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Abstract
Fatal accidents are a major issue hindering the wide acceptance of safety-critical systems 
that employ machine learning and deep learning models, such as automated driving vehi-
cles. In order to use machine learning in a safety-critical system, it is necessary to demon-
strate the safety and security of the system through engineering processes. However, thus 
far, no such widely accepted engineering concepts or frameworks have been established for 
these systems. The key to using a machine learning model in a deductively engineered sys-
tem is decomposing the data-driven training of machine learning models into requirement, 
design, and verification, particularly for machine learning models used in safety-critical 
systems. Simultaneously, open problems and relevant technical fields are not organized 
in a manner that enables researchers to select a theme and work on it. In this study, we 
identify, classify, and explore the open problems in engineering (safety-critical) machine 
learning systems—that is, in terms of requirement, design, and verification of machine 
learning models and systems—as well as discuss related works and research directions, 
using automated driving vehicles as an example. Our results show that machine learning 
models are characterized by a lack of requirements specification, lack of design specifica-
tion, lack of interpretability, and lack of robustness. We also perform a gap analysis on a 
conventional system quality standard SQuaRE with the characteristics of machine learn-
ing models to study quality models for machine learning systems. We find that a lack of 
requirements specification and lack of robustness have the greatest impact on conventional 
quality models.
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1  Introduction

Recent developments in machine learning techniques, such as deep neural networks 
(NNs), have led to the widespread application of systems that assign advanced envi-
ronmental perception and decision-making to computer logics learned from big data 
instead of manually built rule-based logics (Bird et al. 2017). Highly complex machine 
learning techniques such as NNs have been studied for decades, however until recently, 
we have suffered from numerous training data to train complex models properly and 
computing methods to perform high computational complexity of training such mod-
els. The availability of big data and affordable high-performance computing, such as 
deep learning frameworks on off-the-shelf graphics processing units (GPUs) (Jia et al. 
2014), have made highly complex machine learning techniques practical for various 
applications including automatic speech recognition (Graves et al. 2013), image recog-
nition  (Krizhevsky 2012), natural language processing  (Sutskever 2014), drag discov-
ery (Vamathevan et al. 2019), and recommendation systems (Elkahky et al. 2015).

Machine learning models are becoming indispensable components even of systems 
that require safety-critical environmental perception and decision-making such as auto-
mated-driving systems (Li et al. 2017). A safety-critical systems is a system whose fail-
ure may result in safety issues such as death or serious injury to people. For safety-
critical systems, worst-case performance is more important than average performance, 
and developers are held strictly accountable. However, for human society to accept such 
safety-critical machine learning systems, it is important to develop common engineering 
frameworks, such as quality measures and standard engineering processes, to manage 
the risks of using machine learning models and systems that include machine learn-
ing models (Koopman and Wagner 2016). Such frameworks, and ultimately the quality 
assurance based on them, have an impact on social receptivity because they can be one 
of the approaches used to deliver safety and security. In fact, recent accidents caused 
during the use of several experimental automated vehicles have revealed the imperative 
need to address the upcoming social issue of (quality) assurance based on such frame-
works  (https​://www.dmv.ca.gov/porta​l/dmv/detai​l/vr/auton​omous​/auton​omous​veh_
ol316​+). Engineering frameworks such as standard development processes have been 
studied for conventional systems and software for years, and machine learning systems 
also need such frameworks that engineers can follow. In order to establish engineering 
frameworks, it is necessary to visualize and organize these open problems; thus, experts 
from numerous different technical fields discuss these problems in depth and develop 
solutions driven by engineering needs.

In this study, we review the open engineering problems associated with safety-critical 
machine learning systems and also present related works and future directions for research. 
We hypothesize an ideal training process that connects deductive requirements and data-
driven training by considering test data as a requirements specification and training data 
as a design specification; thereafter, we review open problems for the process. Our results 
show that machine learning models are characterized by a lack of requirements specifica-
tion, lack of design specification, lack of interpretability, and lack of robustness. In addi-
tion, we discover that requirements specification and verification for open environments are 
key aspects of machine learning systems. We also study quality models for machine learn-
ing systems, which can be used for future requirements and evaluations of these machine 
learning systems. Our results show that a lack of requirements specification and lack of 
robustness have the greatest impact on conventional system quality models.

https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/autonomousveh_ol316+
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/autonomousveh_ol316+
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2 � Background

An automated driving vehicle is a vehicle that operates without human input. Automated 
driving has not been built as a stand-alone system in a vehicle but can be realized using 
a system comprising clouds, roadside devices (fog or cloud edge), and automated driv-
ing vehicles (edge)  (Borraz et  al. 2018), which create and update high-precision digital 
maps (Poggenhans et al. 2018) while cooperating with peripheral vehicles. An in-vehicle 
automated driving system installed in a vehicle comprises multiple subsystems for percep-
tion, planning, and control; such a system realizes automated driving operations in cooper-
ation with clouds and roadside units (Ali and Chan 2011). For simplicity, in this paper, we 
focus on these in-vehicle automated driving systems. Each perception, planning, and con-
trol subsystem may contain necessary machine learning models. Supervised learning mod-
els (Krizhevsky 2012) and reinforcement learning models (Mnih et al. 2013) can be used 
for perception and planning, while non-machine learning control algorithms can be used 
for control. In order to build a machine learning system, it is necessary to define its engi-
neering processes and quality measures in advance, then follow and measure them strictly 
during development time. Conventional systems were developed in a rigorous development 
process involving requirement, design, and verification, cf. V-Model  (INCOSE 2015) (a 
graphical representation of a systems development lifecycle).

In this study, we identify open engineering problems at two levels—systems and 
machine learning models—and use an automated driving system as an example of a safety-
critical machine learning system. We proceed to investigate the problems in terms of the 
three steps of the development process: requirement, design, and verification. The two lev-
els and three steps are illustrated in Fig. 1. Notably, many of the problems considered in 
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this paper do not occur only in automated driving systems but also generally in safety-
critical systems.

This study is related to preceding studies (Salay 2017; Falcini and Lami 2017) that stud-
ied the applicability of ISO 26262 (ISO 26262 2018) and Automotive SPICE (VDA 2015) 
to automotive software using machine learning and deep learning. Our work assumes a 
more general development process to show open problems; we examined quality models 
for machine learning systems, based on a conventional system and software quality stand-
ard, Systems and software Quality Requirements and Evaluation (SQuaRE)  (ISO 2014), 
which has not been done in previous studies.

3 � Engineering machine learning models

A machine learning model is acquired by executing a training algorithm with a model 
structure and training data sets for inputs, while trained models are evaluated using test 
datasets (Murphy 2013). This is a data-driven inductive method that differs from the deduc-
tive development used for conventional systems. In this paper, we call a machine learning 
model that has undefined parameters a “model structure.” In order to use machine learning 
models in a deductively engineered system, it is necessary to break down the data-driven 
training of model parameters into requirements, designs, and verifications, particularly for 
models used in safety-critical systems.

We hypothesize the engineering process for machine learning models in Fig.  2. The 
dotted boxes in the figure illustrate the differences between the conventional training 
process and hypothesized training process. A requirement of machine learning models 
can be the specification of test data, although the current practice is to divide the origi-
nal data into training and test data sets  (Stone 1974; Arlot et  al. 2010). The design pro-
cess then specifies or builds the training data to achieve high performance in the test data, 
with the model requirements as a background. The explicit specification of test data and 
training data addresses a lack of requirements specification and a lack of design specifica-
tion, respectively. In the current practice, the verification of machine learning models is 
measured using performance metrics on the test data. However, we consider it important 
to check properties that cannot be measured using the test data, such as robustness and 
interpretability.

In the following subsections, we introduce our ideas related to the requirements, 
designs, and verifications of machine learning models, as well as research directions and 
related works.

3.1 � Requirements of machine learning models

Most current machine learning research undoubtedly assumes that test data is given (Kriz-
hevsky 2012; He et al. 2016); it is the main part of a model’s requirements. Test data must 
be carefully specified at the beginning of development, by either the developers or contract-
ees of the machine learning model, and must be agreed upon by their contractors. Thus, the 
main open engineering problem here is the deductive definition of the requirements for 
machine learning models and their test data to enable the test data to connect with deduc-
tive requirements and data-driven training. In machine learning, the roles of training data 
and test data must be considered to be different. While training data is used to improve 
the performance of a machine learning model (James et al. 2014), we propose considering 
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the test data to accurately reflect the environmental conditions in operation. However, in 
practice  (Ben-David et  al. 1997), when all data obtained at the time of development are 
divided, some are used as training data and the others become test data (Stone 1974; Arlot 
et al. 2010). For simplicity, we ignore validation data for model selection. Despite the ulti-
mate goal of machine learning models to work well in operation, we test machine learning 
models on test data, which originates from the same source as training data. In this manner, 
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the training and test data are approximately equally distributed, but their relationship to 
the operational data (which is the actual target of the model) is unknown or it is implicitly 
assumed that the training, test, and operational data sets are similar  (Bickel et al. 2009). 
In other words, machine learning models are trained using data-driven methods that lack 
requirements specification.

In particular, in a safety-critical machine learning system, it is necessary to specify the 
distribution of test data (considering the operational environment the system will actu-
ally be operated in) and to collect the test data based on these specifications. By accept-
ing an a priori viewpoint of the distribution of test data, we can define the assumed envi-
ronment deductively and collect data inductively. Moreover, by assuming the distribution 
of test data, we can discuss the operational domain (operational data distribution) for 
requirements specification. Operational data tend to change with time, thereby deterio-
rating model performance in operation (Tsymbal 2004; Webb et al. 2016). The deviation 
between test data used during development and operational data can become larger with 
time from what it was when development was completed. This phenomenon is referred to 
either as covariance shift (Bickel et al. 2009), distributional shift (Amodei et al. 2016), or 
concept drift (Tsymbal 2004). If the operational data trend changes from that of test data, 
then machine learning models trained on the test data do not work on the changed opera-
tional data. Thus, it is important to check for consistency between operational data and test 
data (assuming the original environment) and to either make the machine learning models 
follow the operational data in a continuous maintenance process or to, at least, detect the 
deviation between test and operational data. A lack of requirements specification is a bar-
rier to this.

3.1.1 � Related works and research directions for requirements of machine learning 
models

Although it does not incorporate the specification of test data, i.e., requirements specifi-
cation, runtime monitoring of neuron activation patterns is an approach to detect change 
points  (Cheng et al. 2018). It creates a monitor of neuron activation patterns after training 
time, and runs the monitor at operation time to measure the deviation from training time. 
Change is detected when the activation pattern at operation time becomes detached from 
the neuron activation pattern at training time. Neuron activation patterns on test data may 
implicitly include the model requirements as a background.

Even in the current development of in-vehicle automated driving systems, the test data 
would be collected assuming the operational environment, in order to make the distribu-
tion of the operational data and that of the test data as consistent as possible. However, the 
methods used to describe the assumed environment of machine learning models are not 
organized. In particular, specific methods are required to define the completeness of test 
data. In previous literature, Computer Vision-Hazard and Operability Studies (Zendel et al. 
2015) defined a catalogue of challenges (risks) for computer vision algorithms. The cata-
logue has 1469 manually registered risks as of now. Including all CV-HAZOP risks can 
be a test data coverage in computer vision problems. When systematically testing machine 
learning models to achieve test data coverage, we experience combinatorial explosion 
while guiding the data sampling process. In previous literature, quantitative projection cov-
erage was used to resolve such combinatorial explosion (Cheng et al. 2018).

Although these previous works focused on combinatory environments, the importance 
or criticality of each environment could change. For example, criticality of misclassification 
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of pedestrians may be high in daytime city street, whereas that of vehicles may be high in 
night time highway. CV-HAZOP proposes that the catalogue of challenges creates a basis 
for referencing criticalities for each risk and calculating criticality coverage (Zendel et al. 
2015). Figure 3 illustrates our proposed example of requirements specification. Test data 
must have attributes, such as time and weather, and their distributions that are based on 
the assumed environment (Fig. 3a). Recent public driving data sets have such attributes. 
For example, BDD100K (Yu et al. 2018) has weather conditions, including sunny, over-
cast, and rainy, different times of day, including daytime and nighttime, as well as scenes, 
including city street, gas stations, highway, parking lot, residential, and tunnel. Further, 
since the required performance may change for each environment, it is necessary to express 
the association between the assumed environment and the required performance. Each con-
dition of the test data distribution can have a different confusion matrix (or other perfor-
mance metrics) that machine learning models will have as desired values (Fig. 3c).

3.2 � Design of machine learning models

A machine learning model is automatically obtained by training the parameters of a model 
structure using training data. Thus, specifications cannot be designed a priori-that is, 
machine learning models lack design specifications. This limitation is essential and una-
voidable because high-performance machine learning models are developed by learning 
high-dimensional parameters from data that engineers cannot manually specify. However, 
in the development of a safety-critical machine learning system, it is necessary to record 
the model structure, training data, and training system, including training specifications-
such as hyper parameters, initial parameters, learning rates, and random number seeds-to 
secure the reproducibility of the training process.

Engineers cannot design the training; however, they can design the training data. 
Training data, as a large indirect part of the design specification, coupled with training 
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Fig. 3   Example environment requirements specification (data distribution matrix) and performance require-
ments specification (confusion matrix)
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specifications is carefully designed to achieve the requirements specification. In this man-
ner, the lack of design specification is indirectly remedied. Yet, to the best of our knowl-
edge, there is no standard or widely accepted process of designing training data for 
machine learning models.

3.2.1 � Related works and research directions for design of machine learning models

One of the challenges with the lack of design specification is the establishment of a training 
process for machine learning models by designing training data and models. Training data 
must be designed in the process by iteratively identifying the weak points of the model and 
then generating or collecting additional data for training. A previous suggestion (Ng 2015) 
indicates that a criteria for growing training data is that the training error is low while the 
test error is high; however, the suggestion does not show what types of data must be added. 
It is known that deep learning models, in particular, easily fit a random labeling of the 
training data (Zhang et al. 2016) and, thus, the distribution of training data is important.

3.3 � Verification of machine learning models

Machine learning models are mainly verified by running a model on test data; however, 
certain properties of a machine learning model, such as robustness, cannot be evaluated 
with test data. Therefore, we introduce property checking in the verification of machine 
learning models.

An increasing stability against disturbance, or a lack of robustness, is key to the verifica-
tion of machine learning models. It has been reported that image recognition models incor-
rectly recognize slight noise that cannot be recognized by humans with high confidence, 
thereby creating what are called adversarial examples (AEs) (Szegedy et al. 2013). An AE 
is known to have model-independent versatility and is an issue that can threaten the safety 
of automated driving systems, depending on image recognition. For example, when evalu-
ating robustness against an AE as fault tolerance, it is necessary to artificially generate per-
turbations around data points. We can generate an AE close to a data point specified in the 
requirements and quantify the robustness using the maximum radius in which the model 
can yield correct answers.

The inference processes of advanced machine learning models—such as NNs—are con-
sidered black boxes, and machine learning models lack interpretability. In this context, a 
black box refers to a situation where, although feature activations can be observed physi-
cally, the actual phenomenon cannot be understood. That being said, safety-critical systems 
must exhibit interpretability and transparency. The interpretability of machine learning 
models has been well-researched recently and there are several methods for addressing it. 
LIME (Ribeiro et al. 2016) is one of the most well-known methods for improving interpret-
ability. It derives a simple interpretable model to explain the behavior of an original model 
around a given data point. NN visualization  (Grün et  al. 2016) also shows great prom-
ise to improve interpretability. Object detectors emerging in deep scene CNNs is an NN 
visualization that intentionally performs occlusion on input data and specifies the region 
where the inference result changes drastically as a region of interest  (Zhou et  al. 2015; 
Zhou and Khosla et al. 2016); another method back-propagates activation values from the 
influencer nodes during the subsequent feature extraction process to identify the region of 
interest (Zeiler and Fergus 2014) and generate heat maps (Shrikumar et al. 2016; Binder 
et al. 2016; Montavon et al. 2017; Simonyan et al. 2014) for convolutional NNs. Further, 
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interpretability is also useful for performance improvement, debugging during training, and 
validating of training results. Developers can understand the internal behavior of a trained 
NN to train higher performance models (Kuwajima et al. 2019). For example, a developer 
can visualize an NN’s focus points for an incorrect inference and understand what was 
wrong, before additional training data is collected according to the analysis. If a machine 
learning model outputs an incorrect inference, but the visualized focus area is natural for 
humans, then an inaccurate ground truth label is suggested.

3.3.1 � Related works and research directions for verification of machine learning 
models

In the field of theoretical computer science, the automatic design verification (Lam 2008) 
based on formal verification technologies for certain properties, such as safety and live-
ness (Garcia 2006), makes the verification of a machine learning model possible. Several 
automatic verification techniques exist for NNs and we categorize them here. The initial 
categories are function and decision problems. The former quantifies the degrees of prop-
erties, while the latter identifies if the properties are satisfied in a machine learning model. 
Related works for function problems address adversarial frequency and severity (Bastani 
et al. 2016) as well as maximum perturbation bound (Cheng et al. 2017), referring to the 
frequency of AE found, the expectation of the closest AE, and the maximum absolute 
value of the perturbation of inputs that do not change the outputs, respectively. Decision 
problems are further subdivided into verification and falsification, which seek a complete 
proof and counterexamples by best effort, respectively. Related works of verification are 
global safety (Pulina 2012), local safety (Pulina 2010), (�, �)-robustness (Katz et al. 2017), 
and (x, �, �)-safe (Huang et al. 2017). Global safety is output bound, and local safety is the 
consistency of inference among close data points. A related example for falsification is 
the CNN Analyzer  (Dreossi et  al. 2017, 2019). It identifies counterexamples against the 
signal temporal logic  (Donzé 2013) properties of in-vehicle automated driving systems 
and counterexamples of object (vehicle) detection by convolutional NNs. Further, Relu-
plex (Katz et al. 2017) is a solver used to both verify and falsify first-order propositional 
logics (Andrews 2002) against NNs using Rectified Linear Units (ReLU) (Nair 2010) for 
activation functions. Reluplex is an SMT (satisfiability modulo theories) solver (De Moura 
2008) to verify properties of deep NNs or provide counterexamples against them by uti-
lizing the simplex method (Dantzig 1987) and the partial linearity of the ReLU function. 
Dependability metrics set for NNs is a related work that proposes metrics such as scenario 
coverage, neuron activation pattern, interpretation precision for RICC (robustness, inter-
pretability, completeness, and correctness) criteria (Cheng and Huang et al. 2018).

4 � Engineering machine learning systems

In this section, we review open engineering problems in terms of the system level of in-
vehicle automated driving systems as an example of safety-critical machine learning 
systems. Problems related to machine learning systems originate from machine learning 
models and the open environments in which automated vehicles function. The former is 
low modularity of machine learning systems due to the characteristics of machine learn-
ing models, such as lack of design specifications and lack of robustness. The latter include 
capturing physical operational environments and user behaviors of in-vehicle automated 
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driving systems for requirements and addressing the intractableness of field operation test-
ing (FOT) for verification. An open environment problem is not directly related to machine 
learning, although it is an important challenge for in-vehicle automated driving systems. In 
this paper, we consider open environments to be a common challenge for machine learn-
ing systems because machine learning models are employed to capture these complex 
environments.

4.1 � Requirements of machine learning systems

In order to develop high quality systems and products, comprehensive requirements speci-
fications and the evaluation of machine learning systems based on the requirements speci-
fication are needed; in turn, these require appropriate quality characteristics for the systems 
that can be used for requirements and evaluations. Quality characteristics of machine learn-
ing “systems” are more important in the context of industry than those of machine learning 
“models,” because machine learning models are not used in a stand-alone manner but are 
always embedded in systems. System and software quality models have been developed for 
years; however, to the best of our knowledge, there is no standard quality model that adapts 
the characteristics of machine learning models—such as lack of requirements specifica-
tions, design specifications, interpretability, and robustness—into account. Thus, we con-
duct a gap analysis on a conventional system and software quality standard, SQuaRE (ISO 
2014) in Sect. 5.

Another important aspect of machine learning (or any other) systems is that they cannot 
operate in every environment and require limitations or warranty scopes. Thus, a particu-
lar machine learning system must be implemented for a predefined environment. Environ-
ment attributes to be predefined for automated driving systems are static conditions such 
as weather, times of day, scene, road, as well as dynamic conditions (dynamics of) such 
as the vehicle under control and other moving objects (surrounding vehicles and pedestri-
ans). However, there are various (uncountable) types of roads, traffic lights, and traffic par-
ticipants, such as other vehicles (be they automated or manually driven) and pedestrians; 
therefore, it is not easy to define the operational environment for in-vehicle automated driv-
ing systems. An open engineering problem in the requirements specification of machine 
learning systems is that there is no standard means to design and define such environments, 
i.e., requirements specification cannot be clearly defined. In the automotive industry, this is 
called the operational design domain (Administration NHTS of Transportation UD 2017; 
Government U 2018) and it can be defined by conditions such as geographical areas, road 
types, traffic conditions, and maximum speed of the subject vehicle (Colwell et al. 2018).

4.1.1 � Related works and research directions for requirements of machine learning 
systems

The German PEGASUS project is a joint initiative of vehicle manufacturers, suppliers, tool 
vendors, certification organizations, and research institutes, aiming to define standard qual-
ity assurance methods for automated-driving systems (Lemmer 2017). The purpose of this 
project is to clarify the expected performance level and evaluation criteria of automated 
driving systems through scenario-based verification. The scope of the project includes 
standard test procedures, continuous and flexible tool chains, the integration of tests into 
development processes, cross-company test methods, requirement definition methods, 
driving scenarios, and a common database of scenarios. Scenarios are collected from test 
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drives and the market to demonstrate that systems are equal to, or better than, human driv-
ers. Scenario collection, i.e., building requirements specification, and scenario-based veri-
fication are conducted in a continuous manner. Regular scenarios are continuously tested 
by simulation, and critical scenarios are tested through artificially configured environments 
on test courses. The PEGASUS project is an excellent example of the continuous require-
ments and verification for in-vehicle automated driving systems and their verification.

4.2 � Design of machine learning systems

An open engineering problem at the system level of machine learning systems is designing 
systems that include machine learning models by considering and applying the characteris-
tics of “Change Anything Change Everything” (CACE) (Sculley et al. 2015). CACE origi-
nates from a lack of design specification in machine learning models. Machine learning 
models are trained in a data-driven manner, thereby making the localizing of change dif-
ficult. If a small part is changed, then the entire machine learning changes once it is trained 
again. Subsequently, machine learning systems have to be changed for the newly trained 
machine learning models. In order to prevent reworking after training machine learning 
models, it is necessary to have system architectures that can cope with additional require-
ments without modification of the model.

In general, it is difficult for a machine learning model to achieve 100% accuracy on 
test data  (Domingos 2012) and as its accuracy approaches 100%, further performance 
improvement becomes difficult. Therefore, optimizing machine learning models is not the 
only means to improve subsystem performance, thereby making a rigorous breakdown of 
subsystem requirements into machine learning model requirements essential for safety-crit-
ical machine learning systems. In this process, safety analysis methods and processes are 
important, such as the encapsulation of machine learning models by rule-based safeguard-
ing and the use of redundant and diverse architecture that absorbs and mitigates the uncer-
tainty of machine learning models.

4.2.1 � Related works and research directions for design of machine learning systems

To the best of our knowledge, we do not find special techniques that directly address the 
design of machine learning systems. SOTIF  (Wendorff 2017), a safety standard/process 
concerning performance limits of functionalities, focuses on securing functionalities with 
uncertainty. Uncertain functionalities include machine learning models. SOTIF has a pro-
cess that includes identification of scenarios that can trigger unsafe actions (triggering con-
ditions) for the system and system modifications to address them (Czarnecki 2018). The 
process standards can be potentially effective in the design of machine learning system 
in general, rather than evaluating an entire machine learning system upon completion of 
development. In addition to process standards, research directions include test stubs for 
machine learning models, encapsulation of machine learning models by rule-based safe-
guarding, and the use of redundant and diverse architecture that mitigates and absorbs the 
low robustness of machine learning models.

4.3 � Verification of machine learning systems

The simplest approach to verifying an in-vehicle automated driving system is by verifica-
tion against actual data. Accumulating a large number of safe automated driving trips, with 
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long distances to match human drivers, will effectively demonstrate that in-vehicle auto-
mated driving systems are as safe as human drivers. In order to verify the system within 
a realistic time-frame, there are two options: reduce the required verification scenarios or 
accelerate the verification. Therefore, high accuracy verification models must be able to 
exclude unreal scenarios. It is necessary to accelerate simulation experimentation, thereby 
reproducing corner-case scenarios on test courses with a short mileage (i.e., scenarios with 
an extremely low probability of occurrence and ones that are difficult to statistically obtain 
through FOT on an actual road).

4.3.1 � Related works and research directions for verification of machine learning 
systems

Obtaining statistically significant results would require FOT on a humongous number of 
miles (Kalra and Paddock 2016). Kalra and Paddock (2016) is based on a simple hypoth-
esis testing, and the resulting required miles may not reflect actual situations. Research 
directions include building detailed close-to-reality models for driving scenes and scenar-
ios to reflect the real world conditions and reduce FOT miles.

5 � Quality of machine learning systems

We reviewed the open engineering problems in machine learning systems, and recog-
nized that machine learning models are characterized by their lack of requirements speci-
fications, design specifications, interpretability, and robustness. In this section, we study 
quality models for machine learning systems by discussing the combination of these 
machine learning characteristics and a conventional system and software quality standard, 
SQuaRE (ISO 2014).

5.1 � Quality models for conventional systems

We focus on SQuaRE, ISO/IEC 25000 series (ISO 2014), as the conventional system qual-
ity baseline. Systems and software quality are usually studied in software engineering. One 
of the earliest work is an international standard ISO/IEC 9126 Software engineering-Prod-
uct quality (ISO 2001), first issued in 1991. ISO/IEC 9126 classified software quality into 
six characteristics: Functionality, Reliability, Usability, Efficiency, Maintainability, and 
Portability. ISO/IEC 9126 was replaced by its succeeding international standard ISO/IEC 
25000 series, Systems and software engineering—Systems and software Quality Require-
ments and Evaluation (SQuaRE)  (ISO 2014). SQuaRE is a widely acknowledged sys-
tem quality standard and includes quality measures (QMs) and quality measure elements 
(QMEs) as well as quality models, characteristics, and sub-characteristics. These compo-
nents have a tree structure (one-to-many relationships), and the top-level quality models 
are Product quality, Data quality, Quality in use, and IT service quality, as illustrated in 
Fig. 4. Boxes with thick lines and thin lines in Fig. 4 represent quality models and quality 
characteristics, respectively. Quality sub-characteristics are not defined for Data quality.

Each quality characteristic of Data quality, or each quality sub-characteristic of Prod-
uct quality and Quality in use, has multiple QMs that define how to quantify the qual-
ity. A QM X is defined in the form of a formula, such that X = A∕B and X = 1 − A∕B , 
and the elements in the formula A and B are QMEs. An example set of a quality model, 
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a characteristic, a sub-characteristic, a QM, and QMEs are Product quality, Reliability, 
Maturity, Mean time between failure, and Operation time (QME 1) and Number of system/
software failures that actually occurred (QME 2), respectively. There are other QMs for 
the sub-characteristic Maturity (such as Failure rate, whose QMEs are Number of failures 
detected during observation time and Duration of observation). QMs and QMEs are not 
defined for IT service quality.

5.2 � Gap analysis

We performed a gap analysis between conventional system quality models and future sys-
tem quality models for machine learning systems, given a conventional system and soft-
ware quality standard SQuaRE and the characteristics of the machine learning models 
introduced in this paper. In order to conduct the most fine and precise analysis, we checked 
each QME (such as the number of systems/software failures that actually occurred) against 
each machine learning characteristic (such as a lack of robustness) to see if the QME was 
affected by the machine learning characteristic. If a QME in machine learning systems 
became immeasurable, as is the case with conventional systems, then the parent quality 
(sub-)characteristic would have gaps. IT service quality model was ignored in this gap 
analysis because it has no QME defined in the ISO/IEC 25000 series. Table  1 presents 
an example of impact analysis of characteristics of machine learning models and QMEs 
defined for Functional suitability in Product quality. Req, Des, Rob, and Tra are abbrevia-
tions for lack of requirements specification, design specification, robustness, and transpar-
ency, respectively. Functional suitability in Product quality was selected only to serve as 
an example, and corresponding analysis was conducted for all QMEs of all quality models, 
except for IT service quality model.

Product quality

Functional suitability

Performance efficiency

Compatibility

Usability

Reliability

Security

Maintainability

Portability

Data quality

Accuracy

Completeness

Consistency

Credibility

Currentness

Accessibility

Compliance

Confidentiality

Efficiency

Precision

Traceability

Understandability

Availability

Portability

Recoverability

Quality in use

Effectiveness

Efficiency

Satisfaction

Freedom from risk

Context coverage

IT service quality

Suitability

Usability

Security

IT service reliability

Tangibility

Responsiveness

IT service adaptability

IT service maintainability

Quality model

Quality characteristic

Fig. 4   Quality models and quality characteristics in SQuaRE
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We examined 1464 combinations of 366 QMEs and 4 characteristics of machine learn-
ing models to obtain the results. The number of combinations we identified as being 
affected by machine learning models was 20 from among 1464. Tables 2, 3, and 4 are the 
summaries of impact analysis on Product quality, Data quality, and Quality in use models 
affected by the characteristics of machine learning models. QM and QME levels are omit-
ted. Each QME associated with a quality (sub-)characteristic was examined to determine if 
it was affected by any machine learning characteristics: a lack of requirements specification 
(Req), a lack of design specification (Des), a lack of robustness (Rob), or and lack of trans-
parency (Tra). The section signs with numbers in parentheses next to machine learning 
characteristics are the indices to the itemization in the subsequent paragraphs. The number 
of QMEs affected by the machine learning characteristics are presented in the abovemen-
tioned tables. If we consider that the ratios of QMEs affected by characteristics of machine 
learning models are an indication of the impacts to quality (sub-)characteristics, then at 
the quality-model level, it is evident that the impact to Product quality is the highest, while 
those of Data quality and Quality in use are low.

The characteristics of machine learning models that affected QMEs the most were a lack 
of requirements specification and a lack of robustness. First, we discuss the impact of a 
lack of requirements specification. Quality characteristics involving preconditions (such as 
operational contexts, the interval of values, and operational environments) were affected by 
a lack of requirements specification. This is because requirements specifications define pre-
conditions for systems. As discussed previously, machine learning models are trained using 
data-driven processes and lack explicit requirements specifications. Instead, preconditions 
are implicitly encoded in training data and not explicitly described. Thus, the following 
QMEs become unmeasurable due to a lack of preconditions (requirements specifications). 

Table 1   Example impact analysis (functional suitability characteristic in product quality model)

† When the input changes slightly, the result can changes drastically. We cannot measure the correctness of 
the function precisely. Perturbed trials can quantify the uncertainty
‡ Functions considered cannot be defined strictly. For example, there are many pedestrian variations of 
pedestrian detection for an auto emergency braking (AEB) function, and it can be multiple functions. We 
cannot define functions without ambiguity
†† When the input changes slightly, the result can changes drastically. We cannot measure the correctness of 
the function precisely. Perturbed trials can quantify the uncertainty
‡‡ Functions considered cannot be defined strictly. For example, there are many pedestrian variations for 
pedestrian detection, and it can be multiple functions. We cannot define functions without ambiguity

QM QME Req Des Rob Tra

Functional coverage Number of functions missing
Number of functions specified

Functional correctness Number of functions that are incorrect †

Number of functions considered ‡

Functional appropri-
ateness of usage 
objective

Number of functions missing or incor-
rect among those that are required for 
achieving a specific usage objective

††

Number of functions required for 
achieving a specific usage objective

‡‡

Functional appropriate-
ness of system

Appropriateness score for a usage 
objective

Number of usage objectives
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§1	 Number of functions which were tested in different operational environments
	   [Product quality / Portability / Adaptability / Operational environment adaptability]
§2	 Number of data items for which can be defined a required interval of values
	   [Data quality / Accuracy / Data accuracy range]
§3	 Total number of required distinct contexts of use
	   [Quality in use / Context coverage / Context completeness / Context completeness]
§4	 Total number of additional contexts in which the product might be used
	   [Quality in use / Context coverage / Flexibility / Flexible context of use]

Note that the corresponding quality model, characteristic, sub-characteristic, and QM are 
described in square brackets. Different operational environments in which systems must be 
tested, required intervals of values for data items, distinct contexts of use, and additional 
contexts in which the product might be used cannot be defined for data-driven training pro-
cesses; the above QMEs are not measurable.

The reasons for a lack of requirements specifications in machine learning models are 
twofold: a lack of preconditions (introduced in the last paragraph) and a difficulty defin-
ing the desired behaviors of machine learning models due to the wide variety of input and 
output patterns. For example, there are numerous variations of pedestrians (such as young 
and old, one with bags and umbrella) for an AEB function and it is difficult to define the 
function precisely (the types of pedestrians that the system covers) without ambiguity. 
Being unable to define precise functions affects Function suitability, as well as Portability 

Table 2   Impact analysis on product quality model

Characteristic Sub-characteristic Number of QMEs

All Affected

Functional suitability Functional correctness 2 2 Req (§5), Rob (§9)
Functional appropriateness 4 2 Req (§6), Rob (§10)
Others 2 0

Performance efficiency All 29 0
Compatibility All 8 0
Usability Operability 18 1 Tra (§19)

Others 25 0
Reliability Maturity 8 2 Rob×2 (§12, §13)

Fault tolerance 7 2 Rob (§11), Des (§16)
Others 8 0

Security All 22 0
Maintainability Modularity 4 2 Tra (§17)

Analysability 6 1 Tra (§20)
Modifiability 7 1 Des (§18)
Testability 6 1 Rob (§14)
Others 4 0

Portability Adaptability 6 1 Req (§1)
Replaceability 8 2 Req (§7)
Others 5 0

Total 179 15
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of Product quality. Being unable to define precise normal conditions, outliers for a wide 
variety of input data values are not definable, neither. The following QMEs are not measur-
able due to the difficulty of defining behaviors: 

§5	 Number of functions that are incorrect
	   [Product quality / Functional suitability / Functional correctness / Functional correct-

ness]
§6	 Number of functions missing or incorrect among those that are required for achieving 

a specific usage objective
	   [Product quality / Functional suitability / Functional appropriateness / Functional 

appropriateness of usage objective]

Table 3   Impact analysis on data 
quality model

Characteristic Number of QMEs

All Affected

Accuracy 14 3 Req ×2 (§2, 
§8), Rob 
(§15)

Completeness 16 0
Consistency 12 0
Credibility 8 0
Currentness 6 0
Accessibility 6 0
Compliance 4 0
Confidentiality 4 0
Efficiency 14 0
Precision 4 0
Traceability 6 0
Understandability 14 0
Availability 6 0
Portability 6 0
Recoverability 6 0
Total 126 3

Table 4   Impact analysis on 
quality in use model

Characteristic Sub-characteristic Number of QMEs

All Affected

Effectiveness All 8 0
Efficiency All 11 0
Satisfaction All 13 0
Freedom from risk All 21 0
Context coverage Context completeness 2 1 Req (§3)

Flexibility 6 1 Req (§4)
Total 61 2
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§7	 Number of functions which produce similar results as before
	   [Product quality / Portability / Replaceability / Functional inclusiveness]
§8	 Number of data values that are outliers
	   [Data quality model / Accuracy / Risk of data set inaccuracy]

Next, we discuss the impact of a lack of robustness. QMEs that observe machine learning 
system behavior are affected by a lack of robustness. When the inputs of machine learn-
ing models change even slightly, the results can change drastically. Therefore, the behav-
ior of such systems becomes uncertain and we cannot measure (count) correct behavior. 
Moreover, we noticed that the QMEs affected by low robustness were similar to those 
affected by a lack of requirements specification. The QMs using these QMEs are typi-
cally ratios, with numerators being QMEs that count correct behavior and denominators 
being QMEs that count preconditions. For example, one of the quality measures of Func-
tional correctness is X = 1 − A∕B , where A = [Number of functions that are incorrect] , 
B = [Number of functions considered] . We cannot measure the numerator A and the 
denominator B due to the two characteristics of machine learning models—a lack of 
robustness and a lack of requirements specification, respectively. The following QMEs are 
not precisely measurable due to a lack of robustness: 

§9	 Number of functions that are incorrect
	   [Product quality / Functional suitability / Functional correctness / Functional correct-

ness]
§10	Number of functions missing or incorrect among those that are required for achieving 

a specific usage objective
	   [Product quality / Functional suitability / Functional appropriateness / Functional 

appropriateness of usage objective]
§11	Number of avoided critical and serious failure occurrences based on test cases
	   [Product quality / Reliability / Fault tolerance / Failure avoidance]

QMEs related to negative events affected the difficulty of capturing rare cases of machine 
learning models, which is another form of a lack of robustness. Outliers and failures in 
SQuaRE should have included rare cases; however, rare cases may not appear in a lim-
ited time frame and when they do, the extremely low probability of occurrence may be 
neglected. As mentioned previously, an extremely long FOT is required to capture such 
rare events. The following are the QMEs that were underestimated due to the difficulty of 
overlooking rare cases: 

§12	Number of system/software failures actually occurred
	   [Product quality / Reliability / Maturity / Mean time between failure, MTBF]
§13	Number of failures detected during observation time
	   [Product quality / Reliability / Maturity / Failure rate]
§14	Number of test functions required
	   [Product quality / Maintainability / Testability / Test function completeness]
§15	Number of data values that are outliers
	   [Data quality / Accuracy / Risk of data set inaccuracy]

There is a small impact on machine learning systems due to the lack of design specifi-
cation and lack of transparency characteristics. If there are no design specifications, we 
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cannot estimate the effort of a system modification nor the impact of a local modification 
to the overall system. We cannot forecast how many hours the training process will require, 
in advance. In addition, we cannot know the strengths and weaknesses of automatically 
trained machine learning models in general. Therefore, we cannot know the redundancy of 
components without design specification or transparency. Models with similar weaknesses 
do not work as redundancies, and redundant installation does not make sense for machine 
learning models. The following are QMEs that are unmeasurable due to a lack of design 
specifications and a lack of transparency: 

§16	Number of system components redundantly installed
	   [Product quality / Reliability / Fault tolerance / Redundancy of components]
§17	Number of components which are implemented with no impact on others
	   [Product quality / Maintainability / Modularity / Coupling of components]
§18	Expected time for making a specific type of modification
	   [Product quality / Maintainability / Modifiability / Modification efficiency]

Since there is no established method of diagnostic and monitoring functionalities for 
machine learning models, the following QMEs are not measurable for machine learning 
systems. 

§19	Number of functions having state monitoring capability
	   [Product quality / Usability / Operability / Monitoring capability]
§20	Number of diagnostic functions useful for causal analysis
	   [Product quality / Maintainability / Analysability / Diagnosis function effectiveness]

We have discussed the combination of machine learning characteristics with a conventional 
system and software quality standard, SQuaRE. The typical gaps for the quality models of 
machine learning systems were found in requirements specification (precondition specifi-
cation and level of detail for function specification) and robustness (uncertainty of observa-
tion and extremely low probable rare cases). In order to address these gaps, system quality 
models can be modified and/or extended. We introduce the direction to address these gaps 
in Sect. 5.3.

5.3 � Toward quality models for machine learning systems

The first set of challenges exist in quality measures for preconditions and functions (func-
tionalities) for machine learning systems, that is, requirements specification. We assume 
that preconditions and function specifications are defined by input range and pairs of input/
output, respectively. If input and/or output data are high-dimensional, both defining pre-
conditions and detailed function specifications are difficult. As machine learning models 
are trained in a data-driven manner, we inevitably conclude that data is involved. One natu-
ral idea is first to manually engineer the deductive specifications in as detailed a manner as 
possible and second to prepare data that includes example instances for requirements speci-
fications. Requirements specifications of machine learning systems cannot fully define the 
preconditions and functions; however, the remaining uncertainty of specifications is cov-
ered by examples. In order to make requirements specifications as detailed as possible, we 
need quality definitions (and subsequently QM) of requirements specifications themselves. 
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A type of QM for requirements specifications is the sum of the quality of deductive require-
ments specification and the quality of inductive requirements specification, that is, sample 
data.

The quality of deductive requirements specifications for machine learning systems—
that is, the level of details of requirements specifications—is not straightforward to meas-
ure. Although not quantitative, a proxy of quality of deductive requirements specification 
is to measure the level of detail of the background argument. An earlier study (Ishikawa 
and Matsuno 2018) used structured arguments, like goal structure notation (GSN) (Kelly 
2004), to address uncertain requirements and environments. Quality measures of deduc-
tive requirements specification such as the following can be added to quality models of 
machine learning systems:

–	 “Number of functions with preconditions specified with structured argument” divided 
by “Number of functions that could benefit from specifying preconditions”

–	 “Number of functions with detailed function specification with structured argument” 
divided by “Number of functions that could benefit from detailed function specifica-
tion”

Further, the quality of inductive requirements specification (sample data) must be defined 
as the coverage of deductive requirements specifications, that is, how much deductive 
requirements specifications were covered by the inductive requirements specification (sam-
ple data). If the structured argument is in a tree structure, the ratio of leaf nodes that have 
corresponding sample data can be a quality measure of sample data. A quality measure of 
inductive requirements specification is given by the following:

–	 “Number of GSN solutions (leaf nodes) having corresponding sample data” divided by 
“Number of GSN solutions (leaf nodes) that could benefit from specifying sample data”

It is also important to handle the uncertainty of observation of machine learning systems in 
the quality models for machine learning systems. The current quality measures are deter-
ministic. Introducing a number of trials and variance to quality measures will incorporate 
the uncertainty of observation and improve the expression power of quality models.

Another aspect in the lack of robustness is the extremely low probability of rare cases. 
It must be noted that it is not possible to identify all rare cases by definition. We cannot 
evaluate the result of rare case discovery; however, we can see the quality of the process or 
the effort involved in it. Quality measures of the process of discovering rare cases would be 
the effort in rare case discovery plus the number of rare cases discovered in a unit of time.

A viewpoint that is not included in the current quality models is development data, 
although SQuaRE has Data quality. Data quality in SQuaRE is about the data included in 
the system itself, such as customer mailing address database. For machine learning sys-
tems, development data—that is, test and training data—is rather important, and the qual-
ity models for machine learning systems must include the corresponding quality. There are 
two different definitions for test data quality and training data quality. The former is related 
to inductive requirements specification, that is, an aforementioned quality of sample data. 
Test data quality includes the gap between manually engineered deductive requirements 
specifications and actually collected sample data points. The latter is related to design 
specification and includes the quality of manually annotated supervisory signals. This will 
be a trade-off to the cost of labor-intensive annotation processes.
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6 � Conclusion

With the rapid development of technology in recent years, machine learning has begun to 
be employed in various systems. To use machine learning in a safety-critical system, such 
as an automated driving system, it is necessary to demonstrate the safety and security of 
the system to society through the engineering process. In this paper, taking automated driv-
ing as an example, we presented open engineering problems with corresponding related 
works and research directions from the viewpoints of requirements, designs, and verifica-
tions for machine learning models and systems.

At the level of the machine learning model, we hypothesized an ideal training process 
that connects deductive requirements and data-driven training, thereby considering test 
data as a requirements specification and training data as a design specification. Moreover, 
we recognized that the characteristics of machine learning models are a lack of require-
ments specification, a lack of design specification, a lack of interpretability, and a lack of 
robustness. We also discussed the combination of a conventional system and software qual-
ity standard, SQuaRE, and the aforementioned characteristics of machine learning mod-
els to study the quality models for machine learning systems. It turned out that a lack of 
requirements specification (precondition specification and level of detail for function speci-
fication) and a lack of robustness (uncertainty of observation and extremely low probability 
rare cases) have the largest impact on the conventional system quality models. Further, we 
discussed the direction of future quality models for machine learning systems; however, 
most of it is a subject for future research.

Future research directions include the development of element technologies for engi-
neering machine learning models and systems, such as requirements specification tech-
niques to cover test data distribution or open environments. As evident from this paper, 
there are numerous open engineering problems and possible directions to address them. 
However, to establish an engineering process for safety-critical machine learning systems, 
even if each company individually performs its own engineering processes based on its 
own concepts, process activities and work products cannot be automatically accepted by 
human society. Individual practices are not standard, and in order to achieve account-
ability, need evaluation on a case-by-case basis by a third party, particularly in case of 
problems. In such evaluations, own engineering practices of individual companies are 
at risk for being misunderstood, otherwise proprietary development information has to 
be disclosed for accountability. Thus, we need widely accepted standards to avoid these 
situations. Attempts to research element technologies along with standard guidelines for 
requirements, designs, and verifications would also be practically helpful. For example, 
a standard guideline for multiple verification tiers (actual data testing for normal condi-
tions, simulated data testing for the corner cases, automatic verification for highest integ-
rity levels only, falsification in middle integrity levels, etc.) would encourage the practical 
use of verification techniques and help an industry suffering from a lack of quality assur-
ance of machine learning systems. Another approach is to develop standard quality models 
for machine learning systems. In this paper, we discussed the quality models for machine 
learning systems based on SQuaRE. Future research directions include discussing quality 
characteristics beyond SQuaRE, defining specific QM and QME, and quality characteris-
tics and sub-characteristics if necessary.
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