
Vol.:(0123456789)

Machine Learning (2021) 110:37–87
https://doi.org/10.1007/s10994-020-05898-0

1 3

Node classification over bipartite graphs through projection

Marija Stankova1 · Stiene Praet1  · David Martens1 · Foster Provost2

Received: 15 July 2014 / Revised: 13 March 2020 / Accepted: 14 July 2020 / Published online: 28 July 2020
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020

Abstract
Many real-world large datasets correspond to bipartite graph data settings—think for
example of users rating movies or people visiting locations. Although there has been some
prior work on data analysis with such bigraphs, no general network-oriented methodology
has been proposed yet to perform node classification. In this paper we propose a three-
stage classification framework that effectively deals with the typical very large size of such
datasets. The stages are: (1) top node weighting, (2) projection to a weighted unigraph, and
(3) application of a relational classifier. This paper has two major contributions. Firstly,
this general framework allows us to explore the design space, by applying different choices
at the three stages, introducing new alternatives and mixing-and-matching to create new
techniques. We present an empirical study of the predictive and run-time performances for
different combinations of functions in the three stages over a large collection of bipartite
datasets with sizes of up to 20million × 30million nodes. Secondly, thinking of classifi-
cation on bigraph data in terms of the three-stage framework opens up the design space
of possible solutions, where existing and novel functions can be mixed and matched, and
tailored to the problem at hand. Indeed, in this work a novel, fast, accurate and comprehen-
sible method emerges, called the SW-transformation, as one of the best-performing combi-
nations in the empirical study.

Keywords  Bipartite graphs · Two-mode networks · Node classification · Behavioral data

Editor: Luc De Raedt.

 *	 Stiene Praet
	 stiene.praet@uantwerpen.be

	 Marija Stankova
	 marija.stankova@uantwerpen.be

	 David Martens
	 david.martens@uantwerpen.be

	 Foster Provost
	 fprovost@stern.nyu.edu

1	 University of Antwerp, Prinsstraat 13, Antwerp, Belgium
2	 New York University, 44 West Fourth Street, 8‑86, New York, USA

http://orcid.org/0000-0001-8955-4437
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05898-0&domain=pdf

38	 Machine Learning (2021) 110:37–87

1 3

1  Introduction

Many relational, behavioral and transactional datasets can be modeled as bipartite graphs
(bigraphs, sometimes also referred to as 2-mode or affiliation networks), which are defined
by having (1) two types of nodes and (2) edges that exist only between nodes of differ-
ent types. Think for example of relationships based on companies sharing board members
(Seierstad and Opsahl 2011), users meeting at locations or events (Eagle and Pentland
2006), users rating different products (Ziegler et al. 2005), consumers making payments
to merchants (Martens and Provost 2011), mobile devices visiting locations (Provost et al.
2012, 2015), authors collaborating on scientific papers (Newman 2001b), people communi-
cating on online forums (Opsahl 2011), actors playing in the same movies (Guillaume and
Latapy 2006), words occurring in the same sentence/search query (Guillaume and Latapy
2006; Cancho and Solé 2001) or even proteins involved in the same metabolic processes
(Guillaume and Latapy 2006). These datasets are typically high-dimensional and sparse:
although the number of possible top nodes is large (e.g., the possible number of webpages
to like or products to rate), due to limited ‘behavioral capital’ any individual can only take
a very small fraction of all the possible actions (Junqué de Fortuny et al. 2013).

The analysis of bigraph data has been mainly limited to measuring descriptive statistics,
link prediction for recommender systems, and clustering. In this study, we take a different
approach and focus on the task of node classification within bigraphs, where nodes for
which the class is known are related to nodes for which the class must be estimated (Mac-
skassy and Provost 2007). As an example of node classification, we consider a bigraph of
users and locations, where the users are connected to the locations they have visited (e.g.,
logged into a WiFi IP address (Provost et al. 2012, 2015) or checked in using a social net-
work app (Cho et al. 2011). An interesting node classification task would be to predict the
brand interest of the users, in order to target them with mobile ads. For this example, brand
interest is defined as whether a user would demonstrate brand affinity actions, like visiting
a brand loyalty club page or a purchase page. Based on the brand interest of other users
visiting the same locations we can infer the (likelihood of the) class of the unknown user
(Provost et al. 2012, 2015). The rationale behind this idea is the concept of cross-domain
similarity (Martens and Provost 2011; Provost et al. 2009, 2012, 2015): users that have
similar preferences for some locations, like specific bars or restaurants, are likely interested
in the same brands.

For this task, there has been no general network-based methodology proposed yet in
prior work. Most of the previous studies that have looked at node classification for this
type of data formulate it simply as a standard classification problem, which results in mas-
sive, sparse feature data. Some examples include predicting personality traits from datasets
of Facebook users liking pages (Kosinski et al. 2013), predicting demographic attributes
(Goel et al. 2012; Hu et al. 2007) and brand interest (Raeder et al. 2012) from people’s
browsing history, predicting political views from history of videos watched on YouTube
(Weber et al. 2013), etc. In many of these applications, a linear Support Vector Machine
(SVM) is used because of its efficiency for classifying large sparse datasets (Li et al. 2015).
In this paper, we examine an alternative, and more concise, network-based formulation. We
compare this method on a collection of large bigraph datasets to the frequently used linear
SVM and show that it outperforms the standard formulation both in terms of predictive
performance and scalability to large datasets.

Generally, two main approaches to analyse bigraphs exist with the aim of obtaining sum-
mary metrics and summary graphs. The first one is using techniques and metrics that are

39Machine Learning (2021) 110:37–87	

1 3

specially designed for bipartite graphs (Latapy et al. 2008). This direct approach takes into
account the bipartite nature of this particular type of graph, but unfortunately there are only
few techniques that can be applied directly on the bigraph. Therefore a second, indirect
approach is often used, which is the basis of the methodology that we propose. Let us sepa-
rate the two subsets of nodes in the bigraph into a set of top nodes and a set of bottom nodes.
Choosing the nodes to focus on (i.e., to classify) as the bottom nodes, a bigraph can be ana-
lyzed by transforming it to a homogeneous unigraph of the bottom nodes, called a projection,
where nodes are linked if they share a common top node (see Fig. 1, left) (Latapy et al. 2008).
This projection approach allows the application of existing network analysis techniques for
unigraphs to the bipartite case. It is very convenient for the problem of node classification, as
numerous relational classifiers for network data exist for homogeneous graphs.

To the best of our knowledge, this paper presents a first, general study of node classification
within bigraphs by transforming the bigraph into a unigraph projection. The main contribu-
tions of this work are: (1) we provide a general framework for performing node classification
within bipartite data via projection, which allows us to explore the design space and mix-and-
match components to create new techniques; and (2) in doing so, we introduce a fast, compre-
hensible model, called the SW-transformation, that calculates the label scores directly on the
bigraph. This method allows easy scaling to big datasets of up to millions of nodes and it is
convenient for most of today’s big datasets that are very sparse, with nodes being connected to
only few other nodes in the projection.

The rest of the paper is structured as follows. Section 2 summarizes the related literature
on bigraph data analysis and node classification. Next, Sect. 3 presents a range of functions
that can be employed in the different framework stages. Section 4 describes the datasets used
and Sect. 5 presents our findings. Limitations and future research are discussed in Sect. 6 and
finally, Sect. 7 concludes.

Fig. 1   Bigraph, top node projec-
tion and bottom node projection
(left), adjacency matrix represen-
tation of the bigraph (right)

40	 Machine Learning (2021) 110:37–87

1 3

2 � Related work

To the best of our knowledge, this paper presents the first systematic study of node clas-
sification within bigraphs by transforming the bigraph into a unigraph projection. In the
following sections we will first present prior literature on bigraph analysis and unigraph
projections. Next, we will briefly discuss existing node classification techniques.

2.1 � Bigraph data analysis

The literature regarding bigraphs has so far been focused on measuring descriptive statis-
tics, link prediction for recommender systems, and clustering. There has been some ini-
tial research that explores the properties of the bigraphs and that extended several global
network metrics for unigraphs to the bipartite case. Centrality measures, which determine
the varying importance of nodes within the graph, like betweenness, degree, closeness and
eigenvector centralities (Borgatti and Halgin 2011; Borgatti and Everett 1997; Faust 1997),
as well as the clustering coefficient (Latapy et al. 2008; Lind et al. 2005; Opsahl 2011;
Robins and Alexander 2004) have been adapted for bigraphs. The second research area,
link prediction, has been applied in prior literature to recommender systems for online
music shops (Benchettara et al. 2010), online book stores (Huang et al. 2005), movies rec-
ommendation (Zhou et al. 2007), hypotheses generation (Kim 2017) etc. Finally, clustering
has been used for discovering community structures in bigraphs of companies and board
directors (Barber 2007), women attending events (Barber 2007; Doreian et al. 2004),
supreme court voting (Doreian et al. 2004), finding similar users or genres of music (Lam-
biotte and Ausloos 2005), clustering documents based on the occurring terms (Zha et al.
2001), looking for similar actors based on the movies they have played in Sun et al. (2005),
similar authors based on the papers they collaborated (Sun et al. 2005), conferences based
on the authors that published, etc.

In addition, there exist many studies that essentially use unigraph projections of bipar-
tite data. For instance, the datasets used to create networks based on scientific collabo-
rations (Liben-Nowell and Kleinberg 2007), co-occurrence of companies in text docu-
ments (Macskassy and Provost 2007), web page co-citation (Lu and Getoor 2003), movies
linked if they share the same production company or crew (Macskassy and Provost 2003,
2007), book co-purchase (Gallagher et al. 2008) and so on, in the unigraph literature are
in fact bigraph projections. Projecting bigraphs into unigraphs results in loss of informa-
tion (Latapy et al. 2008). Studies exists that explore the problem of how to most accurately
represent the bigraph with a transformation to unipartite graph. For example, Zweig and
Kaufmann (2011) take the approach of connecting nodes in the projection if they have a
much higher number of occurrences of motifs (recurrent and statistically significant sub-
graphs or patterns) compared to the random graph model of the given bigraph. Further-
more, Zhou et al. (2007) propose a method for projecting bigraphs into asymmetrical uni-
graphs, where the weight from one node to another in the projection is not necessarily
the same as in the opposite direction. They calculate the weights in the projection by first
assigning an initial weight to the bottom nodes in the bigraph and then equally distributing
them over the neighboring top nodes. In the next phase, the weights are once more distrib-
uted, this time from the top to the bottom nodes. This results in a linear equation for each
bottom node, where the coefficients signify the link weight in the projection with direction
from the specific bottom node. Gupte and Eliassi-Rad (2012) consider a wide range of

41Machine Learning (2021) 110:37–87	

1 3

measures for weighting unigraph projections. They define a set of axioms which approxi-
mate intuition and examine how well the weighting measures in previous literature satisfy
this characterization.

This paper looks at bigraphs from a different angle: we compare different projection
methods based on their performance on a particular task—node classification. We propose
a range of measures for determining the weights of the unigraph and assess how well they
represent the relevant underlying structure by comparing the predictive performance of
relational classifiers on the unigraph projections. As such, we have an objective function
that determines to what extent the predictive information present in a bigraph is also con-
tained in the projected unigraph.

2.2 � Node classification techniques

In this paper, we use bigraph data for node classification. Specifically, given a bipartite
network with labels on some nodes, how do we classify the other nodes. A traditional
approach for node classification in bigraphs is to extract features from the network struc-
ture and apply a standard classifier. The bigraph data is represented by the corresponding
adjacency matrix, with as many rows as there are bottom nodes and as many columns as
there are top nodes. This typically results in a high-dimensional and very sparse matrix as
most elements in this matrix will be zero (Junqué de Fortuny et al. 2013). To this dataset,
standard classification techniques can be applied. Linear SVMs are often used to classify
such large sparse datasets efficiently (Li et al. 2015). Moreover, according to a large bench-
mark study of de Cnudde et al. (2017), comparing 11 classification techniques on 43 fine-
grained behavioral data sets, linear SVM with L2 regularization is one of the best perform-
ing techniques in terms of predictive performance. However, scalability issues impede the
easy application of this technique on very large datasets. To train an SVM on such a huge
dataset can require sampling and dimensionality reduction, which also scale badly to these
settings (Martens et al. 2013). In our empirical study, below, we further discuss this scal-
ability requirement and include SVM as a benchmark for comparison. A full comparison
among all techniques that could be applied to the adjacency matrix is outside the scope of
this paper, which focuses on bigraph projections.

In this paper, we present a different approach for node classification in bigraph data,
based on the unigraph projection. Seeing that typical bigraph datasets often are very large
transactional datasets, our proposed method is designed to scale up easily to millions and
even billions of nodes. First, the bigraph is transformed into a unigraph using a projection
approach, as was discussed in the previous section. Next, a relational classifier is applied
to the unigraph. In a graph where nodes with known class labels are connected to nodes
with unknown class labels, relational classifiers make use of the graph structure to estimate
the unknown labels. Unlike traditional, non-relational models, which make use only of the
local information about a node, univariate relational classifiers use information about the
target variable for the related nodes (their labels or predictions thereof) (Macskassy and
Provost 2007). Macskassy and Provost (2007) compared various relational classifiers for
univariate, unipartite node classification and found that the network-only Link-Based clas-
sifier (nLB) dominates when many labels are known, whereas the weighted-vote Relational
Neighbor (wvRN) classifier and class-distribution Relational Neighbor (cdRN) classifier
dominate when fewer labels are known. The network-only Bayes Classifier (nBC) was
almost always significantly worse than the other three relational classifiers. These rela-
tional classifiers will be used in our study, although other techniques might fit into our

42	 Machine Learning (2021) 110:37–87

1 3

framework as well. For example, other methods for Statistical Relational Learning (SRL)
go beyond just using the univariate, unipartite network, combining statistical learning to
address uncertainty in the data and relational learning to deal with relational structures
(Getoor and Taskar 2007). Khosravi and Bina (2010) review four well-known SRL models:
Probabilistic Relational Models (PRM), Relational Dependency Network (RDN), Bayes-
ian Logic Programming (BLP) and Markov Logic Networks (MLN). They argue that the
biggest limitation shared between SRL methods is their computational complexity, which
is proportional to the size of the graph and limits the scalability for many realistic datasets.
Thus, these techniques are not suitable for many applications, including our benchmark
study that consists of very large datasets of up to millions of nodes.

Recently, network embeddings increasingly have been used to extract node features
based on network structure. Network embeddings represent nodes by a vector in a low-
dimensional space, while incorporating information about the original structure of the net-
work (Liu et al. 2018). Classifiers built on these embeddings have shown high precision for
node classification (Goyal and Ferrara 2018). The most commonly used methods are based
on matrix factorization (e.g., singular value decomposition (SVD) and multiple dimen-
sional scaling (MDS)), random walks [e.g., DeepWalk (Perozzi et al. 2014) and node2vec
(Grover and Leskovec 2016)], edge modeling [e.g., LINE (Tang et al. 2015) and Graph-
gan (Wang et al. 2018)] or deep neural networks [e.g., structural deep network embed-
ding (SDNE) (Cui et al. 2018; Wang et al. 2016) and graph convolutional networks (GCN)
(Kipf and Welling 2016)] and can be performed unsupervised or semi-supervised (Cui
et al. 2018; Zhang et al. 2018). Random walk and edge modeling methods adopt stochas-
tic gradient descent optimization and the time complexity of these algorithms is often lin-
ear with respect to the number of vertices or edges. This makes them much more efficient
than matrix factorization based methods that are solved by eigenvector decomposition and
involve quadratic time complexity in the number of vertices, or higher. However, random
walks and edge modeling only capture the local structure of the network. Deep learning
based methods can capture non-linearity in networks, but their computational cost is usu-
ally high (Zhang et al. 2018).

Most network representation studies have proposed methods for homogeneous network
embeddings, where vertices are of the same type. However, more recent work has also
focused on bipartite network embeddings for the task of node classification. Gao et al.
(2018) developed Bipartite Network Embedding (BiNE), that accounts for both the explicit
relations (observed links) and implicit relations (transitive links) in learning the node rep-
resentations. Since it is based on random walks and can be applied to the bipartite network
structure directly, it has the potential to be scalable to large networks. Also methods that
are developed for heterogeneous networks; such as Metapath2vec (Dong et al. 2017), IGE
(Zhang et al. 2017), GPSP (Du et al. 2018), activeHNE (Chen et al. 2019) and FeatWalk
(Huang et al. 2019) are applicable to bipartite networks.

Next to the expensive storage and computation costs for most network embedding
techniques, these techniques suffer mainly from another important drawback: the results
of network embeddings are difficult to understand. The goal of network embedding is to
represent nodes by a vector in a low-dimensional space, so that the embeddings implic-
itly preserve certain structural and content information of the original networks. Nodes
that are similar to each other in the network are mapped closely together in the embed-
ding space. Network embeddings have been shown to generate feature representations that
can be effective for particular tasks, but they have not been shown to be comprehensible
regarding how the constructed dimensions in the embedding space related to the important
properties for a particular task. For example, when these representations are used as input

43Machine Learning (2021) 110:37–87	

1 3

to a classification algorithm it is difficult to explain why a certain node (represented by its
embedding) is classified as positive or negative (Liu et al. 2018). Unfortunately, interpret-
ability is often crucial for real-world applications where a model needs to be validated and
trusted before implementation (Martens et al. 2011; Martens and Provost 2014).

The goal of this paper is to develop a framework that allows the systematic explora-
tion of the design space of bigraph projection and classification methods. We propose vari-
ous options that can be mixed and matched and show how these design choices can be
compared easily and on equal footing using our flexible framework. Of course, our list
of proposed options contains just a small fraction of all possible techniques that could be
examined. We encourage practitioners and researchers to experiment with different design
choices for a particular problem and apply our framework for empirical evaluation.

3 � Methods

Let us now describe the technical details of the framework, defining bigraphs and projec-
tions more formally, defining the framework based on these definitions, presenting the vari-
ous functions used within the framework, and finally discussing scalability in more detail.

3.1 � Bigraphs and projections

A bigraph can formally be defined as the triplet G = (⊤,⟂,E) , where ⊤ denotes a set of top
nodes, ⟂ is a set of bottom nodes and E ⊆ ⊤× ⟂ is a set of links (edges). In this study, we
use several basic metrics for describing the bigraphs that were introduced in the work
of Latapy et al. (2008). For each bigraph dataset G = (⊤,⟂,E) , n⊤ denotes the number of
top nodes n⊤ =∣ ⊤ ∣ , n

⟂
 the number of bottom nodes n

⟂
=∣⟂∣ and m the total number of

edges. The average degree of the top and the bottom nodes can be calculated as k⊤ =
m

n⊤

and k
⟂
=

m

n
⟂

 respectively, and the total average degree k over the whole bigraph as
k =

2m

n⊤+n⟂
 . The density of the graph, which represents the probability that two randomly

chosen nodes from the distinct node sets are connected, is equal to 𝛿(G) = m

n⊤⋅n⟂
.

In order to make use of the existing relational classifiers, we can transform a bigraph
into a unigraph using the projection approach. A projection is created by interconnecting
the nodes of one of the two sets of the bigraph, if they share at least one neighboring node
from the other set of nodes. This means that the projection of the bottom nodes ( ⟂ projec-
tion), defined as G�

= (⟂,E�
) with a set of edges E� ⊆⟂ × ⟂ , can be obtained by connect-

ing the nodes in ⟂ that share at least one common neighbor in ⊤ . The projection of the top
nodes can be defined similarly, but for consistency in what follows we will only consider
the bottom node projection. Figure 1 (left) depicts a bigraph, along with its ⊤-projection
and its ⟂-projection. The adjacency matrix A of the same bigraph can be seen on Fig. 1
(right), with rows representing the bottom nodes and columns representing the top nodes.
An element xij in the adjacency matrix has value of 1 if the corresponding bottom node i
and top node j are connected and otherwise 0. Since every top node with degree d creates
a clique in the ⟂ projection with d(d − 1)∕2 links (analogously for the bottom nodes in the
⊤ projection), the process of projecting the bigraph can result in very dense projections,
even in cases where the bigraph itself is not very dense (Latapy et al. 2008). Guillaume and
Latapy (2006) have looked at the projections of random bipartite graphs with prescribed
degree distributions in order to analyse the properties that are induced by the underlying

44	 Machine Learning (2021) 110:37–87

1 3

structure of the bigraphs. They observed that the projections have a low average distance
between the nodes (“small world effect”), with a diameter on the order of �(log| ⟂ |) (or
𝜃(log|⊤|) for the top node projections). Moreover, if the bottom (or top) node set follows
a power-law distribution, the projection as well follows a power law distribution with the
same exponent. The authors also observed high clustering coefficients in the projections,
which suggests that this property can be seen as a consequence of the projecting step,
rather than a property of the particular network under study.

Projecting the bigraph gives the advantage of using the powerful methods for unipar-
tite graph analysis, but is also an irreversible process that results in loss of information.
For instance, in the projections of Fig. 1 we lose information associated to the opposite
node set, like the degree distributions, numbers of shared nodes and their identities, etc.
By intelligently assigning weights to the edges in the projection graph, we can incorpo-
rate some information about the top nodes and better reflect the underlying structure of the
bigraph. In light of this, we propose a general three-step framework for projecting and clas-
sifying bigraphs aimed at dealing flexibly with the incorporation of the appropriate infor-
mation for node classification:

1.	 First we calculate a weight for each of the top nodes in the bigraph. This weight repre-
sents the importance of the top node and the distinctiveness it has for the target variable.
All the top node weights are a function of the node degree and thus retain information
about the degree distributions in the projections.

2.	 Next, we determine the weights of the edges in the projection by combining the weights
of the top nodes shared by the bottom nodes. This additionally includes information
about the number of shared nodes in the projection’s weights.

3.	 Finally, we use relational (unipartite network) classifiers on the weighted unigraphs in
order to predict the values for the target variables. For this paper, the relational classi-
fiers use only the graph structure to make predictions.1

We continue this section by proposing specific functions for each of the steps in the frame-
work and explaining the rationale behind the choices. Of course, these are not the only
possible choices—the list can be extended to other functions as well. This generality and
flexibility is a key advantage of the framework.

3.2 � Determining importance of top nodes

Functions for calculating the weights of the top nodes, sk , are listed in Table 1 and visu-
alised in Fig. 2. This list is not meant to be exhaustive—various other ways may exist to
weight top nodes. An advantage of the component-based framework is that other methods
could be introduced easily (e.g., one might have an application where it would make sense
to weight based on PageRank or centrality).

Clearly, the simplest weighting scheme would be to assign equal importance, sk = 1 , to
all the top nodes. Although this is an easy and basic method to use, it does not make any
distinction between the top nodes. Other, more complex weighting methods can be pro-
posed based on some property of the top node k, like the number of connections (degree)

1  This is not a fundamental limitation of the framework—additional features could be constructed and
more sophisticated relational classifiers could be used. We leave that for future work.

45Machine Learning (2021) 110:37–87	

1 3

Ta
bl

e 
1  

O
ve

rv
ie

w
 o

f t
he

 fu
nc

tio
ns

 fo
r d

et
er

m
in

in
g

to
p

no
de

s w
ei

gh
t

To
p

no
de

 w
ei

gh
t f

un
ct

io
n

Fo
rm

ul
a

Re
fe

re
nc

es

Si
m

pl
e

w
ei

gh
t a

ss
ig

nm
en

t
s k

=
1

A
lla

li
et

 a
l.

(2
01

1)
, G

up
te

 a
nd

 E
lia

ss
i-R

ad
 (2

01
2)

, P
ro

vo
st

et
 a

l.
(2

01
2,

 (2
01

5)
,

M
ac

sk
as

sy
 a

nd
 P

ro
vo

st
(2

00
7)

In
ve

rs
e

de
gr

ee
s k

=
1 d
k

G
up

te
 a

nd
 E

lia
ss

i-R
ad

 (2
01

2)
, N

ew
m

an
 (2

00
1b

)

In
ve

rs
e

fr
eq

ue
nc

y
s k

=
lo
g
1
0

(N d
k

)
M

ar
te

ns
 a

nd
 P

ro
vo

st
(2

01
1)

, M
ar

te
ns

 e
t a

l.
(2

01
3)

, P
ro

vo
st

et
 a

l.
(2

01
2,

 (2
01

5)

H
yp

er
bo

lic
 ta

ng
en

t
s k

=
ta
n
h
(

1

(
d
k
)

)

A
da

m
ic

 a
nd

 A
da

r
s k

=
1

lo
g
1
0
(
d
k
)

A
da

m
ic

 a
nd

 A
da

r (
20

03
),

G
up

te
 a

nd
 E

lia
ss

i-R
ad

 (2
01

2)

D
el

ta
s k

=
2

d
k
(
d
k
−
1
)

A
lla

li
et

 a
l.

(2
01

1)
, G

up
te

 a
nd

 E
lia

ss
i-R

ad
 (2

01
2)

B
et

a
di

str
ib

ut
io

n
s k

=
B
et
a
(�

,
�
,

(
m
a
x
(
d
k
)
−
(
d
k
)

m
a
x
(
d
k
)
−
m
in
(
d
k
)

))
M

ar
te

ns
 e

t a
l.

(2
01

3)

Li
ke

lih
oo

d
ra

tio
s k

=
d
c k

d
k

M
ar

te
ns

 a
nd

 P
ro

vo
st

(2
01

1)
, M

ar
te

ns
 e

t a
l.

(2
01

3)

46	 Machine Learning (2021) 110:37–87

1 3

dk—e.g., inverse degree, referred to as “linear” by Gupte and Eliassi-Rad (2012). Adding
complexity, consider inverse degree frequency (Martens and Provost 2011), defined in anal-
ogy to a commonly used measure in information retrieval (inverse document frequency or
IDF) (Jones 1972) and closely related to measures of entropy (Provost and Fawcett 2013).
With IDF, very common terms that occur in many documents are assigned lower weights
since they are less likely to be good discriminators. Inverse degree frequency defines the
weight of a top node as a logarithmic function of the ratio between the total number of
bottom nodes n

⟂
 and the number of bottom nodes that are connected to that particular top

node dk . In the context of, for example, the users-movies network, the movies connect-
ing fewer users provide more information for the target variable than those linking many.
Users rating films noirs are more likely to have preferences in common than users rating a
current blockbuster. An alternative method for weighting the top nodes is the hyperbolic
tangent function. As an input to the function, we use the inverse degree of the node, based
on the intuition that lower-degree nodes tend to provide higher discriminability. To our
knowledge, this weighting method has not been used in prior literature and this is a first
study that experiments with it. A different approach to determine the importance of the top
nodes is the use of the delta function as defined in Allali et al. (2011). This function takes
into account that each top node has influence on the similarity between all pairs of bottom
nodes that are connected to it. Therefore, a top node with a degree d, has an equal impact
on d(d−1)

2
 pairs of bottom nodes. The Adamic–Adar measure (Adamic and Adar 2003) can

be decomposed into a combination of the aggregation function sum of shared nodes, dis-
cussed in the next section and the associated Adamic–Adar top-node function (Table 1).

As one can observe from Fig. 2, all the functions discussed so far with the exception of
the simple sk = 1 assignment, follow the intuition that a top node with fewer connections
creates stronger ties between the connected bottom nodes (Gupte and Eliassi-Rad 2012).
In contrast, one might argue that the top nodes with very few edges are nothing more than

Fig. 2   Functions for determining the top nodes weight. Most of the functions follow the intuition that the
lower-degree nodes are more discriminable for the target variable and therefore assign them higher weights

47Machine Learning (2021) 110:37–87	

1 3

noise in the data and hence should not receive a high weight. Inaccuracies in data collec-
tion or the way the data are sampled could lead to a top node having a misleadingly high
weight. A more flexible weighting scheme could automatically fit a function to choose an
appropriate trade-off between specificity and noise tolerance (Martens et al. 2013). To this
end, we employ the beta distribution density function, defined by Eq. 1, over the interval
x ∈ [0, 1] , where x is the normalized top node degree (Eq. 2). Here, � and � are two param-
eters of the density function, which are positive numbers and define the shape of the den-
sity curve (see examples for different values in Fig. 2). The beta distribution is commonly
used in Bayesian analysis as a prior distribution for binominal proportions (Forbes et al.
2011). For our purpose, the beta function provides a method for tuning the “rarity” weight
to fit each dataset individually. This is done by applying a grid search to find the optimal �
and � parameters for the specific dataset that provide the best predictive performance (e.g.,
the area under the ROC curve) on a held-out validation set.

The likelihood ratio function, finally, takes a different approach to weighting the top nodes.
It introduces supervised weighting in the projection, by taking into account how the top
nodes are connected to the different classes, rather than just how they are connected in gen-
eral (Martens and Provost 2011; Martens et al. 2013). The weight of a top node presents
a ratio between the number of connected bottom nodes with positive class dc

k
 and the total

degree of the top node dk.

3.3 � Determining the link weights in the projection

Once we have determined the weights sk of the top nodes, we continue with the second
stage of the framework which calculates the link weights wij between the bottom nodes
i and j in the unipartite projection. In Table 2, we present several methods for calculat-
ing wij as an aggregation of the weights from the shared top nodes sk . The most straight-
forward way to combine the common top nodes is to simply sum their weights (Adamic
and Adar 2003; Allali et al. 2011; Gupte and Eliassi-Rad 2012; Macskassy and Provost
2007; Martens and Provost 2011; Martens et al. 2013; Newman 2001b; Provost et al. 2009,
2012, 2015). Another approach is to select the maximum weight of the shared top nodes
as a weight for the projection edges (Gupte and Eliassi-Rad 2012). We can also use an
extended, weighted version of the Jaccard index, that is defined as the sum of the weights
of the top nodes that are shared by both the bottom nodes, divided by the sum of the
weights of the top nodes that are connected to at least one of the bottom nodes (Allali et al.
2011; Gupte and Eliassi-Rad 2012; Provost et al. 2012, 2015). A problem can arise with
the Jaccard index in the case when one of the bottom nodes is connected to many top nodes
and the other node is connected to only few. In that case, even when all the neighbors of
one of the nodes are also neighbors of the other node, the similarity will be low. Another
option for aggregating the top node weights is by employing the cosine similarity function,

(1)
Beta(�, �, x) =

{
(1∕B(�, �))x�−1(1 − x)�−1, if 0 ≤ x ≤ 1

0, otherwise

B(�, �) =�
1

0

x�−1(1 − x)�−1dx

(2)x =
dk − min(dk)

max(dk) − min(dk)

48	 Machine Learning (2021) 110:37–87

1 3

Ta
bl

e 
2  

O
ve

rv
ie

w
 o

f t
he

 a
gg

re
ga

tio
n

fu
nc

tio
ns

A
gg

re
ga

tio
n

fu
nc

tio
n

Fo
rm

ul
a

Re
fe

re
nc

es

Su
m

 o
f s

ha
re

d
no

de
s

w
ij
=

∑ k
∈
N
(
i)
∩
N
(
j)
s k

A
da

m
ic

 a
nd

 A
da

r (
20

03
),

A
lla

li
et

 a
l.

(2
01

1)
, G

up
te

 a
nd

 E
lia

ss
i-R

ad
 (2

01
2)

,
M

ac
sk

as
sy

 a
nd

 P
ro

vo
st

(2
00

7)
, P

ro
vo

st
et

 a
l.

(2
00

9)
, M

ar
te

ns
 a

nd
 P

ro
vo

st
(2

01
1)

, M
ar

te
ns

 e
t a

l.
(2

01
3)

, N
ew

m
an

 (2
00

1b
),

Pr
ov

os
t e

t a
l.

(2
01

2,
 (2

01
5)

M
ax

 o
f s

ha
re

d
no

de
s

w
ij
=
m
a
x
k
∈
N
(
i)
∩
N
(
j)
s k

G
up

te
 a

nd
 E

lia
ss

i-R
ad

 (2
01

2)
Ja

cc
ar

d
si

m
ila

rit
y

w
ij
=

∑ k
∈
N
(
i)
∩
N
(
j)
s k

∑ k
∈
N
(
i)
∪
N
(
j)
s k

A
lla

li
et

 a
l.

(2
01

1)
 ,G

up
te

 a
nd

 E
lia

ss
i-R

ad
 (2

01
2)

, P
ro

vo
st

et
 a

l.
(2

01
2,

 (2
01

5)

C
os

in
e

si
m

ila
rit

y
w
ij
=

∑ k
∈
N
(
i)
∩
N
(
j)
s2 k

√ ∑
k
∈
N
(
i)
s2 k
⋅

√ ∑
k
∈
N
(
j)
s2 k

Pr
ov

os
t e

t a
l.

(2
00

9,
 (2

01
2,

 (2
01

5)

Ze
ro

-o
ne

w
ij
=

�
1

if
∑ k

∈
N
(
i)
∩
N
(
j)
s k

>
0

0
if

∑ k
∈
N
(
i)
∩
N
(
j)
s k

=
0

G
ui

lla
um

e
an

d
La

ta
py

 (2
00

6)
, N

ew
m

an
 (2

01
0a

),
Pr

ov
os

t e
t a

l.
(2

00
9)

49Machine Learning (2021) 110:37–87	

1 3

which calculates the similarity between pairs of vectors as the cosine value of the angle
between them (Provost et al. 2009, 2012, 2015). Using this measure, the similarity between
two bottom nodes will be the highest and equal to one when they share exactly the same
top nodes and equal to zero when they don’t have any neighbors in common. Finally, a very
simple weighting measure assigns the value of 0 or 1 to the links in the projection, depend-
ing on whether the bottom nodes have at least one shared top node or not (Guillaume and
Latapy 2006; Newman 2010a; Provost et al. 2009). This corresponds to an unweighted ver-
sion of the projection graph, so it loses all the information related to the strength of the
bonds between pairs of bottom nodes.

3.4 � Relational classifiers

The third step of the framework for node classification within bigraphs is to use a relational
(network) classifier over the unigraph projection. We consider methods for within-network
classification in univariate networks, as defined by Macskassy and Provost (2007) (see
Sect. 2.2). Based on the performance of the classifiers in their analysis, we will consider
the following relational classifiers which dominated in the study.

The weighted-vote Relational Neighbor (wvRN) classifier (Macskassy and Provost
2003) is a straightforward classifier that uses the known class labels of the related nodes (or
predictions thereof) to make a probability estimation (score) of the node’s own class label
(see Eq. 3). It is based on the assumption of assortativity, that the linked nodes in the graph
are likely to be of the same class. The classifier calculates the node’s score P(li = c|N(i)) as
a weighted average of the neighbors’ scores.

In this equation, Z is the normalizing factor and is equal to the sum over the link weights to
all neighboring nodes ( 

∑
j∈N

(
i) wij).

The second relational classifier used in this study is the class-distribution Relational
Neighbor (cdRN) classifier (Macskassy and Provost 2007). Unlike the previous classifier, it
takes into account the class distribution linkages of the whole training set, and not only the
neighborhood of the focal node, through class-specific “reference vectors”. First, a class
vector CV(i) is created for each node as a sum of the links’ weights to other nodes with
each known class ( lj ) (Eq. 4). The class vectors of the training nodes are then aggregated
into reference vectors for the different classes RV(c) and represent an average of the CV(i)
for nodes known to be of class c (Eq. 5).

In this equation, ⟂c denotes the bottom nodes in the bigraph known to have label li = c.
The probability of a node i having class c can then be estimated as the normalized vector

similarity between the class vector of node i (CV(i)) and the reference vector RV (Eq. 6).

(3)P(li = c|N(i)) = 1

Z

∑
j∈N(i)

wij ⋅ P(lj = c)

(4)CV(i)c =
∑

j∈N(i),lj=c

wij

(5)RV(c) =
1

| ⟂c |
∑
i∈⟂c

CV(i)

50	 Machine Learning (2021) 110:37–87

1 3

The vector similarity function we use is cosine similarity, but other functions such as L1 or
L2 similarity, scaled to the range of [0,1], can also be applied.

A more complex relational classifier is the network-only Link-Based classifier (nLB) (Mac-
skassy and Provost 2007; Lu and Getoor 2003). This classifier builds a class vector CV(i)
for every training node i in the network, that contains scores for each label class c. Since
we only consider binary bigraphs, the class vector for a training node is a vector with two
elements, that are the scores for both classes c0 and c1 . The class-specific scores are cal-
culated in the same way as for the wvRN classifier, also known as the count model in the
study of Lu and Getoor (2003) (Eq. 7). In the next step, the nLB classifier builds a logistic
regression model based on these class vectors (Eq. 8).

3.5 � Decomposition of metrics

In this study, we consider a wide range of functions for creating the weights of the projec-
tion. To the best of our knowledge, we apply all the methods that were previously used in
the literature for defining the link weights in bigraph projections and that can be decom-
posed within our framework. In Table 3, we present a summary of the measures used in
prior literature, divided in the three stages: top nodes weighting function, aggregation func-
tion and relational classifier. The formula for decomposition is given in Eq. 10, where g
represents the aggregation function and f the top node weighting function. As an example,
the Adamic–Adar coefficient (Adamic and Adar 2003) (see Eq. 9), can be decomposed
into the Adamic–Adar top node weighting function (Table 1) and the sum of shared nodes
aggregation function (Table 2).

This decomposability creates opportunities for combining the existing weighting func-
tions in new ways, resulting in completely new measures. Note that some of the combi-
nations from prior literature do not include a relational classifier, since these studies use
the unigraph projection for other tasks rather than classification, like link prediction (Allali
et al. 2011; Gupte and Eliassi-Rad 2012), measuring descriptive statistics (Guillaume and
Latapy 2006; Newman 2010a, 2001b), etc. Moreover, some studies consider the unweighed
unigraph projections (Guillaume and Latapy 2006; Newman 2010a). Since this is inde-
pendent of the top nodes weight, we can apply any top-node function in the first step of the
framework.

(6)P(li = c|N(i)) = sim(CV(i),RV(c))

(7)CV(i)c =

∑
j∈N(i) wij ⋅ P(lj = c)

∑
j∈N(i) wij

(8)P(li = c|N(i)) = 1

1 + e−�0−�CV(i)

(9)wij =

∑
k∈N(i)∩N(j)

1

log10(dk)

(10)wij =g(sk1, sk2, ..., skn) = g(f (dk1), f (dk2), ..., f (dkn))

51Machine Learning (2021) 110:37–87	

1 3

Ta
bl

e 
3  

O
ve

rv
ie

w
 o

f m
ea

su
re

s f
or

 d
efi

ni
ng

 li
nk

s’
 w

ei
gh

ts
 in

 b
ig

ra
ph

 p
ro

je
ct

io
ns

 u
se

d
in

 p
re

vi
ou

s l
ite

ra
tu

re

To
p

no
de

 w
ei

gh
t

A
gg

re
ga

tio
n

fu
nc

tio
n

Re
l.

cl
as

si
fie

r
Re

fe
re

nc
es

A
ny

Ze
ro

-o
ne

–
G

ui
lla

um
e

an
d

La
ta

py
 (2

00
6)

, N
ew

m
an

 (2
01

0a
)

Si
m

pl
e

w
ei

gh
t

Su
m

 o
f s

ha
re

d
no

de
s

–
A

lla
li

et
 a

l.
(2

01
1)

, G
up

te
 a

nd
 E

lia
ss

i-R
ad

 (2
01

2)
In

ve
rs

e
de

gr
ee

Su
m

 o
f s

ha
re

d
no

de
s

–
G

up
te

 a
nd

 E
lia

ss
i-R

ad
 (2

01
2)

, N
ew

m
an

 (2
00

1b
)

A
da

m
ic

 a
nd

 A
da

r
Su

m
 o

f s
ha

re
d

no
de

s
–

A
da

m
ic

 a
nd

 A
da

r (
20

03
),

G
up

te
 a

nd
 E

lia
ss

i-R
ad

 (2
01

2)
D

el
ta

Su
m

 o
f s

ha
re

d
no

de
s

–
A

lla
li

et
 a

l.
(2

01
1)

, G
up

te
 a

nd
 E

lia
ss

i-R
ad

 (2
01

2)
Si

m
pl

e
w

ei
gh

t
Ja

cc
ar

d
si

m
ila

rit
y

–
A

lla
li

et
 a

l.
(2

01
1)

, G
up

te
 a

nd
 E

lia
ss

i-R
ad

 (2
01

2)
In

ve
rs

e
de

gr
ee

M
ax

 o
f s

ha
re

d
no

de
s

–
G

up
te

 a
nd

 E
lia

ss
i-R

ad
 (2

01
2)

Si
m

pl
e

w
ei

gh
t

Su
m

 o
f s

ha
re

d
no

de
s

w
vR

N
M

ac
sk

as
sy

 a
nd

 P
ro

vo
st

(2
00

7)
, P

ro
vo

st
et

 a
l.

(2
01

2,
 (2

01
5)

In
ve

rs
e

fr
eq

ue
nc

y
Su

m
 o

f s
ha

re
d

no
de

s
w

vR
N

Pr
ov

os
t e

t a
l.

(2
01

2,
 (2

01
5)

In
ve

rs
e

fr
eq

ue
nc

y,
 li

ke
lih

oo
d

ra
tio

Su
m

 o
f s

ha
re

d
no

de
s

w
vR

N
M

ar
te

ns
 a

nd
 P

ro
vo

st
(2

01
1)

, M
ar

te
ns

 e
t a

l.
(2

01
3)

B
et

a
di

str
ib

ut
io

n,
 li

ke
lih

oo
d

ra
tio

Su
m

 o
f s

ha
re

d
no

de
s

w
vR

N
M

ar
te

ns
 e

t a
l.

(2
01

3)
Si

m
pl

e
w

ei
gh

t
Ja

cc
ar

d
si

m
ila

rit
y

w
vR

N
Pr

ov
os

t e
t a

l.
(2

01
2,

 (2
01

5)
In

ve
rs

e
fr

eq
ue

nc
y

Ja
cc

ar
d

si
m

ila
rit

y
w

vR
N

Pr
ov

os
t e

t a
l.

(2
01

2,
 (2

01
5)

Si
m

pl
e

w
ei

gh
t

C
os

in
e

si
m

ila
rit

y
w

vR
N

Pr
ov

os
t e

t a
l.

(2
01

2,
 (2

01
5)

In
ve

rs
e

fr
eq

ue
nc

y
C

os
in

e
si

m
ila

rit
y

w
vR

N
Pr

ov
os

t e
t a

l.
(2

01
2,

 (2
01

5)
Si

m
pl

e
w

ei
gh

t
Su

m
 o

f s
ha

re
d

no
de

s
cd

R
N

M
ac

sk
as

sy
 a

nd
 P

ro
vo

st
(2

00
7)

Si
m

pl
e

w
ei

gh
t

Su
m

 o
f s

ha
re

d
no

de
s

nL
B

M
ac

sk
as

sy
 a

nd
 P

ro
vo

st
(2

00
7)

52	 Machine Learning (2021) 110:37–87

1 3

3.6 � Scalability

Above we discussed how bigraphs are a natural and efficient representation for sparse
feature data, and indeed the sparse representation commonly used by machine learning
methods is in fact a (possibly weighted) bigraph adjacency list. The projection itself
can reduce the data size, but only sometimes (e.g., when the connections are sparse
and the number of top nodes is much larger than the number of bottom nodes). This
notwithstanding, the scalability of the algorithms nonetheless deserves special attention
since bigraph data and their corresponding unigraph projections often are very large;
methods are needed that can deal with massive data. In this section we propose several
techniques that enable the algorithms to scale up to very large datasets and/or improve
their run-time performance.

3.6.1 � Batch processing

Large datasets that can not be processed in memory can be divided into smaller, process-
able subsets called batches. In this paper, batch processing means that the label scores
will be produced by processing the batches one at a time, either sequentially or in parallel,
instead of processing the whole dataset at once (Provost and Kolluri 1999). For instance,
in the case of the network-only Link-Based (nLB) classifier (see Eq. 7), we create a partial
projection for each batch from the training dataset and then use it to calculate a part of the
class vector. Subsequently, we assemble all the partial vectors into a whole class vector
that is used by the logistic regression (see Fig. 3). In the same manner, we create partial
label scores from each batch of the test set and then we aggregate all the scores into a final
solution. The sizes of the batches in this study were determined experimentally, by test-
ing different sizes for each dataset. We need to be careful when choosing the size of the
batch; on one hand if the size is too large it will not be possible to process the dataset in
main memory. Instead, the CPU will thrash, wasting substantial time swapping memory
blocks between RAM and disc, which will degrade runtime performance substantially. On
the other hand, choosing a size of the batch that is too small will add time to the process,
since each fragment introduces additional calculation overhead. Therefore, the size should
be a balance between the two. Batch processing would also allow for easy scaling up using
parallel and distributed computing systems (Provost and Kolluri 1999).

Fig. 3   Overview of the batch process for the nLB classifier. With random sampling a subset of the bigraph
is selected. The projection is created for each batch, to calculate a part of the class vector. Subsequently, we
assemble all the partial vectors into a whole class vector that is used by the logistic regression

53Machine Learning (2021) 110:37–87	

1 3

3.6.2 � Sampling

Another technique that enables the network-only Link-Based (nLB) classifier to scale to
larger datasets and improve the run-time performance is sampling. Since the number of
features used by nLB is usually very small, instead of building class vectors for all the
training nodes, we can use only a subset of the training nodes to train the classifier. In our
experiments, we observed that a sample of around 100 training instances was usually suf-
ficient for training the classifier. Therefore, in the experimental set-up we run nLB with and
without sampling and compare the results.

3.6.3 � Grid search

Fine tuning the parameters of the top nodes beta function (Eq. 1) can require many itera-
tions. In order to reduce the number of iterations, a grid search with multiple levels2 can be
employed. The idea is that every level of the search performs a more fine-grained lookup
around the best selected parameters’ values from the previous level. If, for instance, our
search on level i with step s determined that x is the best value for a parameter, then the
following level i + 1 will look for a better value in the range [ x − s , x + s ]. The size of the
step, i.e. the coarseness of the search, decreases in each new level.3 This yields significant
runtime improvements in comparison to extensive search of the space, while giving the
same solution granularity. As we discuss further in Sect. 5.2, one can also perform a grid
search with fewer levels that results in limited performance degradation, or incorporate
knowledge about the most suitable beta shapes in the search procedure.

3.6.4 � SW transformation

Finally, we introduce a fast method, called SW-transformation, to calculate the label scores
for the case where wvRN (Eq. 3) is combined with an aggregation function that sums the
weights of the top nodes. Hence the name SW-transformation, which is an acronym of the
two methods involved: the sum of shared nodes and the wvRN.

To calculate the projection using the sum of shared nodes we find for each bottom node
( n

⟂
 ) all the top nodes it is connected to (on average k

⟂
 ) and then look at all the nodes con-

nected by the top node (on average k⊤ ). This results in a time complexity of O(n
⟂
⋅ k

⟂
⋅ k⊤ )

= O(m ⋅ k⊤ ), with m the number of edges. For sparsely connected graphs, or any graph
where a node has no more than some constant maximum number of connections (i.e. k

⟂

and k⊤ are bounded by a constant), this scales linearly with the number of bottom nodes
(O(n

⟂
)). In the case of fully connected graphs ( k

⟂
= n⊤ and k⊤ = n

⟂
 ) however, the com-

plexity is O(n2
⟂
⋅ n⊤ ). Consequently, the wvRN is applied to this projection, which calcu-

lates the node’s score as a weighted average of the neighbors’ scores. The time complexity
of the wvRN classifier scales linearly with the number of edges in the projection (O(n

⟂
⋅ kp )

= O(mp )) and is no larger than the time complexity of the projection. Again, when the aver-
age degree in the projection ( kp ) is bounded by a constant this becomes O(n

⟂
 ) and when

the graph is fully connected it is O(n2
⟂
).

2  In our case the beta function is tuned in three levels.
3  The grid we use searches for the optimal � and � in the range between 0.1 and 12.1 with steps of 3 in the
first level. We decrease the step size in each successive level by 3 times.

54	 Machine Learning (2021) 110:37–87

1 3

This specific combination can be rewritten as a fast linear model over the top nodes. We
rewrite the wvRN formula as follows:

In this formula we first substitute the projection weights wij with the corresponding aggre-
gation function (Eq. 11). Since wvRN takes into account only the labels of the neighbor-
ing nodes, in Eq. 12 we consider only the bottom nodes j that have an element aij = 1 in

(11)Z ⋅ P(li = c|N(i)) = ∑
j∈N(i)

wij ⋅ P(lj = c)

(12)=

∑
j|aij≠0

wij ⋅ yj

(13)=

∑
j|aij≠0

((∑
k|xik≠0

sk

)
⋅ yj +

(∑
k|xik=0

sk

)
⋅ yj

)

(14)=

∑
j|aij≠0

((∑
k|xik≠0

sk

)
⋅ yj + 0

)

(15)
=

∑
j|aij ≠ 0

yj = 0

(∑
k|xik≠0

sk

)
⋅ yj +

∑
j|aij ≠ 0

yj = 1

(∑
k|xik≠0

sk

)
⋅ yj

(16)
= 0 +

∑
j|aij ≠ 0

yj = 1

(∑
k|xik≠0

sk

)
⋅ 1

(17)=

�
k�xik≠0

⎛
⎜⎜⎜⎜⎜⎝

sk

�
j�aij ≠ 0

yj = 1

1

⎞⎟⎟⎟⎟⎟⎠

(18)=

�
k�xik≠0

⎛
⎜⎜⎜⎜⎜⎝

sk

�
j�xik ≠ 0, xjk ≠ 0

yj = 1

1

⎞⎟⎟⎟⎟⎟⎠

(19)=

∑
k|xik≠0

sk ⋅ nsk

55Machine Learning (2021) 110:37–87	

1 3

the unigraph adjacency matrix (see Fig. 4, right). The link weight wij in the projection is
calculated by summing the weights of the top nodes that are shared by both nodes i and j.
This means that the non-neighboring top nodes of node i (that have elements xik = 0 in the
bigraph adjacency matrix from Fig. 4, left) can be discarded in Eq. 14. When predicting
an attribute of a node, the wvRN takes into account only the neighboring nodes that have
the label class of interest ( yij = 1 ). In our study, since we consider a binary target variable,
this leads to eliminating the neighboring nodes with label yij = 0 in Eq. 16.4 Note that the
neighboring nodes with label yij = 0 are still counted when calculating the normalization
factor Z in Eq. 11. The result is the SW-transformation (Eq. 19), a linear model that com-
putes the label scores directly on the bigraph and avoids the costly step of calculating the
projection unigraph. In terms of implementation, the transformation corresponds to a linear
model where the “coefficients” of each feature can easily be calculated by multiplying the
score sk of a feature/top node and the number of datapoints nsk that have a positive value
for that feature and a non-zero value for the target variable. Doing so for each of the n⊤
top nodes, we only need to consider the (on average k⊤ ) non-zero elements and the time
complexity becomes O(n⊤ ⋅ k⊤ ) = O(m). For bounded graphs this becomes O(n⊤ ), for fully
connected graphs it is O(n⊤ ⋅ n

⟂
 ). When working with sparse graphs (which is the focus of

our study) both approaches scale linearly (either with the number of bottom nodes or the
number of top nodes) but the SW transformation always runs faster than the combination
of the projection and wvRN classifier (as we also show empirically, see Fig. 8).

In a similar manner, the normalization factor Z can be transformed into
Z =

∑
k�xik≠0 sk ⋅ Zsk , where Zsk = |xjk = 1| . Finally, we can write:

In this manner, we directly calculate the influence of the top node, in the form of the coeffi-
cient of the corresponding linear model5. The SW-transformation yields substantially faster
run times (compared to calculating the whole projection) and allows easy scaling of the
method to big data sets of millions of nodes, as we discuss further in Sect. 5. Large, sparse

(20)P(li = c�N(i)) =
∑

k�xik≠0 sk ⋅ nsk∑
k�xik≠0 sk ⋅ Zsk

(a) (b)

Fig. 4   Adjacency matrices of the bigraph and the projected unigraph

4  The transformation can also be applied to cases where the node labels are score probabilities.
5  A Python implementation of the SW-transformation is available online on https​://githu​b.com/SPrae​t/SW-
trans​forma​tion.

https://github.com/SPraet/SW-transformation
https://github.com/SPraet/SW-transformation

56	 Machine Learning (2021) 110:37–87

1 3

data sets with a bipartite structure have become common, largely due to the recording of
behaviors of individuals (or things); these data sets often are very sparse (Junqué de For-
tuny et al. 2013), with nodes being connected to only a few other nodes. If this sparsity
extends to the projection, the SW-transformation may be quite advantageous.

4 � Data and experimental setup

For this study, we collected bipartite datasets from various sources: the Koblenz Network
Collection (KONECT),6 the MIT Reality Mining Project,7 the social networks collection of
The Max Plank Institute for Software Systems,8 and more. We selected all datasets where
a bipartite structure is clearly present and a target variable is available to predict. Note
that in some cases we discard a dataset because the class variable is related to the links in
the bigraph. For instance, predicting the number of books that the users have read from
a bigraph of users rating books is clearly not suitable. The datasets are summarized in
Table 4 and to our knowledge comprise the first large collection of benchmark datasets for
node classification over bigraphs.

The MovieLens dataset contains information about movie ratings from users of the
MovieLens website, collected from September 1997 through April 1998.9 The bigraph is
defined between users and movies, where links are present if a user rated a movie. We
focus on the task of predicting the genre of the movie, as well as the gender and the age
of the user. In the first case, the movies are considered as bottom nodes and the users as
top nodes, for the latter it is vice versa. For multiclass problems (as genre), we use a one-
versus-all formulation and as such define as many additional datasets as there are classes
(19 in this case).10 The Yahoo Movies dataset11 has a similar setting, where we again are
predicting the gender and the age of users who rated movies. Likewise, Book-Crossing
contains book ratings from the web site Bookcrossing.com (Ziegler et al. 2005) and our
aim is to predict the age of the readers. The dataset collected by Seierstad and Opsahl
(2011) is used for defining a bigraph between Norwegian companies and their board mem-
bers, and the target variable is the gender of the board members. Furthermore, we use the
information about mobile phone usage collected by the MIT Human Dynamics Lab (Real-
ity Mining project) (Eagle and Pentland 2006) to define a bigraph of users connected to
the locations (cell towers) they visited. The target variable is the affiliation of the user,
being student, laboratory staff, professor, etc. Another bigraph is defined from the Libim-
SeTi (Brozovsky and Petricek 2007) dataset, that contains data about profile ratings from
users of the Czech social network LibimSeTi.cz. The prediction task in this case is the gen-
der of the users. Ta-Feng is a dataset of supermarket transactions, where we predict the age
of the customers, based on the products they bought (Huang et al. 2005). A dataset from
the Max Plank Institute for Software Systems contains data about users and several million

9  http://www.group​lens.org.
10  For this paper, we only consider binary classification, where multiclass problems are cast to several one-
versus-all binary classification problems. Other approaches to multiclass problems can easily be incorpo-
rated within our proposed framework. For more details, see Sect. 6.
11  http://websc​ope.sandb​ox.yahoo​.com/.

6  http://konec​t.uni-koble​nz.de.
7  http://reali​tycom​mons.media​.mit.edu.
8  http://socia​lnetw​orks.mpi-sws.org.

http://www.grouplens.org
http://webscope.sandbox.yahoo.com/
http://konect.uni-koblenz.de
http://realitycommons.media.mit.edu
http://socialnetworks.mpi-sws.org

57Machine Learning (2021) 110:37–87	

1 3

Flickr pictures, creating a bigraph of pictures and the users that mark them as favorites.
The target class variable is the number of comments on the pictures. The largest datasets
used in this study are from the KDD Cup 2010, where the participants were asked to pre-
dict student performance on tests. The winner of the Cup, the National Taiwan University,
expanded the original dataset by converting the categorical features into sets of binary fea-
tures (Yu et al. 2010) and this version of the data can be downloaded from the LibSVM
website.12 In addition to the previously described datasets, we also created new bigraphs
for the rating data, where a connection exists between the nodes only if the rating was posi-
tive (defined as higher than the average rating). We annotate these bigraphs as “above aver-
age” in Fig. 5 and Table 4.

Figure 5 gives an overview of the number of nodes present in the bigraphs under study.
As shown in the plot, the sizes of the bigraphs differ, with some datasets having fewer
than 100 bottom nodes (Reality Mining, number of people involved) and a few hundred
top nodes (Norwegian companies, number of companies involved) and others with up to a
few million top and bottom nodes (KDDa and KDDb datasets). In the “Appendix” (Figs. 9,
10, 11 and 12), we also examine the distributions of the probability P(k) that a node has a
degree k (also known as degree distributions) for the bottom and top nodes of each dataset.
As one can observe, most of the datasets show a heavy-tailed degree distribution, resem-
bling the typical power-law with different exponents. In such distributions, many nodes in
the bigraph are connected only to few nodes from the opposite set, but a non-negligible
number of nodes are connected to many other nodes. The top nodes of the LibMiSeTi data-
set do not follow the power law shape: most of the profiles in the social network get an
average number of rankings from the other users, similarly for the Yahoo Movies dataset.
The bottom nodes of the KDDa dataset are an exception as well, which might be due to the
fact that it is an artificially created dataset.

Fig. 5   Size of the datasets under study

12  https​://www.csie.ntu.edu.tw/~cjlin​/libsv​mtool​s/datas​ets/.

https://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/

58	 Machine Learning (2021) 110:37–87

1 3

Ta
bl

e 
4  

D
es

cr
ip

tiv
e

st
at

ist
ic

s
of

 th
e

bi
pa

rti
te

 d
at

as
et

s:
 c

la
ss

 d
ist

rib
ut

io
n

(  l 0
 , l

1
 ),

nu
m

be
r o

f t
op

 (  n
⊤
 )

an
d

bo
tto

m
 (  n

⟂
 )

no
de

s,
nu

m
be

r o
f e

dg
es

 (m
),

av
er

ag
e

de
gr

ee
 fo

r t
op

 (  k
⊤
 )

an
d

bo
tto

m
 (  k

⟂
 ) n

od
es

, a
ve

ra
ge

 c
om

bi
ne

d
de

gr
ee

 (k
) a

nd
 d

en
si

ty
 ( �

(G
)  ).

 T
he

 b
as

ic
 b

ip
ar

tit
e

st
at

ist
ic

s u
se

d
in

 th
is

 ta
bl

e
ar

e
de

fin
ed

 in
 S

ec
t.

3

D
at

as
et

Ta
rg

et
 la

be
l

l 0
l 1

n
⊤

n
⟂

m
k
⊤

k
⟂

k
�

M
ov

ie
Le

ns
10

0k
G

en
de

r
27

3
67

0
16

82
94

3
10

0,
00

0
59

.4
5

10
6.

04
76

.1
9

0.
06

3
M

ov
ie

Le
ns

10
0k

A
ge

44
8

49
5

16
82

94
3

10
0,

00
0

59
.4

5
10

6.
04

76
.1

9
0.

06
3

M
ov

ie
Le

ns
10

0k
G

en
re

–
–

94
3

16
82

10
0,

00
0

10
6.

04
59

.4
5

76
.1

9
0.

06
3

M
ov

ie
Le

ns
10

0k
 (a

bo
ve

 av
er

ag
e)

G
en

de
r

27
3

67
0

15
74

94
3

82
,5

20
52

.4
3

87
.5

1
65

.5
7

0.
05

56
M

ov
ie

Le
ns

10
0k

 (a
bo

ve
 av

er
ag

e)
A

ge
44

8
49

5
15

74
94

3
82

,5
20

52
.4

3
87

.5
1

65
.5

7
0.

05
56

Ya
ho

o
M

ov
ie

s
G

en
de

r
22

06
54

36
11

,9
15

76
42

22
1,

33
0

18
.5

7
28

.9
6

22
.6

3
0.

00
24

Ya
ho

o
M

ov
ie

s (
ab

ov
e

av
er

ag
e)

G
en

de
r

22
06

54
31

10
,5

47
76

37
18

1,
47

0
17

.2
0

23
.7

6
19

.9
6

0.
00

23
Ya

ho
o

m
ov

ie
s

A
ge

27
50

48
55

11
,9

11
76

05
22

0,
59

5
18

.5
2

29
.0

1
22

.6
1

0.
00

24
Ya

ho
o

m
ov

ie
s (

ab
ov

e
av

er
ag

e)
A

ge
27

48
48

52
10

,5
44

76
00

18
0,

88
0

17
.1

5
23

.8
0

19
.9

3
0.

00
23

Ta
Fe

ng
A

ge
17

,3
30

14
,3

10
23

,7
19

31
,6

40
72

3,
44

9
30

.5
22

.8
6

26
.1

4
9.

64
00

e–
04

Ta
Fe

ng
 (a

bo
ve

 av
g)

A
ge

50
51

11
,2

99
18

,1
26

16
,3

50
23

4,
35

5
12

.9
3

14
.3

3
13

.5
9

7.
90

78
e–

04
N

or
w

eg
ia

n
co

m
pa

ni
es

G
en

de
r

51
3

90
8

35
5

14
21

17
46

4.
92

1.
23

1.
97

0.
00

35
Re

al
ity

 m
in

in
g

A
ffi

lia
tio

n
–

–
12

,0
43

95
76

,6
74

6.
37

80
7.

09
12

.6
3

0.
06

7
B

oo
k-

cr
os

si
ng

A
ge

38
,1

68
23

,6
62

28
4,

17
5

61
,8

30
83

5,
49

5
2.

94
13

.5
1

4.
83

4.
75

51
e–

05
B

oo
k-

cr
os

si
ng

 (a
bo

ve
 av

er
ag

e)
A

ge
25

,7
29

16
,4

21
12

7,
70

9
42

,1
50

25
9,

33
3

2.
03

6.
15

3.
05

4.
81

77
e–

05
Li

bi
m

Se
Ti

G
en

de
r

43
,5

10
57

,6
06

13
5,

35
9

10
1,

11
6

13
,5

94
,7

17
10

0.
43

13
4.

45
11

4.
98

9.
93

2e
–0

04
Li

bi
m

Se
Ti

 (a
bo

ve
 av

er
ag

e)
G

en
de

r
40

,8
78

54
,4

59
13

5,
34

6
95

,3
37

8,
16

9,
66

2
60

.3
6

85
.6

9
70

.8
3

6.
33

14
e–

04
Fl

ic
kr

C
om

m
en

ts
8,

17
7,

00
7

3,
03

0,
44

9
49

7,
47

2
11

,1
95

,1
44

34
,6

45
,4

69
69

.6
4

3.
09

5.
92

6
6.

22
08

e–
06

K
D

D
a

Ta
sk

 p
er

fo
rm

an
ce

1,
23

5,
86

7
7,

17
1,

88
5

19
,3

06
,0

83
8,

40
7,

75
2

30
5,

61
3,

51
0

15
.8

2
36

.3
4

22
.0

5
1.

88
28

e–
06

K
D

D
b

Ta
sk

 p
er

fo
rm

an
ce

2,
68

4,
43

7
16

,5
79

,6
60

29
,8

90
,0

95
19

,2
64

,0
97

56
6,

34
5,

88
8

18
.9

4
29

.3
9

23
.0

4
9.

83
57

e–
07

59Machine Learning (2021) 110:37–87	

1 3

5 � Results and discussion

In this section, we present the results of the benchmark study examining predictive per-
formance and run-time performance. We report results for each combination of top node
weighting scheme, aggregation function to define the weight in the projected graph, and
relational classifier. This leads to a total of 8 × 5 × 4 combinations, that are assessed on
the 58 datasets (including the casted multiclass datasets). As a benchmark technique, we
employ an SVM with a linear kernel and L2 regularization on the bigraph adjacency matri-
ces using the libLINEAR toolbox (Fan et al. 2008). As mentioned in Sect. 2, linear SVM is
a commonly-used and well-performing method for sparse classification problems and was
therefore chosen to benchmark our proposed technique against. Based on the results of our
benchmark we formulate some general recommendations for node prediction in bipartite
graphs.

5.1 � Predictive performance

Table 7 in the “Appendix” presents the predictive performance results for every combi-
nation of techniques, based on the area under the ROC curve (AUC) (Fawcett 2006). To
report AUC values, we run a 10-fold cross-validation procedure. We divide the dataset
into 10 subsamples of equal size. In each run we use 8 subsamples for training data,
1 for a validation set (for hyperparameter tuning) and 1 for a test set. After 10 runs,
each of the 10 data subsamples is used exactly once for testing and once for validation
in the process. The reported AUCs represent an average over the 10 folds. For every
dataset, we rank the performance of the techniques into a partial ranking and then com-
bine them together into a final ranking using Kemeny–Young optimisation (Conitzer
et al. 2006; Young and Levenglick 1978). The goal of the Kemeny–Young method is
to find an ordering of the techniques that minimizes the number of pairwise disagree-
ments between the final ranking of the techniques and the partial rankings calculated on
the individual datasets. Note that when calculating the final ordering, we also consider
the datasets where not all combination schemes were able to scale. More specifically,
the aggregation functions Jaccard, Cosine similarity and Maximum do not scale well to

Table 5   Kemeny–Young ranking per method on all datasets

We emphasize the combinations that are not significantly worse than the best method (underlined) at a 5%
significance level in bold and the combinations that are significantly worse at 5% but not at 1% significance
level in italics. The other methods that are significantly worse at 1% significance level are shown in regular
font

Kemeny Ranking Top node func. Aggregation func. Relational classifier

1 tanh Cosine function wvRN
2 Inverse degree Sum of shared nodes nlb
3 Inverse frequency Jaccard cdRN
4 Beta distribution Max nlb 100
5 w = 1 Zero–one
6 Adamic and Adar
7 Delta
8 Likelihood ratio

60	 Machine Learning (2021) 110:37–87

1 3

datasets with high dimensions such as the Flickr dataset or larger. Also, a combination
of these aggregation functions and the beta function, which employs multiple iterations
to tune the parameters, takes very long time to fit for datasets over 100,000 nodes. In
such cases, when a dataset does not provide a ranking for one or for both methods that
are being compared, then that dataset does not contribute to the total disparity regard-
ing these two techniques. For statistical comparison of the methods, we use a Wilcoxon
signed rank test (Demšar 2006) to assess the significant differences between the best
performing method and the other classifiers.

From Table 5, we can observe that the highest ranked combination that performs
very well over all the datasets is the tangens hyperbolicum function, combined with the
cosine aggregation function and the wvRN. Furthermore, there are also a few alterna-
tives that provide comparable results to this top ranked combination. If we take a closer
look at the results per dataset (Table 9 in “Appendix”), we can see that generally com-
binations that include the cosine or sum of shared nodes aggregation functions together
with the tangens hyperbolicum, inverse degree and occasionally the beta function pro-
vide very good results when combined with any of the relational classifiers. The SVM
benchmark against which we compare the network projection methods, has only average
performance. It is ranked on the 98th place out of 161 possible techniques and it is sig-
nificantly worse than the best method at 1% significance level. Additionally the SVM
would not run on the big KDDa and KDDb datasets. Although faster implementations
of SVM exist, e.g. using stochastic gradient descent, these would come at the expense of
predictive performance (de Cnudde et al. 2017).

In the following sections we discuss the predictive performance for our three stages
separately.

5.1.1 � Predictive performance of the top node weight functions

The rankings of the top-node functions are summarized in Table 5, with the tangens
hyperbolicum and the inverse degree (both similar in shape, see Fig. 2) providing the
best performance across all domains. We should, however, be careful when interpret-
ing these results and not simply discard top node methods that provide poorer results
over all domains. Although specific combinations that include the top-node function
can have very strong performances (see Table 7), the overall rankings still get diluted
by the weaker combinations (for instance, the ones containing the zero-one aggrega-
tion function). If we take a closer look at Table 9 in “Appendix”, where we list the
best combinations of techniques per dataset, one can easily notice that in most cases the
best performing combination contains the beta distribution as an appropriate choice. By
analysing the optimal � and � coefficients for the different datasets (listed in Table 8),
we conclude that the typical shapes of the function correspond strongly to the intuition
that top nodes with smaller degree are more discriminative and therefore should have
higher weights. The only exception is the Flickr dataset, where the parameters define the
opposite curve of the beta function. Having in mind the prediction task for this dataset,
it makes sense that a popular picture that has more users who marked it as favorite,

61Machine Learning (2021) 110:37–87	

1 3

would receive more comments than a picture with fewer markings. Based on the results
from Table 9, we also conclude that the supervised weighting function, likelihood ratio,
exhibits very good performance for skewed datasets with a small number of positive
labels.13 What is specific about this function is that it weights only the top nodes that
are connected to at least one bottom node with a positive label. This results in projec-
tions where the links to some of the neighboring nodes with negative labels are down-
weighted, since the top nodes connecting only negative bottom nodes do not contribute
to the projection weights.

5.1.2 � Predictive performance of the aggregation functions

Table 5 also presents an overview of the results per aggregation function, with the cosine
function and the sum of shared nodes as the most suitable methods. Although both func-
tions provide very good performance, the latter is favorable since it can be combined with
the wvRN to scale easily to very large datasets (SW-transformation). All the functions per-
form much better than the zero-one function, which corresponds to an unweighted version
of the projection. This indeed supports strongly the idea that adding weights to the projec-
tion reflects better the structure of the underlying bigraph and therefore results in better
predictions. The Jaccard aggregation function does not perform well, as it penalizes the
score if one of the nodes has many links. As an example, let us consider again the bigraph
of people visiting locations, with person A visiting 5 different locations; person B visiting
these 5 locations and 10 more; and person C visiting the same 5 locations and 100 more.
In this case, the Jaccard would penalize the AC link with a much lower score than the AB
link, because of the metric’s denominator which takes into account all the locations visited
by at least one of the persons. This does not make sense for this setting: if we have a total
of (for example) a million locations, the odds for visiting the same 5 locations by chance
are very small. The max function also shows poor performance, which supports the idea
that it is valuable to retain information for more than just one top node.

5.1.3 � Predictive performance of the relational classifiers

In Table 5, we can also see the aggregated results over the relational classifiers, where the
best classifier wvRN slightly outperforms the nLB. These two classifiers provide similar
results in cases with relational autocorrelation (Jensen and Neville 2002) over the target
values in the projection. An example of positive relational autocorrelation would be: if I
like the same movies as you, we likely are of the same gender. Yet, the opposite can be true
as well. For example, in the case of the Norwegian companies dataset, a man is more likely
to be in a board with a female and vice versa. Because of the negative relational autocor-
relation, the wvRN here yields an average AUC (over all combination schemes) of only
0.2728. This substantially hurts the wvRN average scores. However, as AUCs systemati-
cally below 0.5 can be “flipped” to sometimes strong AUCs, this result requires some extra
explanation.

Norway is one of the leading countries that enforces equal gender representation
in companies’ boards (Seierstad and Opsahl 2011), which results in the companies (top

13  All the datasets for which this function performed best have only between 3.19 and 7.25% positive
labels.

62	 Machine Learning (2021) 110:37–87

1 3

nodes) being connected to almost the same number of male and female directors (bottom
nodes). In Fig. 6, we use entropy as a measure for class imbalance (Rrnyi 1961), to calcu-
late the heterogeneity of the target variable among the nodes’ neighbors in the projection.
Very high values of entropy signify that there is nearly an equal number of neighbors from
each class, whereas low values suggest that almost all the adjacent nodes have the same
class. The results are averaged over the nodes that have the same number of neighbors.
As expected, the dataset of Norwegian companies exhibits high entropy values for all the
board members (see Fig. 6, left). In comparison, a typical dataset where wvRN performs
better has much lower entropy (see Fig. 6, right).14 In such cases where the class distribu-
tion of a node’s neighbors is approximately 0.5, cross-validation can cause pathologies in
machine-learning evaluations (Perlich and Świrszcz 2011). Consider the following.

Most of the directors (83.6%) are members of the board of only one company and most
companies (71%) have only up to 5 board members. This creates many small disconnected

Fig. 6   Average entropy per number of neighbors in the projection. The Norwegian Companies dataset (left)
has high average entropy, whereas the MovieLens dataset with target variable Horror genre (right) has
lower entropy. The wvRN classifier performs better on datasets with lower entropy

(a) (b) (c) (d)

Fig. 7   Bigraph structures of companies (top nodes) and board members (bottom nodes). The node letter
presents the actual gender of the board member and below is the predicted gender by the wvRN

14  Note that in addition to the entropy, the weights of the links also have impact on the prediction perfor-
mance of wvRN.

63Machine Learning (2021) 110:37–87	

1 3

components in the bigraph, like the ones depicted in Fig. 7. When the wvRN relational
classifier is applied with cross-validation, it is likely that the focal node’s target class will
be underrepresented in the remaining neighbor nodes. For example, consider a leave-one-
out evaluation. In case (a), a member will be connected to only one member of opposite
sex in the projection, hence wvRN will predict the wrong class. In the other cases depicted
in Fig. 7, wvRN will predict the majority opposite class or give a score of 0.5 when the
remaining classes are balanced (denoted with a question mark). Since it is difficult to know
exactly how justifiably to tinker with these results, we will simply leave them as they are.
This may possibly penalize wvRN in these cases and artificially bolster the performance
of the learning-based methods, or it may be exactly what we would like to happen in these
cases. The learning-based classifiers are able to pick up on this: the nLB classifier pro-
vides a negative coefficient to the female class distribution for males (and again vice versa),
which leads to an AUC of 0.7029 and the cdRN creates reference vectors that take into
account how the training nodes are connected to the opposite class, yielding an average
AUC of 0.6997. Based on the analysis, we see that wvRN is an appropriate choice for
problems that exhibit network assortativity; however, the nLB and cdRN are more pow-
erful and can capture more complex patterns [as discussed in the original paper of Mac-
skassy and Provost (2007)]. The nLB classifier trained with only 100 instances, nLB100,
is a much faster variant of the nLB classifier (see the run-time analysis of the methods in
Fig. 18 from “Appendix”), but with weaker predictive performance.

5.2 � Run‑time performance

In this section we examine the run-time performance of the different techniques from the
three stages.15 We start by comparing the average durations of each of the techniques over
the datasets. For this, we only consider the datasets with fewer than 100,000 nodes since
not all the methods are able to run on the larger datasets. For each of the relational classifi-
ers the maximum and the Jaccard (except for cdRN) aggregation function have the longest
durations (See Figs. 14, 15, 16 and 17 in the “Appendix”). The largest impact on run-time
performance, however, is the use of the beta function. This function takes so long to run
due to the hyperparameter tuning. This process can be done faster by reducing the grid
search to only one or two levels or tuning the � and � parameters on a smaller sample of the
training data, with limited performance decrease (see Table 8 and Fig. 13 in the “Appen-
dix”). Also, only the parameters that give the required shape (such that the nodes with
a smaller degree receive a higher weight as discussed in Sect. 5.1.1) could be taken into
account to further speed up the grid search.

The learning of the weights for the nLB classifier can also be done on a smaller sam-
ple. Therefore, we also examine the time advantage of using this approach (see Fig. 18 in
“Appendix”). In our experiments, even a sample of fewer than 100 instances was enough
to tune the parameters of the nLB logistic regression. We consider this nLB classifier
trained with only 100 instances as a third relational classifier, named nLB100 in the results.
Although it performs slightly worse than the regular nLB classifier in terms of AUC, it can
be trained much more quickly. However, when the class-label autocorrelation is uncertain

15  All experiments are conducted on a 3.40 GHz Intel i7 CPU, with 8 GB RAM and a 64-bit operating
system.

64	 Machine Learning (2021) 110:37–87

1 3

Fig. 8   Time improvement of the SW-transformation over wvRN and sum of shared nodes for different data-
sets. The square at the top of each bar represents the time needed for the wvRN classifier and circle at the
bottom of each bar the time required for SW-transformation for the specific dataset. For the largest datasets,
KDDa and KDDb, the wvRN classifier was not able to calculate a solution within the time allowed

Table 6   Top nodes with highest coefficient in the linear model of the SW-transformation in combination
with the beta function

The higher scores indicate higher probability of being (a) male when predicting gender and (b) young when
predicting age for the Yahoo movies bigraph

Rank Yahoo movies (gender) Yahoo movies (age)

1. The Matrix Reloaded (2003) Ocean’s Eleven (2001)
2. Terminator 3: Rise of the Machines (2003) The Ring (2002)
3. The Hulk (2003) Scary Movie 3 (2003)
4. X2: X-Men United (2003) American Pie 2 (2001)
5. Bad Boys II (2003) American Pie (1999)
6. The Lord of the Rings: The Two Towers (2002) Pulp Fiction (1994)
7. The Italian Job (2003) The Texas Chainsaw Massacre (2003)
8. The Matrix Revolutions (2003) Austin Powers in Goldmember (2002)
9. Bruce Almighty (2003) Terminator 2—Judgment Day (1991)
10. 28 Days Later (2003) Gladiator (2000)
11. Kill Bill Vol. 1 (2003) The Lizzie McGuire Movie (2003)
12. American Wedding (2003) Phone Booth (2003)
13. Freddy vs. Jason (2003) Uptown Girls (2003)
14. S.W.A.T. (2003) How to Deal (2003)
15. The Matrix (1999) Signs (2002)
16. The League of Extraordinary Gentlemen (2003) Daredevil (2003)
17. The Lord of the Rings: The Fellowship of the Ring(2001) X-Men (2000)
18. Terminator 2—Judgment Day (1991) The Matrix (1999)
19. Seabiscuit (2003) A Walk to Remember (2002)
20. Star Wars (1977) Anger Management (2003)

65Machine Learning (2021) 110:37–87	

1 3

and the training time is an issue, it may be better to use the cdRN classifier, which is fast
and whose performance is quite robust to different sorts of relational autocorrelation.

In terms of run-time performance, the SW-transformation outperforms all the other
aggregation functions in combination with any non-tuning top-node function. It is able to
scale to big datasets as it runs very fast. The average time needed for the regular sum of
shared nodes and wvRN over the datasets is 65.4 s and the SW-transformation needs only
0.5478 s on average. This technique will be discussed in more detail in the next section.

5.3 � SW‑transformation

The SW-transformation combines the best relational classifier wvRN and one of the best
performing aggregation functions, sum of shared nodes into a fast linear model that scales
easily to big datasets (Fig. 8). It is the only technique in the study that scales well (or at all)
to the biggest datasets KDDa with 8 million × 20 million nodes and KDDb with 19 mil-
lion × 30 million nodes. An additional important aspect of the SW-transformation is the
comprehensibility of the linear models it provides. A manual check of the top node coef-
ficients (the impact they have to the target variable) can help to verify if the model makes
sense. Comprehensibility is highly desirable, and even mandatory, in many domains where
the decisions of the classifier must be clearly explained and validated before the classi-
fier can be used (Gregor and Benbasat 1999; Martens et al. 2007; Martens and Provost
2014). In Table 6 we conduct an additional verification of the results, by examining the
top nodes’ coefficients using the combination of the beta and SW-transformation. We list
the top 20 ranked instances with the highest coefficients when predicting gender and age
for the Yahoo Movies bigraph. The rankings indeed appear intuitive and include (1) mov-
ies that are generally targeted to a male audience (Terminator, X-man, Kill Bill, etc.) and
(2) movies usually preferred by younger people, such as American Pie, Scary Movie, The
Texas Chainsaw Massacre, etc.

5.4 � General recommendations

We have provided an extensive empirical study of the predictive and run-time performance
for a number of choices in the framework over a large collection of bipartite datasets. The
results indicate that it is difficult to simply claim that a certain combination of methods per-
forms best across all domains. Instead, based on the empirical study, we would recommend
experimenting with several choices as components for the three stages, those that generally
provide good results: tangens hyperbolicum, cosine similarity, sum of shared nodes, wvRN
and nLB100. For most datasets, they are among the fastest and most accurate combina-
tions in our benchmark (Figs. 19, 20, 21, 22, 23, 24, 25 and 26 in “Appendix”), with less
than 5% AUC difference from the combination that performs best. This is not the case for
some very skewed MovieLens datasets (with only 1.25–6.5% positive labels), where we
predict genres like Fantasy, Film-Noir, War or Mystery. In such cases, as discussed above,
the supervised weighting function likelihood ratio or the tunable beta function might be
more appropriate choices. Furthermore, our recommendations have weak results for the
Reality Mining dataset, where most of the people have visited the same places (a person on
average shares all the locations he/she visited with 50% of the other people). For such data-
sets, where projections are fully (or almost fully) connected, traditional classifiers (such as
SVM) might be better alternatives.

66	 Machine Learning (2021) 110:37–87

1 3

6 � Limitations and future research

This study presents a framework for node classification within bigraphs, aimed at utilizing
the predictive power that comes from the relational structure of the bigraph. As such, it
largely simplifies the problems under study in many domains, where additional informa-
tion about the nodes and the edges might be available. The amount of information available
from both sources, i.e. the network structure and the local information, varies greatly for
each dataset, and so does the predictive power that comes from the two of them. The major
advantage of the projection approach is to simplify the classification problem, which can
render the solution much more efficient and easy to implement—and as the related work
discussion revealed, has been a natural approach for practitioners. Casting the bipartite
problem as a unipartite projection may be sufficient for certain settings; alternatively it may
allow practitioners to get a first solution in place fast, and provide researchers with a solid
baseline against which to compare new methods for classification on bigraphs (as wvRN
did for within-network classification).

On the other hand, the simplification of the problem also presents the main limitation:
as discussed at the outset, projecting the bigraph to a unimodal graph discards informa-
tion. For example, the identities of particular top nodes—which are lost in the projection—
can be useful for classification (Perlich and Provost 2006). However, particularly useful
top nodes can be added back in as features of bottom nodes to create an attributed graph.
Whether this approach would be successful in domains with millions (or more) of top
nodes depends on whether there is a moderately small number of predictive top nodes. Per-
lich and Provost (2006) show that when learning from domains with a high-dimensional
categorical attribute (its values essentially being top nodes), that in some domains creating
features based on just the ten most discriminative values performs as well as more sophisti-
cated methods, and in other domains it doesn’t perform well at all.

More generally, in attributed graphs, any features of the bottom nodes could be included
in the analysis in several ways. One could apply a traditional model on the structured
information and use the scores as priors in the relational methods (Macskassy and Provost
2007). Alternatively, the scores from the relational classifiers could be used to complement
the structured data in a traditional propositional model. The scores can be considered as
additional features that capture information on the relations between the nodes. A third
approach would be to include the attributes and the network links together in a full-blown
relational model on the projected network. For example, in this paper we experimented
with nLB (Macskassy and Provost 2007; Lu and Getoor 2003) on the (univariate) projec-
tion; instead, we could apply the full-blown Link-based classifier (Lu and Getoor 2003) on
the projection with bottom-node attributes. Features of the top nodes could also be passed
through via aggregation (Perlich and Provost 2003, 2006), as with top-node identities.
However, we may want to consider bringing to bear more sophisticated statistical relational
learning methods. A well-chosen projection-based approach still would be an important
baseline against which to compare the more sophisticated approaches.

Another interesting extension to the framework might be to consider k-partite graphs,
with many-to-many relations between several sets of nodes (e.g., persons, books, authors,
genres). The framework could be generalized by adding an additional stage that aggregates
the information from several node sets into the projection. The function could be static and
consider an equal value for every set (e.g., an additive function that sums the similarity
from every set) or parametrized. For the latter, the Dirichlet distribution could be used—
the multivariate version of the beta distribution we use for the bipartite case.

67Machine Learning (2021) 110:37–87	

1 3

In this study, we consider classification of unweighted bipartite graphs with binary
labels. A direct extension of the framework would be generalizing to weighted bigraphs.
In a weighted bigraph, the node links have a value associated with them, representing the
strength or the capacity of the link. The weight of the link may or may not be relevant for
the classification problem. Examples of weights that we can imagine to be relevant to asso-
ciated tasks include the rating scores that a person gave to the movie or the book, the fre-
quency of visits to a specific location, the amount purchased at the particular merchant, and
so on. Weights can be included in the projection framework by taking them into account
when calculating the similarity between pairs of bottom nodes, and then combining them
with the top node scores for every distinct pair of bottom nodes in the bigraph. In the study
we also assume a binary target variable (label). We do also consider multiclass datasets,
where the node labels can belong to one of K classes—in our experimental setup, we cast
these datasets to multiple bigraphs with binary labels. Alternatively, the classifiers can be
used to calculate the probability score for each class and then determine the class with the
maximal score. For the wvRN, the class scores automatically sum to one because of the
normalizer Z. For the nLB classifier, the class vector contains the scores for each label.
Similarly, cdRN can build several reference vectors for all classes with multiple entries; the
probability scores can be calculated as the vector similarity between the class vector of a
node and the reference vector for each class.

Finally, the three-step framework opens up the opportunity for adding new techniques
and experimentation with mixing-and-matching component techniques to create new
approaches to node classification in bigraph data. As mentioned in Sect. 2, papers on graph
embedding techniques have reported good node classification performance as well as scal-
ability and interpretability, including recent work applying embedding techniques directly
to a bipartite graph. However, to the best of our knowledge, none of the existing research
on heterogeneous graph embeddings has compared to a simpler (non-embedding) approach
for node classification. We suggest that the very straightforward SW-transformation be
employed as a benchmark for such studies.

An interesting avenue for future research might be to include graph embeddings as an
additional or alternative step in the framework. Since homogeneous graph embeddings can
be applied to unigraph networks, the relational classifier in our setting could be substituted
by a combination of a graph embedding technique and a classifier built on the embedding.
More recent work has also focused on bipartite network embeddings for the task of node
classiffication. When implemented efficiently this might have an advantage over calculat-
ing the bigraph projection.

7 � Conclusion

Bigraph datasets are an intuitive way to represent relational, behavioral and transac-
tional data. Although prior studies individually have applied projection to bigraph data,
this is the first systematic study of predictive modeling on bigraph data using projec-
tion. The modular three-stage projection framework we propose has the flexibility to
compose many different classification methods—some previously used and most novel.
Techniques composed using the framework were empirically evaluated in terms of pre-
dictive and run-time performance. The comparison with a traditional classifier shows
encouraging results: the linear SVM has only average performance when compared to

68	 Machine Learning (2021) 110:37–87

1 3

the collection of projection-based methods (even linear ones), and the popular imple-
mentation does not scale to the largest datasets.

When composing techniques, in our experiments, among the top-node functions, the
tangens hyperbolicum performs best. For the latter stages, the cosine aggregation func-
tion, followed by the sum of the shared nodes in combination with the wvRN relational
classifier, give the best results. We combine the latter two as the basis of a new tech-
nique (the SW-transformation). It is a very fast, linear method that is able to scale to
datasets of millions of nodes easily, while providing a comprehensible model.

The purpose of this paper is to study classification on bigraph data using projection
systematically. We do not claim to have found the best combination of elements; the
framework opens the design space. Follow-up work could suggest an even better alter-
native for one of the stages. Nonetheless, based on the results, we would recommend
that researchers and practitioners faced with classification on bigraph data seriously
consider the SW-transformation, due to its speed, solid predictive performance, and
comprehensibility. At the very least, the SW-transform provides a very solid baseline
method for future studies of methods for predictive modeling with (sparse) bigraph
data.

Appendix

A Data distributions

See Figs. 9, 10, 11 and 12.

Fig. 9   Degree distributions of the top nodes (upper row) and bottom nodes (bottom row) for different data-
sets

69Machine Learning (2021) 110:37–87	

1 3

Fig. 10   Degree distributions of the top nodes (upper row) and bottom nodes (bottom row) for different data-
sets

Fig. 11   Degree distributions of the top nodes (upper row) and bottom nodes (bottom row) for different data-
sets

70	 Machine Learning (2021) 110:37–87

1 3

B Results tables

See Figs. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 and Tables 7, 8, 9.

Fig. 12   Degree distributions of the top nodes (upper row) and bottom nodes (bottom row) for different data-
sets

Fig. 13   Predictive performance of the beta function in combination with SW-transformation when the
parameters are tuned on a sample of the training data and trained on the full training data. The difference in
predictive performance is limited

71Machine Learning (2021) 110:37–87	

1 3

Fig. 14   Aggregated run-time results for each of the top node and aggregation functions with wvRN (includ-
ing the SW-transformation). Since most of the top-node functions (except for the beta) have similar dura-
tions, the markers on the plots are very close to each other (and given in descending order). The SW-trans-
formation outperforms all the other aggregation functions in combination with any non-tuning top-node
function

Fig. 15   Aggregated run-time results for each of the top node and aggregation functions with the nLB clas-
sifier

72	 Machine Learning (2021) 110:37–87

1 3

Fig. 16   Aggregated run-time results for each of the top node and aggregation functions with the nLB100
classifier (nLB with 100 training instances)

Fig. 17   Aggregated run-time results for each of the top node and aggregation functions with the cdRN clas-
sifier

73Machine Learning (2021) 110:37–87	

1 3

Fig. 18   Time improvement of nLB with sampling over 100 instances as compared to no sampling for dif-
ferent datasets. The top of each bar represents the time needed for the nLB classifier and the bottom of each
bar the time required to train the nLB with 100 instances for the specific dataset

Fig. 19   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color
figure online)

74	 Machine Learning (2021) 110:37–87

1 3

Fig. 20   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color
figure online)

Fig. 21   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color
figure online)

75Machine Learning (2021) 110:37–87	

1 3

Fig. 22   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color
figure online)

Fig. 23   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color
figure online)

76	 Machine Learning (2021) 110:37–87

1 3

Fig. 24   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color
figure online)

Fig. 25   Ranking of all combinations of methods, with the proposed combinations highlighted in red (Color
figure online)
Fig. 26   Ranking of all combina-
tions of methods, with the pro-
posed combinations highlighted
in red (Color figure online)

77Machine Learning (2021) 110:37–87	

1 3

Table 7   Kemeny–Young ranking for all the combinations of techniques

Top node weight Aggregation function Classifier Best rank Worst rank Avgerage rank

tanh Cosine function wvRN 3.5 142.0 40.9
Inverse degree Cosine function wvRN 3.5 140.5 41.0
tanh Cosine function cdRN 3.0 120.0 47.3
tanh Sum of shared nodes wvRN 2.0 148.0 46.1
Beta distribution Sum of shared nodes wvRN 1.0 158.0 56.4
tanh Cosine function nlb 8.5 121.5 45.9
Inverse degree Cosine function nlb 4.5 124.0 46.0
Inverse degree Sum of shared nodes wvRN 2.0 143.0 46.4
Inverse frequency Cosine function wvRN 2.0 140.0 39.3
tanh Jaccard wvRN 5.5 155.5 50.6
tanh Cosine function nlb 100 8.5 134.0 52.3
Inverse degree Cosine function nlb 100 4.5 134.0 52.2
Inverse degree Cosine function cdRN 6.0 123.0 48.2
tanh Sum of shared nodes nlb 2.0 134.5 49.0
Inverse degree Sum of shared nodes nlb 2.0 134.5 49.3
tanh Sum of shared nodes nlb 100 2.0 134.5 54.7
tanh Sum of shared nodes cdRN 1.5 130.5 50.8
Inverse degree Sum of shared nodes nlb 100 2.0 134.5 55.2
Inverse degree Sum of shared nodes cdRN 1.5 130.5 51.4
Inverse frequency Sum of shared nodes wvRN 2.0 149.0 43.7
Beta distribution Cosine function cdRN 1.0 158.0 57.1
Inverse frequency Sum of shared nodes nlb 8.0 111.0 47.7
Inverse frequency Cosine function cdRN 10.0 102.0 43.7
Inverse frequency Cosine function nlb 7.5 104.0 43.2
Inverse frequency Jaccard wvRN 2.0 154.0 47.5
Inverse degree Jaccard wvRN 5.5 155.5 52.1
Inverse frequency Sum of shared nodes nlb 100 8.0 134.0 51.3
Inverse frequency Sum of shared nodes cdRN 9.0 159.0 51.9
Inverse frequency Cosine function nlb 100 7.5 134.0 49.1
Beta distribution Sum of shared nodes cdRN 3.0 161.0 65.0
Inverse frequency Jaccard cdRN 2.0 144.0 57.4
tanh Jaccard nlb 11.0 139.5 62.5
tanh Jaccard cdRN 2.0 142.5 61.9
Inverse degree Jaccard cdRN 12.0 142.5 64.0
w = 1 Sum of shared nodes wvRN 1.0 144.0 51.8
Beta distribution Jaccard wvRN 4.0 161.5 71.4
Beta distribution Cosine function wvRN 4.0 156.0 58.2
Beta distribution Max wvRN 3.5 151.5 65.7
Beta distribution Sum of shared nodes nlb 4.0 160.5 72.7
Beta distribution Jaccard nlb 4.0 156.0 55.8
Beta distribution Cosine function nlb 4.0 156.0 58.1
Beta distribution Cosine function nlb 100 2.0 161.5 68.2
Inverse frequency Jaccard nlb 4.0 145.5 58.2
Beta distribution Max nlb 3.5 151.5 65.6
w = 1 Cosine function wvRN 2.0 141.0 52.6
Adamic and Adar Cosine function wvRN 3.0 135.0 51.6

78	 Machine Learning (2021) 110:37–87

1 3

Table 7   (continued)

Top node weight Aggregation function Classifier Best rank Worst rank Avgerage rank

w = 1 Cosine function cdRN 7.0 105.0 56.5
Adamic and Adar Sum of shared nodes wvRN 1.0 138.0 53.0
w = 1 Jaccard wvRN 2.0 158.0 54.9
Adamic and Adar Cosine function cdRN 10.0 107.0 58.2
Inverse degree Jaccard nlb 10.5 142.5 64.2
Delta Cosine function wvRN 1.0 145.0 57.8
tanh Jaccard nlb 100 5.5 157.5 76.7
Inverse degree Jaccard nlb 100 5.5 157.5 77.6
Beta distribution Sum of shared nodes nlb 100 4.0 161.0 76.0
tanh Max wvRN 5.5 159.0 73.3
Inverse degree Max wvRN 5.5 150.5 73.3
Inverse frequency Jaccard nlb 100 4.0 158.0 72.8
w = 1 Sum of shared nodes nlb 14.5 103.5 56.8
Adamic and Adar Sum of shared nodes nlb 15.0 100.5 57.8
w = 1 Cosine function nlb 9.0 103.0 56.1
w = 1 Sum of shared nodes nlb 100 14.5 134.0 59.8
w = 1 Sum of shared nodes cdRN 13.0 160.0 62.4
Adamic and Adar Cosine function nlb 8.5 97.0 56.1
w = 1 Cosine function nlb 100 9.0 157.5 64.8
Adamic and Adar Cosine function nlb 100 8.5 157.5 64.6
Beta distribution Jaccard nlb 100 1.0 162.0 87.3
w = 1 Jaccard cdRN 4.0 156.0 65.2
Adamic and Adar Jaccard wvRN 3.0 153.0 58.1
Delta Cosine function nlb 1.5 139.0 64.6
w = 1 Jaccard nlb 2.0 158.0 65.4
Adamic and Adar Sum of shared nodes cdRN 13.0 158.0 61.5
Adamic and Adar Sum of shared nodes nlb 100 15.0 134.0 61.8
Delta Cosine function nlb 100 1.5 157.5 73.6
Delta Cosine function cdRN 1.0 141.0 65.8
Beta distribution Jaccard cdRN 1.0 159.0 75.0
Beta distribution Max cdRN 1.0 162.0 84.9
Likelihood ratio Cosine function wvRN 3.5 146.5 68.1
w = 1 Jaccard nlb 100 2.0 159.0 80.7
Likelihood ratio Cosine function nlb 3.5 146.5 69.8
Likelihood ratio Cosine function nlb 100 3.5 157.5 77.1
Likelihood ratio Cosine function cdRN 3.5 152.0 71.3
Adamic and Adar Jaccard nlb 6.0 150.0 68.8
Adamic and Adar Jaccard cdRN 8.0 152.0 69.6
Delta Sum of shared nodes wvRN 1.0 158.0 62.3
tanh Max cdRN 13.5 156.0 84.3
Likelihood ratio Sum of shared nodes wvRN 3.5 139.0 75.8
Likelihood ratio Sum of shared nodes nlb 21.5 139.0 77.5
Likelihood ratio Sum of shared nodes nlb 100 21.5 139.0 78.9
Likelihood ratio Jaccard wvRN 1.5 158.0 78.6
Likelihood ratio Jaccard nlb 2.0 158.0 79.6
Likelihood ratio Jaccard cdRN 1.5 154.0 78.0

79Machine Learning (2021) 110:37–87	

1 3

Table 7   (continued)

Top node weight Aggregation function Classifier Best rank Worst rank Avgerage rank

Delta Sum of shared nodes nlb 1.5 153.0 72.1
tanh Max nlb 2.5 145.5 83.8
Inverse degree Max nlb 4.0 145.5 83.9
Delta Sum of shared nodes cdRN 1.0 154.0 72.8
tanh Max nlb 100 15.5 145.5 88.9
SVM 1.0 162.0 91.3
Inverse degree Max nlb 100 11.0 145.5 88.6
Inverse degree Max cdRN 13.5 157.0 84.2
Inverse frequency Max wvRN 7.0 160.0 81.9
Delta Sum of shared nodes nlb 100 1.5 161.5 83.2
Delta Max wvRN 2.0 161.0 80.0
Likelihood ratio Sum of shared nodes cdRN 3.5 162.0 85.5
Inverse frequency Max nlb 2.5 135.5 87.3
Inverse frequency Max nlb 100 3.0 135.5 88.0
Inverse frequency Max cdRN 2.0 137.0 86.1
Adamic and Adar Jaccard nlb 100 6.0 157.5 83.6
Delta Jaccard wvRN 1.0 159.0 77.8
Likelihood ratio Jaccard nlb 100 2.5 162.0 92.0
Delta Max cdRN 2.0 158.0 92.9
Delta Max nlb 4.0 160.0 92.3
Delta Jaccard nlb 16.5 155.5 88.9
Delta Max nlb 100 4.0 162.0 97.1
Delta Jaccard cdRN 18.0 154.0 89.3
Beta distribution Max nlb 100 24.0 162.0 103.1
Adamic and Adar Max wvRN 11.0 148.0 100.7
Delta Jaccard nlb 100 16.5 162.0 106.8
Adamic and Adar Max cdRN 13.0 162.0 103.7
Adamic and Adar Max nlb 16.0 131.5 100.8
Adamic and Adar Max nlb 100 12.0 161.0 105.6
Likelihood ratio Max wvRN 32.5 148.5 109.6
Likelihood ratio Max nlb 32.5 148.5 111.7
Likelihood ratio Max nlb 100 42.0 161.0 113.1
Likelihood ratio Max cdRN 66.5 160.0 117.3
Any Zero–one wvRN 21.0 157.0 119.7
w = 1 Max wvRN 21.0 157.0 119.7
Any Zero–one nlb 9.0 157.0 118.2
w = 1 Max nlb 9.0 157.0 118.2
] Any Zero–one cdRN 22.0 158.0 124.9
w = 1 Max cdRN 22.0 158.0 124.9
Any Zero–one nlb 100 28.0 158.0 127.7
w = 1 Max nlb 100 28.0 158.0 127.7

We emphasize the combinations that are not significantly worse than the best method (underlined) at a 5%
significance level in bold and the combinations that are significantly worse at 5% but not at 1% significance
level in italics. The other methods that are significantly worse at 1% significance level are shown in regular
font

80	 Machine Learning (2021) 110:37–87

1 3

Ta
bl

e 
8  

B
et

a
gr

id
 se

ar
ch

 o
n

th
re

e
le

ve
ls

 w
ith

 th
e

op
tim

al
 �

 a
nd

 �
 p

ar
am

et
er

s,
as

 w
el

l a
s t

he
 c

or
re

sp
on

di
ng

 A
U

C
 p

er
 le

ve
l

Th
e

ag
gr

eg
at

io
n

fu
nc

tio
n

us
ed

 is
 th

e
su

m
 o

f s
ha

re
d

no
de

s
in

 c
om

bi
na

tio
n

w
ith

 th
e

w
vR

N
 re

la
tio

na
l c

la
ss

ifi
er

. T
he

 ty
pi

ca
l s

ha
pe

s
of

 th
e

fu
nc

tio
n

co
rr

es
po

nd
 s

tro
ng

ly
 to

 th
e

in
tu

iti
on

 th
at

 to
p

no
de

s w
ith

 sm
al

le
r d

eg
re

e
ar

e
m

or
e

di
sc

rim
in

at
iv

e
an

d
th

er
ef

or
e

sh
ou

ld
 h

av
e

hi
gh

er
 w

ei
gh

ts
, e

xc
ep

t f
or

 th
e

Fl
ic

kr
 d

at
as

et

D
at

as
et

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3

A
lp

ha
B

et
a

A
U

C
​

A
lp

ha
B

et
a

A
U

C
​

A
lp

ha
B

et
a

A
U

C
​

M
ov

ie
Le

ns
 g

en
de

r
3.

10
00

12
.1

00
0

0.
70

19
3.

10
00

15
.1

00
0

0.
70

99
2.

76
67

16
.1

00
0

0.
71

10
M

ov
ie

Le
ns

 g
en

de
r (

ab
ov

e
av

er
ag

e)
0.

10
00

6.
10

00
0.

75
93

1.
10

00
9.

10
00

0.
76

22
0.

43
33

8.
76

67
0.

76
90

M
ov

ie
Le

ns
 a

ge
0.

10
00

3.
10

00
0.

80
87

0.
10

00
1.

10
00

0.
81

06
0.

10
00

1.
43

33
0.

81
10

M
ov

ie
Le

ns
 a

ge
 (a

bo
ve

 av
er

ag
e)

0.
10

00
3.

10
00

0.
81

93
1.

10
00

6.
10

00
0.

82
31

1.
10

00
7.

10
00

0.
82

42
Ya

ho
o

M
ov

ie
s (

ge
nd

er
)

0.
10

00
3.

10
00

0.
79

85
0.

10
00

1.
10

00
0.

80
46

0.
43

33
1.

43
33

0.
80

60
Ya

ho
o

M
ov

ie
s a

bo
ve

 av
er

ag
e

(g
en

de
r)

0.
10

00
3.

10
00

0.
79

55
0.

10
00

1.
10

00
0.

80
26

0.
10

00
1.

10
00

0.
80

26
Ya

ho
o

M
ov

ie
s (

ag
e)

0.
10

00
3.

10
00

0.
66

37
0.

10
00

3.
10

00
0.

66
37

0.
43

33
3.

76
67

0.
66

98
Ya

ho
o

M
ov

ie
s a

bo
ve

 av
er

ag
e

(a
ge

)
0.

10
00

3.
10

00
0.

65
77

0.
10

00
1.

10
00

0.
65

94
0.

10
00

1.
10

00
0.

65
94

Ta
Fe

ng
0.

10
00

3.
10

00
0.

68
61

0.
10

00
1.

10
00

0.
68

94
0.

43
33

2.
10

00
0.

69
69

Ta
Fe

ng
 (a

bo
ve

 av
er

ag
e)

0.
10

00
3.

10
00

0.
71

98
0.

10
00

2.
10

00
0.

71
99

0.
10

00
2.

43
33

0.
71

99
B

oo
kC

ro
ss

in
g

0.
10

00
0.

10
00

0.
58

92
0.

10
00

0.
10

00
0.

58
92

0.
43

33
0.

43
33

0.
59

13
B

oo
kC

ro
ss

in
g

(a
bo

ve
 av

er
ag

e)
0.

10
00

0.
10

00
0.

57
16

1.
10

00
3.

10
00

0.
57

32
0.

76
67

3.
43

33
0.

57
38

Li
bi

m
Se

Ti
0.

10
00

3.
10

00
0.

84
61

0.
10

00
1.

10
00

0.
84

83
0.

43
33

1.
76

67
0.

84
87

Li
bi

m
Se

Ti
 (a

bo
ve

 av
er

ag
e)

0.
10

00
3.

10
00

0.
86

69
0.

10
00

1.
10

00
0.

86
76

0.
10

00
1.

43
33

0.
86

76
Fl

ic
kr

6.
10

00
0.

10
00

0.
73

37
6.

10
00

0.
10

00
0.

73
37

5.
76

67
0.

10
00

0.
73

41
K

D
D

a
0.

10
00

12
.1

00
0

0.
78

88
0.

10
00

15
.1

00
0

0.
78

92
0.

10
00

16
.1

00
0

0.
77

91

81Machine Learning (2021) 110:37–87	

1 3

Ta
bl

e 
9  

B
es

t c
om

bi
na

tio
ns

 o
f m

et
ho

ds
 p

er
 d

at
as

et

D
at

as
et

Ta
rg

et
To

p
no

de
s f

un
ct

io
n

A
gg

re
ga

tio
n

fu
nc

tio
n

Re
la

tio
na

l c
la

ss
ifi

er
A

U
C

​

K
D

D
 B

D
el

ta
Su

m
 o

f s
ha

re
d

no
de

s
w

vR
N

0.
80

54
K

D
D

 a
lg

eb
ra

B
et

a
di

str
ib

ut
io

n
Su

m
 o

f s
ha

re
d

no
de

s
w

vR
N

0.
77

91
Fl

ic
kr

Ta
rg

et
:c

om
m

en
ts

SV
M

0.
76

02
Li

bm
iS

eT
i

Ta
rg

et
:g

en
de

r
ta

nh
C

os
in

e
fu

nc
tio

n
w

vR
N

0.
85

62
Li

bm
iS

eT
i (

ab
ov

e
av

er
ag

e)
Ta

rg
et

:g
en

de
r

ta
nh

C
os

in
e

fu
nc

tio
n

w
vR

N
0.

87
62

Ta
Fe

ng
 c

on
su

m
er

s p
ro

du
ct

s
Ta

rg
et

:a
ge

B
et

a
di

str
ib

ut
io

n
Su

m
 o

f s
ha

re
d

no
de

s
nl

b
0.

67
85

Ta
Fe

ng
 c

on
su

m
er

s p
ro

du
ct

s (
ab

ov
e

av
er

ag
e)

Ta
rg

et
:a

ge
D

el
ta

Su
m

 o
f s

ha
re

d
no

de
s

nl
b

10
0

0.
75

64
Ya

ho
o

m
ov

ie
s

Ta
rg

et
:g

en
de

r
ta

nh
Su

m
 o

f s
ha

re
d

no
de

s
w

vR
N

0.
80

71
Ya

ho
o

m
ov

ie
s (

ab
ov

e
av

er
ag

e)
Ta

rg
et

:g
en

de
r

ta
nh

Su
m

 o
f s

ha
re

d
no

de
s

nl
b

0.
80

70
Ya

ho
o

m
ov

ie
s

Ta
re

ge
t:a

ge
B

et
a

di
str

ib
ut

io
n

Su
m

 o
f s

ha
re

d
no

de
s

cd
R

N
0.

67
63

Ya
ho

o
m

ov
ie

s (
ab

ov
e

av
er

ag
e)

Ta
re

ge
t:a

ge
B

et
a

di
str

ib
ut

io
n

C
os

in
e

fu
nc

tio
n

cd
R

N
0.

67
95

M
ov

ie
Le

ns
10

0k
Ta

rg
et

:g
en

de
r

In
ve

rs
e

de
gr

ee
Su

m
 o

f s
ha

re
d

no
de

s
w

vR
N

0.
80

71
M

ov
ie

Le
ns

10
0k

 (a
bo

ve
 av

er
ag

e)
Ta

rg
et

:g
en

de
r

ta
nh

Su
m

 o
f s

ha
re

d
no

de
s

w
vR

N
0.

81
04

M
ov

ie
Le

ns
10

0k
Ta

rg
et

:a
ge

SV
M

0.
86

85
M

ov
ie

Le
ns

10
0k

 (a
bo

ve
 av

er
ag

e)
Ta

rg
et

:a
ge

SV
M

0.
85

43
M

ov
ie

Le
ns

10
0k

Ta
rg

et
:g

en
re

 [2
] A

ct
io

n
D

el
ta

Su
m

 o
f s

ha
re

d
no

de
s

cd
R

N
0.

77
43

M
ov

ie
Le

ns
10

0k
Ta

rg
et

:g
en

re
 [3

] A
dv

en
tu

re
B

et
a

di
str

ib
ut

io
n

C
os

in
e

fu
nc

tio
n

cd
R

N
0.

86
15

M
ov

ie
Le

ns
10

0k
Ta

rg
et

:g
en

re
 [4

] A
ni

m
at

io
n

B
et

a
di

str
ib

ut
io

n
Ja

cc
ar

d
w

vR
N

0.
91

80
M

ov
ie

Le
ns

10
0k

Ta
rg

et
:g

en
re

 [5
] C

hi
ld

re
n’

s
Li

ke
lih

oo
d

ra
tio

Ja
cc

ar
d

w
vR

N
0.

88
35

M
ov

ie
Le

ns
10

0k
Ta

rg
et

:g
en

re
 [6

] C
om

ed
y

SV
M

0.
71

35
M

ov
ie

Le
ns

10
0k

Ta
rg

et
:g

en
re

 [7
] C

rim
e

w
 =

 1
Ja

cc
ar

d
w

vR
N

0.
66

32
M

ov
ie

Le
ns

10
0k

Ta
rg

et
:g

en
re

 [8
] D

oc
um

en
ta

ry
D

el
ta

Su
m

 o
f s

ha
re

d
no

de
s

nl
b

0.
67

75
M

ov
ie

Le
ns

10
0k

Ta
rg

et
:g

en
re

 [9
] D

ra
m

a
SV

M
0.

72
32

M
ov

ie
Le

ns
10

0k
Ta

rg
et

:g
en

re
 [1

0]
 F

an
ta

sy
B

et
a

di
str

ib
ut

io
n

Su
m

 o
f s

ha
re

d
no

de
s

w
vR

N
0.

81
31

M
ov

ie
Le

ns
10

0k
Ta

rg
et

:g
en

re
 [1

1]
 F

ilm
-N

oi
r

SV
M

0.
69

48
M

ov
ie

Le
ns

10
0k

Ta
rg

et
:g

en
re

 [1
2]

 H
or

ro
r

D
el

ta
Su

m
 o

f s
ha

re
d

no
de

s
cd

R
N

0.
72

07
M

ov
ie

Le
ns

10
0k

Ta
rg

et
:g

en
re

 [1
3]

 M
us

ic
al

Li
ke

lih
oo

d
ra

tio
Ja

cc
ar

d
w

vR
N

0.
91

18

82	 Machine Learning (2021) 110:37–87

1 3

Ta
bl

e 
9  

(c
on

tin
ue

d)

D
at

as
et

Ta
rg

et
To

p
no

de
s f

un
ct

io
n

A
gg

re
ga

tio
n

fu
nc

tio
n

Re
la

tio
na

l c
la

ss
ifi

er
A

U
C

​

M
ov

ie
Le

ns
10

0k
Ta

rg
et

:g
en

re
 [1

4]
 M

ys
te

ry
Li

ke
lih

oo
d

ra
tio

Ja
cc

ar
d

w
vR

N
0.

61
66

M
ov

ie
Le

ns
10

0k
Ta

rg
et

:g
en

re
 [1

5]
 R

om
an

ce
D

el
ta

C
os

in
e

fu
nc

tio
n

cd
R

N
0.

64
43

M
ov

ie
Le

ns
10

0k
Ta

rg
et

:g
en

re
 [1

6]
 S

ci
-F

i
Li

ke
lih

oo
d

ra
tio

Ja
cc

ar
d

w
vR

N
0.

84
51

M
ov

ie
Le

ns
10

0k
Ta

rg
et

:g
en

re
 [1

7]
 T

hr
ill

er
D

el
ta

C
os

in
e

fu
nc

tio
n

cd
R

N
0.

68
83

M
ov

ie
Le

ns
10

0k
Ta

rg
et

:g
en

re
 [1

8]
 W

ar
B

et
a

di
str

ib
ut

io
n

M
ax

cd
R

N
0.

55
02

M
ov

ie
Le

ns
10

0k
Ta

rg
et

:g
en

re
 [1

9]
 W

es
te

rn
ta

nh
Su

m
 o

f s
ha

re
d

no
de

s
cd

R
N

0.
88

36
M

ov
ie

Le
ns

10
0k

 (a
bo

ve
 av

er
ag

e)
Ta

rg
et

:g
en

re
 [2

] A
ct

io
n

B
et

a
di

str
ib

ut
io

n
Ja

cc
ar

d
nl

b
10

0
0.

82
83

M
ov

ie
Le

ns
10

0k
 (a

bo
ve

 av
er

ag
e)

Ta
rg

et
:g

en
re

 [3
] A

dv
en

tu
re

B
et

a
di

str
ib

ut
io

n
Ja

cc
ar

d
nl

b
10

0
0.

83
58

M
ov

ie
Le

ns
10

0k
 (a

bo
ve

 av
er

ag
e)

Ta
rg

et
:g

en
re

 [4
] A

ni
m

at
io

n
B

et
a

di
str

ib
ut

io
n

Su
m

 o
f s

ha
re

d
no

de
s

w
vR

N
0.

90
61

M
ov

ie
Le

ns
10

0k
 (a

bo
ve

 av
er

ag
e)

Ta
rg

et
:g

en
re

 [5
] C

hi
ld

re
n’

s
w

 =
 1

Su
m

 o
f s

ha
re

d
no

de
s

w
vR

N
0.

89
65

M
ov

ie
Le

ns
10

0k
 (a

bo
ve

 av
er

ag
e)

Ta
rg

et
:g

en
re

 [6
] C

om
ed

y
D

el
ta

C
os

in
e

fu
nc

tio
n

nl
b

0.
73

86
M

ov
ie

Le
ns

10
0k

 (a
bo

ve
 av

er
ag

e)
Ta

rg
et

:g
en

re
 [7

] C
rim

e
B

et
a

di
str

ib
ut

io
n

Ja
cc

ar
d

nl
b

10
0

0.
68

85
M

ov
ie

Le
ns

10
0k

 (a
bo

ve
 av

er
ag

e)
Ta

rg
et

:g
en

re
 [8

] D
oc

um
en

ta
ry

SV
M

0.
75

23
M

ov
ie

Le
ns

10
0k

 (a
bo

ve
 av

er
ag

e)
Ta

rg
et

:g
en

re
 [9

] D
ra

m
a

B
et

a
di

str
ib

ut
io

n
M

ax
cd

R
N

0.
71

94
M

ov
ie

Le
ns

10
0k

 (a
bo

ve
 av

er
ag

e)
Ta

rg
et

:g
en

re
 [1

0]
 F

an
ta

sy
B

et
a

di
str

ib
ut

io
n

Ja
cc

ar
d

cd
R

N
0.

88
10

M
ov

ie
Le

ns
10

0k
 (a

bo
ve

 av
er

ag
e)

Ta
rg

et
:g

en
re

 [1
1]

 F
ilm

-N
oi

r
B

et
a

di
str

ib
ut

io
n

Ja
cc

ar
d

nl
b

10
0

0.
79

01
M

ov
ie

Le
ns

10
0k

 (a
bo

ve
 av

er
ag

e)
Ta

rg
et

:g
en

re
 [1

2]
 H

or
ro

r
D

el
ta

Su
m

 o
f s

ha
re

d
no

de
s

w
vR

N
0.

80
38

M
ov

ie
Le

ns
10

0k
 (a

bo
ve

 av
er

ag
e)

Ta
rg

et
:g

en
re

 [1
3]

 M
us

ic
al

D
el

ta
Ja

cc
ar

d
w

vR
N

0.
84

15
M

ov
ie

Le
ns

10
0k

 (a
bo

ve
 av

er
ag

e)
Ta

rg
et

:g
en

re
 [1

4]
 M

ys
te

ry
B

et
a

di
str

ib
ut

io
n

Ja
cc

ar
d

nl
b

10
0

0.
69

71
M

ov
ie

Le
ns

10
0k

 (a
bo

ve
 av

er
ag

e)
Ta

rg
et

:g
en

re
 [1

5]
 R

om
an

ce
D

el
ta

C
os

in
e

fu
nc

tio
n

w
vR

N
0.

69
72

M
ov

ie
Le

ns
10

0k
 (a

bo
ve

 av
er

ag
e)

Ta
rg

et
:g

en
re

 [1
6]

 S
ci

-F
i

D
el

ta
Su

m
 o

f s
ha

re
d

no
de

s
w

vR
N

0.
80

63
M

ov
ie

Le
ns

10
0k

 (a
bo

ve
 av

er
ag

e)
Ta

rg
et

:g
en

re
 [1

7]
 T

hr
ill

er
B

et
a

di
str

ib
ut

io
n

Ja
cc

ar
d

nl
b

10
0

0.
75

58
M

ov
ie

Le
ns

10
0k

 (a
bo

ve
 av

er
ag

e)
Ta

rg
et

:g
en

re
 [1

8]
 W

ar
Li

ke
lih

oo
d

ra
tio

Ja
cc

ar
d

w
vR

N
0.

64
77

M
ov

ie
Le

ns
10

0k
 (a

bo
ve

 av
er

ag
e)

Ta
rg

et
:g

en
re

 [1
9]

 W
es

te
rn

A
da

m
ic

 a
nd

 A
da

r
Su

m
 o

f s
ha

re
d

no
de

s
w

vR
N

0.
92

75
Re

al
lit

y
m

in
in

g
Ta

rg
et

:st
at

us
 [1

] 1
sty

ea
rg

ra
d

B
et

a
di

str
ib

ut
io

n
Ja

cc
ar

d
nl

b
0.

85
05

83Machine Learning (2021) 110:37–87	

1 3

Ta
bl

e 
9  

(c
on

tin
ue

d)

D
at

as
et

Ta
rg

et
To

p
no

de
s f

un
ct

io
n

A
gg

re
ga

tio
n

fu
nc

tio
n

Re
la

tio
na

l c
la

ss
ifi

er
A

U
C

​

Re
al

lit
y

m
in

in
g

Ta
rg

et
:st

at
us

 [2
] m

lg
ra

d
Li

ke
lih

oo
d

ra
tio

M
ax

w
vR

N
0.

62
55

Re
al

lit
y

m
in

in
g

Ta
rg

et
:st

at
us

 [3
] S

lo
an

D
el

ta
C

os
in

e
fu

nc
tio

n
cd

R
N

0.
67

10
Re

al
lit

y
m

in
in

g
Ta

rg
et

:st
at

us
 [4

] m
lst

aff
D

el
ta

M
ax

w
vR

N
0.

75
86

Re
al

lit
y

m
in

in
g

Ta
rg

et
:st

at
us

 [6
] G

ra
d

Li
ke

lih
oo

d
ra

tio
Su

m
 o

f s
ha

re
d

no
de

s
cd

R
N

0.
72

58
Re

al
lit

y
m

in
in

g
Ta

rg
et

:st
at

us
 [7

] m
lu

ro
p

Li
ke

lih
oo

d
ra

tio
Su

m
 o

f s
ha

re
d

no
de

s
cd

R
N

0.
72

58
N

or
w

eg
ia

n
co

m
pa

ni
es

Ta
rg

et
:g

en
de

r
ta

nh
M

ax
nl

b
0.

77
45

84	 Machine Learning (2021) 110:37–87

1 3

References

Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the web. Social Networks, 25(3), 211–230.
Allali, O., Magnien, C., & Latapy, M. (2011). Link prediction in bipartite graphs using internal links and

weighted projection. In Conference on computer communications workshops (INFOCOM WKSHPS)
(pp. 936–941). IEEE.

Barber, M. J. (2007). Modularity and community detection in bipartite networks. Physical Review E, 76(6),
066102.

Benchettara, N., Kanawati, R., & Rouveirol, C. (2010). Supervised machine learning applied to link predic-
tion in bipartite social networks. In Advances in social networks analysis and mining (ASONAM) (pp.
326–330). IEEE.

Borgatti, S. P., & Everett, M. G. (1997). Network analysis of 2-mode data. Social Networks, 19(3), 243–269.
Borgatti, S. P., & Halgin, D. S. (2011). Analyzing affiliation networks. In J. Scott & P. J. Carrington

(Eds.), The Sage handbook of social network analysis (pp. 417–433). Thousand Oaks: SAGE
Publications.

Brozovsky, L. & Petricek, V. (2007). Recommender system for online dating service. In Proceedings of
conference znalosti 2007. Ostrava: VSB.

Cancho, R. F. I., & Solé, R. V. (2001). The small world of human language. Proceedings of the Royal
Society of London. Series B: Biological Sciences, 268(1482), 2261–2265.

Chen, X., Yu, G., Wang, J., Domeniconi, C., Li, Z., & Zhang, X. (2019). Activehne: Active heterogene-
ous network embedding. arXiv preprint arXiv​:1905.05659​.

Cho, E., Myers, S. A., & Leskovec, J. (2011). Friendship and mobility: User movement in location-based
social networks. In Proceedings of the 17th ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 1082–1090). ACM.

Conitzer, V., Davenport, A., & Kalagnanam, J. (2006). Improved bounds for computing Kemeny rank-
ings. In AAAI (Vol. 6, pp. 620–626).

Cui, P., Wang, X., Pei, J., & Zhu, W. (2018). A survey on network embedding. IEEE Transactions on
Knowledge and Data Engineering, 31(5), 833–852.

de Cnudde, S., Martens, D., Evgeniou, T., & Provost, F. (2017). A benchmarking study of classifica-
tion techniques for behavioral data. Working papers, University of Antwerp, Faculty of Applied
Economics.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine
Learning Research, 7, 1–30.

Dong, Y., Chawla, N. V., & Swami, A. (2017). metapath2vec: Scalable representation learning for hetero-
geneous networks. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 135–144). ACM.

Doreian, P., Batagelj, V., & Ferligoj, A. (2004). Generalized blockmodeling of two-mode network data.
Social Networks, 26(1), 29–53.

Du, W., Yu, S., Yang, M., Qu, Q., & Zhu, J. (2018). GPSP: Graph partition and space projection based
approach for heterogeneous network embedding. In Companion proceedings of the the web conference
(Vol. 2018, pp. 59–60).

Eagle, N., & Pentland, A. (2006). Reality mining: Sensing complex social systems. Personal and Ubiqui-
tous Computing, 10(4), 255–268.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR: A library for large
linear classification. Journal of Machine Learning Research, 9, 1871–1874.

Faust, K. (1997). Centrality in affiliation networks. Social Networks, 19(2), 157–191.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.
Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions. New York: Wiley.
Gallagher, B., Tong, H., Eliassi-Rad, T., & Faloutsos, C. (2008). Using ghost edges for classification in

sparsely labeled networks. In Proceedings of the 14th ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 256–264). ACM.

Gao, M., Chen, L., He, X., & Zhou, A. (2018). Bine: Bipartite network embedding. In The 41st interna-
tional ACM SIGIR conference on research and development in information retrieval (pp. 715–724).
ACM.

Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning (Vol. 1). Cambridge: MIT
Press.

Goel, S., Hofman, J. M., & Sirer, M. I. (2012). Who does what on the web: A large-scale study of browsing
behavior. In ICWSM.

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey.
Knowledge-Based Systems, 151, 78–94.

http://arxiv.org/abs/1905.05659

85Machine Learning (2021) 110:37–87	

1 3

Gregor, S., & Benbasat, I. (1999). Explanations from intelligent systems: Theoretical foundations and impli-
cations for practice. MIS Quarterly, 23(4), 497–530.

Grover, A. & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 855–864).
ACM.

Guillaume, J.-L., & Latapy, M. (2006). Bipartite graphs as models of complex networks. Physica A: Statisti-
cal Mechanics and its Applications, 371(2), 795–813.

Gupte, M. & Eliassi-Rad, T. (2012). Measuring tie strength in implicit social networks. In Proceedings of
the 3rd annual ACM web science conference (pp. 109–118). ACM.

Hu, J., Zeng, H.-J., Li, H., Niu, C., & Chen, Z. (2007). Demographic prediction based on user’s browsing
behavior. In Proceedings of the 16th international conference on world wide web (pp. 151–160). ACM.

Huang, H. S., Lin, K. L., & Hsu C.-N., & Hsu, J. Y. J. (2005). Item-triggered recommendation for identify-
ing potential customers of cold sellers in supermarkets. In Workshop on the next stage of recommender
systems research, in conjunction with the 2005 international conference on intelligent user interfaces
(IUI 2005).

Huang, X., Song, Q., Yang, F., & Hu, X. (2019). Large-scale heterogeneous feature embedding. In Proceed-
ings of the AAAI conference on artificial intelligence (Vol. 33, pp. 3878–3885).

Huang, Z., Li, X., & Chen, H. (2005). Link prediction approach to collaborative filtering. In Proceedings of
the 5th ACM/IEEE-CS joint conference on digital libraries (pp. 141–142). ACM.

Jensen, D. & Neville, J. (2002). Linkage and autocorrelation cause feature selection bias in relational learn-
ing. In Proceedings of the nineteenth international conference on machine learning, ICML ’02 (pp.
259–266). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Jones, K. S. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of
Documentation, 28, 11–21.

Junqué de Fortuny, E., Martens, D., & Provost, F. (2013). Predictive modeling with big data: Is bigger really
better? Big Data, 1(4), 215–226.

Khosravi, H. & Bina, B. (2010). A survey on statistical relational learning. In Canadian conference on arti-
ficial intelligence (pp. 256–268). Springer.

Kim, J. H. (2017). Hypotheses generation using link prediction in a bipartite graph. CoRR arXiv​
:abs/1708.04725​.

Kipf, T. N. & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv​:1609.02907​.

Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital
records of human behavior. Proceedings of the National Academy of Sciences, 110(15), 5802–5805.

Lambiotte, R., & Ausloos, M. (2005). Uncovering collective listening habits and music genres in bipartite
networks. Physical Review E, 72(6), 066107.

Latapy, M., Magnien, C., & Vecchio, N. D. (2008). Basic notations for the analysis of large two-mode net-
works. Social Networks, 30, 31–48.

Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction problem for social networks. Journal of the
American Society for Information Science and Technology, 58(7), 1019–1031.

Lind, P. G., Gonzalez, M. C., & Herrmann, H. J. (2005). Cycles and clustering in bipartite networks. Physi-
cal Review E, 72(5), 056127.

Liu, N., Huang, X., Li, J., & Hu, X. (2018). On interpretation of network embedding via taxonomy induc-
tion. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and
data mining, KDD ’18 (pp. 1812–1820). New York, NY, USA: ACM.

Li, X., Wang, H., Gu, B., & Ling, C. X. (2015). Data sparseness in linear SVM. IJCAI (pp. 3628–3634).
Lu, Q., & Getoor, L. (2003). Link-based classification. In ICML (Vol. 3, pp. 496–503).
Macskassy, S. A., & Provost, F. (2003). A simple relational classifier. New York: NYU Stern School of

Business.
Macskassy, S. A., & Provost, F. (2007). Classification in networked data: A toolkit and a univariate case

study. Journal of Machine Learning Research, 8, 935–983.
Martens, D., Baesens, B., Van Gestel, T., & Vanthienen, J. (2007). Comprehensible credit scoring mod-

els using rule extraction from support vector machines. European Journal of Operational Research,
183(3), 1466–1476.

Martens, D. & Provost, F. (2011). Pseudo-social network targeting from consumer transaction data. Work-
ing paper CeDER-11-05, New York University—Stern School of Business.

Martens, D., & Provost, F. (2014). Explaining data-driven document classifications. MIS Quarterly, 38(1),
73–100.

Martens, D., Provost, F., Clark, J., & de Fortuny, E. J. (2013). Mining fine-grained consumer payment data
to improve targeted marketing. Working paper, New York University—Stern School of Business.

http://arxiv.org/abs/abs/1708.04725
http://arxiv.org/abs/abs/1708.04725
http://arxiv.org/abs/1609.02907

86	 Machine Learning (2021) 110:37–87

1 3

Martens, D., Vanthienen, J., Verbeke, W., & Baesens, B. (2011). Performance of classification models from
a user perspective. Decision Support Systems, 51(4), 782–793.

Newman, M. E. (2001a). Scientific collaboration networks. I. Network construction and fundamental results.
Physical Review E, 64(1), 16–131.

Newman, M. E. (2001b). Scientific collaboration networks. II. Shortest paths, weighted networks, and
centrality. Physical Review E, 64(1), 16–132.

Opsahl, T. (2011). Triadic closure in two-mode networks: Redefining the global and local clustering
coefficients. Social Networks, 35(2), 159–167.

Perlich, C. & Provost, F. (2003). Aggregation-based feature invention and relational concept classes. In
Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 167–176). ACM.

Perlich, C., & Provost, F. (2006). Distribution-based aggregation for relational learning with identifier
attributes. Machine Learning, 62(1–2), 65–105.

Perlich, C., & Świrszcz, G. (2011). On cross-validation and stacking: Building seemingly predictive
models on random data. ACM SIGKDD Explorations Newsletter, 12(2), 11–15.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 701–710). ACM.

Provost, F., Dalessandro, B., Hook, R., Zhang, X., & Murray, A. (2009). Audience selection for on-line
brand advertising: Privacy-friendly social network targeting. In Proceedings of the 15th ACM SIG-
KDD international conference on knowledge discovery and data mining (pp. 707–716). ACM.

Provost, F., & Fawcett, T. (2013). Data science for business: What you need to know about data mining
and data-analytic thinking. Newton: O’Reilly Media Inc.

Provost, F., & Kolluri, V. (1999). A survey of methods for scaling up inductive algorithms. Data Mining
and Knowledge Discovery, 3(2), 131–169.

Provost, F., Martens, D., & Murray, A. (2012). Geo-social network advertising. In 2012 winter confer-
ence on business intelligence.

Provost, F., Martens, D., & Murray, A. (2015). Finding mobile consumers with a privacy-friendly geo-
similarity network. Information Systems Research, 26(2), 243–265.

Raeder, T., Stitelman, O., Dalessandro, B., Perlich, C., & Provost, F. (2012). Design principles of mas-
sive, robust prediction systems. In Proceedings of the 18th ACM SIGKDD international conference
on knowledge discovery and data mining (pp. 1357–1365). ACM.

Robins, G., & Alexander, M. (2004). Small worlds among interlocking directors: Network structure and
distance in bipartite graphs. Computational & Mathematical Organization Theory, 10(1), 69–94.

Rrnyi, A. (1961). On measures of entropy and information. In Fourth Berkeley symposium on math-
ematical statistics and probability (pp. 547–561).

Seierstad, C., & Opsahl, T. (2011). For the few not the many? The effects of affirmative action on pres-
ence, prominence, and social capital of women directors in norway. Scandinavian Journal of Man-
agement, 27(1), 44–54.

Sun, J., Qu, H., Chakrabarti, D., & Faloutsos, C. (2005). Neighborhood formation and anomaly detec-
tion in bipartite graphs. In Proceedings of the fifth IEEE international conference on data mining,
ICDM ’05 (pp. 418–425). Washington, DC, USA: IEEE Computer Society.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-scale information net-
work embedding. In Proceedings of the 24th international conference on world wide web (pp.
1067–1077). International World Wide Web Conferences Steering Committee.

Wang, D., Cui, P., & Zhu, W. (2016). Structural deep network embedding. In Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1225–
1234). ACM.

Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., Xie, X., & Guo, M. (2018). Graphgan:
Graph representation learning with generative adversarial nets. In Thirty-second AAAI conference
on artificial intelligence.

Weber, I., Garimella, V. R. K., & Borra, E. (2013). Inferring audience partisanship for youtube videos.
In Proceedings of the 22nd international conference on world wide web companion (pp. 43–44).
International World Wide Web Conferences Steering Committee.

Young, H. P., & Levenglick, A. (1978). A consistent extension of Condorcet’s election principle. SIAM
Journal on Applied Mathematics, 35(2), 285–300.

Yu, H.-F., Lo, H.-Y., Hsieh, H.-P., Lou, J.-K., McKenzie, T. G., Chou, J.-W., Chung, P.-H., Ho, C.-H.,
Chang, C.-F., Wei, Y.-H., et al. (2010). Feature engineering and classifier ensemble for KDD cup
2010. In Proceedings of the KDD cup 2010 workshop (pp. 1–16).

87Machine Learning (2021) 110:37–87	

1 3

Zha, H., He, X., Ding, C., Simon, H., & Gu, M. (2001). Bipartite graph partitioning and data clustering.
In Proceedings of the tenth international conference on information and knowledge management
(pp. 25–32). ACM.

Zhang, D., Yin, J., Zhu, X., & Zhang, C. (2018). Network representation learning: A survey. IEEE
Transactions on Big Data, 6(1), 3–28.

Zhang, Y., Xiong, Y., Kong, X., & Zhu, Y. (2017). Learning node embeddings in interaction graphs. In Pro-
ceedings of the 2017 ACM on conference on information and knowledge management (pp. 397–406).

Zhou, T., Ren, J., Medo, M., & Zhang, Y.-C. (2007). Bipartite network projection and personal recommen-
dation. Physical Review E, 76(4), 046115.

Ziegler, C.-N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005). Improving recommendation lists
through topic diversification. In Proceedings of the 14th international conference on world wide web
(pp. 22–32). ACM.

Zweig, K. A., & Kaufmann, M. (2011). A systematic approach to the one-mode projection of bipartite
graphs. Social Network Analysis and Mining, 1(3), 187–218.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Node classification over bipartite graphs through projection
	Abstract
	1 Introduction
	2 Related work
	2.1 Bigraph data analysis
	2.2 Node classification techniques

	3 Methods
	3.1 Bigraphs and projections
	3.2 Determining importance of top nodes
	3.3 Determining the link weights in the projection
	3.4 Relational classifiers
	3.5 Decomposition of metrics
	3.6 Scalability
	3.6.1 Batch processing
	3.6.2 Sampling
	3.6.3 Grid search
	3.6.4 SW transformation

	4 Data and experimental setup
	5 Results and discussion
	5.1 Predictive performance
	5.1.1 Predictive performance of the top node weight functions
	5.1.2 Predictive performance of the aggregation functions
	5.1.3 Predictive performance of the relational classifiers

	5.2 Run-time performance
	5.3 SW-transformation
	5.4 General recommendations

	6 Limitations and future research
	7 Conclusion
	References

