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Abstract
We propose a data-driven approach to quantify the uncertainty of models constructed by ker-
nel methods. Our approach minimizes the needed distributional assumptions, hence, instead
of working with, for example, Gaussian processes or exponential families, it only requires
knowledge about some mild regularity of the measurement noise, such as it is being sym-
metric or exchangeable. We show, by building on recent results from finite-sample system
identification, that by perturbing the residuals in the gradient of the objective function, infor-
mation can be extracted about the amount of uncertainty our model has. Particularly, we
provide an algorithm to build exact, non-asymptotically guaranteed, distribution-free confi-
dence regions for ideal, noise-free representations of the function we try to estimate. For the
typical convex quadratic problems and symmetric noises, the regions are star convex cen-
tered around a given nominal estimate, and have efficient ellipsoidal outer approximations.
Finally, we illustrate the ideas on typical kernel methods, such as LS-SVC, KRR, ε-SVR and
kernelized LASSO.

Keywords Kernel methods · Confidence regions · Nonparametric regression ·
Classification · Support vector machines · Distribution-free methods

1 Introduction

Kernel methods build on the fundamental concept of Reproducing Kernel Hilbert Spaces
(Aronszajn 1950; Giné and Nickl 2015) and are widely used in machine learning (Shawe-
Taylor and Cristianini 2004; Hofmann et al. 2008) and related fields, such as system
identification (Pillonetto et al. 2014). One of the reasons of their popularity is the representer
theorem (Kimeldorf andWahba 1971; Schölkopf et al. 2001)which shows that finding an esti-
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mate in an infinite dimensional space of functions can be traced back to a finite dimensional
problem. Support vector machines (Schölkopf and Smola 2001; Steinwart and Christmann
2008), rooted in statistical learning theory (Vapnik 1998), are typical examples of kernel
methods.

Besides how to construct efficient models from data, it is also a fundamental question
how to quantify the uncertainty of the obtained models. While standard approaches like
Gaussian processes (Rasmussen andWilliams 2006) or exponential families (Hofmann et al.
2008) offer a nice theoretical framework, making strong statistical assumptions on the sys-
tem is sometimes unrealistic, since in practice we typically have very limited knowledge
about the noise affecting the measurements. Building on asymptotic results, such as limiting
distributions, is also widespread (Giné and Nickl 2015), but they usually lack finite sample
guarantees.

Here, we propose a non-asymptotic, distribution-free approach to quantify the uncertainty
of kernel-based models, which can be used for hypothesis testing and confidence region
constructions.We build on recent developments in finite-sample system identification (Campi
and Weyer 2005; Carè et al. 2018), more specifically, we build on the Sign-Perturbed Sums
(SPS) algorithm (Csáji et al. 2015) and its generalizations, theData Peturbation (DP)methods
(Kolumbán 2016).

We consider the case where there is an underlying “true” function that generates the
measurements, but we only have noisy observations of its outputs. Since wewant tominimize
the needed assumptions, for example, we do not want to assume that the true underlying
function belongs to the Hilbert space in which we search our estimate, we take a “honest”
approach (Li 1989) and consider “ideal” representations of the target function from our
function space. A representation is ideal w.r.t. the data sample, if its outputs coincide with
the corresponding noise-free outputs of the true underlying function for all available inputs.

Despite our method is distribution-free, i.e., it does not depend on any parameterized
distributions, it has strong finite-sample guarantees. We argue that, the constructed confi-
dence region contains the ideal representation exactlywith a user-chosen probability. In case
the noises are independent and symmetric about zero, and the objective function is convex
quadratic, the resulting regions are star convex and have efficient ellipsoidal outer approx-
imations, which can be computed by solving semi-definite optimization problems. Finally,
we demonstrate our approach on typical kernel methods, such as KRR, SVMs and kernelized
LASSO.

Our approachhas some similarities to bootstrap (Efron andTibshirani 1994) and conformal
prediction (Vovk et al. 2005). One of the fundamental differences w.r.t bootstrap is, e.g., that
we avoid building alternative samples and fitting bootstrap estimates to them (since it is
computationally challenging), but perturb directly the gradient of the objective function. Key
differences w.r.t. conformal prediction are, e.g., that we want to quantify the uncertainty of
the model and not necessarily that of the next observation (though the two problems are
related), and more importantly, exchangeability is not fundamental for our approach.

2 Preliminaries

A Hilbert space, H, of functions f : X → R, with inner product 〈·, ·〉H, is called a Repro-
ducing Kernel Hilbert Space (RKHS), if the point evaluation functional

δz : f → f (z), (1)
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is continuous (or equivalently bounded) for all z ∈ X , at any f ∈ H (Giné and Nickl
2015). Then, by using the Riesz representation theorem, one can construct a (unique) kernel,
k : X × X → R, having the reproducing property, that is

〈k(·, z), f 〉H = f (z), (2)

for all z ∈ X and f ∈ H. In particular, the kernel satisfies for all z, s ∈ X that

k(z, s) = 〈k(·, z), k(·, s)〉H. (3)

Hence, the kernel of an RKHS is a symmetric and positive-definite function; moreover, the
Moore-Aronszajn theorem states that the converse is also true: for every symmetric, positive-
definite function there is a unique RKHS (Aronszajn 1950).

Typical kernels include, e.g., the Gaussian kernel k(z, s) = exp(−‖z−s‖2/2σ 2), with σ > 0,
the polynomial kernel, k(z, s) = (〈z, s〉 + c)p , with c ≥ 0 and p ∈ N, and the sigmoidal
kernel, k(z, s) = tanh(a〈z, s〉 + b) for some a, b ≥ 0, where 〈·, ·〉 denotes the standard
Euclidean inner product (Hofmann et al. 2008).

By a data sample, Dn , we mean a finite set of input-output measurements,

(x1, y1), . . . , (xn, yn) ∈ X × R, (4)

with X �= ∅. We also introduce x
.= (x1, . . . , xn)T ∈ X n and y

.= (y1, . . . , yn)T ∈ R
n . The

Gram matrix of k(·, ·), w.r.t. input x , is denoted by Kx ∈ R
n×n , where

[Kx ]i, j .= k(xi , x j ). (5)

A kernel is called strictly positive definite if its Grammatrix, Kx , is (strictly) positive definite
for distinct inputs {xi } (Hofmann et al. 2008).

One of the fundamental reasons for the successes of kernel methods is the so-called
representer theorem, originally given by Kimeldorf andWahba (1971), but the generalization
presented here is due to Schölkopf et al. (2001).

Theorem 1 Suppose we are given a sample, Dn, a positive-definite kernel k(·, ·), an associ-
ated RKHS with a norm ‖ · ‖H induced by 〈·, ·〉H, and a class of functions

F .=
{
f : X → R | f (z) =

∞∑
i=1

βi k(z, zi ), βi ∈ R, zi ∈ X , ‖ f ‖H < ∞
}
, (6)

then, for any monotonically increasing regularization function, � : [0,∞) → [0,∞), and
an arbitrary loss function L : (X × R

2)n → R ∪ {∞}, the objective
g( f ,Dn)

.= L
(
(x1, y1, f (x1)), . . . , (xn, yn, f (xn))

) + �( ‖ f ‖H ), (7)

has a minimizer admitting the following representation

fα(z) =
n∑

i=1

αi k(z, xi ), (8)

where α
.= (α1, . . . , αn)

T ∈ R
n is the vector of coefficients. If � is strictly monotonically

increasing, then each minimizer admits a representation having form (8).

The theorem can be extended with a bias term (Schölkopf and Smola 2001), in which case
if the solution exists, it also contains a multiple of the bias term. For further generalizations,
see Yu et al. (2013) and Argyriou and Dinuzzo (2014).
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The power of the representer theorem comes from the fact that it shows that computing
the point estimate in a high, typically infinite, dimensional space of models can be reduced to
a much simpler (finite dimensional) optimization problem whose dimension does not exceed
the size of the data sample we have, that is n.

If the data is noisy, then of course, the obtained estimate is a random function and it is of
natural interest to study the distribution of the resulting function, for example, to evaluate its
uncertainty or to test hypotheses about the system.

3 Confidence regions for kernel methods

Now, we turn our attention to a stochastic variant of the problem discussed above. There
are several advantages of taking a statistical point of view on kernel methods, including
conditional modeling, dealing with structured responses, handling missing measurements
and building prediction regions (Hofmann et al. 2008).

Following a standard statistical viewpoint (Davies et al. 2009), we assume that the outputs
{yi } are generated by some noisy observations of an underlying “true” function, denoted by
f∗, that is for all i = 1, . . . , n, the outputs can be written as

yi
.= f∗(xi ) + εi , (9)

where {εi } are the noise terms. The entire noise vector is ε
.= (ε1, . . . , εn)

T. The noiseless
outputs of function f∗ will be denote by y∗

i
.= f∗(xi ), for i = 1, . . . , n.

3.1 Ideal representations

We aim at quantifying the uncertainty of our estimated model. A standard way to measure
the quality of a point-estimate is to build confidence regions around it. However, it is not
obvious what we should aim for with our confidence regions. For example, since all of our
models live in our RKHS, H, we would like to treat the confidence region as a subset of H.
On the other hand, we want to minimize the assumptions, for example, we may not want to
assume that f∗ is an element of H. Furthermore, since unless we make strong smoothness
assumptions on the underlying unobserved function, we only have information about it at
the actual inputs, {xi }. Hence, we aim for a “honest” nonparametric approach (Li 1989) and
search for functions which correctly describe the hidden function, f∗, on the given inputs.
Then, by the representer theorem, we may restrict ourselves to a finite dimensional subspace
of H. This leads us to the definition of ideal representations:

Definition 1 LetHα ⊆ H denote the subspace of functions that can be represented as (8). A
function f0 ∈ Hα , having coefficients α0 ∈ R

n , is called an ideal or noise-free representation
of the “true” unobserved function f∗, if we have

f0(xi ) = y∗
i

.= f∗(xi ), for all i ∈ { 1, . . . , n }. (10)

The set of all ideal representations, w.r.t. data sample Dn , is denoted by H0 ⊆ Hα , and the
set of their coefficients, called ideal coefficients, is denoted by A0 ⊆ R

n .

An ideal representation does not simply interpolate the observed (noisy) outputs {yi }, but
it interpolates the unobserved (noise-free) outputs, that is {y∗

i }.
A natural questionwhich arises is: when does such an ideal representation exist? To answer

this question, first note that since ideal representations have the form (8), equation system
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(10) can be rewritten in a matrix form by using the Gram matrix. That is, vector α is an ideal
coefficient vector, if and only if

Kxα = y∗, (11)

where y∗ .= (y∗
1 , . . . , y

∗
n )

T. If Kx is (strictly) positive definite, which is the case if for
example the kernel is Gaussian and all inputs are distinct, then rank(Kx ) = n and every
f∗ : X → R has a unique ideal representation w.r.t. data sample Dn .
On the other hand, if rank(Kx ) < n, then (11) places a restriction on the functions which

have ideal representations. For example, if X = R and ker(z, s) = 〈z, s〉 = zTs, then
rank(Kx ) = 1 and in general only functions which are linear on the data sample have
ideal representations. This is of course not surprising, as it is well-known that the choice of
the kernel encodes our inductive bias on the underlying true function we aim at estimating
(Schölkopf and Smola 2001).

If rank(Kx ) < n and there is an α which satisfies (11), then there are infinitely many
ideal representations, as for all ν ∈ null(Kx ), the null space of Kx , we have Kx (α + ν) =
Kx α + Kx ν = Kx α = y∗. The opposite is also true, if α and β both satisfy (11), then
Kx (α−β) = Kx α − Kx β = 0, thus,α−β ∈ null(Kx ). Hence, to avoid allowing infinitely
many ideal representations, we may form equivalence classes by treating coefficient vectors
α and β equivalent if Kx α = Kx β. Then, we can work with the resulting quotient space of
coefficients to ensure that there is only one ideal representation (i.e., one equivalence class
of such representations).

All of our theory goes trough if we work with the quotient space of representations, but to
simplify the presentationwemake the assumption (cf. Sect. 4.2) that Kx is full rank, therefore,
there always uniquely exists an ideal representation (for any “true” function), whose unique
coefficient vector will be denoted by α∗.

3.2 Exact and honest confidence regions

Let (	,A, {Pθ }θ∈�) be a statistical space, where � denotes an arbitrary index set. In other
words, for all θ ∈ �, (	,A,Pθ ) is a probability space, where 	 is the sample space, A is
the σ -algebra of events, and Pθ is a probability measure. Note that it is not assumed that
� ⊆ R

d , for some d; therefore, this formulation covers nonparametric inference, as well
(and that is why we do not call θ a “parameter”).

In our case, index θ is identified with the underlying true function, therefore, each possible
f∗ induces a different probability distribution according to which the observations are gener-
ated. Confidence regions constitute a classical form of statistical inference, when we aim at
constructing sets which cover with high probability some target function of θ (DeGroot and
Schervish 2012). These sets are usually random as they are typically built using observations.
In our case, we will build confidence regions for the ideal coefficient vector (equivalently,
the ideal representation), which itself is a random element, as it depends on the sample.

Let γ be a random element (it corresponds to the available observations), let g(θ, γ )

be some target function of θ (which can possibly also depend on the observations) and let
p ∈ [ 0, 1 ] be a target probability, also called significance level. A confidence region for
g(θ, γ ) is a random set,C(p, γ ) ⊆ range(g), i.e., the codomain of function g. The following
definition formalizes two important types of stochastic guarantees for confidence regions
(Davies et al. 2009).
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Definition 2 A confidence region C(p, γ ) for g(θ, γ ) is called exact, if

∀ θ ∈ � : Pθ ( g(θ, γ ) ∈ C(p, γ ) ) = p, (12)

and it is called honest, if it satisfies ∀ θ ∈ � : Pθ ( g(θ, γ ) ∈ C(p, γ ) ) ≥ p.

In our case, γ is basically1 the sample of input-output pairs, Dn ; and the target object
we aim at covering is g(θ, γ ) = α∗

θ , i.e., the (unique) ideal coefficient vector corresponding
to the underlying true function (identified by θ ) and the sample. Since the ideal coefficient
vector uniquely determines the ideal representation (together with the inputs, which however
we observe), it is enough to estimate the former. The main question of this paper is how can
we construct exact or honest confidence regions for the ideal coefficient vector based on a
finite sample without strong distributional assumptions on the statistical space.

Henceforth, we will treat θ (the underlying true function) fixed, and omit the θ indexes
from the notations, to simplify the formulas. Therefore, instead of writing Pθ or α∗

θ , we will
simply use P or α∗. The results are of course valid for all θ .

Standard ways to construct confidence regions for kernel-based estimates typically either
make strong distributional assumptions, like assuming Gaussian processes (Rasmussen
and Williams 2006), or resort to asymptotic results, such as Donsker-type theorems for
Kolmogorov-Smirnov confidence bands. An alternative approach is to build on Rademacher
complexities, which can provide non-asymptotic, distribution-free confidence bands (Giné
and Nickl 2015). Nevertheless, these regions are conservative (not exact) and are constructed
independently of the applied kernel method. In contrast, our approach provides exact, non-
asymptotic, distribution-free confidence sets for a user-chosen kernel estimate.

4 Non-asymptotic, distribution-free framework

This section presents the proposed framework to quantify the uncertainty of kernel-based
estimates. It is inspired by and builds on recent results from finite-sample system identifica-
tion, such as the SPS and DPmethods (Campi andWeyer 2005; Csáji et al. 2015; Csáji 2016;
Kolumbán 2016; Carè et al. 2018). Novelties with respect to these approaches are, e.g., that
our framework considers nonparametric regression and does not require the “true” function
to be in the model class.

4.1 Distributional invariance

The proposed method is distribution-free in the sense that it does not presuppose any para-
metric distribution about the noise vector ε. We only assume some mild regularity about the
measurement noises, more precisely that their (joint) distribution is invariant with respect to
a known group of transformations.

Definition 3 An R
n-valued random vector v is distributionally invariant with respect to a

compact group of transformations, (G, ◦), where “◦” is the function composition and each
G ∈ G maps Rn to itself, if for all transformation G ∈ G, random vectors v and G(v) have
the same distribution.

The two most important examples of the above definition are as follows.

1 We used the word “basically”, since there will also be some other random elements in the construction, e.g.,
for tie-breaking, and those should also constitute part of observation γ .
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– If {εi } are exchangeable random variables, then the (joint) distribution of the noise vector
ε is invariant w.r.t. multiplications by permutation matrices (which are orthogonal and
form a finite, thus compact, group).

– On the other hand, if {εi } are independent, each having a (possibly different!) symmetric
distribution about zero, then the (joint) distribution of ε is invariant w.r.t. multiplications
by diagonal matrices having +1 or −1 as diagonal elements (which are also orthogonal,
and form a finite group).

Both of these examples assume only mild regularities about the measurement noises:
for example, it is a standard assumption in statistical learning theory that the sample is
independent and identically distributed (i.i.d.) which immediately implies exchangeability
(which is a more general concept than i.i.d.). But even this assumption can be omitted if we
work with symmetric noises, which are widespread asmost standard distributions in statistics
are symmetric, such as Gauss, Laplace, Cauchy, Student’s t, uniform, plus a large class of
multimodal ones.

Note that for these examples no assumptions about other properties of the (noise) distri-
butions are needed, e.g., they can be heavy-tailed, with even infinite variance, skewed, their
expectations need not exist, hence, no moment assumptions are necessary. For the case of
symmetric distributions, it is even allowed that the observations are affected by a noise where
each εi has a different distribution.

4.2 Main assumptions

Before the general construction of our method is explained, first, we highlight the core
assumptions we apply. We also discuss their relevance and implications.

Assumption 1 The kernel, k(·, ·), is strictly positive definite and all inputs, {xi }, are distinct
with probability one ( in other words, ∀ i �= j : P ( xi = x j ) = 0 ).

As we discussed in Sect. 3.1, this assumption ensures that rank(Kx ) = n (a.s.), hence there
uniquely exists an ideal representation (a.s.), whose unique ideal coefficient vector is denoted
by α∗. The primary choices are universal kernels for which H is dense in the space of
continuous functions on compact domains of X .

Assumption 2 The input vector x and the noise vector ε are independent.

Assumption 2 implies that the measurement noises, {εi }, do not affect the inputs, {xi }; for
example, the system is not autoregressive. It is possible to extend our approach to dynam-
ical systems, e.g., using similar ideas as in Csáji et al. (2012), Csáji and Weyer (2015),
Csáji (2016), but we leave the extension for future research. Note that Assumption 2 allows
deterministic inputs, as a special case.

Assumption 3 Noise ε is distributionally invariant w.r.t. a known group of transformations,
(G, ◦), where each G ∈ G acts on R

n and ◦ is the function composition.

Assumption 3 states that we known transformations that do not change the (joint) distribu-
tion of themeasurement noises.As itwas discussed inSect. 4.1, symmetry and exchangeablity
are two standard examples for which we know such group of transformations. Thus, if the
noise vector is either exchangeable (e.g., it is i.i.d.), or symmetric, or both properties hold, then
the theory applies. We also note that the suggested methodology is not limited to exchange-
abe or symmetric noises, e.g., power defined noises constitute another example (Kolumbán
2016).
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Assumption 4 The gradient, or a subgradient, of the objective w.r.t. α exists and it only
depends on the output vector, y, through the residuals, i.e., there is ḡ,

∇α g( fα,Dn) = ḡ(x, α, ε̂(x, y, α)), (13)

where the residuals w.r.t. the sample and the coefficients are defined as

ε̂(x, y, α)
.= y − Kx α. (14)

For Assumption 4, it is enough if a subgradient is defined for each coefficient vector α,
hence, e.g., the cases of ε-insensitive and Huber loss functions are also covered. Even in
such cases (when we work with subderivaties), we still treat ḡ as a vector-valued function
and choose arbitrarily from the set of possible subgradients.

This requirement is also very mild as it is typically the case that the objective function is
differentiable or convex andhas subgradients (wewill present several demonstrative examples
in Sect. 5); furthermore, the objective typically only depends on y through the residuals,which
immediately imply Assumption 4.

To see this assume that g is differentiable; then clearly, if the objective function can be
written as g( fα,Dn) = g0(x, α, ε̂(x, y, α)) for some function g0, then

∇α g( fα,Dn) = ∇α(g0(x, α, y − Kx α)))

= − Kx (∇α g0) (x, α, y − Kx α))

= ḡ(x, α, ε̂(x, y, α)), (15)

where during the derivation we applied the chain rule, used the fact that matrix Kx is sym-
metric and the definition of the residuals, ε̂(x, y, α) = y − Kx α.

4.3 Perturbed gradients

At first, the proposed method can be understood as a hypothesis testing approach. Given
coefficient vector α ∈ R

n we test the null hypothesis H0 : α = α∗, i.e., it is the ideal
coefficient vector; against the alternative hypothesis H1 : α �= α∗. Under H0, the residu-
als of fα coincide with the “true” (unobserved) noise terms, since by definition (for ideal
representations), we have

ε̂(x, y, α∗) = y − Kx α∗

= [ f∗(x1) + ε1, . . . , f∗(xn) + εn ]T
− [ f∗(x1), . . . , f∗(xn) ]T = ε. (16)

Consequently, based on the group of invariant transformations, G, we know that the (joint)
distribution of the residuals does not change if we transform them by any G ∈ G (under H0).
Then, we can generate alternative realizations of the residuals, ε̂(x, y, α∗), by applying a
random transformation G ∈ G, and the resulting alternative realization, G (̂ε(x, y, α∗)), will
behave “similarly” (in the statistical sense) to the original residual vector (i.e., the true noise
vector).

However, under H1, if coefficient vector α does not define an ideal representation,
ε̂(x, y, α), in general, will not coincide with the true noises. Therefore, the distributions
of their randomly transformed variants will be distorted and will statistically not behave
“similarly” to the original residuals.

Of course, we need a way to measure “similar behavior”. Since we want to measure the
uncertainty of a model constructed by using a certain objective function, we will measure
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similarity by recalculating (the magnitude of) its gradient (w.r.t. α) with the transformed
residuals and apply a rank test (Good 2005).

Let us define a reference function, Z0 : Rn → R, and m − 1 perturbed functions, {Zi },
with Zi : Rn → R, where m is a user-chosen hyper-parameter, as follows

Z0(α)
.= ‖ 
(x) ḡ(x, α,G0 (̂ε(x, y, α))) ‖2, (17)

Zi (α)
.= ‖ 
(x) ḡ(x, α,Gi (̂ε(x, y, α))) ‖2, (18)

for i = 1, . . . ,m − 1, where 
(x) is some (possibly input dependent) positive definite
weighting matrix, G0 is the identity element of G (w.l.o.g. the identity transformation), and
{Gi } are i.i.d. random transformations from G, sampled using the uniform distribution on G.
They are generated independently of the other random elements of the system, such as the
input vector x and the noise vector ε.

For symmetric noises, transformation Gi ∈ G is basically a random n × n diagonal
matrix whose diagonal elements are +1 or −1, each having 1/2 probability to be selected,
independently of the other elements of the diagonal.

On the other hand, for the case of exchangeable noise terms, each transformation Gi ∈ G
is a randomly (uniformly) chosen n × n permutation matrix.

Weighting matrix
(x) is included in the construction to allow some additional flexibility,
e.g., if we have some a priori information on the measurement noises.Wewill see an example
for the special case of quadratic objectives inSect. 4.6. In case no such information is available,

(x) can be chosen as identity.

We can observe that for the ideal coefficient vector α∗, we have

Z0(α
∗) = ‖ 
(x) ḡ(x, α∗, ε) ‖2

d= ‖ 
(x) ḡ(x, α∗,Gi (ε)) ‖2
= Zi (α

∗), (19)

for i = 1, . . . ,m−1, where „
d=” denotes equality in distribution. Therefore, the {Zi (α

∗)}m−1
i=0

variables have the same (marginal) distribution, though, they are of course not independent. It
can be shown, however, that they are conditionally independent, and therefore all of their pos-
sible orderings are equally likely, with possible tie-breakings, which can be used to measure
similar behavior.

On the other hand, forα �= α∗, this distributional equivalence does not hold, andwe expect
that if ‖ α − α∗ ‖ is large enough, the reference element Z0(α) will dominate the perturbed
elements, {Zi (α)}m−1

i=1 , with high probability, from which we can detect (statistically) that
coefficient vector α is not the ideal one, α �= α∗.

4.4 Normalized ranks

Now, we make our argument, including possible tie-breakings, more precise by introducing
the concept of normalized ranks. Formally, the normalized rank of the reference element,
Z0(α), among all {Zi (α)}m−1

i=0 elements is defined as follows

R(α)
.= Rm(α)

.= 1

m

[
1 +

m−1∑
i=1

I (Z0(α) ≺π Zi (α))

]
, (20)

where I(·) is an indicator function, namely, its value is 1 if its argument is true and 0 otherwise;
m ∈ N is a user-chosen hyper-parameter; and binary relation “≺π” is the standard “<” with
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random tie-breaking (according to a fixed, pre-generated random order). More precisely, let
π be a random (uniformly chosen) permutation of the set {0, . . . ,m − 1}. Then, given m
arbitrary real numbers, Z0, . . . , Zm−1, we can construct a strict total order, denoted by “≺π”,
by defining Zk ≺π Z j if and only if Zk < Z j or it both holds that Zk = Z j andπ(k) < π( j).

4.5 Exact confidence

Parameterm influences the resolution of the confidence probability we can achieve. Namely,
a probability p ∈ (0, 1) is admissible if it can be written in the form of p = 1 − q/m, where
q is an integer satisfying 0 < q < m. On the other hand, since both m and q are (hyper)
parameters, their values are user-chosen. Hence, every rational probability p ∈ (0, 1) is
admissible, by choosing m and q appropriately. Then, a confidence set for an admissible
probability p = p(m, q) is

Ap
.= {α : R(α) ≤ p } = {α : Rm(α) ≤ 1 − q/m } . (21)

One of the main questions is: what kind of stochastic guarantees do such confidence
regions have? The following theorem states that they are exact.

Theorem 2 Under Assumptions 1, 2, 3 and 4, the coverage probability of the constructed
confidence region with respect to the ideal coefficient vector α∗ is

P
(
α∗ ∈ Ap

) = p = 1 − q

m
, (22)

for any choice of the integer hyper-parameters satisfying 0 < q < m.

Proof Following Csáji et al. (2015), the core idea is to show that variables

Z0(α
∗), Z1(α

∗), . . . , Zm−1(α
∗) (23)

are uniformly ordered, which means that each ordering of them, with respect to the strict total
order ≺π , has the same probability, that is 1/m!, formally,

P
(
Zi0(α

∗) ≺π Zi2(α
∗) ≺π · · · ≺π Zim−1(α

∗)
) = 1

m! , (24)

where (i0, i1, . . . , im−1) is an arbitrary permutation of (0, 1, . . . ,m − 1). This ordering
property is not obvious, since they are not independent, even though we already observed
that they are identically distributed (for ideal coefficients).

By definition, α∗ ∈ Ap if and only if R(α∗) ≤ 1 − q/m, i.e., if the reference element,
Z0(α

∗) takes one of the positions 1, . . . ,m−q in the ordering of {Zi (α
∗)}m−1

i=0 variables, w.r.t.
the strict total order ≺π . Then, assuming they are uniformly ordered (yet to be shown), we
know that Z0(α

∗) takes each position in the orderingwith probability exactly 1/m. Therefore,
for i ∈ {1, . . . ,m}, we have

P

(
R(α∗) = i

m

)
= 1

m
, (25)

from which it follows that P
(
α∗ ∈ Ap

) = 1 − q/m by taking into account that events
{R(α∗) = i/m } and {R(α∗) = j/m } are disjoint, if i �= j .

In order to show that {Zi (α
∗)}m−1

i=0 are indeed uniformly ordered, we can apply Theorem
2.17 of Kolumbán (2016). Our proposed approach can be interpreted as a variant of a DP
method, even though formally theDP “performancemeasures” can depend on the parameters,
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α, the inputs, x , and the perturbed outputs, y(i), but not directly on the perturbed residuals.
Nevertheless, in our case, y(i) is

y(i) .= fα(x) + Gi (̂ε(x, y, α)), (26)

where fα(x)
.= [ fα(x1), . . . , fα(xn)]T. Then, obviously we can compute the transformed

residuals, Gi (̂ε(x, y, α)), from α, x , and y(i) by using that Gi (̂ε(x, y, α)) = y(i) − fα(x).
Hence, the DP performance measure in our case is defined as

Z(α, x, y(i))
.= ‖ 
(x) ḡ(x, α, y(i) − fα(x)) ‖2, (27)

which now fits the DP framework. Our Assumption 4 ensures that this function is well-
defined and, together with Assumption 2, it also guarantees that we do not need to compute
{y(i)} to evaluate the perturbed functions. Our Assumption 3 directly states that the noise, ε, is
invariant under a compact group of transformations, which is a requirement of Theorem 2.17,
and we already observed that true errors coincide with the residuals of ideal representations,
ε̂(x, y, α∗) = ε. ��

Theorem 2 shows that the confidence region contains the ideal coefficient vector exactly
with probability p that statement is non-asymptotically guaranteed, despite the method is
distribution-free. Since m and q are user-chosen (hyper-parameters), the confidence proba-
bility is under our control. The confidence level does not depend on the weighting matrix,
but it influences the shape of the region. Ideally, it should be proportional to the square root
of the covariance of the estimate.

4.6 Quadratic objectives and symmetric noises

If we work with convex quadratic objectives, which have special importance for kernel
methods (Hofmann et al. 2008), and assume independent and symmetric noises, we get the
Sign-Perturbed Sums (SPS) method (Csáji et al. 2015) as a special case (using the inverse
square root of the Hessian as a weighting matrix).

The SPS method uses the classical least-squares (LS) objective function,

g( fα,Dn) = ‖ z − �α ‖2, (28)

where z denotes the vector of outputs and � is the regressor matrix. Objective (28) can be
seen the canonical form of many quadratic functions (cf. Sect. 5).

When using the SPS method, we make the following assumptions: the noise terms, {εi },
are independent and have symmetric distributions about zero; and the regressor matrix, �,
has independent rows, it is skinny and full rank.

For SPS, the reference and the perturbed functions are defined as

Zi (α)
.= ‖ (�T�)−1/2�TGi (z − �α) ‖2, (29)

for i = 0, . . . ,m − 1, where Gi = diag(σi,1, . . . , σi,n), for i �= 0, where random vari-
ables {σi, j } are i.i.d. having Rademacher distribution, i.e., they take values +1 and −1 with
probability 1/2 each; and G0 = In is the identity matrix.

It is easy to see that (29) is a special case of construction (17)–(18), where z are the outputs
and � is computed from the inputs. Besides being exact, the confidence regions of SPS have
additional important properties, such as they are star convex with the LS estimate, α̂, as a
star center (Csáji et al. 2015). Moreover, they have ellipsoidal outer approximations, that is
there are regions of the form
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A◦
p

.=
{

α ∈ R
n : (α − α̂)T

1

n
�T�(α − α̂) ≤ r

}
, (30)

where Ap ⊆ A◦
p and radius of the ellipsoid, r , can be computed (in polynomial time) by

solving semi-definite programming problems (Csáji et al. 2015).
Hence, for quadratic problems, the obtained regions are star convex, thus connected, have

ellipsoidal outer approximation, thus bounded. These properties ensure that it is easy to work
with them. For example, using star convexity and boundedness, we can efficiently explore
the region by knowing that every point of it can be reached from the given star center by
a line segment inside the region. Moreover, the ellipsoidal outer approximation provides a
compact representation.

5 Applications and experiments

In this section, we show specific applications of the proposed uncertainty quantification (UQ)
approach for typical kernel methods, such as LS-SVC, KRR, ε-SVR and KLASSO, in order
to demonstrate the usage and the power of the framework.

We also present several numerical experiments to illustrate the family of confidence
regions we get for various confidence levels. We always set hyper-parameter m to 100 in
the experiments. The figures were constructed by Monte Carlo simulations, i.e., evaluating
1 000 000 random coefficients and drawing the graphs of their induced models with colors
indicating their confidence levels.

5.1 Uncertainty quantification for least-squares support vector classification

We start with a classification problem and consider the Least-Squares Support Vector Clas-
sification (LS-SVC) method (Suykens and Vandewalle 1999). LS-SVC under the Euclidean
distance is known to be equivalent to hard-margin SVC using the Mahalanobis distance (Ye
and Xiong 2007). It has the advantage that it can be solved by a system of linear equations,
in contrast to a quadratic problem.

We assume that xk ∈ R
d and yk ∈ {+1,−1}, for all k ∈ {1, . . . n}, as well as that the

slack variables, i.e., the algebraic (signed) distances of the objects from the corresponding
margins, are independent and distributed symmetrically, for the ideal representation; which
we will identify with the best possible classifier.

For simplicity, we consider linear classification, that is models of the form

hα(xk)
.= sign(wTxk + b ) = sign( αT x̃k ), (31)

where xk is an input vector, α
.= [ b, wT ]T and x̃k

.= [ 1, xTk ]T.
The standard (primal) formulation of (soft-margin) LS-SVM classifcation is

minimize
1

2
wTw + λ

n∑
k=1

ξ2k (32)

subject to yk(w
Txk + b) = 1 − ξk (33)

for k = 1, . . . , n, where λ > 0 is fixed. Variables {ξi } are called the slack variables. The
convex quadratic problem above can be rewritten as minimizing

g( fα,Dn)
.= 1

2
‖ B α ‖2 + λ ‖1n − y � (Xα) ‖2, (34)
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where 1n ∈ R
n is the all-one vector, � denotes the Hadamard (entrywise) product,

X
.= [ x̃1, . . . , x̃n ]T and the role of matrix B is to remove the bias, b, from α, i.e.,

B
.= diag(0, 1, . . . , 1). Note that the reformulated problem (34) is unconstrained.
Observe that the objective function, g( fα,Dn), can be further reformulated to take the

canonical form of ‖ z − �α ‖2 by using the following � and z,

� =
[√

λ (y1Td ) � X

(1/
√
2) B

]
,

z =
[√

λ1n

0d

]
, (35)

where 0d ∈ R
d is the all-zero vector. Then, we can apply SPS to the obtained (ordinary) LS

formulation. However, we should be a careful with the transformations, as the new problem
has some auxiliary output terms, the zero part of z, for which there are no slack variables.
The residuals corresponding to that part are not even stochastic, therefore, the last d terms
of the residual vector, z − �α, should not be perturbed. Consequently, the transformation
matrices {Gi } are defined as

Gi
.=

[
Ḡi 0
0 I

]
, (36)

for i = 0, . . . ,m − 1, where Ḡ0 = In is the identity, and Ḡi
.= diag(σi,1, . . . , σi,n), for

i �= 0, where {σi, j } are i.i.d. Rademacher random variables, as before.
Then, (exact) confidence regions and (honest) ellipsoidal outer approximations can be

constructed for the best linear classifier in the domain of coefficients by the SPS method,
i.e., (29), with regressor matrix and output vector as defined in (35) and transformations as
in (36). The regions will be centered around the LS-SVM classifier, i.e., for all (rational)
p ∈ (0, 1), the coefficients of LS-SVC are contained in Ap , assuming it is non-empty. As
each coefficient vector uniquely identifies a classifier, the obtained region can be mapped to
the model space, as well.

UQ for LS-SVC is illustrated in Fig. 1. The observationswere generated by addingLaplace
noises to the coordinates of the corresponding class centers. The constructed confidence
regions are shown both in the coefficient and model spaces, without the bias term, for sim-
plicity. The possibility of constructing (honest) ellipsoidal outer approximations of the (exact)
regions is also illustrated.

5.2 Uncertainty quantification for kernel ridge regression

Our next example is Kernel Ridge Regression (KRR) which is a kernelized version of
Tikhonov regularized LS (Shawe-Taylor and Cristianini 2004). The KRR estimate mini-
mizes a quadratic loss function with a Hilbert space norm regularizer,

f̂KRR ∈ argmin
f ∈H

1

n

n∑
i=1

wi (yi − f (xi ))
2 + λ ‖ f ‖2H, (37)
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Fig. 1 Exact, non-asymptotic, distribution-free confidence regions for ideal RKHS representations. Parts a
and b present UQ for Least-Squares Support Vector Classification (LS-SVC) with λ = 0.1 in the model and
coefficient spaces, respectively. The ellipsoidal outer approximations of the regions having probabilities 10%,
50% and 90% are also presented in the coefficient space. There were n = 100 observations, 50 for each
class. The centers of the classes were (0, 0.5) and (−0.5, 0). For each observation i.i.d. Laplace noises were
added to the coordinates of the corresponding centers. The parameters of the noises were μ = 0 (location)
and b = 1/2 (scale). The confidence level of each color can be interpreted by using the scale bars. The regions
are increasing, i.e., Ap ⊆ Aq if p ≤ q, thus, only the smallest levels are shown

where λ > 0, wi > 0, i = 1, . . . , n, are some a priori given (constant) weights. After using
the representer theorem, the objective function can be rewritten as

g( fα,Dn)
.= 1

n

n∑
i=1

wi (yi − fα(xi ))
2 + λ ‖ f ‖2H

= 1

n
‖ y − fα(x) ‖2W + λ ‖ f ‖2H

= 1

n
(y − Kx α)TW (y − Kx α) + λαTKx α, (38)

where fα(x)
.= [ fα(x1), . . . , fα(xn)]T, W .= diag(w1, . . . , wn), and we used the reproduc-

ing property to replace the Hilbert space norm with a quadratic term.
We can reformulate (38) in the canonical form, ‖ z − �α ‖2, by using

� =
[

(1/
√
n)W

1
2 Kx√

λK
1
2
x

]
, and z =

[
(1/

√
n)W

1
2 y

0n

]
, (39)

whereW
1
2 and K

1
2
x denote the square roots of matricesW and Kx , respectively. Note that the

square roots exist as these matrices are positive semidefinite.
Then, assuming symmetric and independent measurement noises, formula (29), with

regressormatrix and output vector defined by (39), can be applied to build confidence regions.
As in the case of LS-SVMclassifier, the canonical reformulation also contains some auxiliary
terms, the zero part of z, for which there are no real noise terms, therefore, they should not be
perturbed. Thus, we should again use the transformations defined by (36) to get guaranteed
confidence regions.
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Experiments illustrating the family of (exact, non-asymptotic, distribution-free) con-
fidence regions of KRR with Gaussian kernels and Laplacian measurement noises, and
comparing the results with that of support vector regression, are shown in Fig. 2. The dis-
cussion of the comparison is located in Sect. 5.3.

5.3 Uncertainty quantification for support vector regression

The previous examples were quadratic and therefore, for symmetric noises, their uncertainty
could be quantified with SPS. This may be no more true if we change the applied norms. In
this section we study support vector regression, particularly, ε-SVR (Hofmann et al. 2008;
Schölkopf and Smola 2001; Steinwart and Christmann 2008). A well-known advantage of
ε-SVR, for example, over KRR, is that it ensures sparse representations through the ε-
insensitive loss function. In order to avoid confusion with the true noise vector, ε, we denote
the tolerance parameter of the loss function by ε̄. The primal objective function of ε-SVR is

h( f ,Dn)
.= 1

2
‖ f ‖2H + c

n

n∑
k=1

max{0, |〈 f , φ(xk)〉H − yk | − ε̄}, (40)

where f ∈ H, c > 0, andφ(z)
.= k(z, ·) is the featuremap. Function (40) can be reformulated

by applying slack variables, then using standard arguments based on the Lagrangian and the
Karush–Kuhn–Tucker (KKT) conditions, we arrive at the Wolfe dual of ε-SVR (Schölkopf
and Smola 2001), where we have to maximize

g( fα+,α− ,Dn) = yT(α+ − α−)

− 1

2
(α+ − α−)TKx (α+ − α−) − ε̄ (α+ + α−)T1, (41)

subject to the (linear) constraints: α+, α− ∈ [ 0, c/n ]n and (α+−α−)T1 = 0. One can work
directly with the quadratic dual objective, but then the confidence region will be constructed
for α+, α−. Since, α = α+ − α−, the region could be mapped to a confidence region in the
space of coefficient vectors. Alternatively, one can reformulate (41) directly for α as

g( fα,Dn) = yTα − 1

2
αTKx α − ε̄ ‖α‖1, (42)

where ‖ · ‖1 is the 1-norm. A subgradient of (42) w.r.t. α is given by

∇α g( fα,Dn) = y − Kx α − ε̄ sign(α), (43)

where sign(·) denotes the signum function and it is understood component-wise.
Then, building on the subgradient of the dual objective, i.e., (43), reference and perturbed

evaluation functions can be defined, for i = 0, . . . ,m − 1, as

Zi (α)
.= ‖Gi ( y − Kx α ) − ε̄ sign(α) ‖2 , (44)

whereG0 is the identitymatrix andGi is a (uniformly chosen) element of the applied compact
transformation group, such as a diagonal matrix with ±1 entries, for symmetric noises (or
permutation matrices for exchangeable noises, etc.).

A numerical experiment illustrating the obtained family of confidence regions of the ε-
SVR estimate for various significance levels is shown in Fig. 2.

The same data sample was used for all regression models, to allow their comparison. The
noise affecting the observations was Laplacian, thus heavy-tailed. Since the coefficient space
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(a) UQ for KRR (λ = 0.1), SPS
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(b) UQ for ε-SVR (ε̄ = 0.2), sign-changes

Fig. 2 Exact, non-asymptotic, distribution-free confidence regions for ideal RKHS representations. Parts a
and b show UQ for Kernel Ridge Regression (KRR) with λ = 0.1 and ε-Support Vector Regression (ε-SVR)
with c = 250 and ε̄ = 0.2, respectively. The same data was used for both regression problems, namely, the true
function was f∗(x) = x sin(x), there were n = 20 observations having i.i.d. Laplace noise with parameters
μ = 0 (location) and b = 1/2 (scale), and Gaussian kernels were applied with σ = 1/2. Part a was built by
the Sign-Perturbed Sums (SPS) method, (29), and formula (44) was used with sign-change matrices for part
b. The confidence level of each color can be interpreted by using the scale bars. The regions are increasing,
i.e., Ap ⊆ Aq if p ≤ q, thus, only the smallest levels are shown

is high-dimensional, and there is a one-to-one correspondence between coefficient vectors
and kernel models, the confidence regions are mapped and shown in the model space, i.e., in
the space of RKHS functions.

Note that it is meaningful to plot the confidence regions even for unknown input values,
because the confidence regions are built for the ideal representation, which belongs to the
chosen RKHS, unlike the underlying true function.

We can observe that the uncertainty of ε-SVR was higher than that of KRR, which can
be explained as the price of using ε-insensitive loss. As the experiments with KLASSO
show (cf. Fig. 3), the higher uncertainty of ε-SVR is not simply a consequence of sparse
representations, as KLASSO also ensures sparsity. Naturally, the confidence regions are also
influenced by the specific choice of hyper-parameters which should be taken into account
when the confidence regions are compared.

5.4 Uncertainty quantification for kernelized LASSO

Our last example covers the LASSO (least absolute shrinkage and selection operator)method,
which ensures sparsity via 1-norm regularization. Let us consider the kernelized version of
LASSO with objective (Wang et al. 2007):

g( fα,Dn)
.= 1

2
‖ y − Kx α ‖2 + λ ‖ α ‖1, (45)

were ‖ · ‖1 is the L1 (or Manhattan) norm. Though, function (45) cannot be written as
‖ z − �α ‖2, the proposed framework, i.e., construction (17)–(18), can still be applied. A
sub-gradient of the KLASSO objective (45) is given by

∇α g( fα,Dn) = Kx (Kx α − y) + λ sign(α), (46)
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(a) UQ for KLASSO with Gaussian kernel
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(b) UQ with Gaussian Process Regression

Fig. 3 Exact, non-asymptotic, distribution-free confidence regions for ideal RKHS representations obtained
using our framework and approximate confidence regions obtained by Gaussian Process (GP) regression
(Rasmussen and Williams 2006). Part a shows UQ for Kernelized LASSO with λ = 1, and part b shows UQ
with GP. The applied transformations were sign-change matrices. The same data was used for both regression
problems, namely, the true function was f∗(x) = x sin(x), there were n = 20 observations having i.i.d.
Laplace noise with parameters μ = 0 (location) and b = 1/2 (scale), and Gaussian kernels were applied with
σ = 1. The confidence level of each color can be interpreted by using the scale bars. The confidence regions
are increasing, i.e., Ap ⊆ Aq if p ≤ q, therefore, only the smallest levels are shown

where the sign(·) function is applied component-wise. Then, using the construction of (17)–
(18), the reference and perturbed functions can be defined as

Z0(α)
.= ‖Kx (Kx α − y) + λ sign(α) ‖2 , (47)

Zi (α)
.= ‖Kx Gi (Kx α − y) + λ sign(α) ‖2 , (48)

were {Gi } are from a suitable transformation group, e.g., diagonal matrices with Rademacher
random variables as diagonal elements for symmetric noises.

Numerical experiments illustrating the confidence regions we get for KLASSO are pre-
sented in Fig. 3. The figure also presents the confidence regions constructed by applying
the standard Gaussian Process (GP) regression with estimated parameters. Note that the GP
confidence regions are only approximate, namely, they do not come with strict finite-sample
guarantees unless the noise is indeed Gaussian. Moreover, during our experiment the noise
had a Laplace distribution, which has a heavier tail than Gaussians, therefore even if the true
covariance of the noise was known, the confidence regions of GP regression would underes-
timate the uncertainty of the estimate (would be too optimistic), while the confidence regions
of our framework are always non-conservative, independently of the particular distribution
of the noise, assuming it has the necessary invariance.

Also note that for our method the noises can even have different (marginal) distributions
for each input. Therefore, even though the confidence regions generated by GP are smaller
than the ones our framework produces, the GP regions are imprecise and underestimate the
uncertainty of the model, while ours come with strict finite-sample guarantees for a broad
class of noises (e.g., symmetric ones).
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6 Conclusions

In this paper we addressed the problem of quantifying the uncertainty of kernel estimates
by using minimal distributional assumptions. The main aim was to measure the uncertainty
of finding the (noise-free) ideal representation of the underlying (hidden) function at the
available inputs. By building on recent developments in finite-sample system identification,
we proposed a method that delivers exact, distribution-free confidence regions with strong
finite-sample guarantees, based on the knowledge of somemild regularity of themeasurement
noises. The standard examples of such regularities are exchangeableor symmetricnoise terms.
Note that either of these properties in itself is sufficient for the theory to be applicable.

The needed statistical assumptions are verymild, as for example, no particular (parametric)
family of distributions was assumed, no moment assumptions were made (the noises can be
heavy-tailed, and may even have infinite variances); moreover, for the case of symmetric
noises, it is allowed that each noise term affecting the observations has a different distribution,
i.e., the noise can be nonstationary.

The core idea of the approach is to evaluate the uncertainty of the estimate by perturbing
the residuals in the gradient of the objective function. The norms of the (potentiallyweighted)
perturbed gradients are then compared to that of the unperturbed one, and a rank test is applied
for the construction of the region.

The proposed method was also demonstrated on specific examples of kernel methods.
Particularly, we showed how to construct exact, non-asymptotic, distribution-free confidence
regions for least-squares support vector classification, kernel ridge regression, support vector
regression and kernelized LASSO.

Several numerical experiments were presented, as well, demonstrating that the method
provides meaningful regions even for heavy-tailed (e.g., Laplacian) noises. The figures illus-
trate whole families of confidence regions for various standard kernel estimates. Ellipsoidal
outer approximations are also shown for LS-SVC. Additionally, the method was compared
to Gaussian Process (GP) regression, and it was found that although the (approximate) GP
confidence regions are smaller in general than our (exact) confidence sets, but the GP regions
are typically imprecise and they underestimate the real uncertainty, e.g., if the noises are
heavy-tailed.

Our approach to build non-asymptotic, distribution-free, non-conservative confidence
regions for kernel methods can be a promising alternative to existing constructions, which
arch-typically either build on strong distributional assumptions or on asymptotic theories or
only bound the error between the true and empirical risks. As our approach explicitly builds
on the constructions of the underlying kernel methods, it can provide new insights on how the
specific methods influence the uncertainty of the estimates, and therefore, besides being vital
for risk management, it also has the potential to inspire refinements or new constructions.

There are several open questions about the framework which can facilitate future research
directions. For example, finding efficient outer-approximations for cases when the objective
function is not convex quadratic should be addressed. Also the consistency of the method
should be studied to see whether the uncertainty decreases as the sample size tends to infinity.
Finally, itwould be interesting, aswell, to extend themethod to (stochastic)dynamical systems
and to formally analyze the size and shape of the constructed regions in a finite-sample setting.
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A. Additional numerical experiments

In this appendix we provide additional numerical experiments supporting the presented
framework. The effects of various measurement noises, kernel functions and sample sizes on
the obtained (families of) exact, non-asymptotic, distribution-free confidence regions were
studied. The true function was always f∗(x) = x sin(x) and the inputs were chosen equidis-
tantly from [ 0, 10 ]. The regions were evaluated by the same methodology (Monte Carlo
simulations) as in Sect. 5.

A.1. Various noise distributions

First, we investigated how the distribution of the noise affects the regions. Particularly, we
appliedGaussian,Laplacian,Uniform andBinomial noises on the outputs of the true function
and built the regions for Kernel Ridge Regression (KRR). All noises had zero mean (for
the Binomial case the theoretical mean was subtracted from the generated noises), and the
parameters of the distributions were set in a way to ensure that all of their variances were the
same (i.e., one).

Figure 4 illustrates the obtained families of confidence sets. It can be observed that their
shapes and sizes show only small fluctuations indicating that the particular choice of the
distribution has a limited effect on the confidence regions (assuming it has zero expectation
and we keep the variance of the noise fixed).
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(a) UQ for KRR,Gaussian noise
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(b) UQ for KRR, Laplace noise
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(c) UQ for KRR, Uniform noise
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(d) UQ for KRR, Binomial noise

Fig. 4 Exact, non-asymptotic, distribution-free confidence regions for ideal representationsw.r.t. various noise
distributions. The figure shows UQ for Kernel Ridge Regression (KRR) with λ = 0.1 and Gaussian kernels
with σ = 1/2. Parts a–d demonstrate the obtained family of confidence regions for i.i.d. Gaussian, Laplace,
Uniform and Binomial noises, respectively. The parameters of all distributions were set to ensure that each
of them has zero mean and unit variance. For the Binomial case, the “number of trials” parameter was 20,
and so the “success probability” p was set to satisfy 20p(1− p) = 1 (thus, p ≈ 0.052786). Then, from each
Binomial observation 20p was subtracted to ensure zero mean. In all cases n = 20 outputs were measured at
equidistant inputs. The Sign-Perturbed Sums (SPS) method was applied to construct the regions, hence, the
applied transformations were sign-changes. The confidence levels can be interpreted by using the scale bars.
The regions are increasing, i.e., Ap ⊆ Aq if p ≤ q, therefore, only the smallest levels are shown

A.2. Different kernel functions

Next, the effect of the applied kernel was studied. Figure 5 illustrates UQ for kernelized
LASSO withGaussian, Laplacian, truncated parabolic (k(x, y) = max{1− c‖x − y‖2, 0})
and rectangular kernels (k(x, y) = I(‖x − y‖ ≤ c), where the noises were Laplacian. The
results show that the choice of the kernel has a significant effect on both the obtained point-
estimate (regression model) and the corresponding confidence sets, e.g., the Laplacian kernel
was more sensitive to outliers and the regions for the rectangular kernel were much larger
than the other ones.
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(a) UQ for kLASSO,Gaussian kernel
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(b) UQ for kLASSO, Laplacian kernel
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(c) UQ for kLASSO, Parabolic kernel
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(d) UQ for kLASSO, Rectangular kernel

Fig. 5 Exact, non-asymptotic, distribution-free confidence regions for ideal representations w.r.t. different
kernel functions. The figure shows UQ for kernelized LASSO with λ = 1. There were n = 20 observations
having i.i.d. Laplace noises with parameters μ = 0 (location) and b = 1/2 (scale). Parts a–d demonstrate the
obtained family of confidence regions when using Gaussian, Laplacian, truncated parabolic and rectangular
kernels, respectively. For the Gaussian and Laplacian kernels σ = 1/2, for the truncated parabolic kernel
c = 1, and for the rectangular kernel c = 1/38. The same data was used for all regression problems, and
the applied transformations were sign-changes. Observe that the Laplacian kernel was more sensitive to the
outlier between 4 and 5. The obtained regions for the rectangular kernel are much larger than the other regions,
indicating a high uncertainty of such an overly localized approach. The confidence levels can be interpreted
by using the scale bars. The regions are increasing, i.e., Ap ⊆ Aq if p ≤ q, therefore, only the smallest levels
are shown

A.3. Increasing the sample size

Finally, we have experimented with kernelized LASSO to see how increasing of the sample
size affects the obtained confidence regions. The measurement noises were Laplacian (hence
heaviy-talied), and the applied sample sizes were n = 10, 20, 50, and 100. The results
are shown in Fig. 6 and are indicative of the phenomenon that the confidence regions, and
hence the uncertainties, shrink as the sample size tends to infinity, even though the number
of coefficients increases with the sample size. This experiment supports that the approach
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is “consistent”, nevertheless, we leave the theoretical investigation of this phenomenon for
further study.
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(a) UQ for kLASSO, n = 10
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(b) UQ for kLASSO, n = 20
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(c) UQ for kLASSO, n = 50
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(d) UQ for kLASSO, n = 100

Fig. 6 Exact, non-asymptotic, distribution-free confidence regions for ideal representations w.r.t. increasing
sample sizes. The figure shows UQ for kernelized LASSO with λ = 1 and using Gaussian kernels with
σ = 1/2. The observations had i.i.d. Laplace noises with parameters μ = 0 (location) and b = 1/2 (scale).
Parts a–d demonstrate the obtained family of confidence regions when using samples of size n = 10, 20, 50,
and 100, respectively. The applied transformations were sign-changes. Observe that the confidence regions
shrink around the ideal representations, despite the number of coefficients also increases with the sample size.
This is indicative of the phenomenon that the regions have a consistency property. This may be especially true
if we apply a universal kernel, such as the Gaussian one, for which the ideal representations can approximate
arbitrary well any continuous functions on a compact domain. The confidence levels can be interpreted by
using the scale bars. The regions are increasing, i.e., Ap ⊆ Aq if p ≤ q, therefore, only the smallest levels
are shown
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