
Vol.:(0123456789)

Machine Learning (2020) 109:1587–1615
https://doi.org/10.1007/s10994-020-05874-8

1 3

Classification with costly features as a sequential
decision‑making problem

Jaromír Janisch1 · Tomáš Pevný1 · Viliam Lisý1

Received: 5 April 2019 / Revised: 29 January 2020 / Accepted: 17 February 2020 /
Published online: 28 February 2020
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020

Abstract
This work focuses on a specific classification problem, where the information about a sam-
ple is not readily available, but has to be acquired for a cost, and there is a per-sample budget.
Inspired by real-world use-cases, we analyze average and hard variations of a directly speci-
fied budget. We postulate the problem in its explicit formulation and then convert it into an
equivalent MDP, that can be solved with deep reinforcement learning. Also, we evaluate a
real-world inspired setting with sparse training datasets with missing features. The presented
method performs robustly well in all settings across several distinct datasets, outperforming
other prior-art algorithms. The method is flexible, as showcased with all mentioned modifi-
cations and can be improved with any domain independent advancement in RL.

Keywords Sequential classification · Costly features · Adaptive feature acquisition ·
Datum-Wise classification · Prediction on budget

1 Introduction

Classification with Costly Features (CwCF) is a family of classification problems with a cost
of acquiring information. This cost can appear in many forms. Usually, it is about money or
time, but it is present in any domain with limited resources. We view the problem as a sequen-
tial decision-making problem. At each step, based on the information acquired so far, the algo-
rithm has to decide whether to acquire another piece of information (a feature) or to classify.

Editor: Hendrik Blockeel.

 * Jaromír Janisch
 jaromir.janisch@fel.cvut.cz

 Tomáš Pevný
 tomas.pevny@fel.cvut.cz

 Viliam Lisý
 viliam.lisy@fel.cvut.cz

1 Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague, Prague, Czech Republic

http://orcid.org/0000-0002-4165-6503
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05874-8&domain=pdf

1588 Machine Learning (2020) 109:1587–1615

1 3

Think about a doctor who is about to make a diagnosis for their patient. There are a
number of examinations, tests or analysis which can be made, but each of them has a cost.
As much as the doctor wants to make a reliable prediction, they are bound by their average
budget they should not exceed. Naturally, patients with complicated diseases require more
complicated and expensive tests, while trivial problems can be diagnosed with much fewer
resources. Here, we use the medical domain only as an example, but there are several pub-
lications analyzing the use of CwCF in medicine, i.e., Peng et al. (2018) and Bayer-Zubek
and Dietterich (2005).

As another motivating example, imagine an online service that analyzes computer files
potentially infected with malware. The service is bound by a service-level agreement and
has to provide a decision in a specified time, and this time cannot be exceeded. This is an
example of a hard budget. The process can analyze the files in multiple ways and compute
their features, and each computation takes a different, but known amount of time. The goal
is to provide accurate predictions, while not violating the time constraint.

In other domains, different requirements arise. One domain contains a lot of missing
data, other has imbalanced datasets. There can be a requirement of incorporating an exist-
ing classifier into the process. Misclassification errors can have outcomes with different
impact, measured in the amount of lost resources. As we see, there are many variants of
the CwCF problem. Techniques adapted for specific problems exist and it is difficult to
modify these methods. In this article, we present a flexible reinforcement-learning based
framework, that can work with all the mentioned instances. Should other needs arise, the
method is easily modified to suit the problem. We mainly demonstrate our method in cases
of average and hard budgets and also with missing features.

The power and generality of our method arises from the decoupling of the problem
and the method itself. By using a general reinforcement learning algorithm, we are able to
modify the problem specification, and the method will still provide a good result. The core
of our algorithm is built on optimal methods, but we lose the guarantees by using function
approximation (specifically, neural networks). Our method is also robust to hyperparam-
eter selection, where the same set of hyperparameters usually works well across different
domains and settings.

To the best of our knowledge, the presented method is the first that can work with both
average and hard budgets, is flexible and robust. Formerly, CwCF with the average budget
was approached with linear programming (Wang et al. 2014a), tree-based algorithms (Nan
et al. 2016), gradient-based methods (Contardo et al. 2016) and recently reinforcement
learning (Shim et al. 2018; Janisch et al. 2019). There are also several publications focus-
ing on the hard budget problem—guided selection using a heuristic (Kapoor and Greiner
2005), and theoretical analyses (Cesa-Bianchi et al. 2011; Zolghadr et al. 2013). We pre-
sent an overview of the related work in Sect. 6.

We directly build on recent work of Janisch et al. (2019), where the authors established
a new state-of-the-art method in the average budget case. The authors proposed to solve the
problem of minimizing expected classification loss, along with �-scaled total cost:

where (x, y) are samples taken from the dataset D , � is a classification loss, � is a trade-
off parameter, y� is the classifier and z� returns the total cost of used features in the
classification.

The definition only focuses on the average budget problem and it also introduces an
unintuitive parameter � . In the case the problem is well-specified, all the feature and

(1)min
�

�
(x,y)∈D

[
�(y�(x), y) + �z�(x)

]

1589Machine Learning (2020) 109:1587–1615

1 3

classification costs are precisely known and in the same units, solving the eq. (1) with
� = 1 will yield the optimal solution. However, in many cases, the user knows only the
feature costs and desires a model that will achieve some trade-off between the accuracy and
the cost or have a specified budget. In the case of eq. (1), the user has no option but to try
different values and see whether the learned model corresponds to a targeted budget or not.
This may require several runs of the algorithm and is inefficient. In this work we take a step
back and propose the definition of the problem in its natural form. Given an explicit budget
b, the problem for the average case is:

where the expectations are w.r.t. the distribution of the samples in the dataset. As we show
in Sect. 2.4, definition (1) follows from (2) when using a Lagrangian framework and it
allows us to derive an algorithm in which we remove the � parameter from the user’s
control. In this case, the user directly sets a desired budget and the algorithm internally
searches for a suitable � . The method is based on an alternating optimization of the mod-
el’s parameter � and � , similarly to Generative Adversarial Networks (Goodfellow et al.
2014); however, it is novel in the context of CwCF.

Next, we focus on the hard budget problem, which is defined as:

Dulac-Arnold et al. (2011) showed that the minimization problem (1) could be transformed
into an MDP formulation and solved through standard reinforcement learning techniques.
The approach was later improved by Janisch et al. (2019) with deep learning. We follow
this approach and modify the algorithm for both (2) and (3). In the case of the average
budget, we use the mentioned alternating optimization. In the case of a hard budget, we
show that simple modification to the MDP definition enforces the hard constraints. In exact
settings, the method would yield an optimal solution and it only lacks guarantees due to the
used function approximation.

In the last setting, we focus on the problem of missing features. We demonstrate that a
simple modification of the algorithm performs comparably to a widely used MICE imputa-
tion method (Azur et al. 2011).

For each setting, we provide an experimental evaluation on several distinct datasets and
show that the method achieves a state-of-the-art performance. Also, it is flexible, robust,
easy to use and can be improved with any domain independent advance in RL itself.

The article is structured as follows. First, in Sect. 2, we present the main ideas for solv-
ing various definitions of the problem, along with the problem of missing features. We
explain the implementation details in Sect. 3. In Sects. 4 and 5, we describe the performed
experiments and their results. Section 6 summarizes the related work.

2 Problem variations

Before we delve into technical details, we present an overview of what CwCF is and how
we view it. Then we start with the common notation which will be used for the rest of the
article. In separate sections, we present the algorithms for the different cases. We start with
the definition (1), an average budget case where the budget is specified indirectly through a

(2)min
�

�

[
�(y� , y)

]
, s.t. �

[
z�(x)

]
≤ b

(3)min
�

�

[
�(y� , y)

]
, s.t. z�(x) ≤ b,∀x

1590 Machine Learning (2020) 109:1587–1615

1 3

parameter � . Next, still working with the average budget, we present a reformulation of the
problem with a directly specified budget b and solving it with the Lagrangian framework.
Then we modify the framework to work with hard budgets. Lastly, we focus on a problem
of missing features, which appear in many real-world situations.

2.1 Classification with costly features

First, we would like to stress the sequential nature of the problem. Each sample is treated
separately and the model sequentially selects features, one by one (see Fig. 1). Eventually,
a decision to classify is made, and the model outputs a class prediction. Each decision is
based on the knowledge acquired so far, hence different samples will result in completely
different sequences of features and predictions. This important fact differentiates CwCF
from feature selection methods, where the same subset of features is selected for each
sample.

In real-world scenarios, there are many small modifications to the problem formulations.
However, the presented method is very flexible and can be easily modified. For example,
the prior knowledge can be included in the sample before starting the process (e.g., when a
patient comes with known medical history). Multiple features can be grouped together and
represented as one macro-feature. Different misclassifications can be treated with different
weights through a particular choice of the loss function � . The method can also make use
of an external and independently pretrained classifier and automatically redirect samples if
it is advantageous [shown by Janisch et al. (2019)].

2.2 Common notation

We assume that a sample can be represented as a real-valued vector, where each of its
members we call features. Here we assume a feature is one real number, but presented
algorithms can be trivially modified in the case of multi-dimensional features.

Let’s start with common notation, which will be used for the rest of the article. Let
(x, y) ∈ D be a sample drawn from a data distribution D . Vector x ∈ X ⊆ �

n contains fea-
ture values, where xi is a value of feature fi ∈ F = {f1, ..., fn} , n is the number of features,
and y ∈ Y is a class. Let c ∶ F → �

+ be a function mapping a feature f into its real-val-
ued cost c(f). For convenience, let’s overload c to also accept a set of features and return
the summation of their individual costs: c(F�) =

∑
f∈F� c(f) . Let b ∈ �

+ be the allocated
budget per sample.

af5
· · ·

af3 ay2 y2
y1

y3

f1
f2
f3
f4
f5
f6

Fig. 1 Illustration of the sequential process with a sample with 6 features (f1, ..., f6) and three classes
(y1, y2, y3). Feature values are acquired sequentially (actions af3 , af5 , ...) before making a classification (ay2).
The particular decisions are influenced by the observed values—the model chooses different actions for dif-
ferent samples

1591Machine Learning (2020) 109:1587–1615

1 3

Our method selects features sequentially, and is composed of a neural network with param-
eters � . However, for convenience, we define a pair of functions (y� , z�) to represent the whole
process of classifying one sample. In this notation, y� ∶ X → Y represents the classifica-
tion output at the end of the process and z� ∶ X → � represents the total cost of all features
acquired during the process.

2.3 Average budget with trade‑off parameter �

As we have seen in the medical example in the introduction, in some domains the user wants
to target an average budget per sample. Let’s start by writing the problem definition one more
time:

Here, the user has to specify a trade-off parameter � which will result in an a priori
unknown average budget. The approach is to create an MDP, where samples are classified
in separate episodes and the expected reward R per episode is:

Standard reinforcement learning techniques are then used to optimize this reward, thus
solving (1). Illustration of the MDP is in Fig. 2.

We model the environment as a deterministic MDP with full information, which is easily
implemented. The agent, however, solves a stochastic MDP which is created when you remove
some of the information (namely, the unobserved feature values). Formally, the MDP consists
of states S , actions A , transition function t and reward function r. State s = (x, y, F̄) ∈ S rep-
resents a sample (x, y) and currently selected set of features F̄ . The agent receives only the
selected parts of x without the label. Action a ∈ A = Y ∪ F is either a classification action
from Y that terminate the episode and the agent receives a reward of −�(a, y) , or a feature
selecting action from F that reveals the corresponding value of x and the agent receives a
reward of −�c(a) . The set of available feature selecting actions is limited to features not yet
selected. Reward and transition functions are specified as:

(1 revisited)min
�

�

[
�(y�(x), y) + �z�(x)

]

(4)R = −�

[
�(y�(x), y) + �z�(x)

]

r(s, a) =

{
−𝜆c(a) if a ∈ Af

−�(a, y) if a ∈ Ac

; t(s, a) =

{
(x, y, F̄ ∪ a) if a ∈ Af

T if a ∈ Ac

Fig. 2 The MDP. The agent sees
a masked sample x̄ . At each step
it chooses from feature-selecting
actions (af) or classification
actions (ay) and receives a cor-
responding reward (either the
cost of the selected feature or the
classification loss)

x̄

af4 r = −λc(f4)

ay1 r = − (y1, y)

class

af2 r = −λc(f2)

ay2 r = − (y2, y)
· · ·

· · ·

1592 Machine Learning (2020) 109:1587–1615

1 3

For real datasets, there may be a specific cost for misclassification, expressed in the amount
of lost resources. If such information is not available, we propose to use a binary classifica-
tion loss �:

2.4 Average budget with specific target b

As we already mentioned, a manual specification of an unintuitive parameter � , as used in
the previous section, is not convenient. In real-world applications, the user wants to directly
specify a budget b. Let’s review the definition of the problem:

This constrained optimization problem can be transformed into an alternative Lagrangian
form and solved with maxmin optimization. First, let’s derive the Lagrangian, where � ∈ �
denotes a Lagrange multiplier:

The multiplier � plays a similar role as in the previous approach. However, here it is a vari-
able of our algorithm and is not specified by the user. The saddle point theorem in Bertse-
kas (1999, prop. 5.1.6) says that there exist parameters �, � which are optimal in (2) and are
a solution of the following problem:

Inspired by an approach of Chow et al. (2017), we propose to iteratively perform gradi-
ent ascent in � and descend in � . For fixed � , optimizing � is easy, since the gradient is
∇�L = �

[
z�(x) − b

]
 . However, optimizing � is not straightforward, since the model (y� , z�)

is neither differentiable nor continuous (it is a sequential process). Let’s look at the prob-
lem when � is fixed, that is, minimizing Lagrangian L w.r.t. parameters �:

In the search for optimal parameters � , we can omit the term �b since it does not influence
the solution. Note that the problem is then equal to (1) and thus we can directly apply RL
through the method with fixed � . However, we will only take small steps in � , effectively
estimating and following the gradient ∇�L . The summary can be seen in Algorithm 1.

�(ŷ, y) =

{
0 if ŷ = y

1 if ŷ ≠ y

(2 revisited)min
�

�

[
�(y� , y)

]
, s.t. �

[
z�(x)

]
≤ b

(5)L(�, �) = �

[
�(y�(x), y) + �(z�(x) − b)

]

(6)max
�≥0

min
�

L(�, �)

(7)min
�

L(�, �) = min
�

�

[
�(y�(x), y) + �z�(x)

]
− �b

1593Machine Learning (2020) 109:1587–1615

1 3

A similar approach was evaluated in work of Chow et al. (2017), where the authors
used the Lagrangian framework together with policy gradients to solve a constrained prob-
lem and proved convergence. Note that for an optimal solution, a stochastic policy may be
needed. Our method is based on Q-learning, which works only with deterministic policies
and this can result in oscillations around the stable point. However, it is possible to detect
when this happens, use it as a terminating condition and simply select the best-performing
model satisfying the constraints.

2.5 Hard budget

In some domains, the resources are strictly restricted by a budget b per sample. The prob-
lem definition changes to:

Similarly to the previous case, we can construct an MDP where the expected reward per
sample is R = −�

[
�(y�(x), y)

]
 and the episodes are restricted to end when the budget is

depleted. Again, by solving this MDP with standard reinforcement learning techniques, we
retrieve the solution to (3).

First, we change the reward function such that the costs of different features are ignored:

Second, we restrict the set of available feature-selecting actions at each step to those, which
do not exceed the specified budget. That is, a ∈ F is available only if c(F̄ ∪ a) ≤ b . This
way, the environment itself enforces the constraint.

2.6 Missing features

In a lot of domains, there is a large amount of data that can be used to train our method.
However, the data is often not complete; i.e., in the medical domain, patients are typically
sent only to a few examinations before the diagnosis is made. When using past data, only
this limited information will be present in the training set.

Here we present a principled method to deal with the issue, again by modifying our
original algorithm. During training, a feature-selecting action is available only if the cor-
responding feature is present and the updates (see Eq. 10) are made only with the esti-
mates of available actions. We experimented with another variation, where estimates of
all actions (even for unavailable features) were used. Intuitively, it corresponds to a case

(3 revisited)min
�

�

[
�(y� , y)

]
, s.t. z�(x) ≤ b,∀x

r(s, a) =

{
0 if a ∈ Af

−�(a, y) if a ∈ Ac

1594 Machine Learning (2020) 109:1587–1615

1 3

where we train with sparse data, but at test time, we have a full set. In our experiments, this
approach underperformed the first one, hence we do not report it.

3 Method

In this section, we describe mainly the implementation of the reinforcement learning
algorithm. Because we operate with large datasets with continuous features, the tabular
approach is not feasible. Therefore, we employ neural networks as function approxima-
tors and use recent RL techniques. We experimented with a variety of different methods
and found that incorporating recent insights from deep RL community is essential for the
method to be stable, robust and perform well. After evaluating the implementation com-
plexity and reported performance, we implemented Double Dueling DQN with Retrace as
the RL solver. In the first part, we describe these RL methods. In the following part, we
focus on the algorithm itself, and how it was implemented.

3.1 Deep RL background

An MDP is a tuple (S,A, t, r, �) , where S represent state space, A a set of actions, t(s, a)
is a transition function returning a distribution of states after taking action a in state s,
r(s, a, s�) is a reward function and � is a discount factor. In Q-learning, one seeks the opti-
mal function Q∗ , representing the expected total discounted reward for taking an action a in
a state s and then following the optimal policy. It satisfies the Bellman equation:

A neural network with parameters � takes a state s and outputs an estimate Q�(s, a) , jointly
for all actions a. It is optimized by minimizing MSE between the both sides of Eq. (8) for
transitions (st, at, rt, st+1) empirically experienced by an agent following a greedy policy
��(s) = argmaxa Q

�(s, a) . Formally, we are looking for parameters � by iteratively mini-
mizing the loss function �� , for a batch of transitions B:

where qt is regarded as a constant when differentiated, and is computed as:

As the error decreases, the approximated function Q� converges to Q∗ . However, this
method proved to be unstable in practice (Mnih et al. 2015). Now, we briefly describe the
techniques used in this work that stabilize and speed-up the learning.

Deep Q-learning (Mnih et al. 2015) includes a separate target network with param-
eters � , which follow parameters � with a delay. Here we use the method of Lillicrap et al.
(2016), where the weights are regularly updated with expression � ∶= (1 − �)� + �� , with
some parameter � . The slowly changing estimate Q� is then used in qt , when st+1 ≠ T :

(8)Q∗(s, a) = �
s�∼t(s,a)

[
r(s, a, s�) + � max

a�
Q∗(s�, a�)

]

(9)��(B) = �
(st ,at ,rt ,st+1)∈B

[
qt − Q�(st, at)

]2

(10)qt =

{
rt if st+1 = T

rt +maxa �Q
�(st+1, a) otherwise

1595Machine Learning (2020) 109:1587–1615

1 3

Double Q-learning (Van Hasselt et al. 2016) is a technique to reduce bias induced by the
max in Eq. (10), by combining the two estimates Q� and Q� into a new formula for qt , when
st+1 ≠ T :

In the expression, the maximizing action is taken from Q� , but its value is estimated with
the target network Q�.

Dueling Architecture (Wang et al. 2016) uses a decomposition of the Q-function into
two separate value and advantage functions. The architecture of the network is altered so
that it outputs two estimates V�(s) and A�(s, a) for all actions a, which are then combined to
a final output Q�(s, a) = V�(s) + A�(s, a) −

1

�A�
∑

a� A
�(s, a�) . When training, we take the

gradient w.r.t. the final estimate Q� . By incorporating baseline V� across different states,
this technique accelerates and stabilizes training.

Retrace (Munos et al. 2016) is a method to efficiently utilize long traces of experi-
ence with truncated importance sampling. We store generated trajectories into an experi-
ence replay buffer (Lin 1993) and utilize whole episode returns by recursively expanding
Eq. (8). The stored trajectories are off the current policy and a correction is needed. For a
sequence (s0, a0, r0,… , sn, an, rn, T) , we implement Retrace together with Double Q-learn-
ing by replacing qt with

where we define Q�(T, ⋅) = 0 and �̄�t = min(
𝜋(at|st)
𝜇(at|st)

, 1) is a truncated importance sampling
between exploration policy � that was used when the trajectory was sampled and the cur-
rent policy � . The truncation is used to bind the variance of product of multiple important
sampling ratios for long traces. We allow the policy �� to be stochastic—at the beginning,
it starts close to the sampling policy � but becomes increasingly greedy as the training pro-
gresses. It prevents premature truncation in the Eq. (13) and we observed faster conver-
gence. Note that all qt values for a whole episode can be calculated in O(n) time. Further, it
can be easily parallelized across all episodes.

3.2 Training method

In this section, we describe the method of training the RL agent. At every step, the agent
receives only an observation o = {(xi, fi) ∣ ∀fi ∈ F̄} , that is, the selected parts of x without
the label. The observation o is mapped into a tuple (x̄,m):

Vector x̄ ∈ �
n is a masked vector of the original x. It contains values of x which have been

acquired and zeros for unknown values. Mask m ∈ {0, 1}n is a vector denoting whether a
specific feature has been acquired, and it contains 1 at a position of acquired features, or
0. The combination of x̄ and m is required so that the model can differentiate between a

(11)qt = rt +max
a

�Q�(st+1, a)

(12)qt = rt + �Q�(st+1, argmax
a

Q�(st+1, a))

(13)qt = rt + 𝛾 �
a∼𝜋𝜃 (st)

[
Q𝜙(st+1, a)

]
+ 𝛾�̄�t+1

[
qt+1 − Q𝜙(st+1, at+1)

]

x̄i =

{
xi if fi ∈ F̄

0 otherwise
; mi =

{
1 if fi ∈ F̄

0 otherwise

1596 Machine Learning (2020) 109:1587–1615

1 3

feature not present and observed value of zero. Each dataset is normalized with its mean
and standard deviation and because we replace unobserved values with zero, this corre-
sponds to the mean-imputation of missing values.

In our experiments, we use a feed-forward neural network, which accepts concatenated
vectors x̄ , m and outputs Q-values jointly for all actions. There are three fully connected
hidden layers, each followed by the ReLU non-linearity, where the number of neurons in
individual layers change depending on the used dataset. The overview is shown in Fig. 3.

A set of environments with samples randomly drawn from the dataset are simulated
and the experienced trajectories are recorded into the experience replay buffer. After each
action, a batch of trajectories B is taken from the buffer, so that the total number of indi-
vidual transitions matches the defined batch size. The transitions are then optimized upon
with Adam (Kingma and Ba 2015), with Eqs. (9), (13). The gradient is normalized before
back-propagation if its norm exceeds 1.0. The target network is updated after each step.
Overview of the algorithm and the environment simulation is in Algorithm 2 and 3.

Fig. 3 The architecture of the
model. The input layer consists
of the feature vector x̄ concat-
enated with the binary mask m,
followed by a feed-forward neu-
ral network (FFNN). Final fully
connected layer jointly outputs
Q-values for both classification
and feature-selecting actions

neural network

features x̄
mask m

Q values

1597Machine Learning (2020) 109:1587–1615

1 3

Because all rewards are non-positive, the whole Q-function is also non-positive. We
use this knowledge and clip the qt value so that it is at most 0. Without this bound, the

1598 Machine Learning (2020) 109:1587–1615

1 3

predicted values sometimes rose to infinity, due to the max used in Q-learning. The defini-
tion of the reward function also results in optimistic initialization. A neural network with
initial weights tends to output small values around zero. Effectively, the model tends to
overestimate the real Q-values, which has a positive effect on exploration.

We do not use a discount factor (� = 1), because we want to recover the original objec-
tives. We use �-greedy policy that behaves greedily most of the time, but picks a random
action with a probability � . The unavailable actions are ignored; in the greedy selection, the
algorithm chooses an action with the highest Q-value among the available actions. Explo-
ration rate � starts at a defined initial value and it is linearly decreased over time to its mini-
mum value.

Classification actions Ac are terminal and their Q-values do not depend on any following
states. Prior to the main method, we pretrain the part of the network Q�(s, a) , for classifica-
tion actions a ∈ Ac with batches of randomly sampled states. We randomly pick samples
x from the dataset and generate masks m. The values mi follow the Bernoulli distribution
with probability p. As we want to generate states with a different amount of observed fea-
tures, we randomly select 3

√
p ∼ U(0, 1) for different states. The resulting distribution of

states is shifted towards the initial state with no observed features. The main algorithm
starts with accurate classification predictions and this technique has a positive effect on the
speed of the training process.

In the case of the specified budget b, we also optimize the multiplier � . In our experi-
ments, we found that a simple gradient ascent with momentum works best. The learning
rate schedule for both parameters � and � is exponential, in fixed steps, up to some minimal
value.

4 Experiment setup

Here we describe the methodology, datasets, hyperparameters and methods we compare to
in our experiments.

Fig. 4 Illustrative performance of
different trained models and their
trade-offs, measured on the cost-
accuracy plane. Validation set is
used to select the best perform-
ing models, hence the individual
runs can sometimes exceed the
final performance, which is
reported on the test set

0 10 20 30
Cost

0.86

0.88

0.90

0.92

0.94

A
cc
ur
ac
y

final performance
individual runs

1599Machine Learning (2020) 109:1587–1615

1 3

4.1 Evaluation metric

It is difficult to compare algorithms when we essentially optimize for two objectives - cost
and accuracy. Thus, we adopt the following procedure. We train multiple instances of a
particular algorithm, with varying parameters (this involves different settings of � , budget b
and seeds). The exact number of instances differs across datasets, settings and algorithms,
but is comparable, with median of 20. In the cost-accuracy plane, we use the validation set
to select the best performing model instances, which form a convex hull over all trained
models. As an example, see Fig. 4, where we show several trained models and the selected
ones. Note that because we select the best points on the validation set, occasionally some
points can be higher that the final curve. For the final metric, we use the normalized area
under this curve. By normalization we mean division by the area of the whole cost-accu-
racy plane, such that the best value is 1.0 (higher is better). We assume that, for each data-
set, all models can achieve prior accuracy with no features and also the maximal accuracy
of a particular model with all features.

4.2 Baseline method

We design a simple baseline method to compare with. First, we use a feature selection
technique to select a fixed order of features, sorted from most important to least. Then, we
iteratively add features, according to the list, and train separate neural network based clas-
sifiers. The resulting performance is visualized at the cost-accuracy graph as usual. Note
that this baseline can be compared both to average and hard budget methods since for every
budget, the set of used features is fixed. More specifically, we use Recursive Feature Elim-
ination (Guyon et al. 2002) together with Ridge classifier (Hoerl and Kennard 1970) to
select the feature order. The size of the neural network is comparable to the neural network
used in the main method for a particular dataset.

4.3 Used datasets

In the following sections, we use several datasets, information about which is summarized
in Table 1. They were obtained from public sources (Lichman 2013; Krizhevsky and Hin-
ton 2009) and the Diabetes dataset was obtained from the authors of prior work (Kachuee
et al. 2019). For datasets where there are no explicit costs, we use uniform costs for all

Table 1 Used datasets

The cost is either uniform (U) or variable (V) across features

Dataset # Features # Classes Train size (k) Val. size (k) Test size (k) Costs

Miniboone 50 2 45 19 65 U
Forest 54 7 200 81 300 U
Forest-2 54 2 200 81 300 U
Cifar 400 10 40 10 10 U
Cifar-2 400 2 40 10 10 U
Mnist 784 10 50 10 10 U
Diabetes 45 3 64 14 14 V

1600 Machine Learning (2020) 109:1587–1615

1 3

features. The Miniboone dataset is small and easy, from the classification perspective, and
it is suitable for fast experimenting and evaluation. The Forest dataset contains categori-
cal features (several features are one-hot encoded into multiple others) and many samples,
making it hard to achieve good performance. The Cifar and Mnist datasets are challenging
multi-class image recognition datasets, where we treat all pixels as separate features. We
could leverage convolutions for the image datasets, but to make a fair comparison with
other algorithms, we treat all datasets the same—as with features with no clear structure.
The Forest-2 and Cifar-2 datasets are binarized version of the original datasets, where the
classes were merged into two. The Diabetes dataset contains real-world medical data with
expert-valued feature costs and we use its balanced and mean imputed version.

4.4 Compared algorithms

Let’s review the algorithms we compare to in our experiments. We choose the following
algorithms because they are recent, report impressive results and have their source code
published on-line.

The first method we use is Adapt-Gbrt (agbrt) (Nan and Saligrama 2017), which is
a random forest (RF) based algorithm that uses an external pretrained model (HPC). It
jointly learns a gating function and Low-Prediction Cost model (LPC) that adaptively
approximates HPC in regions where it suffices for making accurate predictions. The gating
function then redirects the samples to either use HPC or LPC. The published implementa-
tion is able to work only in datasets with two classes. The hyperparameters were inspired
by the original paper: Trade-off parameter � ∈ {0.01, 0.1, 1.0, 10, 100, 1000} , learning-rate
in {0.5, 1.0} , Pfull ∈ {0.1, 0.3, 0.5, 0.7, 0.9} , trees depth 4 and number of trees 100 in the
Miniboone dataset and 500 in the Forest dataset. We use RBF-SVM as the HPC model
and initialize LPC model with GreedyMiser (Xu et al. 2012). For each combination of the
described parameters, we perform one run. We aggregate all results and proceed according
to the described metric.

The second method we use is Budget-Prune (bprune) (Nan et al. 2016), which is an
algorithm that prunes an existing RF using linear programming to optimize for the cost vs.
accuracy trade-off. First, we create a RF with BudgetRF algorithm (Nan et al. 2015) with
40 trees in Miniboone, Forest and Diabetes and 80 trees (we did not observe better perfor-
mance with more trees) in Cifar and Mnist. Then we prune the resulting RF with Budget-
Prune, with at least 12 different trade-off settings (more where necessary). The results are
processed according to the evaluation metric.

In hard budget setting, we compare to recent heuristic-driven approach by Kachuee et al.
(2019), called Opportunistic Learning (oplearn). In this algorithm, an auxiliary reward is
defined as a change in prediction uncertainty, when some feature is added. Two separate
networks are trained—one estimating class probabilities, the other predicting the auxil-
iary reward. During test-time, the features are greedily acquired according to the predicted
reward, and classification is made when the target budget is reached. The method uses a
heuristic that lacks the theoretical ground (in contrast with our method where we directly
optimize the Eq. 1), but the experimental results indicate that it performs well. In Oppor-
tunistic Learning, an immediate reward is predicted (� = 0), because of which the model
loses the capacity to predict into the future. Nevertheless, the reported performance was
impressive, hence we selected the method for comparison. We use a neural network with a
comparable amount of parameters to our method. Because of the way this algorithm works,

1601Machine Learning (2020) 109:1587–1615

1 3

Ta
bl

e
2

 (a
) a

lg
or

ith
m

-le
ve

l p
ar

am
et

er
s;

 (b
) d

at
as

et
-s

pe
ci

fic
 p

ar
am

et
er

s

Sy
m

bo
l

D
es

cr
ip

tio
n

Va
lu

e

(a
) G

lo
ba

l p
ar

am
et

er
s

|E
|

N
um

be
r o

f p
ar

al
le

l e
nv

iro
nm

en
ts

10
00

M
ax

im
um

 n
um

be
r o

f s
te

ps
1
0
0
×
ep

−
le
n

�
D

is
co

un
t-f

ac
to

r
1.

0
Re

tra
ce

-�
Re

tra
ce

 p
ar

am
et

er
 �

1.
0

�
Ta

rg
et

 n
et

w
or

k
up

da
te

 fa
ct

or
0.

1
|B
|

N
um

be
r o

f s
te

ps
 in

 b
at

ch
50

k
|M

|
N

um
be

r o
f e

pi
so

de
s i

n
m

em
or

y
40

k
� -
st
ar
t

St
ar

tin
g

ex
pl

or
at

io
n

1.
0

� -
en
d

Fi
na

l e
xp

lo
ra

tio
n

0.
1

�
-s
ta
rt

St
ar

tin
g
�
-g

re
ed

in
es

s o
f t

ar
ge

t p
ol

ic
y
�

0.
5

�
-e
n
d

Fi
na

l �
-g

re
ed

in
es

s o
f t

ar
ge

t p
ol

ic
y
�

0.
0

� s
te
p
s

Le
ng

th
 o

f e
xp

lo
ra

tio
n

ph
as

e
2
×
ep

−
le
n

LR
-p

re
tra

in
Pr

e-
tra

in
in

g
le

ar
ni

ng
-r

at
e

1
×
1
0
−
3

LR
-s

ta
rt

In
iti

al
 le

ar
ni

ng
-r

at
e

5
×
1
0
−
4

LR
-m

in
M

in
im

al
 le

ar
ni

ng
-r

at
e

5
×
1
0
−
7

LR
-u

pd
at

e
N

um
be

r o
f s

te
ps

 b
et

w
ee

n
le

ar
ni

ng
-r

at
e

up
da

te
s

1
0
×
ep

−
le
n

LR
-s

ca
le

Le
ar

ni
ng

-r
at

e
m

ul
tip

lie
r

0.
5

fo
r t

he
 sp

ec
ifi

c
av

er
ag

e
bu

dg
et

�
-L

R-
st

ar
t

In
iti

al
 �

 le
ar

ni
ng

-r
at

e
1
×
1
0
−
1

�
-L

R-
m

in
M

in
im

al
 �

 le
ar

ni
ng

-r
at

e
1
×
1
0
−
4

�
-L

R-
up

da
te

N
um

be
r o

f s
te

ps
 b

et
w

ee
n
�

 le
ar

ni
ng

-r
at

e
up

da
te

s
1
0
×
ep

−
le
n

�
-L

R-
sc

al
e

�
 le

ar
ni

ng
-r

at
e

m
ul

tip
lie

r
0.

5
�

-u
pd

at
e

N
um

be
r o

f s
te

ps
 b

et
w

ee
n

up
da

te
s o

f �
0
.1
×
ep

−
le
n

1602 Machine Learning (2020) 109:1587–1615

1 3

†
 T

he
 re

pl
ay

 si
ze

 is
 lo

w
er

ed
 d

ue
 to

 m
em

or
y

co
ns

tra
in

ts

Ta
bl

e
2

 (c
on

tin
ue

d)

D
at

as
et

M
od

el
 si

ze
ep

_l
en

Sp
ec

ifi
c

(b
) D

at
as

et
 p

ar
am

et
er

s
M

ni
st
†

51
2

10
k

|M
|=

1
0
k
,L

R
-p
re
tr
ai
n
=
2
×
1
0
−
5
,L

R
-s
ta
rt
=
1
0
−
5

C
ifa

r†
51

2
10

k
|M

|=
1
0
k
,L

R
-p
re
tr
ai
n
=
2
×
1
0
−
5
,L

R
-s
ta
rt
=
1
0
−
5

Fo
re

st
25

6
10

k
M

in
ib

oo
ne

12
8

1k
D

ia
be

te
s

12
8

10
0

1603Machine Learning (2020) 109:1587–1615

1 3

we train a single model for each dataset. It is then queried with different budgets to assess
its accuracy. We then construct the convex hull above these points.

4.5 Methodology

All evaluated algorithms include a � like trade-off parameter or a defined budget, which we
sweep across different values and run the algorithms several times, with different seeds.
We use the evaluation method described in Sect. 4.1 to present the results.

As for our method, we let it run for a pre-defined number of steps, according to the Algo-
rithm 2. In one step, all the parallel environments advance for one step, a batch is sampled
from the memory and a gradient step in � is taken. For each dataset, we define a number of
steps that constitute an epoch (ep_len; 100, 1000 or 10k steps). Several other parameters
are dependent on the epoch length; namely the length of the exploration phase, the learning
rate schedule and the frequency of � updates (in the case of specific average budget). Also,
for each dataset, we heuristically estimate the size of the neural network (NN) by training
NN based classifiers with number of neurons selected from {64, 128, 256, 512} in three lay-
ers with ReLu activation. We choose the lowest size that performs well on the task, without
excess complexity. The hyperparameters stay the same across all versions of our algorithm,
clearly featuring its robustness. Table 2 presents all used parameters.

5 Experiment results

In this section, we describe the performed evaluation of the methods described in Sect. 2.
The code used in this evaluation can be obtained at https ://githu b.com/jarom iru/cwcf.

5.1 Time and memory requirements

Let us first discuss the time required for the algorithm to converge and the maximum
memory required during the computation. We performed a test for each dataset for two

Table 3 Time and memory
requirements until convergence
in different datasets of two
variations of the algorithm—
average budget with trade-off �
and specified average budget b

Dataset Steps/s Total steps (k) Total time Memory
required
(GB)

Miniboone-� 8.0 6 13 mins 6
Miniboone-b 6.0 30 83 mins 6
Diabetes-� 3.0 3 17 mins 6
Diabetes-b 1.3 4 51 mins 6
Forest-� 4.5 780 48 h 6
Forest-b 4.0 1500 104 h 6
Cifar-� 1.2 600 136 h 32
Cifar-b 0.9 520 159 h 32
Mnist-� 0.4 300 208 h 32
Mnist-b 0.4 500 347 h 32

https://github.com/jaromiru/cwcf

1604 Machine Learning (2020) 109:1587–1615

1 3

variations of the algorithm, average budget with � and specific budget b, set to possibly
acquire all features (� close to 0 or budget b set to the number of features). The reported

0 20 40
Cost

0.8

0.9

A
cc
ur
ac
y

baseline
rl-λ
bprune
agbrt

0 10 20
Cost

0.4

0.5

0.6

0.7

0.8

A
cc
ur
ac
y

0 20 40
Cost

0.6

0.8

A
cc
ur
ac
y

(a) Miniboone (b) Diabetes (c) Forest

0 20 40
Cost

0.92

0.94

0.96

0.98

A
cc
ur
ac
y

0 200
Cost

0.1

0.2

0.3

0.4

A
cc
ur
ac
y

0 200 400
Cost

0.50

0.55

0.60

0.65

A
cc
ur
ac
y

(d) Forest-2 (e) Cifar (f) Cifar-2

0 500
Cost

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

(g) Mnist

Fig. 5 Comparison of the rl-� algorithm trained through �-specified budget, AdaptGbrt (agbrt) and Budget-
Prune (bprune). The table shows the normalized area under the trade-off curve as the overall metric. Adapt-
Gbrt algorithm cannot be evaluated in multi-class datasets. Seemingly malformed results of BudgetPrune in
(b) are caused by overfitting of the algorithm

1605Machine Learning (2020) 109:1587–1615

1 3

memory consumption is an upper limit estimate—during our tests, a lower amount of
memory occasionally resulted in an out-of-memory error. Evaluation of a trained model is
fast and takes a negligible amount of time.

Each test was for performed on the following configuration: one core of Xeon
E5-2650v2 2.60 GHz CPU with nVidia Tesla K20 5GB GPU. The amount of used memory
varied across the datasets. The results are summarized in Table 3.

The results indicate that the variation with the directly specified budget b is roughly
2-times slower (depending on the dataset), as measured in the wall-clock time, than in the
case with trade-off � . In the former variation, the algorithm solves a non-stationary envi-
ronment (� update is part of the algorithm), hence the longer run-time is expected. How-
ever, if the user seeks a model that will achieve a particular budget, the former method
is much more convenient. With the trade-off � variation, the user would need to execute
several runs to find a suitable � , which may be slower at the end. However, the simpler
trade-off � method has its uses, i.e., in case the user has precisely quantified all the feature
and misclassification costs in the same units. In such case, the user seeks a model that
minimizes the Eq. (1) with � = 1.

The run-time seems to be correlated with the number of features in the dataset, with one
exception. In the Forest dataset, we attribute the long run-time to the one-hot encoding of
the categorical features and the high number of samples—learning to select of meaningful
features seems complex in this setting.

0 20 40

Cost

0.70

0.75

0.80

0.85

0.90

0.95

A
cc
ur
ac
y

rl-budget
rl-λ

0 5 10

Cost

0.78

0.80

0.82

0.84

A
cc
ur
ac
y

0 10 20 30

Cost

0.80

0.85

0.90

0.95

A
cc
ur
ac
y

(a) Miniboone (b) Diabetes (c) Forest

0 100 200 300
Cost

0.30

0.32

0.34

0.36

0.38

0.40

A
cc
ur
ac
y

0 200 400
Cost

0.93

0.94

0.95

0.96

0.97

0.98

A
cc
ur
ac
y

Mnist(e)Cifar(d)

Fig. 6 Average budget setting with directly specified budget b in five different datasets. In each dataset,
multiple runs were made with specific budgets (indicated with vertical lines). The runs with the same
budget settings are plotted with the same color. For reference, the results of the �-specified budget are
included (dashed line) (Color figure online)

1606 Machine Learning (2020) 109:1587–1615

1 3

5.2 Average budget with trade‑off �

In this section, we select several representative datasets and compare the RL method (rl-
�) in average budget settings with Adapt-Gbrt (agbrt) and Budget-Prune (bprune), where
applicable. The results are shown in Fig. 5. The RL based algorithm performs robustly on
all tested datasets, comparable or better to prior-art.

The Fig. 5b show a strange result in the case of the Budget-Prune in the Diabetes
dataset. After a careful inspection, we found that the algorithm heavily overfits the
training data while it performs poorly on the test set. This behavior results in the strange
cost-accuracy curve (which is reported on the test set). In Miniboone, it is noteworthy
that the Adapt-Gbrt and Budget-Prune algorithms do not exceed the performance of the
baseline classifier. In the Cifar dataset, the baseline method provides well and consistent
performance across all budgets, exceeding other methods by a large margin. It is only
surpassed by RL when small budgets (up to 20 features) are targeted. We assume that
the model capacity is the restricting factor here, as Cifar is a very hard dataset, espe-
cially when pixel relations are disregarded. Note that the baseline classifier solves much
easier task—at each budget, there is a static set of pixels that are present in every sam-
ple. On the other hand, RL algorithm accesses a different set of pixels for each sample,
which is a much harder task. Note that we do not use convolutions, which are common
in image recognition tasks (to regard all datasets the same), but they could be incorpo-
rated into the algorithm, if needed.

It is noteworthy that in case of the Diabetes, Forest and Forest-2 datasets, the rl-�
algorithm’s best performance outperforms the baseline classifier with all features,
although both algorithms use neural networks of comparable sizes. This indicates that
the RL algorithm generalizes much better, possibly because solving harder tasks may
have a regularizing effect.

5.3 Average budget with target b

In this section, we discuss the results of the method trained with a user-specified budget b,
while the � is automatically learned as explained in the Sect. 2.4. The previous method with
the � defined budget is useful if the exact costs of features and classification are known—in
this case, we simply set � = 1 and let the algorithm find the best policy. Also, it can be used
if we simply want to sweep across all spectrum of budgets, e.g., for comparison reasons.
In the case we want to target a specific budget, the variant evaluated here is preferred, as

0 20 40 60 80 100
Steps

0.88

0.90

0.92

0.94

A
cc
ur
ac
y

λ training
λ validation
b training
b

= 0
= 0
= 50
= 50 validation

Fig. 7 Comparison of �-set budget and specific target b. Theoretically equal settings, � = 0 (meaning free
features) and a specific budget target b = 50 (all features in the dataset), result into different behavior. All
other settings are the same. Averaged over five runs, one step on the x axis corresponds to 100 training steps

1607Machine Learning (2020) 109:1587–1615

1 3

it removes the additional parameter and directly returns a model with a specified budget in
one run (which saves computational resources).

For each evaluated dataset, we manually selected several distinct budget targets and ran
the algorithm several times with different seeds for each budget. We plotted the results (see
Fig. 6) on the cost-accuracy plane with different colors, to highlight the variance between
different runs.

Comparing the raw results to the previous method with the � defined budget, the results
are similar and in some cases better. The learned models aligned to the specified budgets in
most cases. However, there is some variance in both costs and accuracies, suggesting that
in practice, the method should be run several times and only the best performing model
should be chosen (based on the validation set).

We attribute the better performance to the normalization effect of the simultaneous opti-
mization of �—because the environment is effectively non-stationary, the task is slightly
harder and the learned model generalizes better. In Fig. 7 we further explore this hypoth-
esis. We analyze a training progress of the two methods, when a budget is specified directly
and indirectly with � . With the Miniboone dataset, we selected two, in theory, equal set-
tings: � = 0 and b = 50 . With fixed � , setting it to zero effectively means that all features
are free and budget is infinite. In the other case, setting b = 50 means that all features
can be acquired (there are 50 of them and the cost is uniformly 1.0). All other settings
were equal and we conducted 5 runs of each algorithm and averaged their results. Fig-
ure 7 shows that the specific b-budget method is more resilient to over-fitting—while its
performance increases slower than in �-set budget, the validation performance monotoni-
cally raises as well. Also, the asymptotic average accuracy is better in the case of b-budget,
about 0.943 in 20,000 steps while �-budget reaches its top accuracy of 0.940 in about 3500
steps (in Fig. 7, the x-axis scale is different, it corresponds to 200 and 35 steps on the x axis
respectively).

Another interesting fact is that the learned models always use the whole available budget
up to some point, where it cannot strengthen its accuracy, even with more features. The
observation is consistent with previous experiments with �-targeted budget, where further

0.005

0.010

0.015
λ

7.5

10.0

12.5

Co
st

0 25 50 75 100 125 150 175 200

Steps

0.90

0.95

A
cc
ur
ac
y

Fig. 8 The learning progress in the Miniboone dataset, with an average target budget b = 10 . The plot
shows changes in � , spent budget and accuracy during learning (one run, not averaged). One step on the x
axis corresponds to 100 training steps

1608 Machine Learning (2020) 109:1587–1615

1 3

lowering � did not improve accuracy nor depleted more budget. The Miniboone dataset
has 50 features, and as it can be seen in the Fig. 6a, the model retrieved 35 at most. Similar
effect can be seen in the Forest and Diabetes datasets (Fig. 6b, c).

In Fig. 8, we analyze the training progress. At first, the � multiplier oscillates, until it
converges to its optimal value. Similar oscillations can also be seen in the budgets spent
by partially trained models, where the budget approaches the target value by the end of the
training. We assume that a small deviation from the average target budget is acceptable. If
not, we can simply select the last model that strictly meets the constraint.

In conclusion, using the specific budget b method has several advantages. It achieves
slightly higher accuracy, displays better over-fitting resiliency and avoids a superfluous
hyperparameter.

0 20 40

Cost

0.8

0.9

A
cc
ur
ac
y

baseline
rl-λ
rl-hard
oplearn

0 10 20

Cost

0.60

0.65

0.70

0.75

0.80

0.85

A
cc
ur
ac
y

0 20 40

Cost

0.6

0.8

A
cc
ur
ac
y

(a) Miniboone (b) Diabetes (c) Forest

0 200 400
Cost

0.1

0.2

0.3

0.4

A
cc
ur
ac
y

0 500
Cost

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

Mnist(e)Cifar(d)

Fig. 9 Comparison of RL (rl-hard) and Opportunistic Learning (oplearn) algorithms in the hard-budget set-
ting. For reference, we also plot the performance in the average budget setting (rl-�). The table shows the
normalized area under the trade-off curve metric

1609Machine Learning (2020) 109:1587–1615

1 3

5.4 Hard budget

In the hard budget setting, we compare to Opportunistic Learning (oplearn). We do not
compare to the work of Kapoor and Greiner (2005), since it solves a slightly different prob-
lem. In their case, they do not use a per-sample budget, but rather a budget for the whole
training process.

The results can be seen in Fig. 9, where the RL algorithm with hard budget setting
is named rl-hard. For comparison reasons, we also plot the performance on the average
budget task (rl-�). This is to compare the tasks themselves, not the algorithms (that is, it
cannot be said that one algorithm is better than other).

Generally, compared to average budget setting, the hard budget algorithm should
achieve lower performance. In contrast to the hard budget setting, the average budget

0 20 40

Cost

0.80

0.85

0.90

0.95

A
cc
ur
ac
y

full set
mdp
mice
mean

0 20 40

Cost

0.80

0.85

0.90

0.95

A
cc
ur
ac
y

50%(b)25%(a)

0 20 40
Cost

0.80

0.85

0.90

0.95

A
cc
ur
ac
y

0 20 40
Cost

0.80

0.85

0.90

0.95

A
cc
ur
ac
y

90%(d)75%(c)

Fig. 10 The tested methods were trained with the sparse Miniboone dataset, where the stated percentage
of features is missing. We compare performance with training on the full set without missing features, the
altered mdp method and mice and mean imputation algorithms. Trained models were evaluated on the com-
plete dataset with all features. The table shows the normalized area under the trade-off curve. Numbers after
the dataset name identifies the percentage of missing features during training

1610 Machine Learning (2020) 109:1587–1615

1 3

method can exceed the target budget for selected samples. The experimental results indi-
cate that the performance of both algorithms is similar, except for the Cifar dataset, where
the hard budget algorithm is better for a range of costs. A similar result on the Cifar dataset
was observed also in the average setting, with a specified budget. We noticed that with the
rl-� algorithm, all the resulting models fell either into the low-cost or high-cost region,
but nowhere between. In other words, in Cifar, it is hard to select a � so that the resulting
model falls in the middle-cost region. However, with specific budget (both hard and aver-
age), we can force the algorithm to find such a model, which may work better. In Diabetes,
the performance of the hard budget method is better for a range of costs, which we attribute
to overfitting of the average budget method.

Compared to the Opportunistic Learning algorithm, our method achieves substan-
tially better performance in all datasets. We attribute the result to the fact that RL method

0 20
Cost

0.86

0.88

0.90

0.92

0.94

A
cc
ur
ac
y

rl-λ
rl-dqn

5 10 15
Cost

0.7

0.8

0.9

A
cc
ur
ac
y

Forest(b)Miniboone(a)

0 200 400
Cost

0.20

0.25

0.30

0.35

A
cc
ur
ac
y

0 200
Cost

0.6

0.7

0.8

0.9

A
cc
ur
ac
y

Mnist(d)Cifar(c)

0 500 1000 1500 2000
Trainingsteps

−0.50

−0.25

R
ew

ar
d

rl-λ
rl-λ-nopretrain
rl-dqn

trainin gprogression (Miniboone, λ = 0.01,10 runs average)(e)

Fig. 11 Comparison of the plain DQN (rl-dqn) to a full method used in this work (rl-�). Generally, the
improved algorithm achieves a better score, especially in the datasets with a large amount of features (Cifar
and Mnist). Subfigure e shows the training progression; here we include an ablation of the full algorithm
without pretraining (rl-�-nopretrain)

1611Machine Learning (2020) 109:1587–1615

1 3

optimizes for the actual objective, while Opportunistic Learning method optimizes a heu-
ristic objective, which is not exactly aligned with the actual goal.

We see a similar effect as in the average budget settings—if the increased budged does
not result in increased accuracy, the model learns to stop acquiring features prematurely, to
save resources. Note that in the hard setting, RL never exceeds the specified budget.

5.5 Missing features

In these experiments we assume that there is a sparse training set, while during the test
time, the models can select any feature. That corresponds to the case of the mentioned
medical domain, where past data can be elevated for training. However, it is difficult to
obtain a real dataset with these attributes and therefore we decided to create a custom syn-
thetic dataset. We artificially drop some percentage of features from the Miniboone dataset.
We created four versions, with 25%, 50%, 75% and 90% of features missing. The synthetic
datasets were created with an assumption that the features are missing completely at ran-
dom (MCAR) and the fact that a feature is missing has no predictive power.

We implement the method described in Sect. 2.6 (mdp). We use two baseline meth-
ods—first, we simply impute the missing features with their mean and train the usual way.
Second, we use MICE algorithm (Azur et al. 2011), which assumes linear dependencies
between features. It works by iteratively predicting missing values with a linear regres-
sion over known or already predicted features and repeating this process several times. The
imputed dataset is then regarded as complete and we train our method in a standard way.
For comparison reasons, we also plot the performance on the full set without any missing
features.

In Fig. 10 we present the results. We see incremental degradation of performance when
an increasingly larger percentage of features is missing. The results show that the version
with altered MDP performs robustly well. It performs comparably when less than 50% of
the features are missing, and performs substantially better with sparser datasets. The mdp
method does not involve any preparation and can be directly used in any sparse dataset.
It also highlights the flexibility of the RL method. In the case of the MICE imputation
method, it has to be noted that the preparation process takes a non-negligible amount of
time (about 15 minutes in the Miniboone dataset).

Note that our method can be conveniently used in the case when there are also missing
values in the test set, i.e., when some tests are unavailable. In this case, the algorithm sim-
ply cannot select the corresponding action and chooses the next best. We also experimented
with two different training regimes connected to how we treat the Q-values for the actions
corresponding to the missing features. First, we treat them the usual way—if the corre-
sponding feature is missing, its value is unavailable in the computation of the Q-function
update target. We hypothesized that this approach fits a setting in which we optimize for
the fact, that the features may be missing also in the test set. On the other hand, if we knew
that all the features will be available in the test set, it may make sense to include the values
of the missing features in the computation of the Q-target (either the maximum in (11) or
the expectation in (13)). However, in several experiments we made, the described approach
did not seem to bring any benefit. On the contrary, in many experiments, it resulted in
worse performance.

1612 Machine Learning (2020) 109:1587–1615

1 3

5.6 Effect of the RL algorithm

In this section, we demonstrate that the quality of the underlying RL algorithm plays a
large role in the quality of the resulting model. Our framework can be easily modified to
work with other RL algorithms, such as policy gradients (Mnih et al. 2016) or many dif-
ferent forms of Q-learning (Hessel et al. 2018). However, as we show below, the modifica-
tions should be done with care, as it influences the overall quality of the algorithm.

For this comparison, we selected the simple version of the technique we use in this
work—plain DQN (see Sect. 3.1), without pretraining of the classification actions.
We compare the resulting models to the complete algorithm used in this work (Dou-
ble Dueling DQN architecture with Retrace, with pretraining). In Fig. 11, we show the
results in four selected datasets. As it can be seen, the algorithms perform compara-
bly when the amount of features is small (about 50). However, when applied to larger
datasets (Mnist and Cifar), the simple algorithm is outperformed by a large margin. In
Fig. 11e, we further study the effectivity of the algorithms and show that the plain DQN
also learns much slower (even when we account for the pretraining).

6 Related work

Classification with Costly Features problem has been approached from many directions,
with many different types of algorithms. But to our knowledge, there is no single frame-
work that can work with both average and hard budgets, is flexible and perform robustly
as our method. In the case of the average budget, usually some variation of the trade-off
parameter � is present. We are not aware of any work that would allow to set a target in the
average budget setting.

Most closest works to this article are (Dulac-Arnold et al. 2011), which used Q-learning
with limited linear regression, resulting in inferior performance. Recent works (Janisch
et al. 2019; Shim et al. 2018) replace the linear approximation with neural networks and
report superior performance. However, these methods focus only on the average budget
problem and introduce an unintuitive trade-off parameter � . In (Janisch et al. 2019) the
authors showcase the flexibility of the network by incorporating an external classifier as a
separate feature.

The following references focus only on the average budget problem. Contardo et al.
(2016) use a recurrent neural network that uses attention to select blocks of features and
classifies after a fixed number of steps. Mnih et al. (2014) presents an algorithm sequen-
tially chooses image locations to observe; however, the presented algorithm is applicable
only to image domains and is cost-agnostic. There is also a plethora of tree-based algo-
rithms (Xu et al. 2012, 2013; Xu et al. 2014; Kusner et al. 2014; Nan et al. 2015, 2016; Nan
and Saligrama 2017).

A different set of algorithms employed Linear Programming (LP) to this domain (Wang
et al. 2014b, a). Wang et al. (2014a) use LP to select a model with the best accuracy and
lowest cost, from a set of pre-trained models, all of which use a different set of features.
The algorithm also chooses a model based on the complexity of the sample.

Wang et al. (2015) propose to reduce the problem by finding different disjoint subsets
of features, that are used together as macro-features. These macro-features form a graph,
which is solved with dynamic programming. In large problems, the algorithm can be used
to find efficient groupings of features which would then be used in our method.

1613Machine Learning (2020) 109:1587–1615

1 3

Trapeznikov and Saligrama (2013) use a fixed order of features to reveal, with increas-
ingly complex models that can use them. However, the order of features is not computed,
and it is assumed that it is set manually. Our algorithm is not restricted to a fixed order of
features (for each sample it can choose a completely different subset), and it can also find
their significance automatically.

Maliah and Shani (2018) focus on CwCF with misclassification costs, construct deci-
sion trees over feature subsets and use their leaves to form states of an MDP. They directly
solve the MDP with value-iteration for small datasets with the number of features ranging
from 4-17. On the other hand, our method can be used to find an approximate solution to
much larger datasets. In this work, we do not account for misclassification costs, but they
could be easily incorporated into the rewards for classification actions.

Benbouzid et al. (2012) presents a method to select a subset of available classifiers such
that it maximizes the accuracy of the ensemble while it minimizes their count. The prob-
lem is formulated as an MDP, in which the model sequentially chooses either to use or skip
a classifier in their fixed order, or to stop with a classification. The model only uses the
outputs of the classifiers to choose actions and because of this, it can be much simpler and
the problem can be solved with tabular methods. In a sense, our algorithm is a generaliza-
tion of the principles—we do not restrict our model to a fixed order of features and we use
their raw values to guide the process. Moreover, our model is able to work with hundreds
of features with different costs and can be applied in broad range of domains. However, if
the specific use-case fits the work of Benbouzid et al. (2012), their algorithm may be sim-
pler and faster.

Peng et al. (2018) adapt the CwCF setting for a medical domain. They represent the
problem as an MDP, which they solve with a policy gradient method. They augment the
search with reward shaping and the training with auxiliary targets.

Bayer-Zubek and Dietterich (2005) also view the problem as an MDP with a similar
structure. With discretized feature values, they present several methods based on the AO*
algorithm to search the policy space (represented with a complete decision tree) for an
optimal policy. Their approach is applicable in domains where the discretization of feature
values is possible.

Tan (1993) analyzes a problem similar to our definition, but algorithms introduced there
require memorization of all training examples, which is not scalable in many domains.

The hard budget case was explored in (Kapoor and Greiner 2005), who studied random
and heuristic based methods. Deng et al. (2007) used techniques from the multi-armed
bandit problem. There are also theoretical works (Cesa-Bianchi et al. 2011; Zolghadr et al.
2013). Kachuee et al. (2019) crafted a heuristic reward and used RL to maximize it.

7 Conclusion

In this work, we presented a flexible reinforcement learning (RL) framework for solving
the Classification with Costly Features (CwCF) problem. We build on established work
that already showcased the superior performance of RL in this problem. We modified it
to work with a directly specified budget in average and hard budget cases. For the average
case, we introduced the Lagrangian theory to automatically find suitable parameters. We
also modified the framework in a principled way, to be able to work with datasets with
missing features. All settings were evaluated on several diverse datasets and we report that
our method robustly outperforms other algorithms in most settings.

1614 Machine Learning (2020) 109:1587–1615

1 3

The flexibility of the RL framework was successfully demonstrated by all mentioned
versions of the algorithm. We showcased its robustness (it performs well across all data-
sets) and the ease of use (almost all hyperparameters stay the same across all datasets and
algorithm variations). Moreover, the method is based on the standard RL algorithm and it
can benefit from any improvement in the RL area itself.

Acknowledgements We thank Cheng Zhang for suggesting the baseline method. This research was sup-
ported by the European Office of Aerospace Research and Development (Grant No. FA9550-18-1-7008)
and by The Czech Science Foundation (Grants No. 18-21409S and 18-27483Y). The GPU used in this
research was donated by the NVIDIA Corporation. Computational resources were provided by the CESNET
LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the program Projects of Large
Research, Development, and Innovations Infrastructures.

References

Azur, M. J., Stuart, E. A., Frangakis, C., & Leaf, P. J. (2011). Multiple imputation by chained equations:
what is it and how does it work? International Journal of Methods in Psychiatric Research, 20(1),
40–49.

Bayer-Zubek, V., & Dietterich, T. G. (2005). Integrating learning from examples into the search for diag-
nostic policies. Journal of Artificial Intelligence Research, 24, 263–303.

Benbouzid, D., Busa-Fekete, R., & Kégl, B. (2012). Fast classification using sparse decision dags. In:
Proceedings of the 29th international conference on international conference on machine learning,
Omnipress, pp. 747–754.

Bertsekas, D. P. (1999). Nonlinear programming. Athena scientific Belmont.
Cesa-Bianchi, N., Shalev-Shwartz, S., & Shamir, O. (2011). Efficient learning with partially observed

attributes. Journal of Machine Learning Research, 12, 2857–2878.
Chow, Y., Ghavamzadeh, M., Janson, L., & Pavone, M. (2017). Risk-constrained reinforcement learning

with percentile risk criteria. Journal of Machine Learning Research, 18(167), 1–167.
Contardo, G., Denoyer, L., & Artieres, T. (2016). Recurrent neural networks for adaptive feature acquisi-

tion. In: International conference on neural information processing. Springer, pp 591–599.
Deng, K., Bourke, C., Scott, S., Sunderman, J., & Zheng, Y. (2007). Bandit-based algorithms for budg-

eted learning. In: Seventh IEEE international conference on data mining (ICDM 2007). IEEE, pp
463–468.

Dulac-Arnold, G., Denoyer, L., Preux, P., & Gallinari, P. (2011). Datum-wise classification: A sequential
approach to sparsity. In: Joint European conference on machine learning and knowledge discovery
in databases. Springer, pp. 375–390.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Ben-
gio, Y. (2014). Generative adversarial nets. In: Advances in neural information processing systems,
pp. 2672–2680.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using
support vector machines. Machine Learning, 46(1–3), 389–422.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B.,
Azar, M., & Silver, D. (2018). Rainbow: Combining improvements in deep reinforcement learning.
In: Thirty-second AAAI conference on artificial intelligence.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal prob-
lems. Technometrics, 12(1), 55–67.

Janisch, J., Pevný, T., & Lisý, V. (2019). Classification with costly features using deep reinforcement
learning. In: AAAI conference on artificial intelligence.

Kachuee, M., Goldstein, O., Karkkainen, K., Darabi, S., & Sarrafzadeh, M. (2019). Opportunistic learn-
ing: Budgeted cost-sensitive learning from data streams. In: International conference on learning
representations.

Kapoor, A., & Greiner, R. (2005). Learning and classifying under hard budgets. In: European conference
on machine learning. Springer, pp. 170–181.

Kingma, D.P., & Ba, J. (2015). Adam: A method for stochastic optimization. In: International confer-
ence on learning representations.

1615Machine Learning (2020) 109:1587–1615

1 3

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. Master’s
thesis, University of Toronto.

Kusner, M., Chen, W., Zhou, Q., Xu, Z., Weinberger, K., & Chen, Y. (2014). Feature-cost sensitive learning
with submodular trees of classifiers. In: AAAI conference on artificial intelligence, pp. 1939–1945.

Lichman, M. (2013). UCI machine learning repository. http://archi ve.ics.uci.edu/ml.
Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2016).

Continuous control with deep reinforcement learning. In: International conference on learning
representations.

Lin, L.J. (1993). Reinforcement learning for robots using neural networks. PhD thesis, Carnegie Mellon
University.

Maliah, S., & Shani, G. (2018). Mdp-based cost sensitive classification using decision trees. In: AAAI
conference on artificial intelligence, pp. 3746–3753.

Mnih, V., Heess, N., Graves, A., et al. (2014). Recurrent models of visual attention. In: Advances in neu-
ral information processing systems, pp. 2204–2212.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-
level control through deep reinforcement learning. Nature, 518(7540), 529–533.

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K.
(2016). Asynchronous methods for deep reinforcement learning. In: International conference on
machine learning, pp. 1928–1937.

Munos, R., Stepleton, T., Harutyunyan, A., & Bellemare, M. (2016). Safe and efficient off-policy rein-
forcement learning. In: Advances in neural information processing systems, pp. 1054–1062.

Nan, F., & Saligrama, V. (2017). Adaptive classification for prediction under a budget. In: Advances in
neural information processing systems, pp. 4730–4740.

Nan, F., Wang, J., & Saligrama, V. (2015). Feature-budgeted random forest. In: International conference on
machine learning, pp. 1983–1991.

Nan, F., Wang, J., & Saligrama, V. (2016). Pruning random forests for prediction on a budget. In: Advances
in neural information processing systems, pp. 2334–2342.

Peng, Y.S., Tang, K.F., Lin, H.T., & Chang, E. (2018). Refuel: Exploring sparse features in deep reinforce-
ment learning for fast disease diagnosis. In: Advances in neural information processing systems, pp.
7322–7331.

Shim, H., Hwang, S.J., & Yang, E. (2018). Joint active feature acquisition and classification with variable-
size set encoding. In: Advances in neural information processing systems, pp. 1375–1385.

Tan, M. (1993). Cost-sensitive learning of classification knowledge and its applications in robotics. Machine
Learning, 13(1), 7–33.

Trapeznikov, K., & Saligrama, V. (2013). Supervised sequential classification under budget constraints. In:
Artificial intelligence and statistics, pp. 581–589.

Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double q-learning. In:
AAAI conference on artificial intelligence, pp. 2094–2100.

Wang, J., Bolukbasi, T., Trapeznikov, K., & Saligrama, V. (2014a). Model selection by linear programming.
In: European conference on computer vision. Springer, pp. 647–662.

Wang, J., Trapeznikov, K., & Saligrama, V. (2014b). An lp for sequential learning under budgets. In: Artifi-
cial intelligence and statistics, pp. 987–995.

Wang, J., Trapeznikov, K., & Saligrama, V. (2015). Efficient learning by directed acyclic graph for resource
constrained prediction. In: Advances in neural information processing systems, pp. 2152–2160.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016). Dueling network archi-
tectures for deep reinforcement learning. In: International conference on machine learning, pp.
1995–2003.

Xu, Z., Weinberger, K., & Chapelle, O. (2012). The greedy miser: learning under test-time budgets. In:
Proceedings of the 29th international conference on international conference on machine learning,
Omnipress, pp. 1299–1306.

Xu, Z., Kusner, M., Weinberger, K., & Chen, M. (2013). Cost-sensitive tree of classifiers. In: International
conference on machine learning, pp. 133–141.

Xu, Z., Kusner, M., Weinberger, K., Chen, M., & Chapelle, O. (2014). Classifier cascades and trees for
minimizing feature evaluation cost. Journal of Machine Learning Research, 15(1), 2113–2144.

Zolghadr, N., Bartók, G., Greiner, R., György, A., & Szepesvári, C. (2013). Online learning with costly fea-
tures and labels. In: Advances in neural information processing systems, pp. 1241–1249.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://archive.ics.uci.edu/ml

	Classification with costly features as a sequential decision-making problem
	Abstract
	1 Introduction
	2 Problem variations
	2.1 Classification with costly features
	2.2 Common notation
	2.3 Average budget with trade-off parameter
	2.4 Average budget with specific target b
	2.5 Hard budget
	2.6 Missing features

	3 Method
	3.1 Deep RL background
	3.2 Training method

	4 Experiment setup
	4.1 Evaluation metric
	4.2 Baseline method
	4.3 Used datasets
	4.4 Compared algorithms
	4.5 Methodology

	5 Experiment results
	5.1 Time and memory requirements
	5.2 Average budget with trade-off
	5.3 Average budget with target b
	5.4 Hard budget
	5.5 Missing features
	5.6 Effect of the RL algorithm

	6 Related work
	7 Conclusion
	Acknowledgements
	References

