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Abstract
This work focuses on a specific classification problem, where the information about a sam-
ple is not readily available, but has to be acquired for a cost, and there is a per-sample budget. 
Inspired by real-world use-cases, we analyze average and hard variations of a directly speci-
fied budget. We postulate the problem in its explicit formulation and then convert it into an 
equivalent MDP, that can be solved with deep reinforcement learning. Also, we evaluate a 
real-world inspired setting with sparse training datasets with missing features. The presented 
method performs robustly well in all settings across several distinct datasets, outperforming 
other prior-art algorithms. The method is flexible, as showcased with all mentioned modifi-
cations and can be improved with any domain independent advancement in RL.

Keywords Sequential classification · Costly features · Adaptive feature acquisition · 
Datum-Wise classification · Prediction on budget

1 Introduction

Classification with Costly Features (CwCF) is a family of classification problems with a cost 
of acquiring information. This cost can appear in many forms. Usually, it is about money or 
time, but it is present in any domain with limited resources. We view the problem as a sequen-
tial decision-making problem. At each step, based on the information acquired so far, the algo-
rithm has to decide whether to acquire another piece of information (a feature) or to classify.
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Think about a doctor who is about to make a diagnosis for their patient. There are a 
number of examinations, tests or analysis which can be made, but each of them has a cost. 
As much as the doctor wants to make a reliable prediction, they are bound by their average 
budget they should not exceed. Naturally, patients with complicated diseases require more 
complicated and expensive tests, while trivial problems can be diagnosed with much fewer 
resources. Here, we use the medical domain only as an example, but there are several pub-
lications analyzing the use of CwCF in medicine, i.e., Peng et al. (2018) and Bayer-Zubek 
and Dietterich (2005).

As another motivating example, imagine an online service that analyzes computer files 
potentially infected with malware. The service is bound by a service-level agreement and 
has to provide a decision in a specified time, and this time cannot be exceeded. This is an 
example of a hard budget. The process can analyze the files in multiple ways and compute 
their features, and each computation takes a different, but known amount of time. The goal 
is to provide accurate predictions, while not violating the time constraint.

In other domains, different requirements arise. One domain contains a lot of missing 
data, other has imbalanced datasets. There can be a requirement of incorporating an exist-
ing classifier into the process. Misclassification errors can have outcomes with different 
impact, measured in the amount of lost resources. As we see, there are many variants of 
the CwCF problem. Techniques adapted for specific problems exist and it is difficult to 
modify these methods. In this article, we present a flexible reinforcement-learning based 
framework, that can work with all the mentioned instances. Should other needs arise, the 
method is easily modified to suit the problem. We mainly demonstrate our method in cases 
of average and hard budgets and also with missing features.

The power and generality of our method arises from the decoupling of the problem 
and the method itself. By using a general reinforcement learning algorithm, we are able to 
modify the problem specification, and the method will still provide a good result. The core 
of our algorithm is built on optimal methods, but we lose the guarantees by using function 
approximation (specifically, neural networks). Our method is also robust to hyperparam-
eter selection, where the same set of hyperparameters usually works well across different 
domains and settings.

To the best of our knowledge, the presented method is the first that can work with both 
average and hard budgets, is flexible and robust. Formerly, CwCF with the average budget 
was approached with linear programming (Wang et al. 2014a), tree-based algorithms (Nan 
et  al. 2016), gradient-based methods (Contardo et  al. 2016) and recently reinforcement 
learning (Shim et al. 2018; Janisch et al. 2019). There are also several publications focus-
ing on the hard budget problem—guided selection using a heuristic (Kapoor and Greiner 
2005), and theoretical analyses (Cesa-Bianchi et al. 2011; Zolghadr et al. 2013). We pre-
sent an overview of the related work in Sect. 6.

We directly build on recent work of Janisch et al. (2019), where the authors established 
a new state-of-the-art method in the average budget case. The authors proposed to solve the 
problem of minimizing expected classification loss, along with �-scaled total cost:

where (x, y) are samples taken from the dataset D , � is a classification loss, � is a trade-
off parameter, y� is the classifier and z� returns the total cost of used features in the 
classification.

The definition only focuses on the average budget problem and it also introduces an 
unintuitive parameter � . In the case the problem is well-specified, all the feature and 

(1)min
�

�
(x,y)∈D

[
�(y�(x), y) + �z�(x)

]
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classification costs are precisely known and in the same units, solving the eq.  (1) with 
� = 1 will yield the optimal solution. However, in many cases, the user knows only the 
feature costs and desires a model that will achieve some trade-off between the accuracy and 
the cost or have a specified budget. In the case of eq. (1), the user has no option but to try 
different values and see whether the learned model corresponds to a targeted budget or not. 
This may require several runs of the algorithm and is inefficient. In this work we take a step 
back and propose the definition of the problem in its natural form. Given an explicit budget 
b, the problem for the average case is:

where the expectations are w.r.t. the distribution of the samples in the dataset. As we show 
in Sect.  2.4, definition  (1) follows from (2) when using a Lagrangian framework and it 
allows us to derive an algorithm in which we remove the � parameter from the user’s 
control. In this case, the user directly sets a desired budget and the algorithm internally 
searches for a suitable � . The method is based on an alternating optimization of the mod-
el’s parameter � and � , similarly to Generative Adversarial Networks (Goodfellow et  al. 
2014); however, it is novel in the context of CwCF.

Next, we focus on the hard budget problem, which is defined as:

Dulac-Arnold et al. (2011) showed that the minimization problem (1) could be transformed 
into an MDP formulation and solved through standard reinforcement learning techniques. 
The approach was later improved by Janisch et al. (2019) with deep learning. We follow 
this approach and modify the algorithm for both (2) and (3). In the case of the average 
budget, we use the mentioned alternating optimization. In the case of a hard budget, we 
show that simple modification to the MDP definition enforces the hard constraints. In exact 
settings, the method would yield an optimal solution and it only lacks guarantees due to the 
used function approximation.

In the last setting, we focus on the problem of missing features. We demonstrate that a 
simple modification of the algorithm performs comparably to a widely used MICE imputa-
tion method (Azur et al. 2011).

For each setting, we provide an experimental evaluation on several distinct datasets and 
show that the method achieves a state-of-the-art performance. Also, it is flexible, robust, 
easy to use and can be improved with any domain independent advance in RL itself.

The article is structured as follows. First, in Sect. 2, we present the main ideas for solv-
ing various definitions of the problem, along with the problem of missing features. We 
explain the implementation details in Sect. 3. In Sects. 4 and 5, we describe the performed 
experiments and their results. Section 6 summarizes the related work.

2  Problem variations

Before we delve into technical details, we present an overview of what CwCF is and how 
we view it. Then we start with the common notation which will be used for the rest of the 
article. In separate sections, we present the algorithms for the different cases. We start with 
the definition (1), an average budget case where the budget is specified indirectly through a 

(2)min
�

�

[
�(y� , y)

]
, s.t. �

[
z�(x)

]
≤ b

(3)min
�

�

[
�(y� , y)

]
, s.t. z�(x) ≤ b,∀x
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parameter � . Next, still working with the average budget, we present a reformulation of the 
problem with a directly specified budget b and solving it with the Lagrangian framework. 
Then we modify the framework to work with hard budgets. Lastly, we focus on a problem 
of missing features, which appear in many real-world situations.

2.1  Classification with costly features

First, we would like to stress the sequential nature of the problem. Each sample is treated 
separately and the model sequentially selects features, one by one (see Fig. 1). Eventually, 
a decision to classify is made, and the model outputs a class prediction. Each decision is 
based on the knowledge acquired so far, hence different samples will result in completely 
different sequences of features and predictions. This important fact differentiates CwCF 
from feature selection methods, where the same subset of features is selected for each 
sample.

In real-world scenarios, there are many small modifications to the problem formulations. 
However, the presented method is very flexible and can be easily modified. For example, 
the prior knowledge can be included in the sample before starting the process (e.g., when a 
patient comes with known medical history). Multiple features can be grouped together and 
represented as one macro-feature. Different misclassifications can be treated with different 
weights through a particular choice of the loss function � . The method can also make use 
of an external and independently pretrained classifier and automatically redirect samples if 
it is advantageous [shown by Janisch et al. (2019)].

2.2  Common notation

We assume that a sample can be represented as a real-valued vector, where each of its 
members we call features. Here we assume a feature is one real number, but presented 
algorithms can be trivially modified in the case of multi-dimensional features.

Let’s start with common notation, which will be used for the rest of the article. Let 
(x, y) ∈ D be a sample drawn from a data distribution D . Vector x ∈ X ⊆ �

n contains fea-
ture values, where xi is a value of feature fi ∈ F = {f1, ..., fn} , n is the number of features, 
and y ∈ Y is a class. Let c ∶ F → �

+ be a function mapping a feature f into its real-val-
ued cost c(f). For convenience, let’s overload c to also accept a set of features and return 
the summation of their individual costs: c(F�) =

∑
f∈F� c(f ) . Let b ∈ �

+ be the allocated 
budget per sample.

af5
· · ·

af3 ay2 y2
y1

y3

f1
f2
f3
f4
f5
f6

Fig. 1  Illustration of the sequential process with a sample with 6 features ( f1, ..., f6 ) and three classes 
( y1, y2, y3 ). Feature values are acquired sequentially (actions af3 , af5 , ...) before making a classification ( ay2 ). 
The particular decisions are influenced by the observed values—the model chooses different actions for dif-
ferent samples



1591Machine Learning (2020) 109:1587–1615 

1 3

Our method selects features sequentially, and is composed of a neural network with param-
eters � . However, for convenience, we define a pair of functions (y� , z�) to represent the whole 
process of classifying one sample. In this notation, y� ∶ X → Y represents the classifica-
tion output at the end of the process and z� ∶ X → � represents the total cost of all features 
acquired during the process.

2.3  Average budget with trade‑off parameter �

As we have seen in the medical example in the introduction, in some domains the user wants 
to target an average budget per sample. Let’s start by writing the problem definition one more 
time:

Here, the user has to specify a trade-off parameter � which will result in an a priori 
unknown average budget. The approach is to create an MDP, where samples are classified 
in separate episodes and the expected reward R per episode is:

Standard reinforcement learning techniques are then used to optimize this reward, thus 
solving (1). Illustration of the MDP is in Fig. 2.

We model the environment as a deterministic MDP with full information, which is easily 
implemented. The agent, however, solves a stochastic MDP which is created when you remove 
some of the information (namely, the unobserved feature values). Formally, the MDP consists 
of states S , actions A , transition function t and reward function r. State s = (x, y, F̄) ∈ S rep-
resents a sample (x, y) and currently selected set of features F̄  . The agent receives only the 
selected parts of x without the label. Action a ∈ A = Y ∪ F  is either a classification action 
from Y that terminate the episode and the agent receives a reward of −�(a, y) , or a feature 
selecting action from F  that reveals the corresponding value of x and the agent receives a 
reward of −�c(a) . The set of available feature selecting actions is limited to features not yet 
selected. Reward and transition functions are specified as:

(1 revisited)min
�

�

[
�(y�(x), y) + �z�(x)

]

(4)R = −�

[
�(y�(x), y) + �z�(x)

]

r(s, a) =

{
−𝜆c(a) if a ∈ Af

−�(a, y) if a ∈ Ac

; t(s, a) =

{
(x, y, F̄ ∪ a) if a ∈ Af

T if a ∈ Ac

Fig. 2  The MDP. The agent sees 
a masked sample x̄ . At each step 
it chooses from feature-selecting 
actions ( af  ) or classification 
actions ( ay ) and receives a cor-
responding reward (either the 
cost of the selected feature or the 
classification loss)

x̄

af4 r = −λc(f4)

ay1 r = − (y1, y)

class

af2 r = −λc(f2)

ay2 r = − (y2, y)
· · ·

· · ·
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For real datasets, there may be a specific cost for misclassification, expressed in the amount 
of lost resources. If such information is not available, we propose to use a binary classifica-
tion loss �:

2.4  Average budget with specific target b

As we already mentioned, a manual specification of an unintuitive parameter � , as used in 
the previous section, is not convenient. In real-world applications, the user wants to directly 
specify a budget b. Let’s review the definition of the problem:

This constrained optimization problem can be transformed into an alternative Lagrangian 
form and solved with maxmin optimization. First, let’s derive the Lagrangian, where � ∈ � 
denotes a Lagrange multiplier:

The multiplier � plays a similar role as in the previous approach. However, here it is a vari-
able of our algorithm and is not specified by the user. The saddle point theorem in Bertse-
kas (1999, prop. 5.1.6) says that there exist parameters �, � which are optimal in (2) and are 
a solution of the following problem:

Inspired by an approach of Chow et al. (2017), we propose to iteratively perform gradi-
ent ascent in � and descend in � . For fixed � , optimizing � is easy, since the gradient is 
∇�L = �

[
z�(x) − b

]
 . However, optimizing � is not straightforward, since the model (y� , z�) 

is neither differentiable nor continuous (it is a sequential process). Let’s look at the prob-
lem when � is fixed, that is, minimizing Lagrangian L w.r.t. parameters �:

In the search for optimal parameters � , we can omit the term �b since it does not influence 
the solution. Note that the problem is then equal to (1) and thus we can directly apply RL 
through the method with fixed � . However, we will only take small steps in � , effectively 
estimating and following the gradient ∇�L . The summary can be seen in Algorithm 1. 

�(ŷ, y) =

{
0 if ŷ = y

1 if ŷ ≠ y

(2 revisited)min
�

�

[
�(y� , y)

]
, s.t. �

[
z�(x)

]
≤ b

(5)L(�, �) = �

[
�(y�(x), y) + �(z�(x) − b)

]

(6)max
�≥0

min
�

L(�, �)

(7)min
�

L(�, �) = min
�

�

[
�(y�(x), y) + �z�(x)

]
− �b
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A similar approach was evaluated in work of Chow et  al. (2017), where the authors 
used the Lagrangian framework together with policy gradients to solve a constrained prob-
lem and proved convergence. Note that for an optimal solution, a stochastic policy may be 
needed. Our method is based on Q-learning, which works only with deterministic policies 
and this can result in oscillations around the stable point. However, it is possible to detect 
when this happens, use it as a terminating condition and simply select the best-performing 
model satisfying the constraints.

2.5  Hard budget

In some domains, the resources are strictly restricted by a budget b per sample. The prob-
lem definition changes to:

Similarly to the previous case, we can construct an MDP where the expected reward per 
sample is R = −�

[
�(y�(x), y)

]
 and the episodes are restricted to end when the budget is 

depleted. Again, by solving this MDP with standard reinforcement learning techniques, we 
retrieve the solution to (3).

First, we change the reward function such that the costs of different features are ignored:

Second, we restrict the set of available feature-selecting actions at each step to those, which 
do not exceed the specified budget. That is, a ∈ F  is available only if c(F̄ ∪ a) ≤ b . This 
way, the environment itself enforces the constraint.

2.6  Missing features

In a lot of domains, there is a large amount of data that can be used to train our method. 
However, the data is often not complete; i.e., in the medical domain, patients are typically 
sent only to a few examinations before the diagnosis is made. When using past data, only 
this limited information will be present in the training set.

Here we present a principled method to deal with the issue, again by modifying our 
original algorithm. During training, a feature-selecting action is available only if the cor-
responding feature is present and the updates (see Eq.  10) are made only with the esti-
mates of available actions. We experimented with another variation, where estimates of 
all actions (even for unavailable features) were used. Intuitively, it corresponds to a case 

(3 revisited)min
�

�

[
�(y� , y)

]
, s.t. z�(x) ≤ b,∀x

r(s, a) =

{
0 if a ∈ Af

−�(a, y) if a ∈ Ac
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where we train with sparse data, but at test time, we have a full set. In our experiments, this 
approach underperformed the first one, hence we do not report it.

3  Method

In this section, we describe mainly the implementation of the reinforcement learning 
algorithm. Because we operate with large datasets with continuous features, the tabular 
approach is not feasible. Therefore, we employ neural networks as function approxima-
tors and use recent RL techniques. We experimented with a variety of different methods 
and found that incorporating recent insights from deep RL community is essential for the 
method to be stable, robust and perform well. After evaluating the implementation com-
plexity and reported performance, we implemented Double Dueling DQN with Retrace as 
the RL solver. In the first part, we describe these RL methods. In the following part, we 
focus on the algorithm itself, and how it was implemented.

3.1  Deep RL background

An MDP is a tuple (S,A, t, r, �) , where S represent state space, A a set of actions, t(s, a) 
is a transition function returning a distribution of states after taking action a in state s, 
r(s, a, s�) is a reward function and � is a discount factor. In Q-learning, one seeks the opti-
mal function Q∗ , representing the expected total discounted reward for taking an action a in 
a state s and then following the optimal policy. It satisfies the Bellman equation:

A neural network with parameters � takes a state s and outputs an estimate Q�(s, a) , jointly 
for all actions a. It is optimized by minimizing MSE between the both sides of Eq. (8) for 
transitions (st, at, rt, st+1) empirically experienced by an agent following a greedy policy 
��(s) = argmaxa Q

�(s, a) . Formally, we are looking for parameters � by iteratively mini-
mizing the loss function �� , for a batch of transitions B:

where qt is regarded as a constant when differentiated, and is computed as:

As the error decreases, the approximated function Q� converges to Q∗ . However, this 
method proved to be unstable in practice (Mnih et al. 2015). Now, we briefly describe the 
techniques used in this work that stabilize and speed-up the learning.

Deep Q-learning (Mnih et  al. 2015) includes a separate target network with param-
eters � , which follow parameters � with a delay. Here we use the method of Lillicrap et al. 
(2016), where the weights are regularly updated with expression � ∶= (1 − �)� + �� , with 
some parameter � . The slowly changing estimate Q� is then used in qt , when st+1 ≠ T :

(8)Q∗(s, a) = �
s�∼t(s,a)

[
r(s, a, s�) + � max

a�
Q∗(s�, a�)

]

(9)��(B) = �
(st ,at ,rt ,st+1)∈B

[
qt − Q�(st, at)

]2

(10)qt =

{
rt if st+1 = T

rt +maxa �Q
�(st+1, a) otherwise
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Double Q-learning (Van Hasselt et al. 2016) is a technique to reduce bias induced by the 
max in Eq. (10), by combining the two estimates Q� and Q� into a new formula for qt , when 
st+1 ≠ T :

In the expression, the maximizing action is taken from Q� , but its value is estimated with 
the target network Q�.

Dueling Architecture (Wang et al. 2016) uses a decomposition of the Q-function into 
two separate value and advantage functions. The architecture of the network is altered so 
that it outputs two estimates V�(s) and A�(s, a) for all actions a, which are then combined to 
a final output Q�(s, a) = V�(s) + A�(s, a) −

1

�A�
∑

a� A
�(s, a�) . When training, we take the 

gradient w.r.t. the final estimate Q� . By incorporating baseline V� across different states, 
this technique accelerates and stabilizes training.

Retrace (Munos et  al. 2016) is a method to efficiently utilize long traces of experi-
ence with truncated importance sampling. We store generated trajectories into an experi-
ence replay buffer (Lin 1993) and utilize whole episode returns by recursively expanding 
Eq. (8). The stored trajectories are off the current policy and a correction is needed. For a 
sequence (s0, a0, r0,… , sn, an, rn, T) , we implement Retrace together with Double Q-learn-
ing by replacing qt with

where we define Q�(T, ⋅) = 0 and �̄�t = min(
𝜋(at|st)
𝜇(at|st)

, 1) is a truncated importance sampling 
between exploration policy � that was used when the trajectory was sampled and the cur-
rent policy � . The truncation is used to bind the variance of product of multiple important 
sampling ratios for long traces. We allow the policy �� to be stochastic—at the beginning, 
it starts close to the sampling policy � but becomes increasingly greedy as the training pro-
gresses. It prevents premature truncation in the Eq.  (13) and we observed faster conver-
gence. Note that all qt values for a whole episode can be calculated in O(n) time. Further, it 
can be easily parallelized across all episodes.

3.2  Training method

In this section, we describe the method of training the RL agent. At every step, the agent 
receives only an observation o = {(xi, fi) ∣ ∀fi ∈ F̄} , that is, the selected parts of x without 
the label. The observation o is mapped into a tuple (x̄,m):

Vector x̄ ∈ �
n is a masked vector of the original x. It contains values of x which have been 

acquired and zeros for unknown values. Mask m ∈ {0, 1}n is a vector denoting whether a 
specific feature has been acquired, and it contains 1 at a position of acquired features, or 
0. The combination of x̄ and m is required so that the model can differentiate between a 

(11)qt = rt +max
a

�Q�(st+1, a)

(12)qt = rt + �Q�(st+1, argmax
a

Q�(st+1, a))

(13)qt = rt + 𝛾 �
a∼𝜋𝜃 (st)

[
Q𝜙(st+1, a)

]
+ 𝛾�̄�t+1

[
qt+1 − Q𝜙(st+1, at+1)

]

x̄i =

{
xi if fi ∈ F̄

0 otherwise
; mi =

{
1 if fi ∈ F̄

0 otherwise
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feature not present and observed value of zero. Each dataset is normalized with its mean 
and standard deviation and because we replace unobserved values with zero, this corre-
sponds to the mean-imputation of missing values.

In our experiments, we use a feed-forward neural network, which accepts concatenated 
vectors x̄ , m and outputs Q-values jointly for all actions. There are three fully connected 
hidden layers, each followed by the ReLU non-linearity, where the number of neurons in 
individual layers change depending on the used dataset. The overview is shown in Fig. 3.

A set of environments with samples randomly drawn from the dataset are simulated 
and the experienced trajectories are recorded into the experience replay buffer. After each 
action, a batch of trajectories B is taken from the buffer, so that the total number of indi-
vidual transitions matches the defined batch size. The transitions are then optimized upon 
with Adam (Kingma and Ba 2015), with Eqs. (9), (13). The gradient is normalized before 
back-propagation if its norm exceeds 1.0. The target network is updated after each step. 
Overview of the algorithm and the environment simulation is in Algorithm 2 and 3. 

Fig. 3  The architecture of the 
model. The input layer consists 
of the feature vector x̄ concat-
enated with the binary mask m, 
followed by a feed-forward neu-
ral network (FFNN). Final fully 
connected layer jointly outputs 
Q-values for both classification 
and feature-selecting actions

neural network

features x̄
mask m

Q values
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Because all rewards are non-positive, the whole Q-function is also non-positive. We 
use this knowledge and clip the qt value so that it is at most 0. Without this bound, the 
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predicted values sometimes rose to infinity, due to the max used in Q-learning. The defini-
tion of the reward function also results in optimistic initialization. A neural network with 
initial weights tends to output small values around zero. Effectively, the model tends to 
overestimate the real Q-values, which has a positive effect on exploration.

We do not use a discount factor ( � = 1 ), because we want to recover the original objec-
tives. We use �-greedy policy that behaves greedily most of the time, but picks a random 
action with a probability � . The unavailable actions are ignored; in the greedy selection, the 
algorithm chooses an action with the highest Q-value among the available actions. Explo-
ration rate � starts at a defined initial value and it is linearly decreased over time to its mini-
mum value.

Classification actions Ac are terminal and their Q-values do not depend on any following 
states. Prior to the main method, we pretrain the part of the network Q�(s, a) , for classifica-
tion actions a ∈ Ac with batches of randomly sampled states. We randomly pick samples 
x from the dataset and generate masks m. The values mi follow the Bernoulli distribution 
with probability p. As we want to generate states with a different amount of observed fea-
tures, we randomly select 3

√
p ∼ U(0, 1) for different states. The resulting distribution of 

states is shifted towards the initial state with no observed features. The main algorithm 
starts with accurate classification predictions and this technique has a positive effect on the 
speed of the training process.

In the case of the specified budget b, we also optimize the multiplier � . In our experi-
ments, we found that a simple gradient ascent with momentum works best. The learning 
rate schedule for both parameters � and � is exponential, in fixed steps, up to some minimal 
value.

4  Experiment setup

Here we describe the methodology, datasets, hyperparameters and methods we compare to 
in our experiments.

Fig. 4  Illustrative performance of 
different trained models and their 
trade-offs, measured on the cost-
accuracy plane. Validation set is 
used to select the best perform-
ing models, hence the individual 
runs can sometimes exceed the 
final performance, which is 
reported on the test set
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4.1  Evaluation metric

It is difficult to compare algorithms when we essentially optimize for two objectives - cost 
and accuracy. Thus, we adopt the following procedure. We train multiple instances of a 
particular algorithm, with varying parameters (this involves different settings of � , budget b 
and seeds). The exact number of instances differs across datasets, settings and algorithms, 
but is comparable, with median of 20. In the cost-accuracy plane, we use the validation set 
to select the best performing model instances, which form a convex hull over all trained 
models. As an example, see Fig. 4, where we show several trained models and the selected 
ones. Note that because we select the best points on the validation set, occasionally some 
points can be higher that the final curve. For the final metric, we use the normalized area 
under this curve. By normalization we mean division by the area of the whole cost-accu-
racy plane, such that the best value is 1.0 (higher is better). We assume that, for each data-
set, all models can achieve prior accuracy with no features and also the maximal accuracy 
of a particular model with all features.

4.2  Baseline method

We design a simple baseline method to compare with. First, we use a feature selection 
technique to select a fixed order of features, sorted from most important to least. Then, we 
iteratively add features, according to the list, and train separate neural network based clas-
sifiers. The resulting performance is visualized at the cost-accuracy graph as usual. Note 
that this baseline can be compared both to average and hard budget methods since for every 
budget, the set of used features is fixed. More specifically, we use Recursive Feature Elim-
ination (Guyon et  al. 2002) together with Ridge classifier (Hoerl and Kennard 1970) to 
select the feature order. The size of the neural network is comparable to the neural network 
used in the main method for a particular dataset.

4.3  Used datasets

In the following sections, we use several datasets, information about which is summarized 
in Table 1. They were obtained from public sources (Lichman 2013; Krizhevsky and Hin-
ton 2009) and the Diabetes dataset was obtained from the authors of prior work (Kachuee 
et  al. 2019). For datasets where there are no explicit costs, we use uniform costs for all 

Table 1  Used datasets

The cost is either uniform (U) or variable (V) across features

Dataset # Features # Classes Train size (k) Val. size (k) Test size (k) Costs

Miniboone 50 2 45 19 65 U
Forest 54 7 200 81 300 U
Forest-2 54 2 200 81 300 U
Cifar 400 10 40 10 10 U
Cifar-2 400 2 40 10 10 U
Mnist 784 10 50 10 10 U
Diabetes 45 3 64 14 14 V
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features. The Miniboone dataset is small and easy, from the classification perspective, and 
it is suitable for fast experimenting and evaluation. The Forest dataset contains categori-
cal features (several features are one-hot encoded into multiple others) and many samples, 
making it hard to achieve good performance. The Cifar and Mnist datasets are challenging 
multi-class image recognition datasets, where we treat all pixels as separate features. We 
could leverage convolutions for the image datasets, but to make a fair comparison with 
other algorithms, we treat all datasets the same—as with features with no clear structure. 
The Forest-2 and Cifar-2 datasets are binarized version of the original datasets, where the 
classes were merged into two. The Diabetes dataset contains real-world medical data with 
expert-valued feature costs and we use its balanced and mean imputed version.

4.4  Compared algorithms

Let’s review the algorithms we compare to in our experiments. We choose the following 
algorithms because they are recent, report impressive results and have their source code 
published on-line.

The first method we use is Adapt-Gbrt (agbrt) (Nan and Saligrama 2017), which is 
a random forest (RF) based algorithm that uses an external pretrained model (HPC). It 
jointly learns a gating function and Low-Prediction Cost model (LPC) that adaptively 
approximates HPC in regions where it suffices for making accurate predictions. The gating 
function then redirects the samples to either use HPC or LPC. The published implementa-
tion is able to work only in datasets with two classes. The hyperparameters were inspired 
by the original paper: Trade-off parameter � ∈ {0.01, 0.1, 1.0, 10, 100, 1000} , learning-rate 
in {0.5, 1.0} , Pfull ∈ {0.1, 0.3, 0.5, 0.7, 0.9} , trees depth 4 and number of trees 100 in the 
Miniboone dataset and 500 in the Forest dataset. We use RBF-SVM as the HPC model 
and initialize LPC model with GreedyMiser (Xu et al. 2012). For each combination of the 
described parameters, we perform one run. We aggregate all results and proceed according 
to the described metric.

The second method we use is Budget-Prune (bprune) (Nan et  al. 2016), which is an 
algorithm that prunes an existing RF using linear programming to optimize for the cost vs. 
accuracy trade-off. First, we create a RF with BudgetRF algorithm (Nan et al. 2015) with 
40 trees in Miniboone, Forest and Diabetes and 80 trees (we did not observe better perfor-
mance with more trees) in Cifar and Mnist. Then we prune the resulting RF with Budget-
Prune, with at least 12 different trade-off settings (more where necessary). The results are 
processed according to the evaluation metric.

In hard budget setting, we compare to recent heuristic-driven approach by Kachuee et al. 
(2019), called Opportunistic Learning (oplearn). In this algorithm, an auxiliary reward is 
defined as a change in prediction uncertainty, when some feature is added. Two separate 
networks are trained—one estimating class probabilities, the other predicting the auxil-
iary reward. During test-time, the features are greedily acquired according to the predicted 
reward, and classification is made when the target budget is reached. The method uses a 
heuristic that lacks the theoretical ground (in contrast with our method where we directly 
optimize the Eq. 1), but the experimental results indicate that it performs well. In Oppor-
tunistic Learning, an immediate reward is predicted ( � = 0 ), because of which the model 
loses the capacity to predict into the future. Nevertheless, the reported performance was 
impressive, hence we selected the method for comparison. We use a neural network with a 
comparable amount of parameters to our method. Because of the way this algorithm works, 
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we train a single model for each dataset. It is then queried with different budgets to assess 
its accuracy. We then construct the convex hull above these points.

4.5  Methodology

All evaluated algorithms include a � like trade-off parameter or a defined budget, which we 
sweep across different values and run the algorithms several times, with different seeds. 
We use the evaluation method described in Sect. 4.1 to present the results.

As for our method, we let it run for a pre-defined number of steps, according to the Algo-
rithm 2. In one step, all the parallel environments advance for one step, a batch is sampled 
from the memory and a gradient step in � is taken. For each dataset, we define a number of 
steps that constitute an epoch (ep_len; 100, 1000 or 10k steps). Several other parameters 
are dependent on the epoch length; namely the length of the exploration phase, the learning 
rate schedule and the frequency of � updates (in the case of specific average budget). Also, 
for each dataset, we heuristically estimate the size of the neural network (NN) by training 
NN based classifiers with number of neurons selected from {64, 128, 256, 512} in three lay-
ers with ReLu activation. We choose the lowest size that performs well on the task, without 
excess complexity. The hyperparameters stay the same across all versions of our algorithm, 
clearly featuring its robustness. Table 2 presents all used parameters.

5  Experiment results

In this section, we describe the performed evaluation of the methods described in Sect. 2. 
The code used in this evaluation can be obtained at https ://githu b.com/jarom iru/cwcf.

5.1  Time and memory requirements

Let us first discuss the time required for the algorithm to converge and the maximum 
memory required during the computation. We performed a test for each dataset for two 

Table 3  Time and memory 
requirements until convergence 
in different datasets of two 
variations of the algorithm—
average budget with trade-off � 
and specified average budget b 

Dataset Steps/s Total steps (k) Total time Memory 
required 
(GB)

Miniboone-� 8.0 6 13 mins 6
Miniboone-b 6.0 30 83 mins 6
Diabetes-� 3.0 3 17 mins 6
Diabetes-b 1.3 4 51 mins 6
Forest-� 4.5 780 48 h 6
Forest-b 4.0 1500 104 h 6
Cifar-� 1.2 600 136 h 32
Cifar-b 0.9 520 159 h 32
Mnist-� 0.4 300 208 h 32
Mnist-b 0.4 500 347 h 32

https://github.com/jaromiru/cwcf
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variations of the algorithm, average budget with � and specific budget b, set to possibly 
acquire all features ( � close to 0 or budget b set to the number of features). The reported 
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Fig. 5  Comparison of the rl-� algorithm trained through �-specified budget, AdaptGbrt (agbrt) and Budget-
Prune (bprune). The table shows the normalized area under the trade-off curve as the overall metric. Adapt-
Gbrt algorithm cannot be evaluated in multi-class datasets. Seemingly malformed results of BudgetPrune in 
(b) are caused by overfitting of the algorithm
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memory consumption is an upper limit estimate—during our tests, a lower amount of 
memory occasionally resulted in an out-of-memory error. Evaluation of a trained model is 
fast and takes a negligible amount of time.

Each test was for performed on the following configuration: one core of Xeon 
E5-2650v2 2.60 GHz CPU with nVidia Tesla K20 5GB GPU. The amount of used memory 
varied across the datasets. The results are summarized in Table 3. 

The results indicate that the variation with the directly specified budget b is roughly 
2-times slower (depending on the dataset), as measured in the wall-clock time, than in the 
case with trade-off � . In the former variation, the algorithm solves a non-stationary envi-
ronment ( � update is part of the algorithm), hence the longer run-time is expected. How-
ever, if the user seeks a model that will achieve a particular budget, the former method 
is much more convenient. With the trade-off � variation, the user would need to execute 
several runs to find a suitable � , which may be slower at the end. However, the simpler 
trade-off � method has its uses, i.e., in case the user has precisely quantified all the feature 
and misclassification costs in the same units. In such case, the user seeks a model that 
minimizes the Eq. (1) with � = 1.

The run-time seems to be correlated with the number of features in the dataset, with one 
exception. In the Forest dataset, we attribute the long run-time to the one-hot encoding of 
the categorical features and the high number of samples—learning to select of meaningful 
features seems complex in this setting.
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multiple runs were made with specific budgets (indicated with vertical lines). The runs with the same 
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included (dashed line) (Color figure online)
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5.2  Average budget with trade‑off �

In this section, we select several representative datasets and compare the RL method (rl-
� ) in average budget settings with Adapt-Gbrt (agbrt) and Budget-Prune (bprune), where 
applicable. The results are shown in Fig. 5. The RL based algorithm performs robustly on 
all tested datasets, comparable or better to prior-art.

The Fig.  5b show a strange result in the case of the Budget-Prune in the Diabetes 
dataset. After a careful inspection, we found that the algorithm heavily overfits the 
training data while it performs poorly on the test set. This behavior results in the strange 
cost-accuracy curve (which is reported on the test set). In Miniboone, it is noteworthy 
that the Adapt-Gbrt and Budget-Prune algorithms do not exceed the performance of the 
baseline classifier. In the Cifar dataset, the baseline method provides well and consistent 
performance across all budgets, exceeding other methods by a large margin. It is only 
surpassed by RL when small budgets (up to 20 features) are targeted. We assume that 
the model capacity is the restricting factor here, as Cifar is a very hard dataset, espe-
cially when pixel relations are disregarded. Note that the baseline classifier solves much 
easier task—at each budget, there is a static set of pixels that are present in every sam-
ple. On the other hand, RL algorithm accesses a different set of pixels for each sample, 
which is a much harder task. Note that we do not use convolutions, which are common 
in image recognition tasks (to regard all datasets the same), but they could be incorpo-
rated into the algorithm, if needed.

It is noteworthy that in case of the Diabetes, Forest and Forest-2 datasets, the rl-� 
algorithm’s best performance outperforms the baseline classifier with all features, 
although both algorithms use neural networks of comparable sizes. This indicates that 
the RL algorithm generalizes much better, possibly because solving harder tasks may 
have a regularizing effect.

5.3  Average budget with target b

In this section, we discuss the results of the method trained with a user-specified budget b, 
while the � is automatically learned as explained in the Sect. 2.4. The previous method with 
the � defined budget is useful if the exact costs of features and classification are known—in 
this case, we simply set � = 1 and let the algorithm find the best policy. Also, it can be used 
if we simply want to sweep across all spectrum of budgets, e.g., for comparison reasons. 
In the case we want to target a specific budget, the variant evaluated here is preferred, as 
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Fig. 7  Comparison of �-set budget and specific target b. Theoretically equal settings, � = 0 (meaning free 
features) and a specific budget target b = 50 (all features in the dataset), result into different behavior. All 
other settings are the same. Averaged over five runs, one step on the x axis corresponds to 100 training steps
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it removes the additional parameter and directly returns a model with a specified budget in 
one run (which saves computational resources).

For each evaluated dataset, we manually selected several distinct budget targets and ran 
the algorithm several times with different seeds for each budget. We plotted the results (see 
Fig. 6) on the cost-accuracy plane with different colors, to highlight the variance between 
different runs.

Comparing the raw results to the previous method with the � defined budget, the results 
are similar and in some cases better. The learned models aligned to the specified budgets in 
most cases. However, there is some variance in both costs and accuracies, suggesting that 
in practice, the method should be run several times and only the best performing model 
should be chosen (based on the validation set).

We attribute the better performance to the normalization effect of the simultaneous opti-
mization of �—because the environment is effectively non-stationary, the task is slightly 
harder and the learned model generalizes better. In Fig. 7 we further explore this hypoth-
esis. We analyze a training progress of the two methods, when a budget is specified directly 
and indirectly with � . With the Miniboone dataset, we selected two, in theory, equal set-
tings: � = 0 and b = 50 . With fixed � , setting it to zero effectively means that all features 
are free and budget is infinite. In the other case, setting b = 50 means that all features 
can be acquired (there are 50 of them and the cost is uniformly 1.0). All other settings 
were equal and we conducted 5 runs of each algorithm and averaged their results. Fig-
ure 7 shows that the specific b-budget method is more resilient to over-fitting—while its 
performance increases slower than in �-set budget, the validation performance monotoni-
cally raises as well. Also, the asymptotic average accuracy is better in the case of b-budget, 
about 0.943 in 20,000 steps while �-budget reaches its top accuracy of 0.940 in about 3500 
steps (in Fig. 7, the x-axis scale is different, it corresponds to 200 and 35 steps on the x axis 
respectively).

Another interesting fact is that the learned models always use the whole available budget 
up to some point, where it cannot strengthen its accuracy, even with more features. The 
observation is consistent with previous experiments with �-targeted budget, where further 
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lowering � did not improve accuracy nor depleted more budget. The Miniboone dataset 
has 50 features, and as it can be seen in the Fig. 6a, the model retrieved 35 at most. Similar 
effect can be seen in the Forest and Diabetes datasets (Fig. 6b, c).

In Fig. 8, we analyze the training progress. At first, the � multiplier oscillates, until it 
converges to its optimal value. Similar oscillations can also be seen in the budgets spent 
by partially trained models, where the budget approaches the target value by the end of the 
training. We assume that a small deviation from the average target budget is acceptable. If 
not, we can simply select the last model that strictly meets the constraint.

In conclusion, using the specific budget b method has several advantages. It achieves 
slightly higher accuracy, displays better over-fitting resiliency and avoids a superfluous 
hyperparameter.
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ting. For reference, we also plot the performance in the average budget setting (rl-� ). The table shows the 
normalized area under the trade-off curve metric
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5.4  Hard budget

In the hard budget setting, we compare to Opportunistic Learning (oplearn). We do not 
compare to the work of Kapoor and Greiner (2005), since it solves a slightly different prob-
lem. In their case, they do not use a per-sample budget, but rather a budget for the whole 
training process.

The results can be seen in Fig.  9, where the RL algorithm with hard budget setting 
is named rl-hard. For comparison reasons, we also plot the performance on the average 
budget task (rl-� ). This is to compare the tasks themselves, not the algorithms (that is, it 
cannot be said that one algorithm is better than other).

Generally, compared to average budget setting, the hard budget algorithm should 
achieve lower performance. In contrast to the hard budget setting, the average budget 
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Fig. 10  The tested methods were trained with the sparse Miniboone dataset, where the stated percentage 
of features is missing. We compare performance with training on the full set without missing features, the 
altered mdp method and mice and mean imputation algorithms. Trained models were evaluated on the com-
plete dataset with all features. The table shows the normalized area under the trade-off curve. Numbers after 
the dataset name identifies the percentage of missing features during training
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method can exceed the target budget for selected samples. The experimental results indi-
cate that the performance of both algorithms is similar, except for the Cifar dataset, where 
the hard budget algorithm is better for a range of costs. A similar result on the Cifar dataset 
was observed also in the average setting, with a specified budget. We noticed that with the 
rl-� algorithm, all the resulting models fell either into the low-cost or high-cost region, 
but nowhere between. In other words, in Cifar, it is hard to select a � so that the resulting 
model falls in the middle-cost region. However, with specific budget (both hard and aver-
age), we can force the algorithm to find such a model, which may work better. In Diabetes, 
the performance of the hard budget method is better for a range of costs, which we attribute 
to overfitting of the average budget method.

Compared to the Opportunistic Learning algorithm, our method achieves substan-
tially better performance in all datasets. We attribute the result to the fact that RL method 
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Fig. 11  Comparison of the plain DQN (rl-dqn) to a full method used in this work (rl-� ). Generally, the 
improved algorithm achieves a better score, especially in the datasets with a large amount of features (Cifar 
and Mnist). Subfigure e shows the training progression; here we include an ablation of the full algorithm 
without pretraining (rl-�-nopretrain)
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optimizes for the actual objective, while Opportunistic Learning method optimizes a heu-
ristic objective, which is not exactly aligned with the actual goal.

We see a similar effect as in the average budget settings—if the increased budged does 
not result in increased accuracy, the model learns to stop acquiring features prematurely, to 
save resources. Note that in the hard setting, RL never exceeds the specified budget.

5.5  Missing features

In these experiments we assume that there is a sparse training set, while during the test 
time, the models can select any feature. That corresponds to the case of the mentioned 
medical domain, where past data can be elevated for training. However, it is difficult to 
obtain a real dataset with these attributes and therefore we decided to create a custom syn-
thetic dataset. We artificially drop some percentage of features from the Miniboone dataset. 
We created four versions, with 25%, 50%, 75% and 90% of features missing. The synthetic 
datasets were created with an assumption that the features are missing completely at ran-
dom (MCAR) and the fact that a feature is missing has no predictive power.

We implement the method described in Sect.  2.6 (mdp). We use two baseline meth-
ods—first, we simply impute the missing features with their mean and train the usual way. 
Second, we use MICE algorithm (Azur et  al. 2011), which assumes linear dependencies 
between features. It works by iteratively predicting missing values with a linear regres-
sion over known or already predicted features and repeating this process several times. The 
imputed dataset is then regarded as complete and we train our method in a standard way. 
For comparison reasons, we also plot the performance on the full set without any missing 
features.

In Fig. 10 we present the results. We see incremental degradation of performance when 
an increasingly larger percentage of features is missing. The results show that the version 
with altered MDP performs robustly well. It performs comparably when less than 50% of 
the features are missing, and performs substantially better with sparser datasets. The mdp 
method does not involve any preparation and can be directly used in any sparse dataset. 
It also highlights the flexibility of the RL method. In the case of the MICE imputation 
method, it has to be noted that the preparation process takes a non-negligible amount of 
time (about 15 minutes in the Miniboone dataset).

Note that our method can be conveniently used in the case when there are also missing 
values in the test set, i.e., when some tests are unavailable. In this case, the algorithm sim-
ply cannot select the corresponding action and chooses the next best. We also experimented 
with two different training regimes connected to how we treat the Q-values for the actions 
corresponding to the missing features. First, we treat them the usual way—if the corre-
sponding feature is missing, its value is unavailable in the computation of the Q-function 
update target. We hypothesized that this approach fits a setting in which we optimize for 
the fact, that the features may be missing also in the test set. On the other hand, if we knew 
that all the features will be available in the test set, it may make sense to include the values 
of the missing features in the computation of the Q-target (either the maximum in (11) or 
the expectation in (13)). However, in several experiments we made, the described approach 
did not seem to bring any benefit. On the contrary, in many experiments, it resulted in 
worse performance.
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5.6  Effect of the RL algorithm

In this section, we demonstrate that the quality of the underlying RL algorithm plays a 
large role in the quality of the resulting model. Our framework can be easily modified to 
work with other RL algorithms, such as policy gradients (Mnih et al. 2016) or many dif-
ferent forms of Q-learning (Hessel et al. 2018). However, as we show below, the modifica-
tions should be done with care, as it influences the overall quality of the algorithm.

For this comparison, we selected the simple version of the technique we use in this 
work—plain DQN (see Sect.  3.1), without pretraining of the classification actions. 
We compare the resulting models to the complete algorithm used in this work (Dou-
ble Dueling DQN architecture with Retrace, with pretraining). In Fig. 11, we show the 
results in four selected datasets. As it can be seen, the algorithms perform compara-
bly when the amount of features is small (about 50). However, when applied to larger 
datasets (Mnist and Cifar), the simple algorithm is outperformed by a large margin. In 
Fig. 11e, we further study the effectivity of the algorithms and show that the plain DQN 
also learns much slower (even when we account for the pretraining).

6  Related work

Classification with Costly Features problem has been approached from many directions, 
with many different types of algorithms. But to our knowledge, there is no single frame-
work that can work with both average and hard budgets, is flexible and perform robustly 
as our method. In the case of the average budget, usually some variation of the trade-off 
parameter � is present. We are not aware of any work that would allow to set a target in the 
average budget setting.

Most closest works to this article are (Dulac-Arnold et al. 2011), which used Q-learning 
with limited linear regression, resulting in inferior performance. Recent works (Janisch 
et al. 2019; Shim et al. 2018) replace the linear approximation with neural networks and 
report superior performance. However, these methods focus only on the average budget 
problem and introduce an unintuitive trade-off parameter � . In (Janisch et  al. 2019) the 
authors showcase the flexibility of the network by incorporating an external classifier as a 
separate feature.

The following references focus only on the average budget problem. Contardo et  al. 
(2016) use a recurrent neural network that uses attention to select blocks of features and 
classifies after a fixed number of steps. Mnih et al. (2014) presents an algorithm sequen-
tially chooses image locations to observe; however, the presented algorithm is applicable 
only to image domains and is cost-agnostic. There is also a plethora of tree-based algo-
rithms (Xu et al. 2012, 2013; Xu et al. 2014; Kusner et al. 2014; Nan et al. 2015, 2016; Nan 
and Saligrama 2017).

A different set of algorithms employed Linear Programming (LP) to this domain (Wang 
et al. 2014b, a). Wang et al. (2014a) use LP to select a model with the best accuracy and 
lowest cost, from a set of pre-trained models, all of which use a different set of features. 
The algorithm also chooses a model based on the complexity of the sample.

Wang et al. (2015) propose to reduce the problem by finding different disjoint subsets 
of features, that are used together as macro-features. These macro-features form a graph, 
which is solved with dynamic programming. In large problems, the algorithm can be used 
to find efficient groupings of features which would then be used in our method.
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Trapeznikov and Saligrama (2013) use a fixed order of features to reveal, with increas-
ingly complex models that can use them. However, the order of features is not computed, 
and it is assumed that it is set manually. Our algorithm is not restricted to a fixed order of 
features (for each sample it can choose a completely different subset), and it can also find 
their significance automatically.

Maliah and Shani (2018) focus on CwCF with misclassification costs, construct deci-
sion trees over feature subsets and use their leaves to form states of an MDP. They directly 
solve the MDP with value-iteration for small datasets with the number of features ranging 
from 4-17. On the other hand, our method can be used to find an approximate solution to 
much larger datasets. In this work, we do not account for misclassification costs, but they 
could be easily incorporated into the rewards for classification actions.

Benbouzid et al. (2012) presents a method to select a subset of available classifiers such 
that it maximizes the accuracy of the ensemble while it minimizes their count. The prob-
lem is formulated as an MDP, in which the model sequentially chooses either to use or skip 
a classifier in their fixed order, or to stop with a classification. The model only uses the 
outputs of the classifiers to choose actions and because of this, it can be much simpler and 
the problem can be solved with tabular methods. In a sense, our algorithm is a generaliza-
tion of the principles—we do not restrict our model to a fixed order of features and we use 
their raw values to guide the process. Moreover, our model is able to work with hundreds 
of features with different costs and can be applied in broad range of domains. However, if 
the specific use-case fits the work of Benbouzid et al. (2012), their algorithm may be sim-
pler and faster.

Peng et  al. (2018) adapt the CwCF setting for a medical domain. They represent the 
problem as an MDP, which they solve with a policy gradient method. They augment the 
search with reward shaping and the training with auxiliary targets.

Bayer-Zubek and Dietterich (2005) also view the problem as an MDP with a similar 
structure. With discretized feature values, they present several methods based on the AO* 
algorithm to search the policy space (represented with a complete decision tree) for an 
optimal policy. Their approach is applicable in domains where the discretization of feature 
values is possible.

Tan (1993) analyzes a problem similar to our definition, but algorithms introduced there 
require memorization of all training examples, which is not scalable in many domains.

The hard budget case was explored in (Kapoor and Greiner 2005), who studied random 
and heuristic based methods. Deng et  al. (2007) used techniques from the multi-armed 
bandit problem. There are also theoretical works (Cesa-Bianchi et al. 2011; Zolghadr et al. 
2013). Kachuee et al. (2019) crafted a heuristic reward and used RL to maximize it.

7  Conclusion

In this work, we presented a flexible reinforcement learning (RL) framework for solving 
the Classification with Costly Features (CwCF) problem. We build on established work 
that already showcased the superior performance of RL in this problem. We modified it 
to work with a directly specified budget in average and hard budget cases. For the average 
case, we introduced the Lagrangian theory to automatically find suitable parameters. We 
also modified the framework in a principled way, to be able to work with datasets with 
missing features. All settings were evaluated on several diverse datasets and we report that 
our method robustly outperforms other algorithms in most settings.
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The flexibility of the RL framework was successfully demonstrated by all mentioned 
versions of the algorithm. We showcased its robustness (it performs well across all data-
sets) and the ease of use (almost all hyperparameters stay the same across all datasets and 
algorithm variations). Moreover, the method is based on the standard RL algorithm and it 
can benefit from any improvement in the RL area itself.
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