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Abstract
Extreme multi-label classification (XMC) refers to supervised multi-label learning involv-
ing hundreds of thousands or even millions of labels. In this paper, we develop a suite of 
algorithms, called Bonsai, which generalizes the notion of label representation in XMC, 
and partitions the labels in the representation space to learn shallow trees. We show three 
concrete realizations of this label representation space including: (i) the input space which 
is spanned by the input features, (ii) the output space spanned by label vectors based on 
their co-occurrence with other labels, and (iii) the joint space by combining the input and 
output representations. Furthermore, the constraint-free multi-way partitions learnt itera-
tively in these spaces lead to shallow trees. By combining the effect of shallow trees and 
generalized label representation, Bonsai achieves the best of both worlds—fast training 
which is comparable to state-of-the-art tree-based methods in XMC, and much better pre-
diction accuracy, particularly on tail-labels. On a benchmark Amazon-3M dataset with 3 
million labels, Bonsai outperforms a state-of-the-art one-vs-rest method in terms of pre-
diction accuracy, while being approximately 200 times faster to train. The code for Bon-
sai is available at https​://githu​b.com/xmc-aalto​/bonsa​i.

Keywords  Large-scale multi-label classification · Extreme multi-label classification · 
Large label space

1  Introduction

Extreme Multi-label Classification (XMC) refers to supervised learning of a classifier 
which can automatically label an instance with a small subset of relevant labels from 
an extremely large set of all possible target labels. Machine learning problems consist-
ing of hundreds of thousand labels are common in various domains such as product 
categorization for e-commerce (McAuley and Leskovec 2013; Shen et al. 2011; Bengio 
et  al. 2010; Agrawal et  al. 2013), hash-tag suggestion in social media (Denton et  al. 
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2015), annotating web-scale encyclopedia (Partalas et  al. 2015), and image-classifi-
cation (Krizhevsky et al. 2012; Deng et al. 2010). It has been demonstrated that, the 
framework of XMC can also be leveraged to effectively address ranking problems aris-
ing in bid-phrase suggestion in web-advertising and suggestion of relevant items for 
recommendation systems (Prabhu and Varma 2014).

From the machine learning perspective, building effective extreme classifiers is 
faced with the computational challenge arising due to large number of (i) output labels, 
(ii) input training instances, and (iii) input features. Another important statistical char-
acteristic of the datasets in XMC is that a large fraction of labels are tail labels, i.e., 
those which have very few training instances that belong to them (also referred to as 
power-law, fat-tailed distribution and Zipf’s law). Formally, let Nr denote the size of 
the r-th ranked label, when ranked in decreasing order of number of training instances 
that belong to that label, then:

where N1 represents the size of the 1-st ranked label and 𝛽 > 0 denotes the exponent of 
the power law distribution. This distribution is shown in Fig. 1 for a benchmark dataset, 
WikiLSHTC-325K from the XMC repository (Bhatia et  al. 2016). In this dataset, only 
∼ 150,000 out of 325,000 labels have more than 5 training instances in them. Tail labels 
exhibit diversity of the label space, and contain informative content not captured by the 
head or torso labels. Indeed, by predicting well the head labels, yet omitting most of the tail 
labels, an algorithm can achieve high accuracy (Wei and Li 2018). However, such behavior 
is not desirable in many real world applications, where fit to power-law distribution has 
been observed (Babbar et al. 2014).

(1)Nr = N1r
−�

Fig. 1   Label frequency in dataset WikiLSHTC-325K shows power-law distribution. X-axis shows the label 
IDs sorted by their frequency in training instances and Y-axis gives the actual frequency (on log-scale). 
Note that more than half of the labels have fewer than 5 training instances
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1.1 � Related work

Multi-label learning has long been a topic of interest with early focus on relatively smaller 
scale problems (Tsoumakas and Katakis 2007; Tsoumakas et al. 208; Read et al. 2008; Vens 
et al. 2008; Madjarov et al. 2012). However, most works in the context of large-scale scenarios 
which fall under the realm of XMC, can be broadly categorized into one of the four strands: 

1.	 Tree-based Tree-based methods implement a divide-and-conquer paradigm and scale 
to large label sets in XMC by partitioning the labels space. As a result, these scheme 
of methods have the computational advantage of enabling faster training and predic-
tion (Prabhu and Varma 2014; Jain et al. 2016; Jasinska et al. 2016; Majzoubi and 
Choromanska 2019; Wydmuch et al. 2018). Approaches based on decision trees have 
also been proposed for multi-label classification and those tailored to XMC regime (Joly 
et al. 2019; Si et al. 2017). However, tree-based methods suffer from error propagation 
in the tree cascade as also observed in hierarchical classification (Babbar et al. 2013, 
2016). As a result, these methods tend to perform particularly worse on metrics which 
are sensitive for tail-labels Prabhu et al. (2018).

2.	 Label embedding Label-embedding approaches assume that, despite large number of 
labels, the label matrix is effectively low rank and therefore project it to a low-dimen-
sional sub-space. These approaches have been at the fore-front in multi-label classifica-
tion for small scale problems with few tens or hundred labels (Hsu et al. 2009; Tai and 
Lin 2012; Weston et al. 2011; Lin et al. 2014). For power-law distributed labels in XMC 
settings, the crucial assumption made by the embedding-based approaches of a low rank 
label space breaks down (Xu et al. 2016a; Bhatia et al. 2015; Tagami 2017). Under this 
condition, embedding based approaches leads to high prediction error.

3.	 One-vs-rest Sometimes also referred to as binary relavance (Zhang et al. 2018), these 
methods learn a classifier per label which distinguishes it from rest of the labels. In terms 
of prediction accuracy and label diversity, these methods have been shown to be among 
the best performing ones for XMC (Babbar and Schölkopf 2017; Yen et al. 2017; Babbar 
and Schölkopf 2019). However, due to their reliance on a distributed training framework, 
it remains challenging to employ them in resource constrained environments.

4.	 Deep learning Deeper architectures on top of word-embeddings have also been explored 
in recent works (Liu et al. 2017; Joulin et al. 2017; Mikolov et al. 2013). However, 
their performance still remains sub-optimal compared to the methods discussed above 
which are based on bag-of-words feature representations. This is mainly due to the data 
scarcity in tail-labels which is substantially below the sample complexity required for 
deep learning methods to reach their peak performance.

Therefore, a central challenge in XMC is to build classifiers which retain the accuracy 
of one-vs-rest paradigm while being as efficiently trainable as the tree-based methods. 
Recently, there have been efforts for speeding up the training of existing classifiers by better 
initialization and exploiting the problem structure (Fang et al. 2019; Liang et al. 2018; Jalan 
et al. 2019). In a similar vein, a recently proposed tree-based method, Parabel (Prabhu 
et al. 2018), partitions the label space recursively into two child nodes using 2-means clus-
tering. It also maintains a balance between these two label partitions in terms of number of 
labels. Each intermediate node in the resulting binary label-tree is like a meta-label which 
captures the generic properties of its constituent labels. The leaves of the tree consist of 
the actual labels from the training data. During training and prediction each of these labels 
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is distinguished from other labels under the same parent node through the application of a 
binary classifier at internal nodes and one-vs-all classifier for the leaf nodes. By combina-
tion of tree-based partitioning and one-vs-rest classifier, it has been shown to give better 
performance than previous tree-based methods (Prabhu and Varma 2014; Jain et al. 2016; 
Jasinska et al. 2016) while simultaneously allowing efficient training.

However, in terms of prediction performance, Parabel remains sub-optimal com-
pared to one-vs-rest approaches. In addition to error propagation due to cascading effect of 
the deep trees, its performance is particularly worse on tail labels. This is the result of two 
strong constraints in its label partitioning process, (i) each parent node in the tree has only 
two child nodes, and (ii) at each node, the labels are partitioned into equal sized parts, such 
that the number of labels under the two child nodes differ by at most one. As a result of the 
coarseness imposed by the binary partitioning of labels, the tail labels get subsumed by the 
head labels.

1.2 � Bonsai overview

In this paper, we develop a family of algorithms, called Bonsai. At a high level, Bon-
sai follows a similar paradigm which is common in most tree-based approaches, i.e., label 
partitioning followed by learning classifiers at the internal nodes. However, it has two main 
features, which distinguish it from state-of-the-art tree based approaches. These are sum-
marized below :

–	 Generalized label representation In this work, we argue that the notion of representing 
the labels is quite general, and there are various meaningful manifestations of the label 
representation space. As three concrete examples, we show the applicability of the fol-
lowing representations of labels: (i) input space representation as a function of feature 
vectors (ii) output space representation based on their co-occurrence with other labels, 
and (iii) a combination of the output and input representations. In this regard, our work 
generalizes the approach taken in many earlier works, which have represented labels 
only in the input space (Prabhu et al. 2018; Wydmuch et al. 2018), or only in the output 
space (Tsoumakas et al. 208). We show that these representations, when combined with 
shallow trees (described in the next section), surpass existing methods demonstrating 
the efficacy of the proposed generalized representation.

–	 Shallow trees To avoid error propagation in the tree cascade, we propose to construct 
a shallow tree architecture. This is achieved by enabling (i) a flexible clustering via 
K-means for K > 2 , and (ii) relaxing balancedness constraints in the clustering step. 
Multi-way partitioning initializes diverse sub-groups of labels, and the unconstrained 
nature maintains the diversity during the entire process. These are in contrast to tree-
based methods which impose such constraints for a balanced tree construction. As we 
demonstrate in our empirical findings, by relaxing the constraints, Bonsai leads to 
prediction diversity and significantly better tail-label coverage.

By synergizing the effect of a richer label representation and shallow trees, Bonsai 
achieves the best of both worlds—prediction diversity better than state-of-the-art tree-
based methods with comparable training speed, and prediction accuracy at par with one-
vs-rest methods. The code for Bonsai is available at https​://githu​b.com/xmc-aalto​/bonsa​i.

https://github.com/xmc-aalto/bonsai
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2 � Formal description of Bonsai

We assume to be given a set of N training points 
{
(�i, �i)

}N

i=1
 with D dimensional feature 

vectors �i ∈ ℝ
D and L dimensional label vectors �i ∈ {0, 1}L . Without loss of general-

ity, let the set of labels be represented by {1,… ,�,… , L} . Our goal is to learn a multi-
label classifier in the form of a vector-valued output function f ∶ ℝ

D
↦ {0, 1}L . This is 

typically achieved by minimizing an empirical estimate of �(�,�)∼D[L(�;(�, �))] where 
L is a loss function, and samples (�, �) are drawn from some underlying distribution D . 
The desired parameters � can take one of the myriad of choices. In the simplest (and 
yet effective) of setups for XMC such as linear classification, � can be in the form of 
matrix. In other cases, it can be representative of a deeper architecture or a cascade of 
classifiers in a tree structured topology. Due to their scalability to extremely large data-
sets, Bonsai follows a tree-structured partitioning of labels.

In this section, we next present in detail the two main components of Bonsai: (i) 
generalized label representation and (ii) shallow trees.

2.1 � Label representation

In the extreme classification setting, labels can be represented in various ways. To motivate 
this, as an analogy in terms of publications and their authors, one can think of labels as 
authors, the papers they write as their training instances, and multiple co-authors of a paper 
as the multiple labels. Now, one can represent authors (labels) either solely based on the 
content of the papers they authored (input space representation), or based only on their co-
authors (output space representation) or as a combination of the two.

Formally, let each label � be represented by �-dimensional vector �� ∈ ℝ
� . Now, �� 

can be represented as a function (i) only of input features via the input vectors in train-
ing instances 

{
�i
}N

i=1
 , (ii) only of output features via the label vectors in the training 

instances 
{
�i
}N

i=1
 or (iii) as a combination of both 

{
(�i, �i)

}N

i=1
 . We now present three 

concrete realizations of the label representation �� . We later show that these represen-
tations can be seamlessly combined with shallow tree cascade of classifiers, and yield 
state-of-the-art performance on XMC tasks. 

(a)	 Input space label representation The label representation for label � can be arrived at 
by summing all the training examples for which it is active. Let �i be the label repre-
sentation matrix given by 

 We follow the notation that each bold letter such as � is a vector in column for-
mat and �T represents the corresponding row vector. Hence, each row �� of matrix 
Vi which represents the label � , is given by the sum of all the training instances for 
which label � is active. This can also be represented as, �� =

∑N

i=1
�i��i . Note that 

even though �� also depends on the label vectors, it is still in the same space as the 
input instance and has dimensionality D. Furthermore, each �� can be normalized to 
unit length in euclidean norm as follows: �� ∶= ��∕‖��‖2.

(2)�i = �T� =

⎡⎢⎢⎢⎣

�T
1

�T
2

⋮

�T
L

⎤⎥⎥⎥⎦
L×D

where � =

⎡⎢⎢⎢⎣

�T
1

�T
2

⋮

�T
N

⎤⎥⎥⎥⎦
N×D

, � =

⎡⎢⎢⎢⎣

�T
1

�T
2

⋮

�T
N

⎤⎥⎥⎥⎦
N×L

.
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(b)	 Output space representation In the multi-label setting, another way to represent the 
labels is to represent them solely as a function of the degree of their co-occurrence 
with other labels. That is, if two labels co-occur with similar set of labels, then these 
are bound to be related to each other, and hence should have similar representation. In 
this case, the label representation matrix �o is given by 

 Here �o is an L × L symmetric matrix, where each row �T
�
 , corresponds to the num-

ber of times the label � co-occurs with all other labels. Hence these label co-occur-
rence vectors �� give us another way of representing the label � . It may be noted that 
in contrast to the previous case, being an output space representation, the dimension-
ality of the label vector is same as that of the output space having the same dimen-
sionality, i.e. � = L.

(c)	 Joint input–output representation  Given the previous input and output space representa-
tions of labels, a natural way to extend it is by combining these representations via con-
catenation. This is achieved as follows, for a training instance i with feature vector �i and 
corresponding label vector �i , let �i be the concatenated vector given by, �i = [�i ⊙ �i] . 
Then, the joint representation can be computed in the matrix �j as follows 

 Here each row �� of the label representation matrix Vj which is the label representa-
tion in the joint space, is therefore a concatenation of representations obtained from 
Vi and Vo , hence being of length (D + L) . Since both the input vectors �i and output 
vectors �i are highly sparse, this does not lead to any major computational burden in 
training.

It may be noted that our notion of label representation generalizes similar 
approaches in recent works (i) which are either based solely on the input space repre-
sentation (Prabhu et al. 2018; Wydmuch et al. 2018), or (ii) those which are based on 
output space representation only (Tsoumakas et  al. 208). As also shown later in our 
empirical findings, in combination with shallow tree cascade of classifiers, partitioning 
of:

–	 output space representation ( �o ) yields competitive results compared to state-of-the-art 
classifiers in XMC such as Parabel.

–	 joint representation ( �j ) further surpasses the state-of-the-art methods in terms of pre-
diction performance and label diversity.

(3)�o = �T� =

⎡⎢⎢⎢⎣

�T
1

�T
2

⋮

�T
L

⎤⎥⎥⎥⎦
L×L

where � =

⎡⎢⎢⎢⎣

�T
1

�T
2

⋮

�T
N

⎤⎥⎥⎥⎦
N×L

.

(4)�j = �T� =

⎡⎢⎢⎢⎣

�T
1

�T
2

⋮

�T
L

⎤⎥⎥⎥⎦
L×(D+L)

where � =

⎡⎢⎢⎢⎣

�T
1

�T
2

⋮

�T
N

⎤⎥⎥⎥⎦
N×(D+L)

� =

⎡⎢⎢⎢⎣

�T
1

�T
2

⋮

�T
N

⎤⎥⎥⎥⎦
N×L
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2.2 � Label partitioning via K‑means clustering

Once we have obtained the representation �� for each label � in the set S = {1,… , L} , the 
next step is to iteratively partition S into disjoint subsets. This is achieved by K-means clus-
tering, which also presents many choices such as number of clusters and degree of balanc-
edness among the clusters. Our goal, in this work, is to avoid propagation error in a deep 
tree cascade. We, therefore, choose a relatively large value of K (e.g. ≥ 100 ) which leads to 
shallow trees.

The clustering step in Bonsai first partitions S into K disjoint sets 
{
S1,… , SK

}
 . Each 

of the elements, Sk , of the above set can be thought of as a meta-label which semantically 
groups actual labels together in one cluster. Then, K child nodes of the root are created, 
each contains one of the partitions, 

{
Sk
}K

k=1
 . The same process is repeated on each of the 

newly-created K child nodes in an iterative manner. In each sub-tree, the process terminates 
either when the node’s depth exceeds pre-defined threshold dmax or the number of associ-
ated labels is no larger than K , e.g, |Sk| ≤ K.

Formally, without loss of generality, we assume a non-leaf node has labels {1,… , L} . 
We aim at finding K cluster centers �1,… , �K ∈ ℝ

� , i.e., in an appropriate space (input, 
output, or joint) by optimizing the following:

where d(., .) represents a distance function and �� represents the vector representation 
of the label � . The distance function is defined in terms of the dot product as follows: 
d(�𝓁 , �k) = 1 − �T

𝓁
⋅ �k . The above problem is ��-hard and we use the standard K-means 

algorithm (also known as Lloyd’s algorithm) (Lloyd 1982)1 for finding an approximate 
solution to Eq. (5).

The K-way unconstrained clustering in Bonsai has the following advantages over 
Parabel which enforces binary and balanced partitioning: 

1.	 Initializing label diversity in partitioning By setting K > 2 , Bonsai allows a varied 
partitioning of the labels space, rather than grouping all labels in two clusters. This facet 
of Bonsai is especially favorable for tail labels by allowing them to be part of separate 
clusters if they are indeed very different from the rest of the labels. Depending on the 
similarity to other labels, each label can choose to be part of one of the K clusters.

2.	 Sustaining label diversity Bonsai sustains the diversity in the label space by not enforc-
ing the balanced-ness constraint of the form, ||Sk| − |Sk� || ≤ 1,∀1 ≤ k, k� ≤ K (where |.| 
operator is overloaded to mean set cardinality for the inner one and absolute value for 
the outer ones) among the partitions. This makes the Bonsai partitions more data-
dependent since smaller partitions with diverse tail-labels are very moderately penalized 
under this framework.

3.	 Shallow tree cascade Furthermore, K-way unconstrained partitioning leads to shallower 
trees which are less prone propagation error in deeper trees constructed by Parabel. 
As we will show in Sect. 3, the diverse partitioning reinforced by shallower architecture 

(5)min
�� ,…,��∈ℝ

�

[
K∑
k=1

∑
�∈�i

d(�� , �k)

]

1  We also tried K-means++ and observed that faster convergence did not out-weigh extra computation time 
for seed initialization.
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leads to better prediction performance, and significant improvement is achieved on tail 
labels.

A pictorial description of the partitioning scheme of Bonsai and its difference com-
pared to Parabel is also illustrated in Fig. 2.

2.3 � Learning node classifiers

Once the label space is partitioned into a diverse and shallow tree structure, we learn a K
-way One-vs-All linear classifier at each node. These classifiers are trained independently 
using only the training examples that have at least one of the node labels. We distinguish 
the leaf nodes and non-leaf nodes in the following way: (i) for non-leaf nodes, the classifier 
learns K linear classifiers separately, each maps to one of the K children. During predic-
tion, the output of each classifier determines whether the test point should traverse down 
the corresponding child. (ii) for leaf nodes, the classifier learns to predict the actual labels 
on the node.

Without loss of generality, given a node in the tree, denote by {ck}Kk=1 as the set of its 
children. For the special case of leaf nodes, the set of children represent the final labels. We 
learn K linear classifiers parameterized by 

{
�1,… ,�K

}
 , where �k ∈ ℝ

D for ∀k = 1,… ,K . 
Each output label determines if the corresponding K children should be traversed or not.

For each of the child node ck , we define the training data as Tk = (�k, �k) , where 
�k =

{
�i ∣ �ik = 1, i = 1,… ,N

}
 . Let �k ∈ {+1,−1}N represent the vector of signs 

depending on whether �ik = 1 corresponds to +1 and �ik = 0 for −1 . We consider the fol-
lowing optimization problem for learning linear SVM with squared hinge loss and �2

-regularization

Bonsai : K = 16, tree depth 2 Parabel : K = 2, tree depth 6

Fig. 2   Comparison of partitioned label space by Bonsai and Parabel on EURLex-4K dataset. Each cir-
cle corresponds to one label partition (also a tree node), the size of circle indicates the number of labels in 
that partition and lighter color indicates larger node level. The largest circle is the whole label space. Note 
that Bonsai produces label partitions of varying sizes, while Parabel gives perfectly balanced partition-
ing
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where L(z) = (max(0, 1 − z))2 . This is solved using the Newton method based pri-
mal implementation in LIBLINEAR (Fan et  al. 2008). To restrict the model size, and 
remove spurious parameters, thresholding of small weights is performed as in Babbar and 
Schölkopf (2017). Similar to Parabel, one-vs-all classifiers are also learnt at the leaf nodes, 
which consist of the actual labels.

The tree-structured architecture of Bonsai is illustrated in Fig. 3. The details of Bon-
sai ’s training procedure are shown in Algorithm 1. The partitioning process in Sect. 2.1 
is described as the procedure GROW in the algorithm. The One-vs-All procedure is shown 
as one-vs-all in Algorithm 1.

2.4 � Prediction error propagation in shallow versus deep trees

During prediction, a test point � traverses down the tree. At each non-leaf node, the classi-
fier narrows down the search space by deciding which subset of child nodes � should fur-
ther traverse. If the classifier decides not to traverse down some child node c, all descend-
ants of c will not be traversed. Later, as � reaches to one or more leaf nodes, One-vs-All 
classifiers are evaluated to assign probabilities to each label. Bonsai uses beam search to 
avoid the possibility of evaluating all nodes. At each level, B most probable nodes, whose 
scores are calculated from previous level, are further traversed down.

(6)min
��

[
||�k||22 + C

|�k|∑
i=1

L(ski�
T
k
�i)

]

Non-leaf node

Leaf node

Branching factor: K = 3
Linear separators

trained inside root node

wa

wb

wc

Label for Child a

Label for Child b

Label for Child c

Root node

node labels S = {1, . . . , L}

label partitions Sa, Sb, Sc

linear separators wa,wb,wc

Child a

node labels Sa

Child b

node labels Sb

Child c

node labels Sc

Fig. 3   Illustration of Bonsai architecture. During training, label are partitioned hierarchically, resulting 
in a tree structure of label partitions. In order to obtain diverse and shallow trees, the branching factor, K is 
set to large values (e.g, K ≥ 100 ) in Bonsai (shown as 3 for better pictorial illustration). Inside non-leaf 
nodes, linear classifiers are trained to predict which child nodes to traverse down during prediction. Inside 
leaf nodes, linear classifiers are trained to predict the actual labels
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Algorithm 1: Training algorithm: grow(n,K, dmax) partitions label
space recursively and returns K children nodes of n. K-means(L,K)
partitions label set L into K disjoint sets using standard K-means
algorithm. Label features are derived from training data T . one-vs-
all(T, {�1, . . . , �K}) learns K one-vs-rest linear classifiers {wk}Kk=1.

Input : Training data T =
{
(xi,yi)

N
i=1

}
, where xi ∈ RD and yi ∈ {0, 1}L

branching factor K ≥ 2, maximum depth dmax
Output: a tree rooted at r

1 r ← new node;
2 r.d ← 0 ; // d: node depth
3 r.L ← {1, . . . , L} ; // L: associated label set
4 r.T ← {1, . . . , N} ; // I: associated training instance ids
5 {n1, . . . , nK} ← grow(r, dmax, K) ; // grow the root recursively
6 r.C ← {n1, . . . , nK} ; // C : set of child nodes
7 return r;
8 procedure grow(n, dmax, K):
9 S1, . . . , SK ←K-means(n.L, K) ; // K-way split of labels

10 for k = 1, . . . ,K do
11 nk ← new node;
12 nk.L ← Sk;
13 nk.d ← n.d+ 1 ;
14 nk.T ← {i ∈ n.T | ∃� ∈ Sk s.t. yi� = 1};
15 if K ≥ |nk.L| or nk.d ≥ dmax then
16 nk.w ← one-vs-all(nk.T, nk.L) ; // nk is a leaf
17 else
18 {c1, . . . , cK} ← grow(nk, dmax, K) ; // nk is non-leaf
19 nk.C ← {c1, . . . , cK} ;
20 end
21 n.w ← one-vs-all(n.T, {�n1 , . . . , �nK }); // each nk maps to a meta label
22

23 end
24 return {nk}Kk=1;

However, the above search space pruning strategy implies errors made at non-leaf nodes 
could propagate to their descendants. Bonsai sets relatively large values to the branching 
factor K (typically 100), resulting in much shallower trees compared to Parabel, and 
hence significantly reducing error propagation, particularly for tail-labels.

More formally, given a data point � and a label � that is relevant to � , we denote e as 
the leaf node � belongs to and A(e) as the set of ancestor nodes of e and e itself. Note that 
|A(e)| is path length from root to e . Denote the parent of n as p(n) . We define the binary 
indicator variable zn to take value 1 if node n is visited during prediction and 0 otherwise. 
From the chain rule, the probability that � is predicted as relevant for � is as follows:

Consider the Amazon-3M dataset with L ≈ 3 × 106 , setting K = 2 produces 
a tree of depth 16. Assuming Pr(zn = 1 ∣ zp(n) = 1, �) = 0.95 , for ∀n ∈ p(n) and 
Pr(�� = 1 ∣ ze = 1, �) = 1 , it gives Pr(�� = 1 ∣ �) = (0.95)16 ≈ 0.46 . This is to say, even if 
Pr(zn = 1 ∣ zp(n) = 1, �) is high (e.g, 0.95) at each n ∈ A(e) , multiplying them together can 
result in small probability (e.g, 0.46) if the depth of the tree, i.e., |A(e)| is large. We choose 
to mitigate this issue by increasing K , and hence limiting the propagation error.

Pr(�� = 1 ∣ �) = Pr(�� = 1 ∣ ze = 1, �) ×
∏

n∈A(e)

Pr(zn = 1 ∣ zp(n) = 1, �)
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2.5 � Computational complexity

Training time analysis The training process can be decomposed into three steps: (i) learn-
ing the label representation, (ii) building the k-ary trees and (iii) learning a one-vs-rest 
classifier at each node.

First, we assume only log(L) labels are relevant for every data point on average. Also, 
let D̃ be the average feature density i.e. for dense features, D̃ = D . For the three variants of 
the label representation �� discussed in Sect. 2.1, learning the label representations requires 
a cost of O(ND̃ log L) , O(N log2 L) and O(N(D̃ + logL) log L) for the input, output and the 
joint input–output space respectively.

When building the label tree, it takes O(cKLD̃) to cluster the labels at each level, where 
c is the number of iterations needed for K-means clustering to converge. Since Bonsai 
produces trees with small depth values, which can be considered small constant, the total 
time cost at this step is O(cKLD̃).

With the learnt label tree, K independent linear classifiers are learnt at each internal tree 
node which decide which child nodes a training point should traverse. Learning internal 
node classifiers at each level takes O(KND̃ logL) . Therefore, the total time cost on learn-
ing internal node classifiers is O(KND̃ logL) since we omit the tree depth, which is a small 
constant.

Lastly, the one-vs-rest leaf node classifiers are trained at a cost of O(MND̃ logL) assum-
ing that a leaf node can contain at most M labels. As we do not have any balanced-ness 
constraints on the K-means clustering, M can be equal to L in the worst case. However, in 
practice M is found to be much smaller. So the overall complexity of Bonsai for training 
T trees is O

(
(

cKL

N logL
+ K +M)TND̃ log L

)
.

Prediction time analysis The prediction process can be decomposed into two steps: (i) 
traversal down from the root through the intermediate nodes, (ii) label prediction at the leaf 
nodes.

For part (i), we use the fact that: at each level, at most B nodes are further traversed 
down. The time cost at each level is O(BD̃K) . Therefore, traversing down all levels takes 
O(BD̃K) since tree depth is a small constant. For part (ii), at most B leaf nodes are evalu-
ated. This step has complexity O(BD̃M) , assuming that a leaf node contains at most M 
labels. Therefore, if we predict using T trees, the total complexity is O(TBD̃K + TBD̃M).

Comparison with Parabel We highlight the difference of complexity between Bon-
sai and Parabel.

For training, Parabel takes O((
cKL

N
+ K log L +M)TND̃ logL)s2 while Bonsai takes 

O

(
(

cKL

N logL
+ K +M)TND̃ log L

)
 . Bonsai differs from Parabel in three ways: (i) a fac-

tor of logL (equals tree depths in Parabel) is absent in the first two terms in Bonsai as 
tree depths are small constants in Bonsai. (ii) M is generally larger in Bonsai since bal-
anced-ness is not enforced in label partitioning. (iii) c is also larger in Bonsai because 
Bonsai sets a larger K value during K-means clustering, which takes more iterations to 
converge.

For prediction, Parabel takes O(TBD̃K log L + TBD̃M) while Bonsai takes 
O(TBD̃K + TBD̃M) . The main difference is similar as in the case of training: (i) Bonsai 

2  c is omitted in the original version, since K = 2 and it takes only a few iterations for K-means to con-
verge.
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gets rid of the logL factor in the first term because Bonsai trees are shallow; (ii) mean-
while, M is generally larger in the case of Bonsai.

Though their training/prediction complexity are not directly comparable, we find that 
Parabel is faster in both training and prediction in practice. Therefore, we conclude that: 
in practice the role of larger M and c values rule over the absence of logL factor, therefore 
making Bonsai slower than Parabel.

3 � Experimental evaluation

In this section, we detail the dataset description, and the set up for comparison of the pro-
posed approach against state-of-the-art methods in XMC.

3.1 � Dataset and evaluation metrics

We perform empirical evaluation on publicly available datasets from the XMC repository3 
curated from sources such as Amazon for item-to-item recommendation tasks and Wiki-
pedia for tagging tasks. The datasets of various scales in terms of number of labels are 
used, EURLex-4K consisting of approximately 4000 labels to Amazon-3M consisting of 
3 million labels. The datasets also exhibit a wide range of properties in terms of number of 
training instances, features, and labels. Though the overall feature dimensionality is high, 
each training instance is a tf-idf weighted sparse representation of features. The document 
length corresponding to each training sample can be further reduced by keeping the highest 
scores based on truncating at some pre-defined threshold (Khandagale and Babbar 2019). 
The detailed statistics of the datasets are shown in Table 1.

With applications in recommendation systems, ranking and web-advertising, the objec-
tive of the machine learning system in XMC is to correctly recommend/rank/advertise 
among the top-k slots. We therefore use evaluation metrics which are standard and com-
monly used to compare various methods under the XMC setting—Precision@k ( prec@k ) 
and normalised Discounted Cumulative Gain ( nDCG@k ). Given a label space of dimen-
sionality L, a predicted label vector �̂ ∈ ℝ

L and a ground truth label vector � ∈ {0, 1}L:

Table 1   Multi-label datasets used in the experiment

APpL and ALpP represent average points per label and average labels per point respectively

Dataset # Training # Test # Labels # Features APpL ALpP

EURLex-4K 15,539 3809 3993 5000 25.7 5.3
Wikipedia-31K 14,146 6616 30,938 101,938 8.5 18.6
WikiLSHTC-325K 1,778,351 587,084 325,056 1,617,899 17.4 3.2
Wikipedia-500K 1,813,391 783,743 501,070 2,381,304 24.7 4.7
Amazon-670K 490,499 153,025 670,091 135,909 3.9 5.4
Amazon-3M 1,717,899 742,507 2,812,281 337,067 31.6 36.1

3  http://manik​varma​.org/downl​oads/XC/XMLRe​posit​ory.html.

http://manikvarma.org/downloads/XC/XMLRepository.html
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where DCG@k =
��∑

l=1
1

log(�+1)

 , and rankk(�̂) returns the k largest indices of �̂.

For better readability, we report the percentage version of above metrics (multiplying 
the original scores by 100). In addition, we consider k ∈ {1, 3, 5}.

3.2 � Methods for comparison

We consider three different variants of the proposed family of algorithms, Bonsai, 
which is based on the generalized label representations (discussed in Sect.  2.1) com-
bined with the shallow tree cascades. We refer the algorithms learnt by partitioning the 
input space, output space and the joint space as Bonsai-i, Bonsai-o, and Bonsai-
io respectively. These are compared against six state-of-the-art algorithms from each 
of the three main strands for XMC namely, label-embedding, tree-based and one-vs-all 
methods:

–	 Label-embedding methods Due to the fat-tailed distribution of instances among 
labels, SLEEC (Bhatia et al. 2015) makes a locally low-rank assumption on the label 
space, RobustXML (Xu et al. 2016b) decomposes the label matrix into tail labels 
and non tail labels so as to enforce an embedding on the latter without the tail labels 
damaging the embedding. LEML (Yu et al. 2014) makes a global low-rank assump-
tion on the label space and performs a linear embedding on the label space. As a 
result, it gives much worse results, and is not compared explicitly in the interest of 
space.

–	 Tree-based methods FastXML (Prabhu and Varma 2014) learns an ensemble of 
trees which partition the label space by directly optimizing an nDCG based ranking 
loss function, PFastXML (Jain et al. 2016) replaces the nDCG loss in FastXML by 
its propensity scored variant which is unbiased and assigns higher rewards for accu-
rate tail label predictions, Parabel (Prabhu et al. 2018) which has been described 
earlier in the paper.

–	 One-vs-All methods PD-Sparse (Yen et al. 2016) enforces sparsity by exploiting 
the structure of a margin-maximizing loss with L1-penalty, DiSMEC (Babbar and 
Schölkopf 2017) learns one-vs-rest classifiers for every label with weight pruning to 
control model size. It may be noted that even though the actual number of true labels 
is unknown for the test set, evaluation metrics based on top-k predictions can still be 
computed for predictions for One-vs-All methods.

Since we are considering only bag-of-words representation across all datasets, we 
do not compare against deep learning methods explicitly. However, it may be noted that 
despite using raw data and corresponding word-embeddings, deep learning methods in 
XMC are still sub-optimal in terms of prediction performance in XMC (Liu et al. 2017; 
Joulin et al. 2017; Kim 2014). More details on the performance of deep methods can be 
found in Wydmuch et al. (2018).

(7)prec@k(�̂, �) =
1

k

∑
�∈rankk(�̂)

��

(8)nDCG@k(�̂, �) =
DCG@k∑min(k,�����0)

�=1

1

log(�+1)



2112	 Machine Learning (2020) 109:2099–2119

1 3

Bonsai is implemented in C++ on a 64-bit Linux system. For all the datasets, we 
set the branching factor K = 100 at every tree depth. We will explore the effect of tree 
depth in details later. This results in depth-1 trees (excluding the leaves which represent 
the final labels) for smaller datasets such as EURLex-4K, Wikipedia-31K and depth-2 
trees for larger datasets such as WikiLSHTC-325K and Wikipedia-500K. Bonsai 
learns an ensemble of three trees similar to Parabel.

For all the other state-of-the-art approaches, we used the hyperparameter values as 
suggested in the various papers in order to recreate the results reported in them.

4 � Experimental results

In this section, we report the main findings of our empirical evaluation.

4.1 � Precision@k

The comparison of Bonsai against other baselines is shown in Table 2. The results are 
averaged over five runs with different initializations of the clustering algorithm. The impor-
tant findings from these results are the following:

–	 The competitive performance of the different variants of Bonsai shows the success 
and applicability of the notion of generalized label representation, and their concrete 
realization discussed in Sect.  2.1. It also highlights that it is possible to enrich these 
representations further, and achieve better partitioning.

–	 The consistent improvement of Bonsai over Parabel on all datasets validates the 
choice of higher fanout and advantages of using shallow trees.

–	 Another important insight from the above results is that when the average number of 
labels per training point are higher such as in Wikipedia-31K, Amazon-670K and Ama-
zon-3M, the joint space label representation, used in bonsai-io, leads to better par-
titioning and further improves the strong performance of input only label representation 
in Bonsai-i. However, it degrades when the average number of labels per point is 
low ( ≤ 5 ) for datasets such as WikiLSHTC-325K and Wikipedia-500K, in which cases 
the information captured between input and output representations does not synergize 
well.

–	 Even though DiSMEC performs slightly better on Wiki-500K and Wikipedia-31K, its 
computational complexity of training and prediction is orders of magnitude higher than 
Bonsai. As a result, while Bonsai can be run in environments with limited compu-
tational resources, DiSMEC requires a distributed infrastructure for training and predic-
tion.

4.2 � Performance on tail labels

We also evaluate prediction performance on tail labels using propensity scored variants of 
prec@k and nDCG@k . For label � , its propensity p� is related to number of its positive 
training instances N� by p� =

1

(1+Ce−A log(N�+B))
 where A, B are application specific parameters 

and C = (logN − 1)(B + 1)A . Here N is the total number of training samples, and 
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parameters A, B vary across datasets, and were chosen as suggested in Jain et al. (2016). 
With this formulation, p� ≈ 1 for head labels and p� ≪ 1 for tail labels.

Let � ∈ {0, 1}L and �̂ ∈ ℝ
L denote the true and predicted label vectors respectively. As 

detailed in Jain et al. (2016), propensity scored variants of P@k and nDCG@k are given by

where PSDCG@k ∶=
∑

�∈rankk(�̂)
[

��

p� log(�+1)
] , and rankk(�) returns the k largest indices of 

� . To match against the ground truth, as suggested in Jain et  al. (2016), we use 
100 ⋅ �({�̂})∕�({�}) as the performance metric. For M test samples, 
�({�̂}) =

−1

M

∑M

i=1
�(�̂i, �) , where �(.) and �(., .) signify gain and loss respectively. The loss 

�(., .) can take two forms, (i) �(�̂i, �) = −PSnDCG@k , and (ii) �(�̂i, �) = −PSP@k . This 

(9)PSP@k(�̂, �)∶=
1

k

∑
�∈rankk(�̂)

��∕p�

(10)PSnDCG@k(�̂, �)∶=
PSDCG@k∑min(k,�����0)

�=1

1

log(�+1)

Table 2   (P@k) on benchmark datasets for k = 1, 3 and 5

For each case of P@k and dataset, the best performed score is highlighted in bold. Entries marked ”–” 
imply the corresponding method could not scale to the particular dataset, thus the scores are unavailable

Dataset Our Approach (Bonsai) Embedding based Tree based Linear one-vs-rest

Bonsai-i Bonsai-o Bonsai-io SLEEC Robust 
XML

Fast-
XML

Parabel PD-Sparse DiSMEC

EURLex-4K

P@1 83.0 82.5 82.9 79.3 78.7 71.4 82.2 76.4 82.4

P@3 69.7 69.4 69.4 64.3 63.5 59.9 68.7 60.4 68.5
P@5 58.4 58.1 58.0 52.3 51.4 50.4 57.5 49.7 57.7
Wikipedia-31K
P@1 84.7 84.70 84.8 85.5 85.5 82.5 84.2 73.8 84.1
P@3 73.6 73.57 73.6 73.6 74.0 66.6 72.5 60.9 74.6
P@5 64.7 64.81 64.8 63.1 63.8 56.7 63.4 50.4 65.9
WikiLSHTC-325K
P@1 66.6 63.4 65.8 55.5 53.5 49.3 65.0 58.2 64.4
P@3 44.5 42.8 44.1 33.8 31.8 32.7 43.2 36.3 42.5
P@5 33.0 32.0 32.7 24.0 29.9 24.0 32.0 28.7 31.5
Wikipedia-500K
P@1 69.2 68.7 69.1 48.2 41.3 54.1 68.7 – 70.2
P@3 49.8 48.8 49.7 29.4 30.1 35.5 49.6 – 50.6
P@5 38.8 37.6 38.8 21.2 19.8 26.2 38.6 – 39.7
Amazon-670K
P@1 45.5 44.5 45.7 35.0 31.0 33.3 44.9 – 44.7
P@3 40.3 39.8 40.6 31.2 28.0 29.3 39.8 – 39.7
P@5 36.5 36.4 36.9 28.5 24.0 26.1 36.0 – 36.1
Amazon-3M
P@1 48.4 47.5 48.5 – – 44.2 47.5 – 47.8
P@3 45.6 44.7 45.5 – – 40.8 44.6 – 44.9
P@5 43.4 42.6 43.5 – – 38.6 42.5 – 42.8
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leads to the two metrics which are sensitive to tail labels and are denoted by PSP@ k, and 
PSnDCG@k.

Figure  4 shows the result w.r.t PSP@ k, and PSnDCG@ k among the tree-based 
approaches. Again, Bonsai-i shows consistent improvement over Parabel. For 
instance, on WikiLSHTC-325K, the relative improvement over Parabel is approxi-
mately 6.7% on PSP@ 5. This further validates the applicability of the shallow tree architec-
ture resulting from the design choices of K-way partitioning along with flexibility to allow 
unbalanced partitioning in Bonsai, which allows tail labels to be assigned into different 
partitions w.r.t the head ones.

4.3 � Unique label coverage

We also evaluate coverage@k, denoted C@k, which is the percentage of normalized 
unique labels present in an algorithm’s top-k labels. Let � = P1 ∪ P2 ∪… ∪ PM where 
Pi = {li1, li2,… , lik} i.e the set of top-k labels predicted by the algorithm for test point i and 
M is the number of test points. Also, let � = L1 ∪ L2 ∪… ∪ LM where Li = {gi1, gi2,… , gik} 
i.e the top-k propensity scored ground truth labels for test point i, then, coverage@k is 
given by

The comparison between Bonsai-i and Parabel of this metric on five different data-
sets is shown in Table 3. It shows that the proposed method is more effective in discovering 

C@k = |�|∕|�|
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Fig. 4   Comparison of PSP@ k (top row) and PSnDCG@ k (bottom row) over tree-based methods. The 
reported metrics capture prediction performance over tail labels
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correct unique labels. These results further reinforce the results in the previous section on 
the diversity preserving feature of Bonsai.

4.4 � Impact of tree depth

We next evaluate prediction performance produced by Bonsai trees with different depth 
values. We set the fan-out parameter K appropriately to achieve the desired tree depth. For 
example, to partition 4000 labels into a hierarchy of depth two, we set K = 64.

In Fig. 5, we report the result on three datasets, averaged over ten runs under each set-
ting. The trend is consistent—as the tree depth increases, prediction accuracy tends to 
drop, though it is not very stark for Wikipedia-31K.

Furthermore, in Fig. 6, we show that the shallow architecture is an integral part of the 
success of the Bonsai family of algorithms. To demonstrate this, we plugged in the label 
representation used in Bonsai-o into Parabel, called Parabel-o in the figure. As 
can be seen, Bonsai-o outperforms Parabel-o by a large margin showing that shal-
low trees substantially alleviate the prediction error.

4.5 � Training and prediction time

Growing shallower trees in Bonsai comes at a slight price in terms of training time. It 
was observed that Bonsai leads to approximately 2–3x increase in training time com-
pared to Parabel. For instance, on a single core, Parabel takes 1 h for training on 
the WikiLSHTC-325K dataset, while Bonsai takes approximately 3 h for the same task. 
However, it may also be noted that the training process can be performed in an offline man-
ner. Though, unlike Parabel, Bonsai does not come with logarithmic dependence on 
the number of labels for the computational complexity of prediction. However, its predic-
tion time is typically in milli-seconds, and hence it remains quite practical in XMC appli-
cations with real-time constraints such as recommendation systems and advertising.

Table 3   Coverage@k (C@k) 
statistics comparing Parabel 
and Bonsai-i 

Along each C@k and dataset configuration, the best performing score 
is highlighted in bold

Dataset Methods C@1 C@3 C@5

EUR-Lex Parabel 31.46 43.11 54.38
Bonsai-i 31.38 44.09 55.61

Wiki10 Parabel 7.00 5.77 6.76
Bonsai-i 7.52 6.82 8.01

WikiLSHTC Parabel 22.73 35.94 43.18
Bonsai-i 24.14 38.49 46.37

Amazon-670k Parabel 32.73 33.77 38.82
Bonsai-i 33.28 34.76 40.11

Amazon-3M Parabel 21.16 20.49 21.81
Bonsai-i 22.27 21.89 23.36
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5 � Conclusion

In this paper, we present Bonsai, which is a class of algorithms for learning shallow trees 
for label partitioning in extreme multi-label classification. Compared to the existing tree-
based methods, it improves this process in two fundamental ways. Firstly, it generalizes the 
notion of label representation beyond the input space representation, and shows the efficacy 
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Fig. 5   Effect of tree depth: Bonsai trees with different depths are evaluated w.r.t prec@k (top row) and 
nDCG@k (bottom row). As tree depth increases, performance tends to drop
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of output space representation based on its co-occurrence with other labels, and by further 
combining these in a joint representation. Secondly, by learning shallow trees which pre-
vent error propagation in the tree cascade and hence improving the prediction accuracy and 
tail-label coverage. The synergizing effects of these two ingredients enables Bonsai to 
retain the training speed comparable to tree-based methods, while achieving better predic-
tion accuracy as well as significantly better tail-label coverage. As a future work, the gen-
eralized label representation can be further enriched by combining with embeddings from 
raw text. This can lead to the amalgamation of methods studied in this paper with those 
that are based on deep learning.
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