successive level by 3 times.
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This specific combination can be rewritten as a fast linear model over the top nodes. We 
rewrite the wvRN formula as follows:

In this formula we first substitute the projection weights wij with the corresponding aggre-
gation function (Eq. 11). Since wvRN takes into account only the labels of the neighbor-
ing nodes, in Eq. 12 we consider only the bottom nodes j that have an element aij = 1 in 

(11)Z ⋅ P(li = c|N(i)) = ∑
j∈N(i)

wij ⋅ P(lj = c)

(12)=

∑
j|aij≠0

wij ⋅ yj

(13)=

∑
j|aij≠0

(( ∑
k|xik≠0

sk

)
⋅ yj +

( ∑
k|xik=0

sk

)
⋅ yj

)

(14)=

∑
j|aij≠0

(( ∑
k|xik≠0

sk

)
⋅ yj + 0

)

(15)
=

∑
j|aij ≠ 0

yj = 0

( ∑
k|xik≠0

sk

)
⋅ yj +

∑
j|aij ≠ 0

yj = 1

( ∑
k|xik≠0

sk

)
⋅ yj

(16)
= 0 +

∑
j|aij ≠ 0

yj = 1

( ∑
k|xik≠0

sk

)
⋅ 1

(17)=

�
k�xik≠0

⎛
⎜⎜⎜⎜⎜⎝

sk

�
j�aij ≠ 0

yj = 1

1

⎞⎟⎟⎟⎟⎟⎠

(18)=

�
k�xik≠0

⎛
⎜⎜⎜⎜⎜⎝

sk

�
j�xik ≠ 0, xjk ≠ 0

yj = 1

1

⎞⎟⎟⎟⎟⎟⎠

(19)=

∑
k|xik≠0

sk ⋅ nsk
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the unigraph adjacency matrix (see Fig. 4, right). The link weight wij in the projection is 
calculated by summing the weights of the top nodes that are shared by both nodes i and j. 
This means that the non-neighboring top nodes of node i (that have elements xik = 0 in the 
bigraph adjacency matrix from Fig. 4,  left) can be discarded in Eq. 14. When predicting 
an attribute of a node, the wvRN takes into account only the neighboring nodes that have 
the label class of interest ( yij = 1 ). In our study, since we consider a binary target variable, 
this leads to eliminating the neighboring nodes with label yij = 0 in Eq. 16.4 Note that the 
neighboring nodes with label yij = 0 are still counted when calculating the normalization 
factor Z in Eq. 11. The result is the SW-transformation (Eq. 19), a linear model that com-
putes the label scores directly on the bigraph and avoids the costly step of calculating the 
projection unigraph. In terms of implementation, the transformation corresponds to a linear 
model where the “coefficients” of each feature can easily be calculated by multiplying the 
score sk of a feature/top node and the number of datapoints nsk that have a positive value 
for that feature and a non-zero value for the target variable. Doing so for each of the n⊤ 
top nodes, we only need to consider the (on average k⊤ ) non-zero elements and the time 
complexity becomes O(n⊤ ⋅ k⊤ ) = O(m). For bounded graphs this becomes O(n⊤ ), for fully 
connected graphs it is O(n⊤ ⋅ n

⟂
 ). When working with sparse graphs (which is the focus of 

our study) both approaches scale linearly (either with the number of bottom nodes or the 
number of top nodes) but the SW transformation always runs faster than the combination 
of the projection and wvRN classifier (as we also show empirically, see Fig. 8).

In a similar manner, the normalization factor Z can be transformed into 
Z =

∑
k�xik≠0 sk ⋅ Zsk , where Zsk = |xjk = 1| . Finally, we can write:

In this manner, we directly calculate the influence of the top node, in the form of the coeffi-
cient of the corresponding linear model5. The SW-transformation yields substantially faster 
run times (compared to calculating the whole projection) and allows easy scaling of the 
method to big data sets of millions of nodes, as we discuss further in Sect. 5. Large, sparse 

(20)P(li = c�N(i)) =
∑

k�xik≠0 sk ⋅ nsk∑
k�xik≠0 sk ⋅ Zsk

(a) (b)

Fig. 4   Adjacency matrices of the bigraph and the projected unigraph

4  The transformation can also be applied to cases where the node labels are score probabilities.
5  A Python implementation of the SW-transformation is available online on https​://githu​b.com/SPrae​t/SW-
trans​forma​tion.

https://github.com/SPraet/SW-transformation
https://github.com/SPraet/SW-transformation
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data sets with a bipartite structure have become common, largely due to the recording of 
behaviors of individuals (or things); these data sets often are very sparse (Junqué de For-
tuny et al. 2013), with nodes being connected to only a few other nodes. If this sparsity 
extends to the projection, the SW-transformation may be quite advantageous.

4 � Data and experimental setup

For this study, we collected bipartite datasets from various sources: the Koblenz Network 
Collection (KONECT),6 the MIT Reality Mining Project,7 the social networks collection of 
The Max Plank Institute for Software Systems,8 and more. We selected all datasets where 
a bipartite structure is clearly present and a target variable is available to predict. Note 
that in some cases we discard a dataset because the class variable is related to the links in 
the bigraph. For instance, predicting the number of books that the users have read from 
a bigraph of users rating books is clearly not suitable. The datasets are summarized in 
Table 4 and to our knowledge comprise the first large collection of benchmark datasets for 
node classification over bigraphs.

The MovieLens dataset contains information about movie ratings from users of the 
MovieLens website, collected from September 1997 through April 1998.9 The bigraph is 
defined between users and movies, where links are present if a user rated a movie. We 
focus on the task of predicting the genre of the movie, as well as the gender and the age 
of the user. In the first case, the movies are considered as bottom nodes and the users as 
top nodes, for the latter it is vice versa. For multiclass problems (as genre), we use a one-
versus-all formulation and as such define as many additional datasets as there are classes 
(19 in this case).10 The Yahoo Movies dataset11 has a similar setting, where we again are 
predicting the gender and the age of users who rated movies. Likewise, Book-Crossing 
contains book ratings from the web site Bookcrossing.com (Ziegler et al. 2005) and our 
aim is to predict the age of the readers. The dataset collected by Seierstad and Opsahl 
(2011) is used for defining a bigraph between Norwegian companies and their board mem-
bers, and the target variable is the gender of the board members. Furthermore, we use the 
information about mobile phone usage collected by the MIT Human Dynamics Lab (Real-
ity Mining project)  (Eagle and Pentland 2006) to define a bigraph of users connected to 
the locations (cell towers) they visited. The target variable is the affiliation of the user, 
being student, laboratory staff, professor, etc. Another bigraph is defined from the Libim-
SeTi (Brozovsky and Petricek 2007) dataset, that contains data about profile ratings from 
users of the Czech social network LibimSeTi.cz. The prediction task in this case is the gen-
der of the users. Ta-Feng is a dataset of supermarket transactions, where we predict the age 
of the customers, based on the products they bought (Huang et al. 2005). A dataset from 
the Max Plank Institute for Software Systems contains data about users and several million 

9  http://www.group​lens.org.
10  For this paper, we only consider binary classification, where multiclass problems are cast to several one-
versus-all binary classification problems. Other approaches to multiclass problems can easily be incorpo-
rated within our proposed framework. For more details, see Sect. 6.
11  http://websc​ope.sandb​ox.yahoo​.com/.

6  http://konec​t.uni-koble​nz.de.
7  http://reali​tycom​mons.media​.mit.edu.
8  http://socia​lnetw​orks.mpi-sws.org.

http://www.grouplens.org
http://webscope.sandbox.yahoo.com/
http://konect.uni-koblenz.de
http://realitycommons.media.mit.edu
http://socialnetworks.mpi-sws.org
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Flickr pictures, creating a bigraph of pictures and the users that mark them as favorites. 
The target class variable is the number of comments on the pictures. The largest datasets 
used in this study are from the KDD Cup 2010, where the participants were asked to pre-
dict student performance on tests. The winner of the Cup, the National Taiwan University, 
expanded the original dataset by converting the categorical features into sets of binary fea-
tures (Yu et al. 2010) and this version of the data can be downloaded from the LibSVM 
website.12 In addition to the previously described datasets, we also created new bigraphs 
for the rating data, where a connection exists between the nodes only if the rating was posi-
tive (defined as higher than the average rating). We annotate these bigraphs as “above aver-
age” in Fig. 5 and Table 4.

Figure 5 gives an overview of the number of nodes present in the bigraphs under study. 
As shown in the plot, the sizes of the bigraphs differ, with some datasets having fewer 
than 100 bottom nodes (Reality Mining, number of people involved) and a few hundred 
top nodes (Norwegian companies, number of companies involved) and others with up to a 
few million top and bottom nodes (KDDa and KDDb datasets). In the “Appendix” (Figs. 9, 
10, 11 and 12), we also examine the distributions of the probability P(k) that a node has a 
degree k (also known as degree distributions) for the bottom and top nodes of each dataset. 
As one can observe, most of the datasets show a heavy-tailed degree distribution, resem-
bling the typical power-law with different exponents. In such distributions, many nodes in 
the bigraph are connected only to few nodes from the opposite set, but a non-negligible 
number of nodes are connected to many other nodes. The top nodes of the LibMiSeTi data-
set do not follow the power law shape: most of the profiles in the social network get an 
average number of rankings from the other users, similarly for the Yahoo Movies dataset. 
The bottom nodes of the KDDa dataset are an exception as well, which might be due to the 
fact that it is an artificially created dataset.

Fig. 5   Size of the datasets under study

12  https​://www.csie.ntu.edu.tw/~cjlin​/libsv​mtool​s/datas​ets/.

https://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/
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5 � Results and discussion

In this section, we present the results of the benchmark study examining predictive per-
formance and run-time performance. We report results for each combination of top node 
weighting scheme, aggregation function to define the weight in the projected graph, and 
relational classifier. This leads to a total of 8 × 5 × 4 combinations, that are assessed on 
the 58 datasets (including the casted multiclass datasets). As a benchmark technique, we 
employ an SVM with a linear kernel and L2 regularization on the bigraph adjacency matri-
ces using the libLINEAR toolbox (Fan et al. 2008). As mentioned in Sect. 2, linear SVM is 
a commonly-used and well-performing method for sparse classification problems and was 
therefore chosen to benchmark our proposed technique against. Based on the results of our 
benchmark we formulate some general recommendations for node prediction in bipartite 
graphs.

5.1 � Predictive performance

Table 7 in the “Appendix” presents the predictive performance results for every combi-
nation of techniques, based on the area under the ROC curve (AUC) (Fawcett 2006). To 
report AUC values, we run a 10-fold cross-validation procedure. We divide the dataset 
into 10 subsamples of equal size. In each run we use 8 subsamples for training data, 
1 for a validation set (for hyperparameter tuning) and 1 for a test set. After 10 runs, 
each of the 10 data subsamples is used exactly once for testing and once for validation 
in the process. The reported AUCs represent an average over the 10 folds. For every 
dataset, we rank the performance of the techniques into a partial ranking and then com-
bine them together into a final ranking using Kemeny–Young optimisation  (Conitzer 
et  al. 2006; Young and Levenglick 1978). The goal of the Kemeny–Young method is 
to find an ordering of the techniques that minimizes the number of pairwise disagree-
ments between the final ranking of the techniques and the partial rankings calculated on 
the individual datasets. Note that when calculating the final ordering, we also consider 
the datasets where not all combination schemes were able to scale. More specifically, 
the aggregation functions Jaccard, Cosine similarity and Maximum do not scale well to 

Table 5   Kemeny–Young ranking per method on all datasets

We emphasize the combinations that are not significantly worse than the best method (underlined) at a 5% 
significance level in bold and the combinations that are significantly worse at 5% but not at 1% significance 
level in italics. The other methods that are significantly worse at 1% significance level are shown in regular 
font

Kemeny Ranking Top node func. Aggregation func. Relational classifier

1 tanh Cosine function wvRN
2 Inverse degree Sum of shared nodes nlb
3 Inverse frequency Jaccard  cdRN
4 Beta distribution Max  nlb 100
5 w = 1 Zero–one
6 Adamic and Adar
7 Delta
8 Likelihood ratio
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datasets with high dimensions such as the Flickr dataset or larger. Also, a combination 
of these aggregation functions and the beta function, which employs multiple iterations 
to tune the parameters, takes very long time to fit for datasets over 100,000 nodes. In 
such cases, when a dataset does not provide a ranking for one or for both methods that 
are being compared, then that dataset does not contribute to the total disparity regard-
ing these two techniques. For statistical comparison of the methods, we use a Wilcoxon 
signed rank test  (Demšar 2006) to assess the significant differences between the best 
performing method and the other classifiers.

From Table  5, we can observe that the highest ranked combination that performs 
very well over all the datasets is the tangens hyperbolicum function, combined with the 
cosine aggregation function and the wvRN. Furthermore, there are also a few alterna-
tives that provide comparable results to this top ranked combination. If we take a closer 
look at the results per dataset (Table 9 in “Appendix”), we can see that generally com-
binations that include the cosine or sum of shared nodes aggregation functions together 
with the tangens hyperbolicum, inverse degree and occasionally the beta function pro-
vide very good results when combined with any of the relational classifiers. The SVM 
benchmark against which we compare the network projection methods, has only average 
performance. It is ranked on the 98th place out of 161 possible techniques and it is sig-
nificantly worse than the best method at 1% significance level. Additionally the SVM 
would not run on the big KDDa and KDDb datasets. Although faster implementations 
of SVM exist, e.g. using stochastic gradient descent, these would come at the expense of 
predictive performance (de Cnudde et al. 2017).

In the following sections we discuss the predictive performance for our three stages 
separately.

5.1.1 � Predictive performance of the top node weight functions

The rankings of the top-node functions are summarized in Table  5, with the tangens 
hyperbolicum and the inverse degree (both similar in shape, see Fig. 2) providing the 
best performance across all domains. We should, however, be careful when interpret-
ing these results and not simply discard top node methods that provide poorer results 
over all domains. Although specific combinations that include the top-node function 
can have very strong performances (see Table 7), the overall rankings still get diluted 
by the weaker combinations (for instance, the ones containing the zero-one aggrega-
tion function). If we take a closer look at Table  9 in “Appendix”, where we list the 
best combinations of techniques per dataset, one can easily notice that in most cases the 
best performing combination contains the beta distribution as an appropriate choice. By 
analysing the optimal � and � coefficients for the different datasets (listed in Table 8), 
we conclude that the typical shapes of the function correspond strongly to the intuition 
that top nodes with smaller degree are more discriminative and therefore should have 
higher weights. The only exception is the Flickr dataset, where the parameters define the 
opposite curve of the beta function. Having in mind the prediction task for this dataset, 
it makes sense that a popular picture that has more users who marked it as favorite, 



61Machine Learning (2021) 110:37–87	

1 3

would receive more comments than a picture with fewer markings. Based on the results 
from Table 9, we also conclude that the supervised weighting function, likelihood ratio, 
exhibits very good performance for skewed datasets with a small number of positive 
labels.13 What is specific about this function is that it weights only the top nodes that 
are connected to at least one bottom node with a positive label. This results in projec-
tions where the links to some of the neighboring nodes with negative labels are down-
weighted, since the top nodes connecting only negative bottom nodes do not contribute 
to the projection weights.

5.1.2 � Predictive performance of the aggregation functions

Table 5 also presents an overview of the results per aggregation function, with the cosine 
function and the sum of shared nodes as the most suitable methods. Although both func-
tions provide very good performance, the latter is favorable since it can be combined with 
the wvRN to scale easily to very large datasets (SW-transformation). All the functions per-
form much better than the zero-one function, which corresponds to an unweighted version 
of the projection. This indeed supports strongly the idea that adding weights to the projec-
tion reflects better the structure of the underlying bigraph and therefore results in better 
predictions. The Jaccard aggregation function does not perform well, as it penalizes the 
score if one of the nodes has many links. As an example, let us consider again the bigraph 
of people visiting locations, with person A visiting 5 different locations; person B visiting 
these 5 locations and 10 more; and person C visiting the same 5 locations and 100 more. 
In this case, the Jaccard would penalize the AC link with a much lower score than the AB 
link, because of the metric’s denominator which takes into account all the locations visited 
by at least one of the persons. This does not make sense for this setting: if we have a total 
of (for example) a million locations, the odds for visiting the same 5 locations by chance 
are very small. The max function also shows poor performance, which supports the idea 
that it is valuable to retain information for more than just one top node.

5.1.3 � Predictive performance of the relational classifiers

In Table 5, we can also see the aggregated results over the relational classifiers, where the 
best classifier wvRN slightly outperforms the nLB. These two classifiers provide similar 
results in cases with relational autocorrelation  (Jensen and Neville 2002) over the target 
values in the projection. An example of positive relational autocorrelation would be: if I 
like the same movies as you, we likely are of the same gender. Yet, the opposite can be true 
as well. For example, in the case of the Norwegian companies dataset, a man is more likely 
to be in a board with a female and vice versa. Because of the negative relational autocor-
relation, the wvRN here yields an average AUC (over all combination schemes) of only 
0.2728. This substantially hurts the wvRN average scores. However, as AUCs systemati-
cally below 0.5 can be “flipped” to sometimes strong AUCs, this result requires some extra 
explanation.

Norway is one of the leading countries that enforces equal gender representation 
in companies’ boards  (Seierstad and Opsahl 2011), which results in the companies (top 

13  All the datasets for which this function performed best have only between 3.19 and 7.25% positive 
labels.
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nodes) being connected to almost the same number of male and female directors (bottom 
nodes). In Fig. 6, we use entropy as a measure for class imbalance (Rrnyi 1961), to calcu-
late the heterogeneity of the target variable among the nodes’ neighbors in the projection. 
Very high values of entropy signify that there is nearly an equal number of neighbors from 
each class, whereas low values suggest that almost all the adjacent nodes have the same 
class. The results are averaged over the nodes that have the same number of neighbors. 
As expected, the dataset of Norwegian companies exhibits high entropy values for all the 
board members (see Fig. 6, left). In comparison, a typical dataset where wvRN performs 
better has much lower entropy (see Fig. 6, right).14 In such cases where the class distribu-
tion of a node’s neighbors is approximately 0.5, cross-validation can cause pathologies in 
machine-learning evaluations (Perlich and Świrszcz 2011). Consider the following.

Most of the directors (83.6%) are members of the board of only one company and most 
companies (71%) have only up to 5 board members. This creates many small disconnected 

Fig. 6   Average entropy per number of neighbors in the projection. The Norwegian Companies dataset (left) 
has high average entropy, whereas the MovieLens dataset with target variable Horror genre (right) has 
lower entropy. The wvRN classifier performs better on datasets with lower entropy

(a) (b) (c) (d)

Fig. 7   Bigraph structures of companies (top nodes) and board members (bottom nodes). The node letter 
presents the actual gender of the board member and below is the predicted gender by the wvRN

14  Note that in addition to the entropy, the weights of the links also have impact on the prediction perfor-
mance of wvRN.
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components in the bigraph, like the ones depicted in Fig. 7. When the wvRN relational 
classifier is applied with cross-validation, it is likely that the focal node’s target class will 
be underrepresented in the remaining neighbor nodes. For example, consider a leave-one-
out evaluation. In case (a), a member will be connected to only one member of opposite 
sex in the projection, hence wvRN will predict the wrong class. In the other cases depicted 
in Fig. 7, wvRN will predict the majority opposite class or give a score of 0.5 when the 
remaining classes are balanced (denoted with a question mark). Since it is difficult to know 
exactly how justifiably to tinker with these results, we will simply leave them as they are. 
This may possibly penalize wvRN in these cases and artificially bolster the performance 
of the learning-based methods, or it may be exactly what we would like to happen in these 
cases. The learning-based classifiers are able to pick up on this: the nLB classifier pro-
vides a negative coefficient to the female class distribution for males (and again vice versa), 
which leads to an AUC of 0.7029 and the cdRN creates reference vectors that take into 
account how the training nodes are connected to the opposite class, yielding an average 
AUC of 0.6997. Based on the analysis, we see that wvRN is an appropriate choice for 
problems that exhibit network assortativity; however, the nLB and cdRN are more pow-
erful and can capture more complex patterns [as discussed in the original paper of Mac-
skassy and Provost (2007)]. The nLB classifier trained with only 100 instances, nLB100, 
is a much faster variant of the nLB classifier (see the run-time analysis of the methods in 
Fig. 18 from “Appendix”), but with weaker predictive performance.

5.2 � Run‑time performance

In this section we examine the run-time performance of the different techniques from the 
three stages.15 We start by comparing the average durations of each of the techniques over 
the datasets. For this, we only consider the datasets with fewer than 100,000 nodes since 
not all the methods are able to run on the larger datasets. For each of the relational classifi-
ers the maximum and the Jaccard (except for cdRN) aggregation function have the longest 
durations (See Figs. 14, 15, 16 and 17 in the “Appendix”). The largest impact on run-time 
performance, however, is the use of the beta function. This function takes so long to run 
due to the hyperparameter tuning. This process can be done faster by reducing the grid 
search to only one or two levels or tuning the � and � parameters on a smaller sample of the 
training data, with limited performance decrease (see Table 8 and Fig. 13 in the “Appen-
dix”). Also, only the parameters that give the required shape (such that the nodes with 
a smaller degree receive a higher weight as discussed in Sect. 5.1.1) could be taken into 
account to further speed up the grid search.

The learning of the weights for the nLB classifier can also be done on a smaller sam-
ple. Therefore, we also examine the time advantage of using this approach (see Fig. 18 in 
“Appendix”). In our experiments, even a sample of fewer than 100 instances was enough 
to tune the parameters of the nLB logistic regression. We consider this nLB classifier 
trained with only 100 instances as a third relational classifier, named nLB100 in the results. 
Although it performs slightly worse than the regular nLB classifier in terms of AUC, it can 
be trained much more quickly. However, when the class-label autocorrelation is uncertain 

15  All experiments are conducted on a 3.40 GHz Intel i7 CPU, with 8 GB RAM and a 64-bit operating 
system.
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Fig. 8   Time improvement of the SW-transformation over wvRN and sum of shared nodes for different data-
sets. The square at the top of each bar represents the time needed for the wvRN classifier and circle at the 
bottom of each bar the time required for SW-transformation for the specific dataset. For the largest datasets, 
KDDa and KDDb, the wvRN classifier was not able to calculate a solution within the time allowed

Table 6   Top nodes with highest coefficient in the linear model of the SW-transformation in combination 
with the beta function

The higher scores indicate higher probability of being (a) male when predicting gender and (b) young when 
predicting age for the Yahoo movies bigraph

Rank Yahoo movies (gender) Yahoo movies (age)

1. The Matrix Reloaded (2003) Ocean’s Eleven (2001)
2. Terminator 3: Rise of the Machines (2003) The Ring (2002)
3. The Hulk (2003) Scary Movie 3 (2003)
4. X2: X-Men United (2003) American Pie 2 (2001)
5. Bad Boys II (2003) American Pie (1999)
6. The Lord of the Rings: The Two Towers (2002) Pulp Fiction (1994)
7. The Italian Job (2003) The Texas Chainsaw Massacre (2003)
8. The Matrix Revolutions (2003) Austin Powers in Goldmember (2002)
9. Bruce Almighty (2003) Terminator 2—Judgment Day (1991)
10. 28 Days Later (2003) Gladiator (2000)
11. Kill Bill Vol. 1 (2003) The Lizzie McGuire Movie (2003)
12. American Wedding (2003) Phone Booth (2003)
13. Freddy vs. Jason (2003) Uptown Girls (2003)
14. S.W.A.T. (2003) How to Deal (2003)
15. The Matrix (1999) Signs (2002)
16. The League of Extraordinary Gentlemen (2003) Daredevil (2003)
17. The Lord of the Rings: The Fellowship of the Ring(2001) X-Men (2000)
18. Terminator 2—Judgment Day (1991) The Matrix (1999)
19. Seabiscuit (2003) A Walk to Remember (2002)
20. Star Wars (1977) Anger Management (2003)
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and the training time is an issue, it may be better to use the cdRN classifier, which is fast 
and whose performance is quite robust to different sorts of relational autocorrelation.

In terms of run-time performance, the SW-transformation outperforms all the other 
aggregation functions in combination with any non-tuning top-node function. It is able to 
scale to big datasets as it runs very fast. The average time needed for the regular sum of 
shared nodes and wvRN over the datasets is 65.4 s and the SW-transformation needs only 
0.5478 s on average. This technique will be discussed in more detail in the next section.

5.3 � SW‑transformation

The SW-transformation combines the best relational classifier wvRN and one of the best 
performing aggregation functions, sum of shared nodes into a fast linear model that scales 
easily to big datasets (Fig. 8). It is the only technique in the study that scales well (or at all) 
to the biggest datasets KDDa with 8 million × 20 million nodes and KDDb with 19 mil-
lion × 30 million nodes. An additional important aspect of the SW-transformation is the 
comprehensibility of the linear models it provides. A manual check of the top node coef-
ficients (the impact they have to the target variable) can help to verify if the model makes 
sense. Comprehensibility is highly desirable, and even mandatory, in many domains where 
the decisions of the classifier must be clearly explained and validated before the classi-
fier can be used  (Gregor and Benbasat 1999; Martens et  al. 2007; Martens and Provost 
2014). In Table 6 we conduct an additional verification of the results, by examining the 
top nodes’ coefficients using the combination of the beta and SW-transformation. We list 
the top 20 ranked instances with the highest coefficients when predicting gender and age 
for the Yahoo Movies bigraph. The rankings indeed appear intuitive and include (1) mov-
ies that are generally targeted to a male audience (Terminator, X-man, Kill Bill, etc.) and 
(2) movies usually preferred by younger people, such as American Pie, Scary Movie, The 
Texas Chainsaw Massacre, etc.

5.4 � General recommendations

We have provided an extensive empirical study of the predictive and run-time performance 
for a number of choices in the framework over a large collection of bipartite datasets. The 
results indicate that it is difficult to simply claim that a certain combination of methods per-
forms best across all domains. Instead, based on the empirical study, we would recommend 
experimenting with several choices as components for the three stages, those that generally 
provide good results: tangens hyperbolicum, cosine similarity, sum of shared nodes, wvRN 
and nLB100. For most datasets, they are among the fastest and most accurate combina-
tions in our benchmark (Figs. 19, 20, 21, 22, 23, 24, 25 and 26 in “Appendix”), with less 
than 5% AUC difference from the combination that performs best. This is not the case for 
some very skewed MovieLens datasets (with only 1.25–6.5% positive labels), where we 
predict genres like Fantasy, Film-Noir, War or Mystery. In such cases, as discussed above, 
the supervised weighting function likelihood ratio or the tunable beta function might be 
more appropriate choices. Furthermore, our recommendations have weak results for the 
Reality Mining dataset, where most of the people have visited the same places (a person on 
average shares all the locations he/she visited with 50% of the other people). For such data-
sets, where projections are fully (or almost fully) connected, traditional classifiers (such as 
SVM) might be better alternatives.
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6 � Limitations and future research

This study presents a framework for node classification within bigraphs, aimed at utilizing 
the predictive power that comes from the relational structure of the bigraph. As such, it 
largely simplifies the problems under study in many domains, where additional informa-
tion about the nodes and the edges might be available. The amount of information available 
from both sources, i.e. the network structure and the local information, varies greatly for 
each dataset, and so does the predictive power that comes from the two of them. The major 
advantage of the projection approach is to simplify the classification problem, which can 
render the solution much more efficient and easy to implement—and as the related work 
discussion revealed, has been a natural approach for practitioners. Casting the bipartite 
problem as a unipartite projection may be sufficient for certain settings; alternatively it may 
allow practitioners to get a first solution in place fast, and provide researchers with a solid 
baseline against which to compare new methods for classification on bigraphs (as wvRN 
did for within-network classification).

On the other hand, the simplification of the problem also presents the main limitation: 
as discussed at the outset, projecting the bigraph to a unimodal graph discards informa-
tion. For example, the identities of particular top nodes—which are lost in the projection—
can be useful for classification  (Perlich and Provost 2006). However, particularly useful 
top nodes can be added back in as features of bottom nodes to create an attributed graph. 
Whether this approach would be successful in domains with millions (or more) of top 
nodes depends on whether there is a moderately small number of predictive top nodes. Per-
lich and Provost (2006) show that when learning from domains with a high-dimensional 
categorical attribute (its values essentially being top nodes), that in some domains creating 
features based on just the ten most discriminative values performs as well as more sophisti-
cated methods, and in other domains it doesn’t perform well at all.

More generally, in attributed graphs, any features of the bottom nodes could be included 
in the analysis in several ways. One could apply a traditional model on the structured 
information and use the scores as priors in the relational methods (Macskassy and Provost 
2007). Alternatively, the scores from the relational classifiers could be used to complement 
the structured data in a traditional propositional model. The scores can be considered as 
additional features that capture information on the relations between the nodes. A third 
approach would be to include the attributes and the network links together in a full-blown 
relational model on the projected network. For example, in this paper we experimented 
with nLB (Macskassy and Provost 2007; Lu and Getoor 2003) on the (univariate) projec-
tion; instead, we could apply the full-blown Link-based classifier (Lu and Getoor 2003) on 
the projection with bottom-node attributes. Features of the top nodes could also be passed 
through via aggregation  (Perlich and Provost 2003, 2006), as with top-node identities. 
However, we may want to consider bringing to bear more sophisticated statistical relational 
learning methods. A well-chosen projection-based approach still would be an important 
baseline against which to compare the more sophisticated approaches.

Another interesting extension to the framework might be to consider k-partite graphs, 
with many-to-many relations between several sets of nodes (e.g., persons, books, authors, 
genres). The framework could be generalized by adding an additional stage that aggregates 
the information from several node sets into the projection. The function could be static and 
consider an equal value for every set (e.g., an additive function that sums the similarity 
from every set) or parametrized. For the latter, the Dirichlet distribution could be used—
the multivariate version of the beta distribution we use for the bipartite case.
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In this study, we consider classification of unweighted bipartite graphs with binary 
labels. A direct extension of the framework would be generalizing to weighted bigraphs. 
In a weighted bigraph, the node links have a value associated with them, representing the 
strength or the capacity of the link. The weight of the link may or may not be relevant for 
the classification problem. Examples of weights that we can imagine to be relevant to asso-
ciated tasks include the rating scores that a person gave to the movie or the book, the fre-
quency of visits to a specific location, the amount purchased at the particular merchant, and 
so on. Weights can be included in the projection framework by taking them into account 
when calculating the similarity between pairs of bottom nodes, and then combining them 
with the top node scores for every distinct pair of bottom nodes in the bigraph. In the study 
we also assume a binary target variable (label). We do also consider multiclass datasets, 
where the node labels can belong to one of K classes—in our experimental setup, we cast 
these datasets to multiple bigraphs with binary labels. Alternatively, the classifiers can be 
used to calculate the probability score for each class and then determine the class with the 
maximal score. For the wvRN, the class scores automatically sum to one because of the 
normalizer Z. For the nLB classifier, the class vector contains the scores for each label. 
Similarly, cdRN can build several reference vectors for all classes with multiple entries; the 
probability scores can be calculated as the vector similarity between the class vector of a 
node and the reference vector for each class.

Finally, the three-step framework opens up the opportunity for adding new techniques 
and experimentation with mixing-and-matching component techniques to create new 
approaches to node classification in bigraph data. As mentioned in Sect. 2, papers on graph 
embedding techniques have reported good node classification performance as well as scal-
ability and interpretability, including recent work applying embedding techniques directly 
to a bipartite graph. However, to the best of our knowledge, none of the existing research 
on heterogeneous graph embeddings has compared to a simpler (non-embedding) approach 
for node classification. We suggest that the very straightforward SW-transformation be 
employed as a benchmark for such studies.

An interesting avenue for future research might be to include graph embeddings as an 
additional or alternative step in the framework. Since homogeneous graph embeddings can 
be applied to unigraph networks, the relational classifier in our setting could be substituted 
by a combination of a graph embedding technique and a classifier built on the embedding. 
More recent work has also focused on bipartite network embeddings for the task of node 
classiffication. When implemented efficiently this might have an advantage over calculat-
ing the bigraph projection.

7 � Conclusion

Bigraph datasets are an intuitive way to represent relational, behavioral and transac-
tional data. Although prior studies individually have applied projection to bigraph data, 
this is the first systematic study of predictive modeling on bigraph data using projec-
tion. The modular three-stage projection framework we propose has the flexibility to 
compose many different classification methods—some previously used and most novel. 
Techniques composed using the framework were empirically evaluated in terms of pre-
dictive and run-time performance. The comparison with a traditional classifier shows 
encouraging results: the linear SVM has only average performance when compared to 
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the collection of projection-based methods (even linear ones), and the popular imple-
mentation does not scale to the largest datasets.

When composing techniques, in our experiments, among the top-node functions, the 
tangens hyperbolicum performs best. For the latter stages, the cosine aggregation func-
tion, followed by the sum of the shared nodes in combination with the wvRN relational 
classifier, give the best results. We combine the latter two as the basis of a new tech-
nique (the SW-transformation). It is a very fast, linear method that is able to scale to 
datasets of millions of nodes easily, while providing a comprehensible model.

The purpose of this paper is to study classification on bigraph data using projection 
systematically. We do not claim to have found the best combination of elements; the 
framework opens the design space. Follow-up work could suggest an even better alter-
native for one of the stages. Nonetheless, based on the results, we would recommend 
that researchers and practitioners faced with classification on bigraph data seriously 
consider the SW-transformation, due to its speed, solid predictive performance, and 
comprehensibility. At the very least, the SW-transform provides a very solid baseline 
method for future studies of methods for predictive modeling with (sparse) bigraph 
data.

Appendix

A Data distributions

See Figs. 9, 10, 11 and 12.

Fig. 9   Degree distributions of the top nodes (upper row) and bottom nodes (bottom row) for different data-
sets
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Fig. 10   Degree distributions of the top nodes (upper row) and bottom nodes (bottom row) for different data-
sets

Fig. 11   Degree distributions of the top nodes (upper row) and bottom nodes (bottom row) for different data-
sets
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B Results tables

See Figs. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 and Tables 7, 8, 9.

Fig. 12   Degree distributions of the top nodes (upper row) and bottom nodes (bottom row) for different data-
sets

Fig. 13   Predictive performance of the beta function in combination with SW-transformation when the 
parameters are tuned on a sample of the training data and trained on the full training data. The difference in 
predictive performance is limited
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Fig. 14   Aggregated run-time results for each of the top node and aggregation functions with wvRN (includ-
ing the SW-transformation). Since most of the top-node functions (except for the beta) have similar dura-
tions, the markers on the plots are very close to each other (and given in descending order). The SW-trans-
formation outperforms all the other aggregation functions in combination with any non-tuning top-node 
function

Fig. 15   Aggregated run-time results for each of the top node and aggregation functions with the nLB clas-
sifier



72	 Machine Learning (2021) 110:37–87

1 3

Fig. 16   Aggregated run-time results for each of the top node and aggregation functions with the nLB100 
classifier (nLB with 100 training instances)

Fig. 17   Aggregated run-time results for each of the top node and aggregation functions with the cdRN clas-
sifier
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Fig. 18   Time improvement of nLB with sampling over 100 instances as compared to no sampling for dif-
ferent datasets. The top of each bar represents the time needed for the nLB classifier and the bottom of each 
bar the time required to train the nLB with 100 instances for the specific dataset

Fig. 19   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color 
figure online)
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Fig. 20   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color 
figure online)

Fig. 21   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color 
figure online)
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Fig. 22   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color 
figure online)

Fig. 23   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color 
figure online)
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Fig. 24   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color 
figure online)

Fig. 25   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color 
figure online)
Fig. 26   Ranking of all combina-
tions of methods, with the pro-
posed combinations highlighted 
in red (Color figure online)
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Table 7   Kemeny–Young ranking for all the combinations of techniques

Top node weight Aggregation function Classifier Best rank Worst rank Avgerage rank

tanh Cosine function wvRN 3.5 142.0 40.9
Inverse degree Cosine function wvRN  3.5 140.5 41.0
tanh Cosine function cdRN  3.0 120.0 47.3
tanh Sum of shared nodes wvRN  2.0 148.0 46.1
Beta distribution Sum of shared nodes wvRN  1.0 158.0 56.4
tanh Cosine function nlb  8.5 121.5 45.9
Inverse degree Cosine function nlb  4.5 124.0 46.0
Inverse degree Sum of shared nodes wvRN  2.0 143.0 46.4
Inverse frequency Cosine function wvRN  2.0 140.0 39.3
tanh Jaccard wvRN  5.5 155.5 50.6
tanh Cosine function nlb 100  8.5 134.0 52.3
Inverse degree Cosine function nlb 100  4.5 134.0 52.2
Inverse degree Cosine function cdRN  6.0 123.0 48.2
tanh Sum of shared nodes nlb  2.0 134.5 49.0
Inverse degree Sum of shared nodes nlb  2.0 134.5 49.3
tanh Sum of shared nodes nlb 100  2.0 134.5 54.7
tanh Sum of shared nodes cdRN  1.5 130.5 50.8
Inverse degree Sum of shared nodes nlb 100  2.0 134.5 55.2
Inverse degree Sum of shared nodes cdRN  1.5 130.5 51.4
Inverse frequency Sum of shared nodes wvRN  2.0 149.0 43.7
Beta distribution Cosine function cdRN  1.0 158.0 57.1
Inverse frequency Sum of shared nodes nlb  8.0 111.0 47.7
Inverse frequency Cosine function cdRN 10.0 102.0 43.7
Inverse frequency Cosine function nlb  7.5 104.0 43.2
Inverse frequency Jaccard wvRN  2.0 154.0 47.5
Inverse degree Jaccard wvRN  5.5 155.5 52.1
Inverse frequency Sum of shared nodes nlb 100  8.0 134.0 51.3
Inverse frequency Sum of shared nodes cdRN  9.0 159.0 51.9
Inverse frequency Cosine function nlb 100  7.5 134.0 49.1
Beta distribution Sum of shared nodes cdRN  3.0 161.0 65.0
Inverse frequency Jaccard cdRN  2.0 144.0 57.4
tanh Jaccard nlb 11.0 139.5 62.5
tanh Jaccard cdRN  2.0 142.5 61.9
Inverse degree Jaccard cdRN 12.0 142.5 64.0
w = 1 Sum of shared nodes wvRN  1.0 144.0 51.8
Beta distribution Jaccard wvRN  4.0 161.5 71.4
Beta distribution Cosine function wvRN  4.0 156.0 58.2
Beta distribution Max wvRN  3.5 151.5 65.7
Beta distribution Sum of shared nodes nlb  4.0 160.5 72.7
Beta distribution Jaccard nlb  4.0 156.0 55.8
Beta distribution Cosine function nlb  4.0 156.0 58.1
Beta distribution Cosine function nlb 100  2.0 161.5 68.2
Inverse frequency Jaccard nlb  4.0 145.5 58.2
Beta distribution Max nlb  3.5 151.5 65.6
w = 1 Cosine function wvRN  2.0 141.0 52.6
Adamic and Adar Cosine function wvRN  3.0 135.0 51.6
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Table 7   (continued)

Top node weight Aggregation function Classifier Best rank Worst rank Avgerage rank

w = 1 Cosine function cdRN  7.0 105.0 56.5
Adamic and Adar Sum of shared nodes wvRN  1.0 138.0 53.0
w = 1 Jaccard wvRN  2.0 158.0 54.9
Adamic and Adar Cosine function cdRN 10.0 107.0 58.2
Inverse degree Jaccard nlb 10.5 142.5 64.2
Delta Cosine function wvRN  1.0 145.0 57.8
tanh Jaccard nlb 100  5.5 157.5 76.7
Inverse degree Jaccard nlb 100  5.5 157.5 77.6
Beta distribution Sum of shared nodes nlb 100  4.0 161.0 76.0
tanh Max wvRN  5.5 159.0 73.3
Inverse degree Max wvRN  5.5 150.5 73.3
Inverse frequency Jaccard nlb 100  4.0 158.0 72.8
w = 1 Sum of shared nodes nlb 14.5 103.5 56.8
Adamic and Adar Sum of shared nodes nlb 15.0 100.5 57.8
w = 1 Cosine function nlb  9.0 103.0 56.1
w = 1 Sum of shared nodes nlb 100 14.5 134.0 59.8
w = 1 Sum of shared nodes cdRN 13.0 160.0 62.4
Adamic and Adar Cosine function nlb  8.5 97.0 56.1
w = 1 Cosine function nlb 100  9.0 157.5 64.8
Adamic and Adar Cosine function nlb 100  8.5 157.5 64.6
Beta distribution Jaccard nlb 100  1.0 162.0 87.3
w = 1 Jaccard cdRN  4.0 156.0 65.2
Adamic and Adar Jaccard wvRN  3.0 153.0 58.1
Delta Cosine function nlb  1.5 139.0 64.6
w = 1 Jaccard nlb  2.0 158.0 65.4
Adamic and Adar Sum of shared nodes cdRN 13.0 158.0 61.5
Adamic and Adar Sum of shared nodes nlb 100 15.0 134.0 61.8
Delta Cosine function nlb 100  1.5 157.5 73.6
Delta Cosine function cdRN  1.0 141.0 65.8
Beta distribution Jaccard cdRN  1.0 159.0 75.0
Beta distribution Max cdRN  1.0 162.0 84.9
Likelihood ratio Cosine function wvRN  3.5 146.5 68.1
w = 1 Jaccard nlb 100  2.0 159.0 80.7
Likelihood ratio Cosine function nlb  3.5 146.5 69.8
Likelihood ratio Cosine function nlb 100  3.5 157.5 77.1
Likelihood ratio Cosine function cdRN  3.5 152.0 71.3
Adamic and Adar Jaccard nlb  6.0 150.0 68.8
Adamic and Adar Jaccard cdRN  8.0 152.0 69.6
Delta Sum of shared nodes wvRN  1.0 158.0 62.3
tanh Max cdRN 13.5 156.0 84.3
Likelihood ratio Sum of shared nodes wvRN  3.5 139.0 75.8
Likelihood ratio Sum of shared nodes nlb 21.5 139.0 77.5
Likelihood ratio Sum of shared nodes nlb 100 21.5 139.0 78.9
Likelihood ratio Jaccard wvRN  1.5 158.0 78.6
Likelihood ratio Jaccard nlb  2.0 158.0 79.6
Likelihood ratio Jaccard cdRN  1.5 154.0 78.0
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Table 7   (continued)

Top node weight Aggregation function Classifier Best rank Worst rank Avgerage rank

Delta Sum of shared nodes nlb  1.5 153.0 72.1
tanh Max nlb  2.5 145.5 83.8
Inverse degree Max nlb  4.0 145.5 83.9
Delta Sum of shared nodes cdRN  1.0 154.0 72.8
tanh Max nlb 100 15.5 145.5 88.9
SVM  1.0 162.0 91.3
Inverse degree Max nlb 100 11.0 145.5 88.6
Inverse degree Max cdRN 13.5 157.0 84.2
Inverse frequency Max wvRN  7.0 160.0 81.9
Delta Sum of shared nodes nlb 100  1.5 161.5 83.2
Delta Max wvRN  2.0 161.0 80.0
Likelihood ratio Sum of shared nodes cdRN  3.5 162.0 85.5
Inverse frequency Max nlb  2.5 135.5 87.3
Inverse frequency Max nlb 100  3.0 135.5 88.0
Inverse frequency Max cdRN  2.0 137.0 86.1
Adamic and Adar Jaccard nlb 100  6.0 157.5 83.6
Delta Jaccard wvRN  1.0 159.0 77.8
Likelihood ratio Jaccard nlb 100  2.5 162.0 92.0
Delta Max cdRN  2.0 158.0 92.9
Delta Max nlb  4.0 160.0 92.3
Delta Jaccard nlb 16.5 155.5 88.9
Delta Max nlb 100  4.0 162.0 97.1
Delta Jaccard cdRN 18.0 154.0 89.3
Beta distribution Max nlb 100 24.0 162.0 103.1
Adamic and Adar Max wvRN 11.0 148.0 100.7
Delta Jaccard nlb 100 16.5 162.0 106.8
Adamic and Adar Max cdRN 13.0 162.0 103.7
Adamic and Adar Max nlb 16.0 131.5 100.8
Adamic and Adar Max nlb 100 12.0 161.0 105.6
Likelihood ratio Max wvRN 32.5 148.5 109.6
Likelihood ratio Max nlb 32.5 148.5 111.7
Likelihood ratio Max nlb 100 42.0 161.0 113.1
Likelihood ratio Max cdRN 66.5 160.0 117.3
Any Zero–one wvRN 21.0 157.0 119.7
w = 1 Max wvRN 21.0 157.0 119.7
Any Zero–one nlb  9.0 157.0 118.2
w = 1 Max nlb  9.0 157.0 118.2
] Any Zero–one cdRN 22.0 158.0 124.9
w = 1 Max cdRN 22.0 158.0 124.9
Any Zero–one nlb 100 28.0 158.0 127.7
w = 1 Max nlb 100 28.0 158.0 127.7

We emphasize the combinations that are not significantly worse than the best method (underlined) at a 5% 
significance level in bold and the combinations that are significantly worse at 5% but not at 1% significance 
level in italics. The other methods that are significantly worse at 1% significance level are shown in regular 
font
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