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Abstract
Existing deep active learning algorithms achieve impressive sampling efficiency on natural 
language processing tasks. However, they exhibit several weaknesses in practice, including 
(a) inability to use uncertainty sampling with black-box models, (b) lack of robustness to 
labeling noise, and (c) lack of transparency. In response, we propose a transparent batch 
active sampling framework by estimating the error decay curves of multiple feature-defined 
subsets of the data. Experiments on four named entity recognition (NER) tasks demon-
strate that the proposed methods significantly outperform diversification-based methods for 
black-box NER taggers, and can make the sampling process more robust to labeling noise 
when combined with uncertainty-based methods. Furthermore, the analysis of experimen-
tal results sheds light on the weaknesses of different active sampling strategies, and when 
traditional uncertainty-based or diversification-based methods can be expected to work 
well.
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1  Introduction

Deep neural networks achieve state-of-the-art results on many tasks, especially when 
a large amount of training data is available. Their success highlights the importance of 
reducing the cost of collecting labels on a large scale. Active learning can be used to select 
data samples that will most benefit a predictor’s training, thereby reducing the amount of 
labeled data needed without hurting the predictor’s accuracy. The effectiveness of uncer-
tainty and disagreement-based1 active learning methods have been demonstrated on several 
datasets for shallow predictors (Settles and Craven 2008; Settles 2009), and more recently 
also for deep learning predictors  (Gal et  al. 2017; Shen et  al. 2018; Siddhant and Lip-
ton 2018). Nevertheless, random sampling is still the most popular method to build new 
datasets in several domains, including natural language processing   (Tomanek and Ols-
son 2009). This is due to the practical issues of deploying uncertainty-based active sam-
pling (Settles 2011; Lowell et al. 2019), including its limited applicability, robustness, and 
transparency.

Applicability Uncertainty sampling selects samples with the lowest prediction confi-
dence of a predictor and collects their labels. However, the uncertainty in prediction may 
be hard to estimate for some complex models. For example, a relation extraction system 
is often a pipeline that includes named entity extraction, entity linking, and sentence clas-
sification. Combining the uncertainty of different components is difficult and usually relies 
on ad hoc approaches  (Reichart et  al. 2008). Another common case is that state-of-the-
art commercial software packages or online services may only provide final predictions 
(i.e., a black-box predictor) (Wang et al. 2017a). Our first research question is whether a 
general active learning method can be based only on the predictions from such black-box 
predictors.

Robustness Uncertainty sampling assumes that the labels of uncertain examples are the 
most informative training data. However, the strategy may select outliers or ambiguous 
examples for annotators due to their low confidence scores. This selection bias often intro-
duces substantial labeling noise into the dataset (Mussmann and Liang 2018). In fact, out-
lier detection methods often improve prediction performance by adopting a sample selec-
tion strategy that is exactly opposite to uncertainty sampling (Bouguelia et al. 2018). It is 
usually hard to distinguish an informative training example from a misleading outlier, and 
blindly adopting uncertainty sampling may result in much worse performance than random 
sampling in practice. Our second research question is whether a general active learning 
method can be robust to labeling noise without relying on prior knowledge.

Transparency Active sampling introduces a sampling bias, but we often know little 
about its effects on the performance in different aspects. This lack of transparency causes 
many practical issues. Not understanding why an active learning method works well for a 
dataset, we have few insights into whether the sampling method will work for another simi-
lar dataset well enough to compensate the effort of trying active learning, whether the deep 
predictors will perform worse in some crucial aspects/classes, whether the selection will 
emphasize undesirable biases (e.g., a person’s race), and whether the sampling efficiency 
improvement will vanish in the long run or after switching the deep predictor for uncer-
tainty estimation.

1  In this work, we view disagreement scores as a kind of uncertainty estimation to simplify our discussion.
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Furthermore, practitioners need to choose a sampling method for a new task and a given 
deep predictor before collecting labels (e.g., random, uncertainty or diversification sam-
pling, or combination of the above). Existing deep active learning studies usually focus on 
improving prediction performance without exploring why and how much the performance 
gains depend on the predictor’s specific ways of modeling feature interactions. The lack 
of such insights makes the choice extremely difficult (Lowell et al. 2019). Thus, our third 
research question is whether we can have a general analysis tool to provide insights into 
when and why an active sampling method works, and forecast the potential benefits in dif-
ferent aspects based on a small number of existing labels.

To answer the above research questions, we first illustrate three kinds of samples in 
Fig. 1. The blue triangle nodes are easy samples, which means their prediction errors are 
low and remain almost unchanged if we collect more such labels. The pink square nodes 
represent samples with noisy labels, which means their prediction errors or uncertainties 
are high but decrease slowly as more labels are seen. To select informative samples like the 
orange diamond nodes, we propose a batch active learning framework that maximizes the 
error reduction of each sample batch.

In this framework, we propose three sampling methods. When it’s not possible to access 
the uncertainty of the deep predictor but labels of a validation dataset are available, we 

Fewer samples requiredFewer practical issues

(b)

(a) (c)

Our method

Number of word occurrences in the training dataset

Cluster before 
receiving the 
latest batch

Cluster

Error or 
uncertainly

Number of word occurrences in the training dataset

Error or 
uncertainly

Chosen sample

Sample in the 
sampling pool

Number of word occurrences in the training dataset

Error or 
uncertainly

Fig. 1   Comparison of sampling strategies. Each node is a word in an NER problem and we plot its pre-
diction error/uncertainty versus its count in the current training dataset. Random or diversification-based 
sampling a often selects samples irrelevant to the task, such as a blue triangle node. Uncertainty sampling 
c prefers to select samples with the highest error/uncertainty (e.g., pink square nodes). However, their error 
decay could be small because of some inherent label noise. Our method b is a novel balance in this spec-
trum which usually provides better performance than diversification while being more robust, explainable, 
and applicable than uncertainty sampling (+ diversification)



1752	 Machine Learning (2020) 109:1749–1778

1 3

cluster the samples and predict the validation error reduction on each cluster as shown in 
Fig. 2. The first method is called error decay on groups (EDG). Without a validation data-
set, the second method approximates the error decay using prediction changes on groups. 
Finally, if uncertainty is available, we model the uncertainty reduction of each sample. In 
Sect. 3, we describe the first method in detail, and view the second and third methods as its 
extensions and denote them as EDG_ext1 and EDG_ext2, respectively.

Analyzing error decay on clusters results in several practical benefits. We can model 
the error decay using only model predictions; noisy samples will not be selected due to 
their low error decay; the strategy of our active sampling is interpretable (e.g., sampling 
more uppercased words in a named entity recognition problem due to their larger predic-
tion error decay); and we can predict the performance gains from active learning in differ-
ent clusters/aspects. Nevertheless, having only a few labels, we found that achieving the 
practical advantages sacrifices some sampling efficiency. To feasibly approximate the error 
reduction, we assume independence between samples in different clusters. For instance, if 
a sample is a word in a sentence, our selection method assumes its neighboring words do 
not affect the error decay of the word. In practice, violation of this assumption causes sub-
optimal sampling efficiency when compared to uncertainty-based active learning.

We apply our framework to named entity recognition (NER) problems where our inde-
pendence assumption is famously violated, and comprehensively evaluate the pros and 
cons of the proposed framework.2 We summarize our results from NER experiments in 
Table 1, which shows that our framework provides novel ways to trading partial sampling 
efficiency gain for better applicability, robustness, and transparency.

Choosing 
uncertain samples

Input 
features

Output 
prediction

Validation 
data

Choosing samples to reach 
the desired quality faster in 

the aspect of interests

Number of training samples

Modeling error decay on groups

Complicated predictor

Current
cluster

Maximizing 
reduction of 
next batch

Proposed 
framework

Clusters Error Uncertainty

Error or 
uncertainty

or

Fig. 2   The uncertainty sampling for a black-box predictor is hard to interpret. Our proposed framework pre-
dicts the reduction of error/uncertainty on clusters of samples, optionally with the help of validation data. 
The resulting strategies provide a more direct explanation of the choices made by batch active learning

2  The proposed methods could be extended to other types of classification and sequential tagging problems 
given proper ways of clustering samples and a family of proper error decay functions.
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1.1 � Summary of main contributions

1.	 We propose a novel active learning method, EDG, which models validation error decay 
curves on clusters of samples. We extend the method by replacing validation error decay 
with prediction difference decay or uncertainty decay to avoid relying on validation data. 
This demonstrates the flexibility of EDG framework.

2.	 In one synthetic and three real-world NER datasets, we show that EDG significantly 
outperforms the diversification baseline for the black-box model with or without the 
help of validation data. This demonstrates the effectiveness and applicability of EDG 
framework.

3.	 Modeling the error decay on clusters can be used as an analysis tool for arbitrary active 
learning methods. The experimental results show that no single method always wins 
and the proposed analysis tool provides intuitions and guidelines on selecting a specific 
method. This demonstrates the transparency of EDG framework.

4.	 We propose a new evaluation method based on pseudo labels. The method allows us 
to test active learning methods on a large sampling pool and test their robustness to 
systematic labeling noise.

5.	 In the experiments on pseudo labels and synthetic dataset, we show that combining EDG 
with state-of-the-art uncertainty sampling methods (i.e., choosing the samples with the 
highest uncertainty decay rather than uncertainty) improves sampling efficiency in the 
presence of systematic labeling noise, random labeling noise, and model change. This 
demonstrates the robustness of EDG framework.

2 � Related work

Several studies aim at making active learning practical (Settles 2011). For example, Phil-
lips et al. (2018) extend the techniques of interpreting a classifier’s predictions to explain 
the active sampling process, but still rely on the uncertainty estimation of the classifier. 

Table 1   Comparison of different sampling approaches

Proposed Classic
EDG ext1 ext2 US (+ Div) Rnd/Div

Interpretable No NoStrategy Yes Yes Yes

Robustness Lowto Noise High Med Med High

Output Prob ProbRequired Pred Pred None

Validation YesRequired No No No No

Label Cost LowReduction Med Med High High

We compare transparency (i.e., interpretable strategy), robustness to labeling noise,required output from the 
predictor, whether validation data isrequired or not, and cost reduction of collecting clean labels. USmeans 
uncertainty sampling (including disagreement-based sampling),Rnd means random sampling, and Div 
means diversification-basedsampling. Med, pred, and prob means medium, predictor prediction,and predic-
tion probability, respectively. In black-box models, onlypredictions of the predictor are available. A more 
ideal property ishighlighted with a darker shade in the table
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Bloodgood and Vijay-Shanker (2009) survey and propose stopping criteria based on over-
all error decay. Instead, we propose a novel active sampling method by modeling error 
decay on groups of samples.

Recently, active learning on black-box models has attracted research attention due to 
practical needs. Wang et al. (2017a) focus on improving a black-box semantic role labeling 
model using another neural network with low transparency. Rubens et al. (2011) propose 
estimating the variance of predictions of a black-box regressor, which is computationally 
prohibitive unless applied to simple models such as a linear regressor.

Popular active learning methods such as uncertainty sampling are not robust to 
noise (Mussmann and Liang 2018), and there is a body of research in active learning (ref-
erenced below) to address this issue. However, the main focus of previous studies is to 
identify and post-process the noisy labels given some prior knowledge of the noise-to-sig-
nal ratio. Instead, we propose active learning methods which are inherently robust to noise 
by avoiding the selection of difficult samples for annotators in the first place.

The methods to identify noisy labels are similar to the methods that measure the uncer-
tainty of each sample  (Sheng et  al. 2008; Bouguelia et  al. 2018), which could be based 
on disagreement between workers  (Sheng et  al. 2008; Zhao et  al. 2011), disagreement 
between manually created labels and automatically generated predictions   (Bouguelia 
et al. 2015; Khetan et al. 2018), model uncertainty (Sheng et al. 2008; Kremer et al. 2018; 
Bouguelia et al. 2018), or estimation of workers’ quality (Zhang et al. 2015; Khetan et al. 
2018). After identifying noisy labels, different methods adopt different strategies such as 
relabeling (Sheng et al. 2008; Bouguelia et al. 2015), excluding/down-weighting the noisy 
labels (Khetan et al. 2018), or both (Zhao et al. 2011; Zhang et al. 2015; Bouguelia et al. 
2018), or acquiring high-quality labels (Kremer et al. 2018).

Some approaches, such as Dasgupta (2011), cluster input features and diversify sam-
ples by choosing them from different clusters, without considering information from the 
predictors being trained, and often showing only limited improvements in sampling effi-
ciency. Recent approaches (Settles and Craven 2008; Wei et al. 2015; Sener and Savarese 
2018; Ravi and Larochelle 2018) have combined uncertainty and diversification (e.g., by 
multiplying the informativeness and representativeness scores). By directly modeling the 
error reduction, our proposed methods naturally balance the two criteria without relying on 
model uncertainty estimation. This makes our methods robust to labeling noise and appli-
cable to black-box models.

Another direction for deep active learning is to learn an error reduction predictor or a 
sample selector. However, the selection model is either only applicable to a simple model 
like naïve Bayes  (Roy and McCallum 2001; Fu et  al. 2018), or requires a large amount 
of data to train a complex predictor or selector. The training data for the non-transparent 
selection model usually needs to come from a similar task. For instance, they could be 
images with different labels for image classification, other users for recommendation, or 
another language for NER  (Bachman et  al. 2017; Fang et  al. 2017; Ravi and Larochelle 
2018). Although transferring the error reduction predictor between different types of data-
sets is possible (Konyushkova et al. 2017), it is unclear on which dataset pairs such a trans-
fer would work (Koshorek et al. 2019).

A challenge related to active learning is to discover blind spots of the predictor (also 
called unknown unknowns). Lakkaraju et al. (2017) view this problem as a multi-armed 
bandit problem; they first cluster the samples in a pool, and select the samples from a group 
more often when more unknown unknowns are discovered from the group. However, it is 
not clear whether this strategy yields better sampling efficiency in terms of the predictor’s 
performance.
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Chen et al. (2018) define unfairness as the difference in classification accuracy between 
two groups and suggest additional data collection as one of the remedies for such unfairness. 
However, they do not study an active sampling method to efficiently reduce the classification 
error or the unfairness.

In the extensions of our method, we maximize the prediction change (i.e., EDG_ext1 in our 
experiments). The method is related to a type of active learning strategies based on maximiz-
ing model change (Settles et al. 2008; Settles and Craven 2008). However, these methods do 
not address the practical challenges such as transparency, applicability to black-box models, 
and robustness to labeling noise.

3 � Method

The main goal of batch active learning is to reduce the error E(C,DU) of a classifier or tagger 
C on an unseen testing dataset DU after labeling a fixed number of samples. To simplify the 
explanation, we first assume that testing error can be well-approximated by validation error, 
and the methods that do not require validation data will be described later as extensions in 
Sect. 4.

Based on external datasets, previous work maximizes the error reduction by modeling 
interactions among various types of signals such as uncertainty estimation, input features, and 
the state of the sampling process (Konyushkova et al. 2017; Bachman et al. 2017; Fang et al. 
2017; Ravi and Larochelle 2018). In order to not rely on a large external dataset, we first clus-
ter samples into multiple groups, and assume that the validation error of the samples in each 
group only depends on the number of annotated samples in the same group. Then, estimating 
the error reduction is decomposed into simple one-dimensional regression problems which 
can be done by observing only a few pairs of validation errors and its corresponding number 
of samples.

In the following subsections, we describe our framework in the context of solving NER 
problems. The framework is generally applicable to any classification or sequential tagging 
problems if the methods used to cluster samples (Sect.  3.2) and the error decay function 
(Eq. 4) are modified properly.

3.1 � Error partition

Given a feature, we can derive a partition p by clustering the samples into Jp groups. For 
example, using the sentence embedding as our features, we can use K-means  (MacQueen 
1967) to cluster every sentence in the corpus into multiple groups containing sentences with 
similar embeddings. Then, the testing error E(C,DU) can be partitioned using the sentence 
groups as:

where C is the current predictor, si is ith sentence in the testing data DU , P(gp
j
|si) is the 

probability that the sentence si belongs to the jth group gp
j
 , and P(gp

j
|si) could be the indica-

tor function �(si ∈ g
p

j
) if a hard clustering method is used. 

∑�si�
l=1

�(yi,l ≠ ŷC
i,l
) is the error of 

the sentence si using predictor C, |si| is the length of the sentence, yi,l is the ground-truth tag 
for the lth token in the sentence si , and ŷC

i,l
 is the tag predicted by the predictor C.

(1)E(C,DU) =
∑
si∈DU

Jp∑
j=1

P(g
p

j
|si)

|si|∑
l=1

�(yi,l ≠ ŷC
i,l
),
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By assuming that the error of sentence si could be approximated by the estimated aver-
age error of its groups Ê(gp

j
,C) (i.e., 

∑�si�
l=1

�(yi,l ≠ ŷC
i,l
) ≈ Ê(g

p

j
,C)�si� ), we estimate the over-

all error as:

where m(gp
j
,DU) =

∑
si∈DU

P(g
p

j
�si)�si� could be viewed as the number of times group gp

j
 

appears in DU.
In addition to sentence clusters, we can also rely on word features and word clusters to 

form a partition p. Consequently, the error becomes

where si,l is lth token in the sentence si . Hence, m(gp
j
,DU) =

∑
si∈DU

∑�si�
l=1

P(g
p

j
�si,l) in 

Eq. (2).

3.2 � Clustering for NER

When we use different partitions p, we get different error estimates Êp(C,DU) . To increase 
the robustness of our error estimation, we adopt multiple partitions based on different fea-
tures and aggregate the testing error estimates for selecting the next batch of samples to be 
annotated.

In our experiments on real-world NER datasets, we build four partitions using different 
features of sentences and words as follows:

•	 Sentence We compute sentence embeddings by averaging the word embeddings, 
and cluster all the sentence embeddings into 10 groups. Next, the cosine similarities 
between sentence embeddings and the cluster centers are passed through a softmax 
layer with temperature parameter 0.1 to compute P(gp

j
|si).

•	 Word We perform a simple top-down hierarchical clustering on word embeddings, 
which first clusters the words into 10 groups and further partitions each group into 10 
clusters. This step results in 100 clusters for words in total.

•	 Word + Shape Instead of performing clustering on the lowest layer of the hierarchy, 
we partition the words in each group using four different word shapes: uppercase let-
ters, lowercase letters, first uppercase letter and rest lowercase letters, and all the shapes 
other than above. The same word shape features are also used in our tagger.

•	 Word + Sentence Similarly, we partition each of the 10 word groups in the lowest layer 
of the hierarchy. For each word, we find the sentence si the word belongs to, and rely on 
the sentence group gp

j
 with highest P(gp

j
|si) to perform the partition.

Performing clustering on the concatenation of multiple feature spaces is less interpretable, 
so we choose to model the feature interdependency by hierarchical clustering (i.e., con-
catenating the clustering results). For example, in the third partition (i.e., Word + Shape), 
a cluster contains all words that have the same shape feature and belong to one of the 10 
word embedding clusters.

(2)Êp(C,DU) =

Jp∑
j=1

Ê(g
p

j
,C)m(g

p

j
,DU),

(3)E(C,DU) =
∑
si∈DU

|si|∑
l=1

Jp∑
j=1

P(g
p

j
|si,l)�(yi,l ≠ ŷC

i,l
),
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Among the four partitions, the first one (i.e., Sentence) uses soft clustering because a 
sentence might contain multiple aspects that belong to different groups. We perform hard 
clustering on word features because it achieves similar performance when compared to soft 
clustering, and speeds up updating the cluster size when a new sample is added. For effi-
ciency, all the clustering is done by mini-batch K-means (Sculley 2010) in DA , the union of 
training data, sampling pool, and validation data.

To simplify the method and to have a better control on experimental settings, we use 
the same method to form groups based on the tagger’s input features for all datasets, and 
use the same groups when selecting all batches in a dataset. Nevertheless, we note that the 
framework allows us to model error decay on more fine-grained clusters as more training 
data are collected, or use other external features (e.g., the journal where the sentence is 
published) that might not be easily incorporated into the tagger or uncertainty sampling.

3.3 � Error decay modeling

Within each group, we assume that the error depends only on the number of samples in 
the group being observed in the training data. This is to avoid a complicated and unin-
terpretable error decay model built by many pairs of training data subset and validation 
error. We model the error of predictor CTt

 on jth group Ê(gp
j
,CTt

) in Eq. (2) using a one-
dimensional function e(n), where n = m(g

p

j
, Tt) is the size of group gp

j
 in the training data 

Tt after tth batch is collected, and further constrain the class of decay functions e(n) using 
prior knowledge of the tasks.

The decay function of prediction error e(n) depends on the task (Si et al. 1992; Hestness 
et al. 2017). The error decay rate of many tasks has been shown to be 1∕nk , both theoreti-
cally and empirically (Hestness et al. 2017), and k is typically between 0.5 and 2 (Si et al. 
1992).

In sequence tagging tasks, the error decay rate depends on the importance of context. To 
intuitively explain how the importance of context affects the error decay rate, we discuss 
the form of error decay functions in one case where context does not affect the label and in 
another case where context matters.

Case 1 (context does not matter) Assuming we are classifying each token in a sentence into 
two classes and its label does not depend on context (like predicting the outcome of a coin 
toss), we only make reducible errors when we observe the less-likely label more times than 
the other label. Applying Chernoff bounds (Mitzenmacher and Upfal 2017), we can show 
that the error decay rate is as fast as an exponential function.

Without loss of generality, we assume the probability q of observing posi-
tive class (i.e., head) in the ith token is smaller than 0.5. Let n be the number of 
coin tosses be n and the random variable Xi

j
= �(jth toss on ith coin is head) . In 

order to classify the testing tokens optimally (i.e., predict tail whenever seeing the 
ith token), we would like to observe Xi =

∑n

j=1
Xi
j
<

n

2
 . Therefore, the error rate is 

P(Xi ≥
n

2
)(1 − q) + q(1 − P(Xi ≥

n

2
)) = P(Xi ≥

n

2
)(1 − 2q) + q.

Since all Xi
j
 are assumed to be independent, we can use Chernoff bounds to model the 

decay of P(Xi ≥
n

2
) = P(Xi ≥ (1 + �)�) as n increases, where � = q ⋅ n , and � =

0.5−q

q
 . 

Chernoff bounds tell us that P(Xi ≥
n

2
) ≤ exp(−n ⋅ h(q)) , where h(q) is an error decay speed 

function that depends on q. Different versions of Chernoff bounds lead to different h(⋅) , but 
all h(⋅) increase as q decreases. That is, when coins are more biased, error rate decays 
faster.
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Case 2 (context matters) If we assume that the influence of each word in the context to the 
label is independent, we need to estimate the probability of having the label given a word 
in the context to predict the label accurately. For example, we want to know how likely the 
label is a person name when we observe “Dr” in the context, so that we can estimate how 
likely the Pepper in “Dr Pepper” should be labeled as a person. The error of the probabil-
ity estimation decays with rate 1∕

√
n in the long run according to Chernoff bounds or the 

central limit theorem, so the error decay function is likely to be as slow as 1∕
√
n when the 

words in context affect the label.
The error decay rate of most of the NER tasks should lie between the decay rates in the 

above two cases because the taggers will gradually learn to utilize longer contexts. Thus, 
we model the error decay Ê(gp

j
,CTt

) = e
(
m(g

p

j
, Tt)

)
 for NER by a fractional polynomial:

where a0.5 , a0−3 , bj and cj are parameters to be optimized, and we constrain these param-
eters to be non-negative. cj is an estimate of irreducible error in this model, bj tries to pre-
dict the initial error (when the first batch is collected), a0.5 and a1−3 weight the curves with 
different decay rates, and a0 scales the number of training samples. If e(n) is proportional 
to 1∕

√
n , the estimated a1−3 would be close to 0. If e(n) is proportional to an exponential 

function, a1−3 would become the coefficients in its Taylor expansion.
The parameters a0.5 , a0−3 , bj , and cj are estimated by solving

where tm is the number of annotated batches and the estimated error 
Ê(g

p

j
,CTt

) = e
(
m(g

p

j
, Tt)

)
 . The average error of jth group in validation dataset DV , 

E
p

j
(CTt

,DV ) =
∑

si∈DV
P(g

p

j
�si)∑l �(yi,l ≠ ŷ

CTt

i,l
) for a partition using sentence clusters and 

E
p

j
(CTt

,DV ) =
∑

si∈DV

∑
l P(g

p

j
�si,l)�(yi,l ≠ ŷ

CTt

i,l
) for a partition using word clusters. wj and 

vtj are constant weights,3 and M = 2Jp + 5 is the number of parameters. Due to the small 
number of parameters, error decay curves could be modeled by retraining deep neural net-
works only a few times (we set tm = 5 when selecting the first batch in our experiments).

3.4 � Query batch selection

Modeling the error decay on each cluster based on different features could be used as an 
analysis tool to increase the transparency of existing active learning methods. Such an anal-
ysis reveals the weaknesses (i.e., the groups of samples with high validation error) of the 
current tagger and allows us to estimate the number of samples that needs to be collected to 
reach a desirable error rate.

(4)e(n) = cj + bj

(
a0.5

(a0 ⋅ n)
0.5

+

3∑
k=1

ak

(a0 ⋅ n)
k

)
,

(5)
argmin

{a0−3, a0.5,

bj, cj} ∈ �
M
≥0

Jp∑
j=1

wj

tm∑
t=1

vtj

(
Ê(g

p

j
,CTt

) −
E
p

j
(CTt

,DV )

m(g
p

j
,DV )

)2

,

3  See “Appendix 3” for details on setting the weights.
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We propose a novel active learning method to actively address the fixable weaknesses of 
the tagger discovered by the analysis tool. When a single partition p is used, we select the next 
batch B by maximizing

where T is the collected training data, and DA is the union of the pools of candidate sam-
ples, training data T, and validation data DV , which are used to approximate group occur-
rence statistics in the testing data DU . Note that we use e(m(gp

j
,B ∪ T)) to approximate 

Ê(g
p

j
,CB∪T ) , so we prevent retraining the predictor C within each batch selection.

Proposition 1  Suppose that Ê(gp
j
,CTt

) is a twice differentiable, non-increasing and convex 
function with respect to m(gp

j
, Tt) for all j, then Hp(T) is non-decreasing and submodular.

The convexity of Ê(gp
j
,CTt

) is a reasonable assumption because the error usually decays at 
a slower rate as more samples are collected. Since selecting more samples only decreases the 
value of adding other samples, Hp(T) is submodular (see “Appendix 2” for a rigorous proof).

Finding the optimal B in Eq.  (6) is NP-complete because the set cover problem can be 
reduced to this optimization problem  (Guillory and Bilmes 2010), but the submodularity 
implies that a greedy algorithm could achieve 1 − 1∕e approximation, which is the best pos-
sible approximation for a polynomial time algorithm (up to a constant factor) (Lund and Yan-
nakakis 1994; Guillory and Bilmes 2010).

When having multiple partitions p based on different features, we select the next sentence 
in the batch according to:

where � is a small smoothness term. If the partition p is a set of sentence clusters, then 
Si = {si} . If it is is a set of word clusters, then Si = {si,l}

|si|
l=1

 , where si,l is lth word in ith 
sentence. We normalize the error reduction Hp(Si ∪ T) − Hp(T) by the sentence length |si| 

(6)Hp(B ∪ T) = −
∑
j

e
(
m(g

p

j
,B ∪ T)

)
m(g

p

j
,DA),

(7)argmax si

(∏
p

(
Hp(Si ∪ T) − Hp(T)

|si| + �

)) 1

F

,
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to avoid the bias of selecting longer sentences as done in previous work (Settles and Craven 
2008; Shen et al. 2018). After annotators label the whole batch, we retrain the tagger model 
and update the error decay prediction by solving (5) before selecting the next batch.

The selection process is summarized in Algorithm 1. In the first few batches, we perform 
random sampling to collect pairs of every cluster size and the prediction error in the cluster for 
solving the one-dimensional regression problems. After the number of collected batches tm is 
larger than the number of burn-in epochs tb , we have sufficient size and error pairs required to 
model the error decay in (5). Then, we can predict the future error Hp(Si ∪ T) and select the 
samples that minimize the error using (7).

Note that (7) naturally balances informativeness and representativeness. From the informa-
tiveness perspective, the sample without error decay won’t be selected. From the representa-
tiveness and diversification perspectives, we will decrease the value of choosing a sample in a 
batch after the samples in the same clusters are selected.

4 � Method extensions

For some applications, a validation set is not large enough to be used to model the error decay 
curves, and our independent assumption may be too strong. To address this concern, we also 
test two extensions of our method.

4.1 � Prediction difference decay

We replace the ground truth labels in (5) with the prediction ŷ
CTtm

i,l
 based on the current training 

data. That is, our sampling method computes the difference between the current prediction 
and the previous predictions CT1

 , ..., CTtm−1
 in each group, and models the decay of the differ-

ence to maximize the convergence rate of predictions. We denote this method as EDG_ext1 in 
our experiments.

4.2 � Uncertainty or disagreement decay

When the uncertainty or disagreement information is available, we can model their decay 
and choose the sentences with highest uncertainty decay rather than highest uncertainty. To 
avoid making the independence assumption, we skip the clustering step and assume that future 
uncertainty decay is proportional to the previous uncertainty decay, and set the score of ith 
sentence to be

where utm
i

 is the current uncertainty of ith sentence, and utf
i
 is its previous uncertainty. 

Note that we take the minimum between the difference and utm
i

 to ensure that the predicted 
future uncertainty is always non-negative. This method is denoted as EDG_ext2 in our 
experiments.

(8)min(max(u
tf

i
− u

tm
i
, 0), u

tm
i
),
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5 � Experimental setup

NER problems are often used as benchmark to evaluate (deep) active learning meth-
ods (Settles and Craven 2008; Shen et al. 2018; Siddhant and Lipton 2018) because they 
are the foundation for many information extraction tasks, and acquiring tags for each token 
requires a large amount of human effort. We follow Strubell et al. (2017) and use phrase-
level micro-F1 as the performance metric for NER tasks. Precision and recall are com-
puted by counting the number of correct boundary and type predictions. Unless otherwise 
stated, we use a four-layer convolutional neural network (CNN) as our tagger  (Strubell 
et al. 2017).4

5.1 � Simulation on gold labels

This is one of the most widely used setups to evaluate active learning methods. We com-
pare the performance of NER tagger trained on different data subsets chosen by differ-
ent methods. In the “Appendix 1”, we also compare the performance of applying different 
active learning methods to BiLSTM-CRF models.

5.1.1 � Synthetic dataset

We synthesize a dataset with 100 words; each word could be tagged as one of four entity 
types or none (not an entity). There are three categories of words. The first category con-
sists of half of the words which are always tagged as none. This setup reflects the fact that a 
substantial amount of words such as verbs are almost always tagged as none in NER tasks.

One-fourth of the words belong to the second category where every word mention has 
equal probability of being tagged as one of the entity types or none. In real-word NER 
tasks, the noisy label assignment may be due to inherently ambiguous or difficult words.

The remaining 25 words are in the third category where the labels are predictable and 
depend on the other context words. The likelihood of words in the third category being 
tagged as one of the four entity types is sampled from a Dirichlet distribution with �1−4 = 1 , 
while the likelihood of being none is zero. Whenever one of these words w appear in the 
sentence, we check two of its preceding and succeeding words that are also in the third cat-
egory, average their likelihoods of entity types, and assign the type with the highest likeli-
hood to the word w.

When generating a sentence, the first word is picked randomly. The transition probabil-
ity within each category is 0.9. Inside the first and second categories, the transition prob-
ability is uniformly distributed, while the probability of transition to each w inside the third 
category is proportional to a predetermined random number between 0.1 and 1. The sen-
tence length is between 5 and 50 and there is a 0.1 probability of ending the sentence after 
generating a word within the range.

In this dataset, each word is a group in our method and no clustering is performed. The 
ith word has a word embedding vector [�(k = i)]100

k=1
 . When modeling error decay, we start 

from 1000 tokens and use a batch size of 500. When evaluating the sampling methods, 
we start with 3000 using a batch size of 1000. That is, after the first batch is selected, we 

4  We choose to test the methods on CNN because Strubell et al. (2017) showed that CNN can achieve per-
formance which is close to state of the art while being much more efficient than BiLSTM-CRF.
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update the error decay curves based on the prediction of taggers trained on 1000, 1500, 
2000, 2500, 3000 and 4000 tokens.

5.1.2 � Real‑world datasets

We test the active sampling methods on CoNLL 2003 English NER (Tjong Kim Sang and 
De  Meulder 2003), NCBI disease  (Doğan et  al. 2014), and MedMentions  (Murty et  al. 
2018) datasets. The size of these datasets are presented in Table  2. CoNLL 2003 data-
set has four entity types: people name (PER), organization name (ORG), location name 
(LOC), and other entities (MISC). NCBI disease dataset has only one type (disease name). 
For MedMentions, we only consider semantic types that are at level 3 or 4 (higher means 
more specific) in UMLS  (Bodenreider 2004). Any concept mapping to more abstract 
semantic types is removed as was done by Greenberg et al. (2018) and this subset is called 
MedMentions ST19. The 19 concept types in MedMentions ST19 are virus, bacterium, 
anatomical structure, body substance, injury or poisoning, biologic function, health care 
activity, research activity, medical device, spatial concept, biomedical occupation or disci-
pline, organization, professional or occupational group, population group, chemical, food, 
intellectual product, clinical attribute, and Eukaryote.

In all the three datasets, the first 30,000 tokens are from randomly sampled sentences. 
To model error decay, we start from 10,000 tokens and retrain the tagger whenever 5000 
new tokens are added. When evaluating the sampling methods, we start from 30,000 
tokens, using a batch size of 10,000.5

Table 2   The size of datasets for the simulation on gold labels

Synthetic data CoNLL 2003

Token Sentence Token Sentence

Train 99,956 6726 204,567 14,987
Val 10,045 679 51,578 3466
Test 10,004 677 46,666 3684

NCBI disease MedMentions ST19

Token Sentence Token Sentence

Train 135,900 5725 758,449 28,227
Val 23,836 941 254,539 9303
Test 24,255 970 253,737 9383

5  Selecting only part of a sentence is not reasonable in NER, so each chosen batch may be slightly larger 
than the desired batch size. The difference is smaller than the length of the last chosen sentence. Since 
the desired batch size is set to be large (10,000 words in real-world datasets), the difference in batch size 
between sampling methods is negligible.
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5.2 � Simulation on pseudo labels

In practice, we often observe systematic noise from annotators. The noise could come from 
some inherently difficult or ambiguous cases in the task or from incapable workers in the 
crowdsourcing platforms. Thus, we propose a novel evaluation method to test the robust-
ness of different sampling methods in the presence of such noise.

As shown in Fig. 3, we first train a high-quality tagger using all the training data and use 
it to tag a large sampling pool. Then, different active learning methods are used to optimize 
the tagger trained on these pseudo labels. The micro-F1 is measured by comparing the 
tagger’s prediction with pseudo labels or gold labels on unseen sentences. The evaluation 
method also allows us to perform sampling on a much larger sampling pool,6 which is usu-
ally used in the actual deployment of active learning methods. We randomly select 100,000 
abstracts from PubMed as our new sampling pool, which is around 180 times larger than 
the pool we used in the simulation on gold labels. Precisely, the sampling pool consists 
of 24,572,575 words and 921,327 sentences. The testing data with pseudo labels have 
2,447,607 tokens and 91,591 sentences.

We also evaluate the sampling methods on two practical variations of the above set-
ting. We use the data collected for optimizing a CNN to train BiLSTM-CRF models, 
which can be used to test the robustness of active learning methods after switching tagger 
models (Lowell et al. 2019). In addition, when collecting gold labels for biomedical NER, 
annotators often tag the whole abstract at a time, which can only be tested using a large 
sampling pool.

For all sampling methods, the sampling score of an abstract is the average of the sam-
pling scores of the sentences in the abstract weighted by the sentence length. That is, the 
selection criteria view an abstract as a bag of sentences similar to how a sentence is con-
sidered as a bag of words when clustering is performed on words. We greedily select the 
abstract with the highest sampling score.

5.3 � Sampling strategies

We compare the following sampling methods:

•	 Random (RND): We select sentences randomly with uniform probability.

Fig. 3   Simulation on pseudo labels compares active learning methods on a large pool with noisy labels. In 
addition to the original validation and testing set, we also use a testing set with pseudo labels for evaluation

6  Running sampling methods on a large pool is time-consuming, so we only compare the methods after the 
first batch is collected, i.e., when the size of the training dataset reaches 40,000.
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•	 Error Decay on Groups (EDG): This is our method where we optimize (7) using vali-
dation data.

•	 EDG_ext1 (w/o Val): As described in Sect. 4.1, we replace the validation error in EDG 
with the prediction difference.

•	 Maximum Normalized Log-Probability (US): We use the least confidence sam-
pling  (Culotta and McCallum 2005). This variant of uncertainty sampling has been 
shown to be very effective in NER tasks  (Shen et  al. 2018). When applying maxi-
mum normalized log-probability to the CNN model, we select the sentences via 
argmin si

(1∕�si�)∑�si�
l=1

maxyil logP(yil).
•	 Maximum Normalized Log-Probability with Diversification (US + Div): We diversify 

uncertain samples based on sentence embeddings (i.e., the average embedding of its 
words) (Wei et al. 2015; Shen et al. 2018). We implement the US + Div, also called 
filtered active submodular selection (FASS), described in Shen et al. (2018). We use 
cosine similarity to measure the similarity between sentence embeddings. The number 
of candidate sentences is the batch size times t = 100.

•	 Diversification (Div): We use the same algorithm as US + Div, except that all samples 
are equally uncertain.

•	 US + Div + EDG_ext2: This is the same algorithm as US + Div, but with uncertainty 
scores replaced with their difference in Eq. (8).

•	 Bayesian Active Learning by Disagreement (BALD): We select samples based on the 
disagreement among forward passes with different dropouts (Gal et al. 2017). The pre-
diction disagreement of lth token in ith sentence is computed by 

∑K

k=1
�(yk

il
≠modek� (y

k�

il
))

K
 . The 

number of forward passes K is set to 10 in our experiments. The sentence disagreement 
is the average of tokens’ disagreement. We use the default hyperparameter values for 
the dropouts as in Strubell et al. (2017).

•	 BALD + EDG_ext2: Here, disagreement scores are replaced with their difference in 
Eq. (8).

5.4 � NER tagger details

We use the published hyperparameters7 for real-world datasets, and simplify the tagger for 
the synthetic dataset to decrease the standard deviation of micro-F1 scores. In the synthetic 
dataset, we reduce the number of layers of CNN to two because the label depends only on 
the left two words and right two words. Furthermore, we change the learning rate from 
5 × 10−4 to 10−4 , batch size from 128 to 32, and max epochs from 250 to 1000 to make the 
performance more stable. When training BiLSTM-CRF, we also use the implementation 
and its default hyperparameters from Strubell et al. (2017). In all the experiments, the num-
ber of epochs is chosen using validation data.

The word embeddings for CoNLL 2003 are vectors with 50 dimensions from 
SENNA (Collobert et  al. 2011). The word embeddings for NCBI disease and MedMen-
tions ST19 are word2vec (Mikolov et al. 2013) with 50 dimensions trained on randomly 
sampled 10% of all PubMed text. Before clustering, we normalize all the word embedding 
vectors such that the square of the �2 distance between two words is twice their cosine 
distance.

7  https​://githu​b.com/iesl/dilat​ed-cnn-ner.

https://github.com/iesl/dilated-cnn-ner
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5.5 � Visualization of the error decay model

In addition to qualitatively evaluating our methods, we also visualize our error decay mod-
els. The visualization examines whether our error decay function in Eq. (4) can accurately 
model the empirical error decay in NER datasets, and whether our sample selection strate-
gies are transparent and interpretable.

Given a dataset and a partition p, the empirical and predicted errors in each group gp
j
 are 

plotted as two curves in Fig.  4. We compare the y value of empirical error 
E
p

j
(CTt

,DV )∕m(g
p

j
,DV ) and predicted error Ê(gp

j
,CTt

) = e
(
m(g

p

j
, Tt)

)
 given different x val-

ues m(gp
j
, Tt) , the cluster size of group gp

j
 in the training set. Each curve connects six points 

corresponding to t = 1… 6 , and the total number of words in training set |Tt| are 10,000, 
15,000, 20,000, 25,000, 30,000, and 40,000 in real world datasets, respectively. The first 
30,000 words are selected randomly and the last 10,000 words are selected by EDG.

In different datasets, we visualize the different partitions derived from different features. 
In synthetic data, a group is a word. In CoNLL 2003, we plot each group that contains all 
the words with the same shape. In NCBI disease, we plot each group that contains words 
with similar word embeddings. In MedMentions ST19, we plot each group that contains 
sentences with similar sentence embeddings. Note that in the quantitative experiments, we 
actually use word + shape in CoNLL 2003 and 100 clusters in NCBI disease, but we illus-
trate only shape in CoNLL 2003 and 10 clusters in NCBI disease to simplify the figure.

Chemical or symptom names

Disease names

Verbs or actions

Clusters based on 
sentence embeddings

Others

All lowercase

letter is 
uppercase

All uppercase

2nd category 
(noisy labels)

3rd category 
(useful labels) 

1st category 
(useless labels)

Fig. 4   Error decay on groups that are modeled after the first batch is collected by EDG. The x markers on 
the curves are the real error and ∙ means prediction from the fitting curve. The groups shown in the figure 
for NCBI disease and MedMentions ST19 are formed by clustering word and sentence embeddings, respec-
tively
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6 � Results and analysis

The results of error decay visualization, the simulation on gold labels, and pseudo labels 
are shown in Figs. 4, 5 and Table 3, respectively.

As shown in Table 3, the scores on the gold validation set, the gold testing set, and the 
testing set using pseudo labels follow a similar trend and most active learning methods do 
better than random regardless of which test set is used. The observation indicates that the 
taggers do not overfit the label noise in the training data severely and justifies our pseudo 
label experiments.

We first qualitatively analyze the error decay modeling in Sect. 6.1. Next, we quantita-
tively compare different methods in Sects. 6.2, 6.3, 6.4, and 6.5.

6.1 � Error decay visualization

In Fig.  4, the predicted error decay curves usually fit the empirical values well. Some 
deviations of empirical error come from the randomness of training CNNs. For example, 
the fourth point in MedMentions ST19 has higher empirical error in almost all clusters 
because the parameters of CNN trained on the set with 25,000 words happen to converge to 
a worse state.

In the figures, we can see that the length between the fifth and sixth points in each curve 
varies because the last 10,000 words in the training set are actively selected. The clus-
ters that might have a larger error decay (e.g., the orange curve in CoNLL 2003) would 
get more training instances in the last sample batch. The figures demonstrate that the one-
dimensional regression problem for each cluster could be solved well even though the sam-
pling process is not random and only six training pairs for each curve are observed.

We can interpret the sampling strategy of EDG from the different number of samples 
selected in different groups. For example, EDG improves the sampling efficiency when 
compared to random sampling by selecting more words whose first letter is uppercase in 
CoNLL 2003, and by selecting more disease name candidates than verbs or actions in 
NCBI disease.

Fig. 5   Comparison of different sampling methods on the four NER tasks. The validation (first row) and 
testing scores (second row) are averaged from the micro-F1 (%) of three CNNs trained with different ran-
dom initializations. The performance of methods which cannot be applied to black-box taggers is plotted 
using dotted curves
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The transparency of EDG explains some important empirical observations in previous 
work. For example, Lowell et al. (2019) observed that the benefit of active learning is usu-
ally more significant in NER than in sentence classification, and the improvement in NER 
is robust against the change of predictor model. Shen et al. (2018) observed that in some 
NER datasets (e.g., CoNLL 2003), we can train a neural tagger that reaches a similar per-
formance using only a selected small portion of the training set compared to using all the 
data. Figure 4 indicates that one of the main reasons is that there are more lowercase words 
in CoNLL 2003 than uppercase words, and lowercase words are almost never tagged as 
names of people, organizations, or locations. Therefore, the active learning methods could 
easily achieve high sampling efficiency by selecting more uppercase words, and the selec-
tion tendency can benefit various kinds of predictor models.

In real-world datasets, the error decay rate usually follows the function 1∕
√
n when n is 

large for most of the groups regardless of the feature being used. For example, a0.5 in Fig. 4 
is at least two times larger than the a1 + a2 + a3 in CoNLL 2003, NCBI disease, and Med-
Mentions ST19. The small difference between empirical and predicted error also justifies 
our assumption that the weight parameters of terms are shared across all the groups (i.e., 
a0−3 and a0.5 do not depend on the cluster index j).

6.2 � EDG versus Div and RND

Among the methods we compared against, only random (RND) and diversification (Div) 
can be applied to black-box taggers. Our method (EDG) significantly outperforms Div, and 
Div outperforms RND in synthetic, CoNLL 2003, and NCBI disease datasets, which dem-
onstrates the effectiveness of EDG. This also justifies our assumptions and indicates that 
the error decay curves are modeled well enough for the purpose of active sampling.

6.3 � US versus US + Div

Shen et al. (2018) found that diversification is surprisingly not helpful in batch active learn-
ing. However, our results suggest that this finding might be valid only when the sampling 
pool size is small and/or some groups of frequent words/sentences are clearly not helpful. 
When the pool is sufficiently large and the task is to jointly extract many different types 
of entities like MedMentions ST19, sampling almost all kinds of sentences can be help-
ful to the task as all sentence clusters have similar decay on the far right of Fig. 4. Then, 
the diversification approach (Div) can be as effective as US and EDG, while US + Div(+ 
EDG_ext2) provides the best result.

6.4 � EDG versus uncertainty‑based methods

As shown in Wang et al. (2017a), it is difficult to perform better in terms of sampling effi-
ciency when comparing a black-box active learning method with uncertainty sampling (US). 
In real-world datasets, EDG achieves part of the performance gain from US that is easily 
explainable (e.g., coming from ignoring those easy words), controllable by humans,8 and 

8  In the supplementary material A.5, we show that EDG can be easily modified for situations where each 
label class has a different penalty.
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does not involve the specifics of the tagger to model the interaction between each word and its 
context.

Furthermore, US is not robust to labeling noise or ambiguous samples  (Mussmann and 
Liang 2018), which have high errors but low error decay. For instance, US almost always 
selects difficult words with high irreducible errors in the synthetic data. In real-world dataset, 
we could also observe ambiguous or difficult words. For example, insulin is a chemical, but 
insulin resistance could be a disease or a symptom in NCBI disease dataset. In Fig. 4, we can 
see that EDG does not select many words in the group. Our error curves in the supplementary 
material A.4 show that US selects many such words with incorrect pseudo labels. The vulner-
ability makes EDG outperform US in synthetic data and Table 3 on average.

US + Div and BALD are more robust to labeling noise than US, but still suffers from a 
similar problem. Thus, the sampling strategies that choose more samples with reducible uncer-
tainty (i.e., US + Div + EDG_ext2 and BALD + EDG_ext2) could significantly improve the 
accuracy of taggers in noisy datasets like our synthetic data and NCBI disease dataset with 
pseudo labels, while having comparable performance on the other clean datasets with gold 
labels.

6.5 � EDG_ext1 (w/o Val) versus EDG

In all datasets, modeling the error decay using pseudo labels (EDG_ext1) achieves similar 
performance when compared to using gold validation data (EDG), and also outperforms Div. 
In addition, the micro-F1 scores of EDG on validation and testing data roughly show a similar 
trend, which suggests that our method does not overfit the validation data even though it has 
access to its gold labels during sampling.

7 � Conclusions

We proposed a general active learning framework which is based only on the predictions from 
black-box predictors, is robust to labeling noise without relying on prior knowledge, and fore-
casts the potential error reduction in different aspects based on a small number of existing 
labels.

Our experimental results suggest that no single batch active learning method wins in all the 
cases and every method has its own weaknesses. We recommend practitioners to analyze the 
error decay on groups in order to choose a proper sampling algorithm. If the sampling pool 
is small and the error decay analysis shows that many samples could be easily tagged, then 
uncertainty sampling methods are expected to perform well. Otherwise, diversification should 
be considered or combined with uncertainty sampling. Finally, error decay on groups (EDG) 
or its extensions should be adopted if there are practical deployment challenges such as issues 
of applicability (e.g., only a black-box predictor is available), robustness (e.g., labels are inher-
ently noisy), or transparency (e.g., an interpretable sampling process or an error reduction 
estimation is desired).
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8 � Future work

In our experiments, we demonstrated that our methods are transparent and robust to 
labeling noise. However, we have not yet applied them to tasks other than NER. For 
example, when we annotate a corpus for relation extraction, we usually want to select a 
document which is informative for the named entity recognizer, entity linker, and sen-
tence classifier. This challenge is also called multi-task active learning (Reichart et al. 
2008; Settles 2011). Compared to heuristically combining uncertainty from different 
models (Reichart et al. 2008), our methods provide more flexibility because it allows us 
to assign weights on the error reduction of each task and select the next batch by consid-
ering all tasks jointly.

In addition to the above pipeline system, question answering (QA) is another example 
where uncertainty is difficult to estimate. Many reading comprehension models such as 
pointer networks predict the start and end positions of the answer in a paragraph  (Wang 
et al. 2017b). However, higher uncertainty on the position prediction does not necessarily 
mean the model is uncertain about the answer. It is possible that the correct answer appears 
in many places in the paragraph and the network points to all the right places with similar 
low probability. By modeling the error decay directly, our methods avoid the issue.

Finally, we have not compared EDG with active learning methods that are designed for 
a specific task to solve a specific practical issue. For example, the active sampling methods 
proposed by Wang et al. (2017a) are designed for semantic role labeling and focus on the 
applicability issue (i.e., black-box setting). Due to the difficulty of adapting their methods 
to NER and making fair comparisons, we leave such comparisons for future work.
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Appendix A: Additional experimental results

A.1 CNN for BiLSTM‑CRF using gold labels

Baldridge and Osborne (2004) and Lowell et al. (2019) demonstrate that samples col-
lected to optimize one model might not be helpful to another model. To test the robust-
ness of different active learning methods to such model switch, we train BiLSTM-CRF 
models using the batches collected based on CNN (i.e., CNN for BiLSTM-CRF in 
Table 3). When training BiLSTM-CRF on the synthetic dataset, we increase the max 
epochs from 250 to 1000.
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The results are presented in Fig. 6. Nearly all the observations from Fig. 5 also hold 
in Fig.  6. One difference is that EDG and its extensions perform slightly better. For 
example, in Fig. 5 (CNN for CNN setting), BALD + EDG_ext2 sometimes performs 
slightly worse than BALD (e.g., in the testing data of CoNLL 2003 and NCBI disease). 
However, BALD + EDG_ext2 seems to always perform similar or better (e.g., in Med-
Mentions ST19 and testing data of NCBI disease) than BALD after we switch the tag-
ger model.

Another difference is that the performance gain between active sampling and ran-
dom sampling is smaller in MedMentions ST19 than the gap in Fig. 5, while we do not 
observe a similar reduction in CoNLL 2003 and NCBI disease. We hypothesize that 
active learning methods will skip the groups of unhelpful words in CoNLL 2003 (like 
lowercase words) and NCBI disease, and those words are usually also unhelpful to 
other models. Thus, the performance gains in such datasets are more transferable and 
less dependant on the model choice in the first place.

Fig. 6   Performance of BiLSTM-CRF models trained on training sets in Fig. 5 (i.e., CNN for BiLSTM-CRF 
setting). The performance metrics are the average micro-F1 (%) of three BiLSTM-CRF trained with differ-
ent random initializations

Fig. 7   Comparison of applying different sampling methods to BiLSTM-CRF models. The performance 
metrics are the average micro-F1 (%) of three BiLSTM-CRF trained with different random initializations
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A.2 BiLSTM‑CRF for BiLSTM‑CRF using gold labels

Following Shen et  al. (2018), we set the uncertainty of each sentence as the negative 
log likelihood of the predicted label sequence. The results are presented in Fig. 7. Most 
of the observations from Fig.  5 also hold in Fig.  7. For example, EDG and its exten-
sions significantly improve the performances in our synthetic dataset, and are signifi-
cantly better than diversification methods in CoNLL 2003 and NCBI disease datasets. 
There are some minor differences. For instance, the performance gap between EDG and 
uncertainty-based methods is larger in CoNLL 2003, which implies that much of the 
sampling efficiency improvement of uncertainty-based methods comes from the specific 
way of how BiLSTM-CRF models dependency between words. In addition, the US and 
EDG without validation data do not perform well in MedMentions ST19. We hypothe-
size that this is because the transition probabilities play an important role in this dataset, 
but sampling many uncertain label sequences does not help the BiLSTM model.

A.3 Sensitivity to number of clusters

We choose our clustering approach and all other hyperparameters based on the validation 
performance after collecting the first batch in CoNLL 2003 and MedMentions ST19, and 
we find the performance is not sensitive to the choices unless some crucial information 
is missing (e.g., not considering the word shape in CoNLL 2003). We report the perfor-
mances with varying number of clusters in each layer of our hierarchical clustering in 
Table 4. We see that the micro-F1 scores are very close to each other, except in the testing 
set of NCBI disease dataset. We suspect the score variation in NCBI diease mainly comes 
from the randomness in the training process of neural networks because we conduct only 
one trial of experiments when filling Table 4. The results suggest that number of clusters is 
a trade-off in EDG. Increasing the number of clusters decreases the bias, but increases the 
variance in the error decay estimation.

Table 4   Performance sensitivity 
to the number of clusters (J)

Notice that the number of total clusters for the word and word + sen-
tence feature is J2 (e.g., 225 for J = 15). The micro-F1 scores (%) are 
the average over all the training set sizes in Fig. 5. The range of train-
ing set sizes are 40,000–200,000, 40,000–130,000, 40,000–250,000 
for CoNLL 2003, NCBI disease, and MedMentions ST19, respec-
tively. The highest F1 scores using different numbers of clusters for 
each sampling method are highlighted

CoNLL 
2003

NCBI 
disease

MedMen-
tions ST19

Val Test Val Test Val Test

EDG (J = 5) 93.0 88.6 79.7 78.5 45.4 44.9
EDG (J = 10) 93.1 88.7 80.1 78.4 46.0 45.7
EDG (J = 15) 93.1 88.6 79.8 78.3 46.0 45.7
EDG_ext1 (w/o Val) (J = 5) 93.0 88.5 79.7 78.5 45.3 44.7
EDG_ext1 (w/o Val) (J = 10) 93.1 88.6 80.0 78.1 46.0 45.7
EDG_ext1 (w/o Val) (J = 15) 93.0 88.6 79.7 78.7 45.9 45.7
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A.4 Error decay of uncertainty sampling

The error curve modeling can be used not only to select the next batch but also to ana-
lyze the existing sampling strategy. For instance, Fig. 8 shows that the last points in the 
word group 3, 8, and 9 are farther away from the fifth points in x-axis compared to the 
corresponding distances in other groups. This implies that uncertainty sampling tends to 
select samples with high errors when it chooses the 30,000th to 40,000th tokens as shown 
in Fig. 1. However, the high errors do not necessarily lead to high error reduction in this 
dataset. This explains why US only achieves 58.3 validation micro-F1 in Table 3, which is 
significantly worse than other methods like EDG or US + Div.

A.5 Weighted class evaluation

To test the controllability of our methods, we set up a variation of MedMentions ST19 
where we give different penalties to different classes. Specifically, we focus on four related 
types: research activity, health care activity, population group, and spatial concept, and 
assign 0.9 weights to these classes. Other 15 classes are assigned 0.1 weights. That is, when 
we compute micro-F1, we weight the total number of correct predictions, the total number 
of predictions, and the total number of entities according to the importance of classes.

To incorporate the weights into our method, we modify Ep

j
(CTt

,DV ) in (5) as

where r(yil) and r(ŷ
CTt

il
) are the weights of the ground truth class and the predicted class, 

respectively. After this simple modification, our method boosts the weighted micro-F1 in 
the testing data from 34.3 (using same r(y) for all the classes) to 35.5 (using different r(y) 
for different classes) after collecting the first batch in MedMentions ST19 where the score 
of random sampling is 31.9. The scores come from averaging the results of five randomly 
initialized CNNs.

(9)E
p

j
(CTt

,DV ) =
�
si∈DV

P(g
p

j
�si)

�
l

⎛⎜⎜⎝
r(yil) + r(ŷ

CTt

il
)

2

⎞⎟⎟⎠
�(yil ≠ ŷ

CTt

il
),

Fig. 8   Error decay curves of 
taggers trained using pseudo 
labels in NCBI disease dataset. 
The six points in each curve 
come from the taggers trained by 
10,000, 15,000, 20,000, 25,000, 
30,000, and 40,000 words. The 
first 30,000 words are selected 
randomly and uncertainty 
sampling (US) selects 30,000–
40,000 words. As in Fig. 4, the 
x markers on the curves are the 
real error and ∙ means predic-
tion from the fitting curve. The 
groups are formed by clustering 
their word embeddings, and the 
index of each group is presented
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A.6 Results statistics

The micro-F1 in Fig. 5 is the average of three trials. Different trials use different random 
initializations for the CNN. The performance variance among different trials is usually 
small. The average standard error in the validation set across all batches and all the meth-
ods is 0.13 for synthetic data, 0.06 for CoNLL 2003, 0.28 for NCBI disease, and 0.16 for 
MedMentions ST19. The average standard error in the testing set is 0.18 for synthetic data, 
0.14 for CoNLL 2003, 0.49 for NCBI disease, and 0.17 for MedMentions ST19.

In Table 3, we show the average micro-F1 of five CNNs with different initializations. 
Sometimes, we care more about the maximal performance, so we also report the highest 
F1 score out of five runs in Table 5; the results show a similar trend. When applying two-
sample t-test to the comparison of average performance in Table 3, we assume that every 
micro-F1 score is a true hidden value plus Gaussian noise, and the variance of the noise is 
the same given a sampling method. Based on the assumption, the one-tailed two-sample 
t-test gives us p < 0.00003 for the difference between BALD  +  EDG_ext2 and BALD, 
between US + Div + EDG_ext2 and US + Div, and between EDG_ext1 and Div.

Appendix B: Proof of Proposition 1

We would like to prove that Hp(T) = −
∑

j Ê(g
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j
,DA) is submodular and non-

decreasing by assuming 
dÊ(g
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where m(gp
j
,X) < x1 < min(m(g
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dÊ(g
p

j
,CX )

d m(g
p

j
,X)

|m(gp
j
,X)=x1

≤
dÊ(g
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Finally, Hp(T) = −
∑

j Ê(g
p

j
,CT )m(g

p

j
,DA) is submodular and non-decreasing because 

m(g
p

j
,DA) does not change over X, and the linear combination of submodular and non-

decreasing functions with non-negative weights is still submodular and non-decreasing.

Appendix C: Implementation details

In Eq. (8), the difference between the current training data size tm and previous training 
data size tp is always 20,000 words for real-world datasets, and 2000 words for the syn-
thetic dataset in our experiments. When choosing samples using Eq. (8), we need to be 
careful about the starvation problem. That is, some types of samples are not selected in 
the recent history, and the samples would have low uncertainty changes which further 
prevents them from being selected in the future. To mitigate this issue, we alternate 
between using the scores in Eq.  (8) and the current uncertainty utm

i
 to choose the next 

batch. For example, when plotting the performance of BALD + EDG_ext2 in Fig. 5, we 
select the first batch using BALD + EDG_ext2 (i.e., Eq. (8)) and the second batch using 
only BALD (i.e., utm

i
 ), the third batch using BALD + EDG_ext2, and so on. The same 

strategy is applied to US + Div + EDG_ext2 as well.
In  (5), we find that wj and vtj could be set as 1 in most of the cases. However, we 

observe some predicted error decay curves collapse into a flat line (i.e., bj = 0 in 
Eq.  (4)) due to the unstable performance in validation set. To increase robustness, we 
set wj = min(100,m(g

p

j
,DV )) , and vtj = 3 if t = argminx E

p

j
(CTx

,DV ) (i.e., lowest error 
for jth group across t) and vtj = 1 otherwise in our experiments, and optimize (5) using 
Newton Conjugate-Gradient (Nash 1984).

In (7), we use geometric mean to combine multiple features because we usually want 
a sample that has large error reduction in all the groups it belongs to. Our preliminary 
experiments indicate that using geometric mean is better than arithmetic mean. The 
smoothness constant � in (7) should be proportional to the size of the dataset DA because 
larger error reduction could be made in a larger dataset. In our experiments, we set � to 
be 0.01 for MedMentions ST19, 0.001 for NCBI disease and CoNLL 2003 dataset.

(13)

(−Ê(g
p

j
,CX∪{si}

)) − (−Ê(g
p

j
,CX)) − (−Ê(g

p

j
,CZ∪{si}

)) + (−Ê(g
p

j
,CZ))

= (−max(Ê(g
p

j
,CX∪{si}

), Ê(g
p

j
,CZ))) − (−Ê(g

p

j
,CX)) − (−Ê(g

p

j
,CZ∪{si}

))

+ (−min(Ê(g
p

j
,CX∪{si}

), Ê(g
p

j
,CZ))) = (−

dÊ(g
p

j
,CX)

d m(g
p

j
,X)

|m(gp
j
,X)=x1

+
dÊ(g

p

j
,CX)

d m(g
p

j
,X)

|m(gp
j
,X)=x2

)⋅

min(m(g
p

j
, Z) − m(g

p

j
,X), |si|),
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