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Abstract
Active learning algorithms propose what data should be labeled given a pool of unlabeled
data. Instead of selecting randomly what data to annotate, active learning strategies aim to
select data so as to get a good predictive model with as little labeled samples as possible.
Single-shot batch active learners select all samples to be labeled in a single step, before any
labels are observed.We study single-shot active learners that minimize generalization bounds
to select a representative sample, such as the maximum mean discrepancy (MMD) active
learner. We prove that a related bound, the discrepancy, provides a tighter worst-case bound.
We study these bounds probabilistically, which inspires us to introduce a novel bound, the
nuclear discrepancy (ND). The ND bound is tighter for the expected loss under optimistic
probabilistic assumptions. Our experiments show that the MMD active learner performs
better than the discrepancy in terms of the mean squared error, indicating that tighter worst
case bounds do not imply better active learning performance. The proposed active learner
improves significantly upon the MMD and discrepancy in the realizable setting and a similar
trend is observed in the agnostic setting, showing the benefits of a probabilistic approach
to active learning. Our study highlights that assumptions underlying generalization bounds
can be equally important as bound-tightness, when it comes to active learning performance.
Code for reproducing our experimental results can be found at https://github.com/tomviering/
NuclearDiscrepancy.
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1 Introduction

Supervised machine learning models require enough labeled data to obtain good general-
ization performance. For many practical applications such as medical diagnosis or video
topic prediction labeling data can be expensive or time consuming (Settles 2012). Often in
these settings unlabeled data is abundant. In active learning an algorithm chooses unlabeled
samples for labeling (Cohn et al. 1994). The idea is that models can perform better with
less labeled data if the labeled data is chosen carefully instead of randomly. Active learning
makes the most of a small labeling budget and can reduce labeling costs.

Several works use upperbounds on the expected loss to motivate particular active learning
strategies (Gu andHan 2012; Ganti andGray 2012; Gu et al. 2012, 2014;Wang andYe 2013).
We study pool-based active learners that choose queries that explicitly minimize generaliza-
tion bounds and investigate the relation between bounds and active learning performance.
We evaluate generalization with respect to the surrogate loss in the classification setting and
use the kernel regularized least squares model (Rifkin et al. 2003), a popular model in active
learning (Huang et al. 2010; Wang and Ye 2013). Our focus is on active learners that select
a batch of queries in a single shot (Contardo et al. 2017). This means that there is no label
information available at the time the batch of queries is determined. Since the active learners
have only have unlabeled data at their disposal they aim to select the most representative
subset of the unlabeled pool. This is different from batch mode or sequential active learning,
where after requesting labels from the oracle the algorithm has to determine new queries,
creating a feedback loop. The advantage of zero-shot active learning is that all queries can
be computed ahead of time, and collected labels do not have to be fed into the active learner.

For applications this can be very convenient: it simplifies the annotation setup. Further-
more, active learning algorithm may require substantial amounts of time to compute the next
query. In situations where annotation have to be done by domain experts whose time is costly
this can be impractical. For example, if we were to apply active learning to to the problem
of Esteva et al. (2017), who build a deep learning model to classify skin cancer, sequential
or batch mode active learning strategies usually train a model as intermediate step before
being able to determine the next query. For deep models this could take several hours. With
zero-shot active learning the dermatologist can annotate all queries without waiting once.

Another example where requesting labels is costly is personalized machine learning mod-
els such as formovie recommendation. Here applicationsmay ask feedback from end-users to
improve their service. This problem can also be studied using the active learning framework
(Harpale and Yang 2008). Asking end-users for feedback usually interrupts their activity in
the application. Therefore, we may only interrupt the user a limited amount of times. Using
zero-shot active learning users only have to be interrupted once and can answer multiple
queries without waiting for new queries to be determined.

The Maximum Mean Discrepancy (MMD) is used for batch-mode active learning by
Chattopadhyay et al. (2012) to match the marginal distribution of the selected samples to
the marginal distribution of all unlabeled samples. This active learner has been shown to
minimize a generalization bound (Wang and Ye 2013). The MMD is a divergence measure
(Gretton et al. 2012) which is closely related to the Discrepancy divergence measure of
Mansour et al. (2009), both have been used in domain adaptation (Huang et al. 2007; Cortes
and Mohri 2014).

Using the Discrepancy, we show that we can get a tighter worst case generalization bound
than the MMD in the realizable setting. Tighter bounds are generally considered better as
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they estimate the expected loss more accurately. One might therefore expect the Discrepancy
to lead to better queries in active learning.

We show, however, that the Discrepancy andMMD generalization bounds can be derived,
using a probabilistic analysis, from pessimistic assumptions. We subsequently apply the
principle of maximum entropy to derive probabilistic assumptions that are more optimistic,
inspiring us to introduce the Nuclear Discrepancy (ND) bound. Under these optimistic
assumptions the ND provides a tighter bound on the expected loss than the MMD, while
the Discrepancy bound is the loosest.

We compare the active learning performance of the proposed ND bound to the existing
MMD and Discrepancy bounds. Our hypothesis is that we often find ourselves in a more
optimistic average-case scenario than aworst-case scenarios. To this endwe empirically study
the behavior of the active learners on 13 datasets, and we investigate whether probabilistic
assumptions or worst-case assumptions better model observed behavior in our experiments.

In the realizeable setting amodel from themodel class can perfectly predict the groundtruth
labels, as in this setting there is no model mismatch or model misspecification. For this we
show that the tightness relations between the generalization bounds is strict. As such, for the
realizeable case, our theory gives the strongest predictions for the rankingof the active learners
in terms of performance. In the agnostic case, where no such model may exist, the tightness
relations can change, which renders our theory less applicable. We perform experiments in
both settings to see the effect of the theoretical assumptions not being fulfilled.

We study the realizable setting since it is more amendable to theoretical analysis. This
setting is often studied in active learning and is still a topic of active investigation (Tosh and
Dasgupta 2017). The general case of the agnostic case is much harder to analyze. To illustrate
this, we remark that it has been observed that if a model class is sufficiently wrongly chosen,
active learning can even decrease model performance (Settles 2011; Attenberg and Provost
2011; Loog and Yang 2016; Yang and Loog 2018).

These counter-intuitive behaviors further underline the need for further theoretical studies.
We believe that by improving our understanding of simpler active learning settings (realize-
able case) will contribute to improved understanding of more difficult active learning settings
(agnostic case).

To this end, our study provides new quantitative tightness relations between the MMD,
Discrepancy and ND bound under different probabilistic assumptions. We investigates the
connection between bound tightness and active learning performance. Our most important
conclusion is that not only bound tightness is important for performance, but that appropriate
assumptions are equally important.

1.1 Overview and contributions

First we discuss related work in Sect. 2. In Sect. 3 we describe the considered active learning
setting and notation. We present our theoretical results regarding the MMD and Discrepancy
in Sect. 4. In Sect. 5 we motivate our novel Nuclear Discrepancy bound. We evaluate the
proposed active learners experimentally in Sect. 6. In Sect. 7 we give a discussion and in
Sect. 8 we give the conclusions of this work. All proofs, additional background theory and
experimental results are given in the Appendix. The main contributions of this work are:

1. An improved MMD bound for active learning and a more informed way to choose the
kernel of the MMD in the context of learning.

2. A proof that the Discrepancy bound on the worst case loss is tighter than the MMD
bound.

3. A probabilistic interpretation of the MMD bound.
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Table 1 Visual summary of our work

Probabilistic Assumption Experiments

Bound Worst-Case Pessimistic-Case Average-Case Performance
Section 4.3 Section 4.4 Section 5 Section 6

Discrepancy Tightest Loosest Loosest Worst

MMD Intermediate Tightest Intermediate Intermediate

Nuclear Discrepancy Loosest Intermediate Tightest Best

(proposed)

This table gives an overview of the newly proven tightness relations between the generalization bounds and
the experimental results. Observe that the tightness relations under the ‘Average-Case’ correlate well with the
experimental performance of the active learners. Therefore, we stipulate that the ‘Average-Case’ is the most
accurate assumption for our considered active learning setting. Note that the tightness relations only hold under
the conditions of Theorem 2, and that the experimental performance shown here best reflect the performance
in the realizable setting. In the agnostic setting the ranking of the active learning methods is less clear, but the
same trend is observed

4. The Nuclear Discrepancy (ND) bound that provides the tightest bound on the expected
loss under probabilistic assumptions that follow from the principle of maximum entropy.

5. A probabilistic analysis that explains the differences in empirical performance (in terms
of the mean squared error) achieved by the active learners.

In Table 1 we give a visual summary of our work. It shows all formal results and shows in
which sections to find them. It also shows the relation between the theory and experiments,
and the main findings of the experiments.

2 Related work

Many active learning methods have been proposed, Settles (2012) provides an excellent
introduction and overview. Our work is related to active learning methods that select repre-
sentative samples (Xu et al. 2003). Most active learning strategies of this kind are combined
with an uncertainty criteria (Xu et al. 2003; Chattopadhyay et al. 2012; Wang and Ye 2013;
Huang et al. 2010), and often the representative component is used to diversify queries when
chosen in batches in order to avoid redundancy (Xu et al. 2003; Wang and Ye 2013). This is
different from our considered setting: since there is no labeled data and we have to choose
all queries in one shot, our only option is to select representative samples, since uncertainty
criteria can only be computed if some labels are known.

A closely related well-known concept to our work is that of (Transductive or) Optimal
Experimental Design (Yu et al. 2006). Here also no labeled data is required to select queries
for the case of the linear regression model. These methods aim to minimize some form of
posterior variance of the model. A closely related statistical approach relies on maximization
of the Fisher Information to reduce model uncertainty (Hoi et al. 2006). However, for these
approaches it is often required to explicitly specify a noise model (such as Gaussian i.i.d.
noise), while in this work we consider deterministic labeling functions.

Our work is motivated by several active learners that minimize generalization bounds.
Gu and Han (2012) uses the Transductive Rademacher Complexity generalization bound
to perform active learning on graphs. Gu et al. (2012) show that the strategy of Yu et al.
(2006) also minimizes a generalization bound, and extend the method to work with a semi-
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supervised model. Ganti and Gray (2012) introduce an active learning strategy that uses
importance weighting to ensure asymptotic consistency of the actively learned model. Their
strategy minimizes a generalization bound for the squared loss under some conditions on
the data distribution. Gu et al. (2014) introduce an strategy that minimizes a generalization
bound on the risk for logistic regression.Wang and Ye (2013) also use a generalization bound
based on the MMD to perform active learning, but we will describe this work later in more
detail when discussing all methods that use the MMD.

Many theoretical active learning works motivate algorithms by generalization bounds, for
example one of the first active learning algorithms ‘CAL’ (Cohn et al. 1994) and its agnostic
generalization A2 (Balcan et al. 2009) have been thoroughly analyzed using generalization
bounds by making use of the Disagreement Coefficient (Hanneke 2007). Most of these theo-
retical works consider worst-case performance guarantees, where the distribution is chosen
by an adversary subject to constraints. Balcan and Urner (2016) provides a short and concise
overview of these and other recent theoretical active learning works. In contrast with our
work, these algorithms consider generalization in terms of zero-one loss instead of squared
loss and do not apply to one shot active learning.

A straightforward approach to one shot active learning is through clustering: cluster the
data and request the labels of the cluster centers (BodÃ et al. 2011; Hu et al. 2010; Zhu
et al. 2008; Nguyen and Smeulders 2004). However, unlike our work, these methods are
not motivated by generalization bounds. Obtaining bounds for such approaches may be
difficult because the clustering algorithm and machine learning model may rely on different
assumptions. To still get bounds one can use the clustering algorithm instead to also provide
predictions for new samples (Urner et al. 2013). Instead, we stick to the regularized least
squaresmodel and use theMMDandDiscrepancy to get bounds for this model. Our approach
can be used to derive bounds and corresponding active learning strategies for any kernelized
L2 regularized model, however, in this work we only focus on the squared loss.

Our work is closely related to that of Chattopadhyay et al. (2012): we use a greedy version
of their proposed active learning algorithm. Chattopadhyay et al. (2012) are the first to use
the MMD for active learning in a batch-mode setting. An in-depth empirical analysis shows
that the MMD outperforms other active learning criteria as judged by the zero-one error
when used with kernelized SVMs. They show that the MMD easily can be combined with
uncertainty-based active learning approaches and transfer learning. Since we consider one-
shot active learning we don’t consider the uncertainty-based component of their algorithm.
In follow up work active learning and transfer learning is solved jointly using the MMD
(Chattopadhyay et al. 2013).

Our theoretical analysis of the MMD bound extends the analysis of Wang and Ye (2013).
Wang andYe (2013) show that active learning byminimization of theMMDand the empirical
risk can be seen as minimizing a generalization bound on the true risk. They introduce an
active learner that balances exploration (distributionmatching usingMMD)with exploitation
(a form of uncertainty sampling). They show empirically that their proposed algorithm is
competitive with several other active learning strategies as evaluated by the zero-one error
using kernelized SVMs.

We build upon the generalization bound of Wang and Ye (2013) and improve it. Their
bound considers the underlying distribution of the unlabeled pool and labeled (queried) sam-
ple, however, this is problematic because the labeled sample is non-i.i.d. due to dependence
of the queries of the active learner. We resolve this issue and introduce an additional term η

that measures the error of approximating the worst-case loss function.
Mansour et al. (2009) introduce the Discrepancy generalization bound for domain adap-

tation with general loss functions. In a follow up work, Cortes and Mohri (2014) contrast the
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Discrepancy with the MMD generalization bound: they argue that the Discrepancy is favor-
able from a theoretical point of view because it takes the loss function and hypothesis set of
the model into account, while the MMD does not. This means that the MMD bound for an
SVM and regularized least squares model would be exactly the same, while the Discrepancy
bound specializes to the chosen model and surrogate loss. They derive an efficient domain
adaptation algorithm and empirically show that the Discrepancy improves upon the MMD
in several regression adaptation tasks.

Prior to our work, the Discrepancy measure (Cortes and Mohri 2014) has not yet been
used to perform active learning. We show that by choosing the kernel for the MMD carefully,
we can adapt the MMD to take the hypothesis set and loss into account, addressing one
of the theoretical limitations of the MMD identified by Cortes and Mohri (2014). Under
these conditions we find that we can compare the MMD and Discrepancy bounds in terms
of tightness. This quantitative comparison of these bounds is novel and was not considered
before.

Germain et al. (2013) adapt the Discrepancy for the zero-one loss to a PAC-Bayes setting
in order to do domain adaptation. Their analysis is specifically for the zero-one loss, while
we consider the squared loss. Their PAC-Bayes framework is significantly different from
our analysis: instead of minimizing a surrogate loss, they use a Gibbs classifier, and they
minimize bounds on the expected risk directly. This involves a non-convex optimization
problem. Instead, we simply minimize the empirical risk and consider deterministic models,
similar to most PAC style analysis. This makes our analysis is simpler. Furthermore, they
propose a framework to jointly minimize the empirical risk and domain divergence. To this
end, their algorithm requires labeled data which is unavailable in zero-shot active learning,
making it unsuitable for our zero-shot setting.

In Cortes et al. (2019) a new domain adaptation algorithm based on a new divergencemea-
sure, the Generalized Discrepancy, is introduced. The algorithm consists of two stages: first
it minimizes the Discrepancy, afterward it minimizes the empirical risk and the Generalized
Discrepancy jointly. The strategy of Cortes et al. (2019) is difficult to apply to active learning
for two reasons. First of all, their algorithm requires labeled data to minimize the empirical
risk and the General Discrepancy jointly, which is impossible in our zero-shot active learning
setting. Second, their algorithm requires i.i.d. samples from the unlabeled pool to estimate
the hyperparameter r . This would require costly random queries in the active learning setting.
Because of these reasons, we believe their algorithm is more suitable to a joint active and
domain adaptation setting (such as considered by Chattopadhyay et al. (2013)) where more
labeled data is available.

Our theoretical analysis is substantially different from the analysis of Cortes et al. (2019).
Because Cortes et al. (2019) use labeled data, they can make a more accurate characterization
of possibleworst case scenario’s, refining theworst-case scenario of theDiscrepancy to obtain
tighter bounds. We take an orthogonal approach: we consider probabilistic generalization
bounds that hold in expectation. Instead of considering a worst-case, we make probabilistic
assumptions to get to a plausible average-case. Cortes et al. (2019) compare the Generalized
Discrepancy and Discrepancy bounds in terms of tightness. We compare the tightness of
the bounds of the MMD, Discrepancy and Nuclear Discrepancy. We show several orderings
of the tightness of the bounds under different probabilistic assumptions, while Cortes et al.
(2019) only takes a worst-case approach.

In summary, our work differs from previous works by considering instead of worst-case
analysis (Cortes et al. 2019; Cortes and Mohri 2014), a probabilistic analysis of generaliza-
tion bounds. Unlike most other works that use generalization bounds for domain adaptation
(Cortes et al. 2019; Cortes and Mohri 2014; Germain et al. 2013), we use bounds to perform
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active learning. For the MMD active learner, studied by Chattopadhyay et al. (2012); Wang
and Ye (2013), we give new theoretical results: an improved bound for active learning and we
provide a principled way to choose the kernel for the MMD. We give new quantitative com-
parisons of bound tightness for the MMD and Discrepancy in multiple settings, while before
these bounds were compared only qualitatively (Cortes and Mohri 2014). Furthermore, we
study the novel question: how does bound tightness relate to active learning performance?

3 Setting and notation

LetX = R
d denote the input space andY the output space. Like Cortes andMohri (2014) we

assume there is a function f : X → Y that determines the outputs and there is an unknown
distribution with density P over X from which we get an independent and identically dis-
tributed (i.i.d.) unlabeled sample P̂ = (x ′

1, . . . , x
′
n P̂

) ∈ X n P̂ . We study single-shot batch

active learners that given the unlabeled pool P̂ selects a batch Q̂n ⊂ P̂ of n samples before
observing any labels. The active learner submits the batch to the labeling oracle that provides
the labels of the batch. A kernel regularized least squares (KRLS) model is trained on Q̂lab

n ,
where lab indicates a labeled dataset.

We take the kernel of the model K to be positive semi-definite (PSD), and denote the
reproducing kernel Hilbert space (RKHS) as H where ||h||K denotes the norm in H. A
model corresponds to h ∈ H and is obtained by minimizing

L Q̂(h, f ) + μ||h||2K
for h ∈ Hwhen trained on Q̂lab, where we follow the convention of Cortes andMohri (2014).
L Q̂(h, f ) is the average empirical loss of h on Q̂ with outputs given by f :

L Q̂(h, f ) = 1

nQ̂

∑

x∈Q̂
l(h(x), f (x)),

where l : R × R → R is a loss function. For KRLS l is the squared loss: l(h(x), f (x)) =
(h(x) − f (x))2, then L Q̂(h, f ) is the mean squared error (MSE) on Q̂. Model complexity
is controlled by the regularization parameter μ > 0. We choose

H =
{
h ∈ H : ||h||K ≤ Λ = fmax√

μ

}

as our hypothesis set where fmax = supx∈X | f (x)|. TrainingKRLS always leads to a solution
h ∈ H (Mohri et al. 2012, Lemma 11.1).

In classification typically we are interested in the zero-one error (accuracy), however, our
study focuses on the squared loss (the surrogate loss). We use the squared loss because we
can relate the bounds of theMMD, Nuclear Discrepancy and Discrepancy in closed form and
compare them quantitatively. Since our goal is to investigate the correlation between bound
tightness and performance, this is essential to our study.

We have made the standard assumption that the data comes from an unknown distribution
P . The goal of the active learner is to choose a batch of queries in such a way as to minimize
the expected loss of the model under this distribution P:

LP (h, f ) =
∫

X
(h(x) − f (x))2P(x)dx . (1)
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Ideally we would want to train our model on P̂ lab, since small L P̂ (h, f ) will lead to small
LP (h, f ) if the model complexity is appropriate, as illustrated by the following theorem
(Mohri et al. 2012, p. 240).

Theorem 1 (Generalization bound Squared Loss (Mohri et al. 2012)) Let l be the squared
loss. For any δ > 0, with probability at least 1 − δ over an i.i.d. sample P̂ of size n P̂ from
P, the following inequality holds for all h ∈ H:

LP (h, f ) ≤ L P̂ (h, f ) + 4MRm(H) + M2 log(
1
δ
)

2n P̂

(2)

Here Rm(H) is the Rademacher complexity of the hypothesis set H, and M is a constant
such that |h(x) − f (x)| ≤ M for all x ∈ X and all h ∈ H.

If the model complexity is appropriate Rm(H)will be small. The third term is small when
the pool P̂ is large. If both of these criteria are met, it is unlikely that we overfit as reflected
by a tight bound. Then training on P̂ lab will likely minimize LP (h, f ).

Ideally we would train on P̂ lab, however, since we only have access to the unlabeled
sample P̂ this is impossible. Therefore we upperbound L P̂ (h, f ) instead. This upperbound
is minimized by the active learners. The studied bounds are of the form

L P̂ (h, f ) ≤ L Q̂(h, f ) + obj(P̂, Q̂) + η.

Due to training L Q̂(h, f ) will be relatively small. The term η is a constant that cannot be

minimized during active learning since it depends on P̂ lab. However, if the model misspeci-
fication is small, η will be small. Therefore we ignore this term during active learning, this
is also (sometimes implicitly) done in other works (Huang et al. 2007; Chattopadhyay et al.
2012; Cortes and Mohri 2014). Thus the active learners choose the batch Q̂ to minimize
obj(P̂, Q̂). This objective can be the MMD, disc or discN which will be introduced in the
next sections. This term measures the similarity between the unlabeled pool P̂ and the batch
Q̂. Minimizing it leads to selecting a representative sample.

We consider two settings. In the agnostic setting binary labels are used, i.e.,Y = {−1,+1},
and generally we have f /∈ H . In the realizable setting f ∈ H , so a model of our hypothesis
set can perfectly reproduce the labels as there is no model misspecification. In this case Y
is a subset of R. In the realizeable setting η can become zero under some conditions, which
allows us to compare the tightness of the bounds and enables our probabilistic analysis.

K (x, x ′) indicates the kernel function between x and x ′. We mainly use the Gaussian
kernel K (x, x ′) = exp(−||x − x ′||22/(2σ 2)) where σ , the bandwidth, is a hyperparameter
of the kernel. For the MMD we require a second PSD kernel, KL. We indicate its RKHS
and bandwidth (for a Gaussian kernel) by HL and σL, respectively. All vectors are column
vectors. X P̂ and XQ̂ are the n P̂ × d and nQ̂ × d matrices of the sets P̂ and Q̂.

4 Analysis of existing bounds

Firstwe provide an improvedMMDgeneralization bound for active learningwhich is inspired
by Cortes et al. (2019). Then we review a bound in terms of the Discrepancy of Cortes et al.
(2019) and we review how to compute the Discrepancy quantity (Mansour et al. 2009). We
show that the MMD can be computed using a novel eigenvalue analysis, and thereby making
the MMD and Discrepancy bounds comparable. We wrap up the section with a probabilistic
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interpretation of both bounds.As a roadmap for the readerwegive an overviewof the tightness
relations in Table 1 which will be proven in this section and the next section.

4.1 ImprovedMMD bound for active learning

The MMD measures the similarity between the two unlabeled samples Q̂ and P̂ . Using this
criterion we give a generalization bound similar to the one given by Wang and Ye (2013)
suitable for active learning. The empirical MMD quantity is given by

MMD(P̂, Q̂) = max
l̃∈HL

⎛

⎝ 1

n P̂

∑

x∈P̂

l̃(x) − 1

nQ̂

∑

x∈Q̂
l̃(x)

⎞

⎠ .

here l̃ is the worst-case function from a set of functions HL. We take the standard choice
HL = {h ∈ HL : ||h||KL ≤ ΛL}. In Appendix A.1 we revisit how to compute the MMD
quantity. We extend the technique of Cortes et al. (2019) to give a generalization bound
in terms of the MMD. To get a bound for the MMD we approximate the loss function
g(h, f )(x) = l(h(x), f (x)) using HL.

Proposition 1 (Agnostic MMDworst case bound) Let l be any loss function l : R×R → R.
Then for all h ∈ H and any labeling function f : X → Y we have

L P̂ (h, f ) ≤ L Q̂(h, f ) + MMD(P̂, Q̂) + ηMMD, (3)

where ηMMD = 2minl̃∈HL maxh∈H ,x∈P̂ |g(h, f )(x) − l̃(x)|.
Here ηMMD measures the approximation error since we may have that g(h, f ) /∈ HL.
Our MMD bound above differs in two aspects from the bound of Wang and Ye (2013).

Wang and Ye (2013) estimate the MMD between the distributions P and Q. However, to
estimate the MMD between distributions i.i.d. samples are required (Gretton et al. 2012,
Appendix A.2). The sample Q̂ is not i.i.d. since it is chosen by an active learner.

Our bound allows for non-i.i.d. samples since it estimates the MMD between empirical
samples and is therefore better suited for active learning. The second novelty is that we
measure the error of approximating the loss function g(h, f ) using the term ηMMD. This
allows us to adjust the MMD to the hypothesis set H and loss l similar to the Discrepancy
measure of Cortes and Mohri (2014). We give the theorem below with a small proof sketch
for the simplified case of the linear kernel. See the Appendix for the full proof.

Theorem 2 (Adjusted MMD) Let l be the squared loss and assume f ∈ H (realizable
setting). If KL(xi , x j ) = K (xi , x j )2 and ΛL = 4Λ2, then g(h, f ) ∈ HL and thus ηMMD =
0.

Proof sketch Here we give a proof sketch for the case where K is the linear kernel:
K (xi , x j ) = xTi x j . Then h(x) = wT

h x and f (x) = wT
f x , and g(h, f ) = ((w f − wh)

T x)2

is a quadratic function of x . The featuremap of the kernel KL(xi , x j ) = K (xi , x j )2 are
all monomials of degree 2 (Shawe-Taylor and Cristianini 2004, chap. 9.1). Therefore HL
can be used to model any quadratic function such as g(h, f ). Therefore if ΛL is chosen
appropriately we have g(h, f ) ∈ HL.

Corollary 1 Let l be the squared loss and f ∈ H and let K be a Gaussian kernel with
bandwidth σ . If KL is a Gaussian kernel with bandwidth σL = σ√

2
and ΛL = 4Λ2 then

ηMMD = 0.
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Compared to other works Theorem 2 gives a more informed way to choose the MMD
kernel in the context of learning.1 Typically, a Gaussian kernel is used for the MMD with
σL = σ . However, Corollary 1 shows that if σL = σ , we may have that ηMMD �= 0 even
in the realizable setting, since σL is too large—the true loss function g(h, f ) is less smooth
than the functions in HL. This is undesirable since ηMMD cannot be minimized during active
learning. Our choice for σL is preferable, as it ensures ηMMD = 0 in the realizable setting.

4.2 Discrepancy bound

The Discrepancy is defined as

disc(P̂, Q̂) = max
h,h′∈H

|L P̂ (h′, h) − L Q̂(h′, h)|. (4)

Observe it depends on H and l and therefore automatically adjusts to the loss and hypothesis
set. We give a bound of Cortes et al. (2019) in terms of the Discrepancy.

Theorem 3 (Agnostic Discrepancy worst case bound (Cortes et al. 2019)) Assume that for
all x ∈ X and for all h ∈ H that l(h(x), f (x)) ≤ C and let l be the squared loss. Then for
all h ∈ H and any labeling function f : X → Y we have

L P̂ (h, f ) ≤ L Q̂(h, f ) + disc(P̂, Q̂) + ηdisc,

where ηdisc = 4C min f̃ ∈H maxx∈P̂ | f̃ (x) − f (x)|.
Here ηdisc measures the model misspecification. In the realizable setting, f ∈ H , and

ηdisc = 0.

4.3 Eigenvalue analysis

We show the relation between the Discrepancy and MMD using a novel eigenvalue analysis.
To this end we introduce the matrix MP̂,Q̂ to compute the Discrepancy.

MP̂,Q̂ = 1

n P̂

XT
P̂
X P̂ − 1

nQ̂
XT
Q̂
X Q̂,

For notational convenience we will often write M instead of MP̂,Q̂ . The matrix M measures
the difference between two sets of samples using their second-order moment. Considering its
kernelized version such comparison can implicitly take higher-order moments into account
as well. In particular, for a Gaussian kernel all moments of the samples are compared and we
have that M = 0 only if P̂ = Q̂.

In the following we will look at the eigendecomposition of M . Since M is the difference
between two covariance matrices, it can have positive and negative eigenvalues. A positive
(negative) eigenvalue means that in the direction of the corresponding eigenvector P̂ has
more (less) variance than Q̂. Recall that in active learning, our aim is to approximate P̂ using
representative samples Q̂, and thus small absolute eigenvalues are desirable, because this
would indicate that in the direction of the corresponding eigenvector P̂ is well approximated
by Q̂.

1 The MMD is also used in other contexts, for example, the MMD can be used to determine if two sets of
samples originate from the same distribution (Gretton et al. 2012).
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Theorem 4 (Discrepancy computation (Mansour et al. 2009)) Assume K is the linear kernel,
K (xi , x j ) = xTi x j , and l is the squared loss, then

disc(P̂, Q̂) = 4Λ2 max
i

|λi | = 4Λ2||λ||∞. (5)

where λi are the eigenvalues of M, and λ is the vector of eigenvalues of M.

Note that h′ will later play the role of f , the true labeling function. The theorem shows that
in the worst case, the h and h′ that maximize the Discrepancy in Eq. 4 are chosen exactly in
the direction where Q̂ and P̂ differ most, i.e., the direction of the largest absolute eigenvalue.
Cortes and Mohri (2014) show that we can replace M by MK to compute the Discrepancy
for any PSD kernel.2

Before we can give our main result we require some additional notation. Assume that
the eigenvalues λi of M are ordered by absolute value where |λ1| is the largest absolute
eigenvalue. λ indicates the vector of eigenvalues, with r = rank(M) non-zero eigenvalues.
ei is the normalized (unit-length) eigenvector corresponding to λi . By careful analysis we
can realize the relationship between M and the featuremap of the squared kernel to show that
the MMD can be computed as follows.

Theorem 5 (MMD Computation) Let KL(xi , x j ) = K (xi , x j )2 and ΛL = 4Λ2, then

MMD(P̂, Q̂) = 4Λ2||λ||2. (6)

This theorem shows that the MMD measures differences between the samples Q̂ and P̂
differently. The Discrepancy only measures similarity along one dimension, namely the
direction where the samples differ the most. The MMD considers all dimensions to compare
the samples Q̂ and P̂ . Due to the square in the Euclidean norm, the MMD gives directions
that differ more more weight in the comparison.

Corollary 2 Under the conditions of Theorem 2, disc(P̂, Q̂) ≤ MMD(P̂, Q̂).

Under these conditions the Discrepancy bound (Theorem 3) is tighter than the MMD
bound (Proposition 1), since ηMMD = ηdisc = 0. Since the Discrepancy bound is tighter,
one may expect that active learning by minimization of the Discrepancy may result in better
active learning queries than minimization of the MMD, in particular if ηMMD and ηdisc are
small or zero.

4.4 Probabilistic analysis

Weshow theMMDcanprovide a tighter boundon the expected loss under certain probabilistic
assumptions. From this point on we assume the conditions of Theorem 2 and take h to be
the model trained on the set Q̂, and f to be the true labeling function. In addition, define
u = h − f and U = {u ∈ H : ||u||K ≤ 2Λ} and let ūi = uT ei , where ei is the eigenvector
of M .

Then ||u||K = ||ū||K ≤ 2Λ, since ū is a rotated version of u. It is more convenient to
work with ū, since then the matrix M diagonalizes: uT Mu = ∑

i ūiλi .
The difference u is the unknown error our trained model h makes compared with the true

model f . By making different probabilistic assumptions about the distribution of u we can

2 See the Appendix (Eq. 17) for the definition of MK , additional details and the proof of this theorem. All
our theoretical results that follow hold for both M and MK . For simplicity we use M in the main text.
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arrive at different bounds. We now provide the building block for our probabilistic bounds.
By noting that L P̂ (h, f )− L Q̂(h, f ) = uT Mu and by making use of the triangle inequality,
we find the following.

Lemma 1 (Probabilistic bound) Assume3 u is distributed according to a pdf p(u) over U.
Then

Eu L P̂ (h, f ) ≤ Eu L Q̂(h, f ) + EuG(u, M), (7)

where we defined G(u, M) = ∑
i ū

2
i |λi |.

Observe that G(u, M) is a weighted sum, where each |λi | is weighted by ū2i . Recall
that L Q̂(h, f ) is generally small due to the training procedure of the model, thus generally
Eu L Q̂(h, f ) will be small as well. Therefore we focus our probabilistic analysis on the term
Eu G(u, M). By giving bounds on this quantity, we derive several probabilistic bounds that
hold in expectation w.r.t. u.

The Discrepancy can be interpreted to put all probability mass on u = 2Λe1.

Proposition 2 (Worst case: Probabilistic Discrepancy) Given the pdf p(u) = δ(u − 2Λe1)
where δ(x) is the Dirac delta distribution. Then

Eu L P̂ (h, f ) ≤ Eu L Q̂(h, f ) + disc(P̂, Q̂) (8)

Only one u ∈ U can be observed under this pdf. This is a worst case distribution because this
p(u)maximizesEu G(u, M). The Discrepancy assumes that the model error u points exactly
in the direction that causes us to make the biggest error on P̂ . Under this distribution the
Discrepancy gives a tighter bound on the expected loss than theMMDbecause of Corollary 2.
Under a different p(u) the MMD bound is tighter.

Theorem 6 (Pessimistic case: Probabilistic MMD) Let p(u) be a pdf on Us such that 4

Euū
2
i = 4Λ2|λi |

(√
r ||λ||2

)−1
, (9)

then

Eu L P̂ (h, f ) ≤ Eu L Q̂(h, f ) + 1√
r
MMD(P̂, Q̂) ≤ Eu L Q̂(h, f ) + disc(P̂, Q̂).

Unlike for the distribution of the Discrepancy, for the above p(u) it is possible to observe
different model errors u. However, the model error u in this case is biased: Equation 9
suggests that u is more likely to point in the direction of eigenvectors with large absolute
eigenvalues. This assumption is pessimistic since large absolute eigenvalues can contribute
more to Eu G(u, M). Another way to interpret this is that model errors are more likely to
occur in directions where Q̂ and P̂ differ more. Because Q̂ and P̂ differ more in those
directions, these model errors can count more towards the MSE on P̂ .

For this p(u) the MMD bound is tighter. If the probabilistic assumption of the MMD is
more accurate, we can expect that the MMD active learner will yield better active learning
queries than the Discrepancy.

3 This could be motivated for example, by placing a prior on f , then u would be a random variable. Another
motivation is that we do not know u, and need to model it somehow to come to applicable generalization
bounds. The Discrepancy assumes a worst-case scenario (it maximizes with respect to u), while we now
consider assuming a distribution on u.
4 To deal with infinite-dimensional RKHS we choose p(u) on Us instead of U , where Us is the part of U
restricted to the span of X P̂ . Here r is the effective dimension: r = dim(Us ). This is necessary, otherwise
sampling uniformly from an infinite-dimensional sphere can lead to problems. See Appendix C for more
details.
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5 Nuclear discrepancy

In this section we motivate the optimistic probabilistic assumption that leads to the Nuclear
Discrepancy (ND) bound. First, let us introduce the Nuclear Discrepancy quantity

discN (P̂, Q̂) = 4Λ2||λ||1.
In the absence of any prior knowledge, we choose the pdf p(u) according to the well estab-
lished principle of maximum entropy. This principle dictates that in case nothing is known
about a distribution, the distribution with the largest entropy should be chosen (Jaynes 1957).
Accordingly, we choose p(u) uniform over U , which leads to the following.

Theorem 7 (Optimistic case: Probabilistic ND) Let p(u) be uniform over all u ∈ Us, then4

Eu L P̂ (h, f ) ≤ Eu L Q̂(h, f ) + 1

r + 2
discN (P̂, Q̂).

In addition we have that discN (P̂, Q̂) ≤ √
r MMD(P̂, Q̂) ≤ r disc(P̂, Q̂).

Under the uniform distribution, u is unbiased: each direction for the model error is equally
likely. This is more optimistic than the assumption of the MMD, where u was biased towards
directions that could larger errors on P̂ . Because now u is not biased, Eu G(u, M) is smaller
under this p(u) than in Theorems 2 and 6 and so this p(u) is more optimistic. The Nuclear
Discrepancy (ND) owns its name to the fact that it is proportional to the nuclear matrix norm
of M .

An appealing property of this choice of p(u) is that, given a fixed P̂ , any choice of Q̂ does
not influence p(u). For theDiscrepancy and theMMD, choosing different Q̂ leads to different
p(u). Thus choosing queries changes the distribution of p(u) and thus also implicitly the
distribution of h and f . Instead, for the ND, our queries don’t influence the distribution of
h and f . This assumption seems reasonable, since f is usually assumed to be fixed and
independent of our actions.

Under the uniform distribution the ND provides the tightest bound on the expected loss,
while the MMD bound is looser, and the Discrepancy bound is the loosest. Therefore, if this
probabilistic assumption is the most accurate, minimization of the Nuclear Discrepancy may
lead to the best queries for active learning, followed by the MMD and Discrepancy, in that
order.5

6 Experiments

We explain the setup and baselines, afterward we review our main results: the realizable
setting. We discuss the results and examine the probabilistic assumptions empirically. Some-
what similar results are observed in the agnostic setting which we will briefly discuss. An
additional experiment investigates the influence of subsampling of datasets on our results.
This subsampling experiment and all results of the agnostic case are discussed in detail in
the Appendix.

5 As an aside, note that MMD(P̂, Q̂) ≤ discN (P̂, Q̂), since ||λ||2 ≤ ||λ||1. Therefore, by upperbounding
the MMD in (3) we can also give a (looser) worst-case bound in terms of the ND for the agnostic case.
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6.1 Experimental setup and baselines

An overview of the experimental procedure is given in Algorithm 1. A training set (65%)
and test set (35%) are used—the training set corresponds to P̂ and we indicate the testset by
T̂ . We use the active learners to select batches of size n = 1, 2, . . . , 50. For computational
reasons we select batches in a sequential greedy fashion. Initially at t = 0 the batch is empty:
Q̂0 = ∅. In iteration 1 ≤ t ≤ n the active learner selects a sample xt from the unlabeled
pool Ût−1 = P̂ \ Q̂t−1 according to xt = argmins∈Ût−1

obj(P̂, Q̂t−1 ∪ s). We perform
experiments multiple times to ensure significance of the results. We call each repetition a
run, and for each run a new training and test split is used. During one run, we evaluate each
active learner using the described procedure of Algorithm 1.

Algorithm 1: Zero shot active learning

input : Unlabeled trainingset P̂ , Testset T̂ , labeling budget n, active learning criterium
obj ∈ {MMD, disc, discN }, hyperparameters of model μ, σ

output: MSE performance on testset T
1 Q̂0 ← ∅; // Init batch

2 Û0 ← P̂; // Init unlabeled pool
3 for t ← 1 to n do
4 xt ← argmins∈Ût−1

obj(P̂, Q̂t−1 ∪ s); // Find optimal query

5 Q̂t ← Q̂t−1 ∪ xt ; // Update batch

6 Ût ← P̂ \ Q̂t ; // Update unlabeled pool
7 end
8 Request all labels for objects Q̂n to obtain labeled dataset Q̂lab

n ;

9 Train kernel regularized least squares model h on Q̂lab
n with hyperparameters μ, σ ;

10 Compute mean squared error (MSE) of h on unseen testset T ;

As baseline we use random sampling and a greedy version of the state-of-the-art MMD
active learner (Chattopadhyay et al. 2012; Wang and Ye 2013). We compare the baselines
with our novel active learners: the Discrepancy active learner and the Nuclear Discrepancy
active learner.

The methods are evaluated on 13 datasets that originate either from the UCI Machine
Learning repository (Lichman 2013) or were provided by Cawley and Talbot (2004). See
AppendixE for the dataset names and characteristics. Furthermore,we performan experiment
on the image dataset MNIST. The MNIST dataset (LeCun et al. 1998) consists of images of
handwritten digits of size 28×28 pixels. By treating each pixel as a feature, the dimensionality
of this dataset is 784 which is relatively high dimensional. Like Yang and Loog (2018) we
construct 3 difficult binary classification problems: 3vs5, 7vs9 and 5vs8.

To make datasets conform to the realizable setting we use the approach of Cortes and
Mohri (2014): we fit a model of our hypothesis set to the whole dataset and use its outputs
as labels.

To set reasonable hyperparameters we use a similar procedure as Gu et al. (2012). We use
labeled data before any experiments are performed to perform model selection to determine
hyperparameters (σ and μ of the KRLS model). This can be motivated by the fact that in
practice a related task or dataset may be available in order to obtain a rough estimate of the
hyperparameter settings. This procedure makes sure ηMMD and ηdisc are small in the agnostic
setting.
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Fig. 1 Learning curves for several datasets for the realizeable setting. Results are averaged over 100 runs. The
MSE is measured with respect to random sampling (lower is better)

Recall that the active learners minimize bounds on L P̂ (h, f ). Therefore active learners
then implicitly also minimizes a bound on LP (h, f ), see Theorem 1. By choosing hyper-
parameters in the described way above, we ensure that the Rademacher complexity term
Rm(H) is not too large and we don’t overfit. We measure performance on an independent
test set in order to get an unbiased estimate of LP (h, f ).

To aid reproducibility we give all hyperparameters and additional details in Appendix E.
We set σL according to our analysis in Corollary 1.

6.2 Realizable setting

First we benchmark the active learners in the realizable setting. In this setting we are assured
that η = 0 in all bounds and therefore we eliminate unexpected effects that can arise due to
model misspecification. We study this scenario to validate our theoretical results and gain
more insight, furthermore, note that this scenario is also studied in adaptation (Cortes and
Mohri 2014).

Several learning curves are shown in Fig. 1, all curves can be found in Appendix H.1.
The MSE of the active learner minus the mean performance (per query) of random sampling
is displayed on the y-axis (lower is better). The curve is averaged over 100 runs. Error bars
represent the 95% confidence interval of the mean computed using the standard error.

We summarize results on all datasets using the Area Under the (mean squared error)
Learning Curve (AULC) in Table 2. The AULC is a different metric than the well known
AUROC or AUPRCmeasures. The AUROCmeasure summarize the performance of a model
for different misclassification costs (type I and type II costs) and the AUPRC is useful when
one class is more important than the other, such as in object detection.

By contrast, AULC is specifically suited to active learning, and summarizes the perfor-
mance of an active learning algorithm for different number of labeling budgets (O’Neill et al.
2017; Huijser and van Gemert 2017; Settles and Craven 2008). LowAULC is obtained when
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Table 2 Area Under themean squared error Learning Curve (AULC) for the strategies in the realizable setting,
averaged over 100 runs

Dataset Random Discrepancy MMD Nuclear Discrepancy

vehicles 11.1 (2.2) 8.0 (1.0) 7.9 (0.9) 7.9 (0.9)

heart 3.5 (0.8) 2.3 (0.3) 2.2 (0.3) 2.1 (0.3)

sonar 13.9 (1.7) 12.5 (1.2) 11.9 (1.1) 11.3 (1.2)

thyroid 6.8 (1.5) 5.2 (0.9) 5.1 (0.9) 5.0 (1.0)

ringnorm 13.2 (1.2) 12.7 (0.8) 10.0 (0.3) 9.4 (0.3)

ionosphere 7.0 (1.3) 5.6 (0.8) 5.0 (0.8) 4.6 (0.6)

diabetes 1.7 (0.4) 1.2 (0.1) 1.2 (0.1) 1.2 (0.1)

twonorm 6.4 (1.2) 4.1 (0.4) 3.7 (0.4) 3.3 (0.3)

banana 7.5 (0.9) 5.0 (0.4) 4.8 (0.3) 4.8 (0.3)

german 1.4 (0.3) 1.2 (0.1) 1.1 (0.1) 1.0 (0.1)

splice 10.8 (1.3) 9.9 (0.8) 9.9 (0.9) 9.0 (0.9)

breast 3.4 (0.9) 2.1 (0.2) 2.1 (0.2) 2.0 (0.2)

mnist 3vs5 29.5 (4.3) 26.9 (2.3) 25.0 (2.1) 23.8 (1.7)

mnist 7vs9 13.2 (2.5) 10.9 (1.4) 10.0 (1.0) 8.9 (0.7)

mnist 5vs8 30.1 (3.4) 26.9 (2.7) 26.1 (2.3) 24.5 (2.1)

Bold indicates the best result, or results that are not significantly worse than the best result, according to a
paired t-test (p = 0.05). Parenthesis indicate standard deviation

an active learner quickly learns a model with low MSE. If a method in the table is bold, it
either means it is the best method (as judged by the mean), or if it is not significantly worse
than the best method (as judged by the t-test).

Significance improvement is judged by a paired two tailed t-test (significance level p =
0.05). We may use a paired test since during one run all active learners are evaluated using
the same training and test split.

In the majority of the cases the MMD improves upon the Discrepancy (see Table 2). The
results on the ringnorm dataset are remarkable, here the Discrepancy sometimes performs
worse than random sampling, see Fig. 1.We observe that generally the Discrepancy performs
the worst. These results illustrates that tighter worst case bounds do not guarantee improved
performance. The proposed ND active learner significantly improves upon the MMD in 9
out of the 13 datasets tested. Here we counted MNIST once, while we remark that on all
subproblems the ND improves significantly on the MMD. This provides evidence that the
proposed method can also deal with high-dimensional datasets. In case the ND does not
perform the best, it ties with the MMD or Discrepancy. The ND never performs significantly
worse. This ranking of the methods exactly corresponds to the order of the bounds given by
Theorem 7 under our optimistic probabilistic assumptions. This supports our hypothesis that
we find ourselves more often in a more optimistic average-case scenario.

6.3 Decomposition of probabilistic bounds

Since we are in the realizable setting we can compute u = h − f with the true labeling
function f and our trained model h. Thus we can compute each term in the sum of G(u, M)
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Fig. 2 Decomposition of the sum G(u, M) during active learning for several datasets. EV1 indicates the
contribution of λ1, EV2-9 indicate the summed contributions of λ2, . . . , λ9, etc. Averaged over 100 runs of
the random active learner. λ1 in most cases contributes little and in general all λi contribute to G(u, M). This
supports the optimistic probabilistic assumptions

in (7) during the experiments.6 We show the contribution of each eigenvalue to G(u, M). In
Fig. 2 we show this decomposition using a stacked bar chart during several active learning
experiments of the baseline active learner ‘Random’.7 Here EV1 indicates the largest absolute
eigenvalue, its contribution is given by ū21|λ1| (see also (7)). EV 2 - 9 to indicate the summed
contribution:

∑9
i=2 ū

2
i |λi |, etc. The mean contributions over 100 runs are shown.

Observe that the contribution of |λ1| to G(u, M) is often small, it is shown by the small
white bar at the bottom of the barchart. Therefore the Discrepancy active learner chooses
suboptimal samples: its strategy is optimal for a worst-case scenario G(u, M) = 4Λ2|λ1|
that is very rare. We observe that typically all λi contribute to G(u, M) supporting our
probabilistic assumption.

6.4 Agnostic setting

For completeness, we briefly mention the agnostic setting, for all details see Appendix F. In
the agnostic setting the rankings of methods can change and performance differences become
less significant. The ND still improves more upon the MMD than the reverse, however, the
trend is less significant. Because our assumption η = 0 is violated our theoretical analysis is
less applicable.

For theMNIST experiments we however find that the results for some subproblems almost
coincides with the realizeable setting: apparently, for the MNIST dataset the model misspefi-
cation is very small. This may be because the dataset is of relatively high dimensionalion.

6.5 Influence of subsampling

We briefly mention an additional experiment that we have performed on the splice dataset
to see how subsampling affects performance. To this end we measure the performance while
we vary the pool size P̂ by changing the amount of subsampling. This to investigate how the
proposed methods would perform for problems with a larger scale. For all details please see
Appendix G, here we will summarize our findings.

For small pool sizes all active learners experience a drop in performance.We find the larger
the pool, the better the performance, up until some point at which the performance levels

6 See Appendix D for details how to compute G(u, M) in case kernels are used.
7 Results for other strategies are similar. Results on all datasets are given in Appendix H.2.
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off. The experiment provides evidence that if finer subsampling is used or larger datasets are
used, methods typically improve in performance up to a point where performance levels off.

7 Discussion

In the experiments we have observed that in the realizable setting the order of the bounds
under ourmore optimistic probabilistic assumptions give the best indication of active learning
performance. The empirical decomposition ofG(u, M) during experiments also supports our
hypothesis that we generally find ourselves in a more optimistic scenario instead of a worst
case scenario.

Still it is meaningful to look at worst-case guarantees, though the worst-case should
be expected to occur. The worst-case assumed by the Discrepancy can never occur in the
realizable setting, andwe believe it is also highly unlikely in the agnostic setting. The strength
of our probabilistic approach is that it considers all scenarios equally and does not focus too
much on specific scenarios, making the strategy more robust.

Our work illustrates that the order of bounds can change under varying conditions and
thus tightness of bounds is not the whole story. The conditions under which the bounds hold
are equally important, and should reflect the mathematical setting as much as possible. For
example, in a different settingwhere an adversarywould picku, theDiscrepancy active learner
would be most appropriate. This insight illustrates that not only by obtaining tighter bounds
active learning performance can be improved, but by finding more appropriate assumptions
(bound-based) active learners can be improved as well.

Our work supports the idea of Germain et al. (2013) who introduce a probabilistic version
of the Discrepancy bound for the zero-one loss (Ben-David et al. 2010). Our conclusions
also support that the direct Cortes et al. (2019) takes: by using more accurate assumptions to
better characterize the the worst case scenario, performance may be improved.

In our studywe have focused onminimizing themean squared error. It would be interesting
to investigate the extension of the Nuclear Discrepancy to other loss functions, in particular
the zero-one loss. As far as we can see, however, such an extension is not trivial. The above
mentioned probabilistic version of the Discrepancy by Germain et al. (2013) may provide
some inspiration to achieve this, but they offer a PAC Bayes approach that cannot be easily
adapted to the probabilistic setting we consider.

Where the experiments in the realizable setting provide clear insights, the results concern-
ing the agnostic setting are not fully understood. A more in depth experimental study of the
agnostic setting is complicated by unexpected effects of η. Since probabilistic bounds are the
most informative in the realizable setting, it is of interest to consider probabilistic bounds for
the agnostic setting as well.

In our experiments we have used greedy optimization to compute the batch Q̂n . It is
theoretically possible to optimize a whole batch of queries in one global optimization step.
However, for the MMD this problem is known to be NP-hard (Chattopadhyay et al. 2012).
Minimizing the Discrepancy is also non-trivial, as illustrated by the involved optimization
procedure required by Cortes and Mohri (2014) for domain adaptation. Note that their opti-
mization problem is easier than the optimization problem posed by active learning, where
binary constraints are necessary. Since the objective value of the Nuclear Discrepancy is
given by an expectation which can be approximated using sampling, we believe it may be
possible to speed up the optimization by using approximations.

In this work we have only considered single-shot batch active learning. In regular batch-
mode active learning label information of previously selected samples can be used to improve
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query selection. This can be accommodated in our active learner by refining p(u) using label
information. Our results have implications for adaptation as well. We suspect our suggested
choice of σL may improve the MMD domain adaptation method (Huang et al. 2007). Fur-
thermore, our results suggest that the ND is a promising objective for adaptation.

8 Conclusion

To investigate the relation between generalization bounds and active learning performance,
we gave several theoretical results concerning the bound of the MMD active learner and
the Discrepancy bound. In particular, we showed that the Discrepancy provides the tightest
worst-case bound. We introduced a novel quantity; Nuclear Discrepancy, motivated from
optimistic probabilistic assumptions derived from the principle of maximum entropy. Under
these probabilistic assumptions the ND provides the tightest bound on the expected loss,
followed by the MMD, and the Discrepancy provides the loosest bound.

Experimentally, we observed that in the realizable setting the Discrepancy performs the
worst, illustrating that tighter worst-case bounds do not guarantee improved active learning
performance. Our optimistic probabilistic analysis clearly matches the observed behavior in
the realizable setting: the proposedNDactive learner improves upon theMMD, and theMMD
improves upon the Discrepancy active learner. We find that even on the high-dimensional
image dataset MNIST our method is competitive. A similar, weaker, trend is observed in the
agnostic case. One of our key conclusions is that not only bound tightness is important for
active learning performance, but that appropriate assumptions are equally important.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

Appendix

A Background theory

A.1 MMD

The MMD quantity can be computed in practice by rewriting it as follows:

MMD(P̂, Q̂) = max
l̃∈HL

1

n P̂

∑

x∈P̂

〈l̃, ψKL(x)〉KL − 1

nQ̂

∑

x∈Q̂
〈l̃, ψKL(x)〉KL

= max
l̃∈HL

〈l̃, μP̂ − μQ̂〉KL (10)

=ΛL||μP̂ − μQ̂ ||KL . (11)

In the first step we used that l̃(x) = 〈l̃, ψKL(x)〉KL due to the reproducing property (Mohri
et al. 2012, p. 96). HereψKL is the featuremap fromX → HL. The second step follows from
the linearity of the inner product. In (10) we defined μP̂ = 1

n P̂

∑
x∈P̂ ψKL(x) and similarly

for μQ̂ , note that μQ̂, μP̂ ∈ HL. The last step follows from the fact that the vector in HL
maximizing the term in (10) is
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μP̂ − μQ̂

||μP̂ − μQ̂ ||KL
ΛL

Because of the symmetry of ||μP̂ − μQ̂ ||KL with respect to P̂ and Q̂, this derivation also

holds if we switch P̂ and Q̂. Therefore:

max
l̃∈HL

∣∣∣∣∣∣
1

n P̂

∑

x∈P̂

l̃(x) − 1

nQ̂

∑

x∈Q̂
l̃(x)

∣∣∣∣∣∣
= ΛL||μP̂ − μQ̂ ||KL

Therefore for all l̃ ∈ HL the following holds
∣∣∣∣∣∣
1

n P̂

∑

x∈P̂

l̃(x) − 1

nQ̂

∑

x∈Q̂
l̃(x)

∣∣∣∣∣∣
≤ MMD(P̂, Q̂) (12)

We can compute theMMDquantity in practice byworking out the normwith kernel products:

MMD(P̂, Q̂) =ΛL
√

〈μQ̂, μQ̂〉KL − 2〈μP̂ , μQ̂〉KL + 〈μP̂ , μP̂ 〉KL

=ΛL
√
MMDcomp(Q̂, Q̂) − 2MMDcomp(P̂, Q̂) + MMDcomp(P̂, P̂)

where we introduced MMDcomp(R̂, Ŝ) = 1
nR̂nŜ

∑
x∈R̂,x ′∈Ŝ KL(x, x ′).

A.2 Discrepancy

In this section we calculate the discrepancy analytically for the squared loss in the linear
kernel as in Mansour et al. (2009). We then extend the computation to any arbitrary kernel
as in Cortes and Mohri (2014). Finally, we prove the agnostic generalization bound in terms
of the Discrepancy (Theorem 3). The theorems and proofs here were first given by Mansour
et al. (2009), Cortes and Mohri (2014), and Cortes et al. (2019) but we repeat them here for
completeness.

Lemma 2 (Mansour et al. 2009) For h, h′ ∈ H we have

∣∣∣L P̂ (h, h′) − L Q̂(h, h′)
∣∣∣ =

∣∣∣∣∣

r∑

i=1

ū2i λi

∣∣∣∣∣ . (13)

Proof We can show

L P̂ (h, h′) = 1

n P̂

(X P̂h − X P̂h
′)T (X P̂h − X P̂h

′) = 1

n P̂

uT XT
P̂
X P̂u

using some algebra, where u = h − h′. Rewrite L Q̂(h, h′) similarly and subtract them to
find

L P̂ (h, h′) − L Q̂(h, h′) = uT Mu. (14)

Since M is a real symmetric matrix, M is a normal matrix and admits an orthonormal
eigendecomposition with real eigenvalues

M =
d∑

i

eiλi e
T
i .
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Here λi is the i th eigenvalue and ei is the corresponding orthonormal eigenvector. Since M
is normal its eigenvectors form an orthonormal basis for Rd . Therefore we can express u in
terms of e:

u =
d∑

i

ūi ei

Where ūi is the projection of u on ei , ūi = eTi u. Note ū is a rotated version of u and therefore
both have the same norm, ||u||2 = ||ū||2. Now we can rewrite (14) as

uT Mu =
d∑

i

uT eiλi e
T
i u =

r∑

i=1

ū2i λi . (15)

Note that M has r = rank(M) non-zero eigenvalues. Combining (14) and (15) and taking
the absolute value on both sides shows the result. ��

Now we are ready to compute the Discrepancy for the linear kernel.

Theorem 8 (Discrepancy computation (Mansour et al. 2009)) Assume K is the linear kernel,
K (xi , x j ) = xTi x j , and l is the squared loss, then

disc(P̂, Q̂) = 4Λ2 max
i

|λi |.
where λi are the eigenvalues of MP̂,Q̂ = M.

Proof First we use Lemma 2.

disc(P̂, Q̂) = max||ū||≤2Λ

∣∣∣∣∣

r∑

i

ū2i λi

∣∣∣∣∣ = max

(
max||ū||≤2Λ

r∑

i

ū2i λi , max||ū||≤2Λ

r∑

i

−ū2i λi

)

Now we solve the left term in the maximization. Observe that this is a weighted sum where
each ūi weighs each eigenvalue λi . To maximize this quantity we put as much weight as
possible on the largest postive eigenvalue: u = eimax2Λ, where imax = argmaxi λi . We find

max||ū||≤2Λ

d∑

i

ū2i λi = 4Λ2 max
i

λi .

To solve the secondmaximization, introduce λ̄i = −λi . Thenwemaximize the same quantity
as before but now λ replaced by λ̄. It follows that the maximum is attained for u = eimin2Λ,
where imin = argmini λi . We find

disc(P̂, Q̂) = 4Λ2 max
(
λi , λ̄i

)
,

eliminating the maximum proves the result. ��
Now we will describe how to compute the Discrepancy in case we work with an arbitrary

kernel K . In this case we have to work in the RKHSH of the kernel K . Define z(x) = ψK (x),
and let Z P̂ be the datamatrix where each row is given by z(x) : x ∈ P̂ . Define ZQ̂ in the
analogously. In this caseTheorem8 still holds, and theDiscrepancy is givenby the eigenvalues
of MZ :

MZ = 1

n P̂

ZT
P̂
Z P̂ − 1

nQ̂
ZT
Q̂
Z Q̂ (16)
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However, now we run into problems, since for an arbitrary kernel K the dimensions of H
can be very large or infinite, such as the case for the Gaussian kernel. Then we clearly cannot
compute the matrix MZ or its eigenvalues.

In the following we show that MZ and MK have the same eigenvalues. Then, to compute
the Discrepancy with any kernel K , we can simply use the eigenvalues of MK . First, let us
define MK .

MK = KP̂ P̂ D (17)

where KP̂ P̂ is the n P̂ × n P̂ matrix where entry i, j is given by K (xi , x j ), and where D is a
diagonal matrix where

Dii =
⎧
⎨

⎩

1
n P̂

− 1
nQ̂

if xi ∈ Q̂
1
n P̂

otherwise.

Lemma 3 (Cortes and Mohri 2014) The eigenvalues of MZ and MK are the same.

Proof Recalling that Q̂ ∈ P̂ , and using some algebra, it can be shown that MZ can be written
as

MZ = ZT
P̂
DZ P̂ .

Now we suggestively write MZ and MK as

MZ = (ZT
P̂
D)Z P̂

MK = Z P̂ (ZT
P̂
D) = KP̂ P̂ D

Here we used the fact that K (xi , x j ) = 〈ψK (xi ), ψK (x j )〉K (kernel trick) to rewrite MK .
Since the matrix product AB and BA have the same eigenvalues (Cortes and Mohri 2014),
MK and MZ have the same eigenvalues. ��
Theorem 9 Let K be any arbitrary PSD kernel. Then

disc(P̂, Q̂) = 4Λ2 max
i

|λi | = 4Λ2||λ||∞ (18)

where λ is the vector of eigenvalues of the matrix MK or MZ , where MK was defined in (17)
and MZ was defined in (16).

Proof First observe that Theorem 8 still holds, but we have to replace M by MZ in case we
use any arbitrary PSD kernel K . Then the result follows from Lemma 3. ��

Finally, we give the proof of the generalization bound in terms of the Discrepancy for
the agnostic setting. Note that this proof was already given by Cortes et al. (2019), here we
repeat their proof for completeness.

Proof of Theorem 3 Since l(h(x), f (x)) ≤ C , we have that the squared loss l isμ-admissible
(Cortes et al. 2019) with μ = 2C , meaning that

|l(h(x), f (x) − l(h′(x), f (x))| ≤ 2C |h(x) − h′(x)| (19)

holds for all h, h′ ∈ H and any f : X → Y . Let f̃ be any arbitrary element from H . By
adding and subtracting terms and applying the triangle inequality, we can show that

|L P̂ (h, f ) − L Q̂(h, f )| ≤ |L P̂ (h, f̃ ) − L Q̂(h, f̃ )| + |L P̂ (h, f ) − L P̂ (h, f̃ )|
+ |L Q̂(h, f̃ ) − L Q̂(h, f )|.
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The first term on the right hand side is by definition bounded by the Discrepancy. For the
second term we can show

|L P̂ (h, f ) − L P̂ (h, f̃ )| ≤ 2C
1

n P̂

∑

x∈P̂

| f (x) − f̃ (x)| ≤ 2C max
x∈P̂

| f (x) − f̃ (x)|.

The first inequality follows from applying (19) to each summand. We can bound the third
term in the same way, since Q̂ ∈ P̂ . Bounding the first term using the Discrepancy and the
last two terms with the bound above we find

|L P̂ (h, f ) − L Q̂(h, f )| ≤ disc(P̂, Q̂) + 2μmax
x∈P̂

| f (x) − f̃ (x)|

holds for all f̃ ∈ H . The result follows from minimizing the right hand side with respect to
f̃ , bounding L P̂ (h, f ) − L Q̂(h, f ) with its absolute value and reordering terms. ��

B Proofs

B.1 Proof of agnostic MMDworst case bound (Proposition 1)

Proof of Proposition 1 Let l̃ be any element from HL and define gP̂ = 1
n P̂

∑
x∈P̂ g(h, f )(x)

and define gQ̂ similarly. Define l̃ P̂ = 1
n P̂

∑
x∈P̂ l̃(x) and l̃ Q̂ analogously. Using the triangle

inequality we can show

|L P̂ (h, f ) − L Q̂(h, f )| ≤ |l̃ P̂ − l̃ Q̂ | + |gP̂ − l̃ P̂ | + |gQ̂ − l̃ Q̂ |.
The first term is bounded by the MMD, see (12). For the second term we have |gP̂ − l̃ P̂ | ≤
maxx∈P̂ |g(h, f )(x) − l̃(x)|. This bound also holds also for the third term since Q̂ ∈ P̂ .
Bounding the second and third term and maximizing over h ∈ H we find that

|L P̂ (h, f ) − L Q̂(h, f )| ≤ MMD(P̂, Q̂) + 2 max
h∈H ,x∈P̂

|g(h, f )(x) − l̃(x)|

holds for any l̃ ∈ HL and any h ∈ H . The result follows by choosing l̃ to minimize the right
hand side, bounding L P̂ (h, f )− L Q̂(h, f ) by the bound on its absolute value and reordering
terms. ��

B.2 Adjusting theMMD to the loss and hypothesis set (Theorem 2, Corollary 1)

In the main text we have given a sketch of the proof for the linear kernel. Here, we show a
rigorous proof for the linear kernel, and afterward we give the proof for any arbitrary kernel
K . The technique of the proof stays the same for any arbitrary kernel K , however, we have
to do more bookkeeping.

Theorem 10 (Adjusted MMD linear kernel) Let l be the squared loss and assume f ∈
H (realizable setting), furthermore assume K is the linear kernel, K (xi , x j ) = xTi x j . If
KL(xi , x j ) = K (xi , x j )2 and ΛL = 4Λ2, then g(h, f ) ∈ HL and thus ηMMD = 0.

Proof of Theorem 10 Let u = h − f . Fix h and f , then we will write g(x) as shorthand
for g(h, f )(x) = l(h(x), f (x)). Then g(x) = u(x)2. Since K is the linear kernel, we have
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Table 3 This table illustrates the
notation used when 2 kernels are
involved

Transformation ψK ψK ′

Space X → H → H′
Kernel K K ′

that h(x) = hT x , f (x) = f T x and u(x) = uT x . Furthermore, we have H = X , and thus
ψK (x) = x . Furthermore, ψKL : H → HL is given by (Shawe-Taylor and Cristianini 2004,
chap. 9.1)8:

ψKL(x) = (x21 , x
2
2 ,

√
2x1x2, x

2
3 ,

√
2x1x3,

√
2x2x3, x

2
4 ,

√
2x1x4,

√
2x2x4,

√
2x3x4, . . .)

(20)

Since the featuremap of KL exists, it is a PSD kernel, meaning that KL(x, x ′) =
〈ψKL(x), ψKL(x ′)〉KL . Then we can write

g(x) = (uT x)2 = K (u, x)2 = KL(u, x) = 〈ψKL(u), ψKL(x)〉KL

thus g ∈ HL with g = ψKL(u). Now what remains to show is that g ∈ HL, or with other
words, that ||g||KL ≤ 4Λ2. We can show that

||g||KL = 〈ψ(u), ψ(u)〉KL = KL(u, u) = (uT u)2 = ||u||2K ≤ 4Λ2

where the last step follows from that h, f ∈ H , and therefore ||u||K ≤ 2Λ. This shows that
g(h, f ) ∈ HL, therefore ηMMD = 0. ��

Before we prove the more general case for any kernel K , let us introduce some additional
notation. Also, before we show the proof for the kernel KL, we first do the proof for the
kernel K ′ which is slightly simpler, later we extend the result to KL. We define the squared
kernel K ′ as:

K ′( f , h) = 〈 f , h〉2K (21)

Where f ∈ H and g ∈ H, where H is the RKHS of K . We indicate H′ as the RKHS of K ′.
We assume K is a PSD kernel. By definition of K ′ the kernel K ′ is a PSD kernel since a
squared kernel of a PSD kernel is known to be PSD (Mohri et al. 2012, Theorem 5.3). Now
we have two kernels we have two featuremaps: ψK (x) : X → H and ψK ′ : H → H′. Note
that the second featuremap can still be computed with (20). See Table 3 for an overview of
the notation used.

Recall that because K is PSD kernel we have that:

K (x, x ′) = 〈ψK (x), ψK (x ′)〉K (22)

For x, x ′ ∈ X . Similarly for the kernel K ′ which is also PSD we have that:

K ′( f , g) = 〈ψK ′( f ), ψK ′(g)〉K ′ (23)

For f , g ∈ H. Again we define u as:

u = h − f

8 Note that actually in (Shawe-Taylor and Cristianini 2004) this kernel is defined as a polynomial kernel. In
our case for this polynomial kernel we have that R = 0 and d = 2, resulting in the featuremap given in (20).
This is often referred to as the squared kernel.
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Theorem 11 (AdjustedMMDfor K ′) Let l be the squared loss and assume f ∈ H (realizable
setting), and assume K is a PSD kernel. If K ′( f , h) = 〈 f , h〉2K and ΛL = 4Λ2, then
g(h, f ) ∈ H ′ = {h ∈ H′ : ||h||K ′ ≤ ΛL} where H′ is the RKHS of K ′.

Proof We have g(x) = u(x)2. Since h, f ∈ H, u ∈ H and thus

u(x) = 〈u, ψK (x)〉K
The first step is to show that the function g ∈ H′. By definition:

g(x) = u(x)2 = 〈u, ψK (x)〉2K
Now we can easily recognize our definition of K ′ in this equation (compare with (21)), thus
we note that:

g(x) = K ′(u, ψK (x)) = 〈ψK ′(u), ψK ′(ψK (x))〉K ′

Where the second equality is obtained by applying (23). We observe that g corresponds to
the vector ψK ′(u) ∈ H′, and thus we have that g ∈ H′.

The second step is to show that g ∈ H ′, with other words that ||g||K ′ ≤ 4Λ2. Since
g = ψK ′(u) ∈ H′ the norm of g in K ′ is given by

||g||2K ′ = 〈ψK ′(u), ψK ′(u)〉K ′ .

Now we can use (23) to rewrite this in terms of K ′. We obtain:

||g||2K ′ = K ′(u, u) (24)

Using the definition of K ′ we find:

K ′(u, u) = 〈u, u〉2K = ||u||4K (25)

Now since ||h||K ≤ Λ and || f ||K ≤ Λ since h, f ∈ H , we have

||u||K = ||h − f ||K ≤ 2Λ

Combining this with Eqs. 24 and 25 we find that:

||g||K ′ = ||u||2K ≤ 4Λ2

Thus we have shown that g ∈ H′. ��
However, do we now have g ∈ HL? As of now we defined the kernel K ′( f , h) so that it

operates on f , g ∈ H. This does not coincide with the kernel KL. Therefore, we will now
argue thatH′ = HL, and thus that in general the result generalizes to any kernel K , proving
Theorem 2.

Proof of Theorem 2 By definition of KL we have that:

KL(x, x ′) = K (x, x ′)2

Now using (22) we can show that:

KL(x, x ′) = K (x, x ′)2 = 〈ψK (x), ψK (x ′)〉2K
Observe that this coincides with the definition of K ′ (21), thus we can write this as:

KL(x, x ′) = 〈ψK (x), ψK (x ′)〉2K = K ′(ψK (x), ψK (x ′))

123



1586 Machine Learning (2019) 108:1561–1599

Now using (23) we can write this as:

KL(x, x ′) = K ′(ψK (x), ψK (x ′)) = 〈ψK ′(ψK (x)), ψK ′(ψK (x ′))〉K ′

in other words, we see that the kernel product of KL can be computed in the RKHS of
the kernel K ′. Thus, the RKHS of K ′ and KL coincide! Thus we have that H′ = HL.
Therefore, Theorem 11 implies that we can generalize all results in terms of K ′ to the kernel
KL. Therefore, g is also in the RKHS of KL, and in particular we have that g ∈ HL, and
therefore ηMMD = 0. ��
Remark 1 Another way to understand this is to see that the featuremap of KL is given by
ψKL(x) = ψK ′(ψK (x)) and thusmaps to the spaceH′, and from this it follows thatH′ = HL.

Proof of Corollary 1 Theorem 2 tells us to choose KL(x, x ′) = K (x, x ′)2 to obtain ηMMD =
0. We can show

K ′(x, x ′) = K (x, x ′)2 = exp

(
−2||x − x ′||2

2σ 2

)
= exp

(
−||x − x ′||2

2σ ′2

)
,

where we absorbed the factor of 2 in the exponent in σL, so σL = σ√
2
. ��

B.3 MMD Computation (Theorem 5 and Corollary 2)

First we prove the Theorem 5 in case K is the lineair kernel for d = 2, afterward we extend
the proof to any dimension, and finally we prove Theorem 5 for any PSD kernel.

Theorem 12 (MMD Computation linear kernel d = 2) Let KL(xi , x j ) = K (xi , x j )2 and
ΛL = 4Λ2. Furthermore, assume K is the linear kernel, K (xi , x j ) = xTi x j and d = 2, then

MMD(P̂, Q̂) = 4Λ2||λ||2. (26)

Proof If K is the linear kernel, H = X and KL defines a featuremap ψKL(x) : X → HL
which is given by ψKL(x) = (x21 , x

2
2 ,

√
2x1x2), see (Shawe-Taylor and Cristianini 2004,

chap. 9.1). From (11) we find

MMD(P̂, Q̂) = ΛL||μP̂ − μQ̂ ||KL

where μP̂ = 1
n P̂

∑
x∈P̂ ψKL(x) and μQ̂ is analogously defined. Now using the fact μP̂ −

μQ̂ = (M11, M22,
√
2M12)

T and some algebra we can show

MMD(P̂, Q̂) = 4Λ2||M ||F = 4Λ2||λ||2
where the second equality follows sinceM is a real symmetric matrix and thus its eigenvalues
are equal to its singular values (up to a sign change). ��

Let us first generalize Theorem 12 to any arbitrary dimension d , afterward we extend the
result to any kernel K .

Theorem 13 (MMD Computation linear kernel arbitrary dimension) If KL(xi , x j ) =
K (xi , x j )2 and ΛL = 4Λ2. Furthermore, assume K is the linear kernel, K (xi , x j ) = xTi x j
and the dimension of the input space X is d, then

MMD(P̂, Q̂) = 4Λ2||λ||2.
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Proof We can show using (20) that the vector μP̂ − μQ̂ becomes

(μP̂ − μQ̂)T = (M11, M22,
√
2M12, M33,

√
2M13,

√
2M23,

M44,
√
2M14,

√
2M24,

√
2M34, . . .)

T .

Observe that the entry Mii appears only once in μP̂ − μQ̂ , and any entry Mi j where i �= j ,

appears as
√
2Mi j . Furthermore, note that the diagonal Mii only occurs once in the matrix

M . However, any element Mi j appears twice in M (since M is symmetric). Therefore

(μP̂ − μQ̂)T (μP̂ − μQ̂) =
∑

i

M2
i i + 2

∑

i �= j

M2
i j ,

is a sum of all entries (squared) of M , and therefore

||μP̂ − μQ̂ ||KL = ||M ||F ,

as before. The rest of the proof is identical to the proof of Theorem 12 (d = 2). ��
Note that due to our careful ordering of the featuremap of the squared kernel, given in

(20), we have that this featuremap is still properly defined even if the dimension of d → ∞,
such as for a Gaussian kernel. Now we are ready to prove Theorem 5.

Proof of Theorem 5 To show the result holds for any arbitrary kernel K , we have to work in
the RKHS of K , thus everywhere x needs to be replaced by z(x) as in Appendix A.2, and
then we replace M with MZ . Then Theorem 13 still holds, since the featuremap ψ(x)K ′ is
still given by the featuremap of the squared kernel, (20), however in this case the featuremap
is with respect z instead of x . This does not influence the proof. We showed that this holds
for any dimension d , and the featuremap still exists if d → ∞, thus our results hold for a
kernel K with arbitrary dimension of the RKHS H.

For the Gaussian kernel we cannot compute the matrix M . Instead, since M and MK have
the same eigenvalues, see Lemma 3, we can compute theMMD instead using the eigenvalues
of MK , as in Appendix A.2. ��
Remark 2 Note that

MMD(P̂, Q̂) �= 4Λ2||MK ||F .

These are not equal, since the matrix MK is not symmetric. Therefore, the eigenvalues of MK

are not the same as the singular values of MK (as was the case for M , which is symmetric).

Proof of Corollary 2 Comparing Eqs. 18 and 6 and noting ||λ||∞ ≤ ||λ||2 shows the result. ��

B.4 Probabilistic analysis (Lemma 1, Proposition 2 and Theorem 6)

Proof of Lemma 1 We can show that:
∣∣∣L P̂ (h, h′) − L Q̂(h, h′)

∣∣∣ =
∣∣∣∣∣

r∑

i=1

ū2i λi

∣∣∣∣∣ ≤
r∑

i=1

ū2i |λi |

where the equality follows fromEq. 13 and the inequality follows from the triangle inequality.
Next, bound L P̂ (h, h′) − L Q̂(h, h′) using the bound above and reorder terms. The result is
obtained after applying the expectation w.r.t. u on both sides and applying the linearity of
the expectation. ��
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Proof of Proposition 2 Computing G(2Λe1, M) which will be found to be exactly equal to
the Discrepancy. After combining this fact with Lemma 1 will result in the desired equality,
the inequality follows from Corollary 2. ��
Proof of Theorem 6 We can show that

EuG(u, M) = 1√
r
MMD(P̂, Q̂) ≤ disc(P̂, Q̂). (27)

This equality can be shown by working out the expectation and canceling terms and recog-
nizing the definition of the MMD from (6). The inequality follows from ||λ||2 ≤ √

r ||λ||∞.
The final result follows by combining Eq. 27 with Lemma 1. ��

B.5 Proof of nuclear discrepancy bound (Theorem 7)

Before we can show the proof of the Nuclear Discrepancy bound, we need the following
lemma:

Lemma 4 Let p(u) be uniform over all u ∈ U. Then

Euū
2
1 = 4Λ2

r + 2
.

Proof By comparing the volume of a sphere of radius 2Λ and the volume of a sphere of
radius w = ||u||2, we can show that for this distribution p(u) we have that

p(w) = w(r−1)r

(2Λ)r
.

Then it is straightforward to show that

Eu ||u||22 = r

r + 2
4Λ2.

by integration of p(w). From the symmetry of p(u) it follows that Eu ū21 = Eu ū2i for all i .
From this fact and the linearity of the expectation the result follows. ��
Proof of Theorem 7 We can show that

EuG(u, M) =
∑

i

|λi |Euū
2
i = ||λ||1Euū

2
1 = 4Λ2

r + 2
||λ||1.

The first equality follows from switching expectation and sum. The second equality follows
from symmetry of p(u). The last equality follows from Lemma 4. The bound can be obtained
by combining with Theorem 8. The inequalities follow from the vector norm inequalities
||λ||1 ≤ √

r ||λ||2 ≤ r ||λ||∞. ��

C Remark on probabilistic analysis and choice of Us

The remark in this section will explain why instead of U , we need to take Us (to be defined
below). The problem stems from the fact that if we choose p(u) uniform on U , it may seem
unclear what it means for u to be randomly sampled from an infinite dimensional sphere
uniformly.
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We will use the notation of Appendix A.2, since we will work with a kernel K with a
high-dimensionalH, in order to highlight the problem that a lot of eigenvalues may be zero.
We are analyzing what happens to

EuG(u, MZ ) (28)

for arbitrary distributions, for example, for the uniform distribution p(u), in case the length
of a vector z(x) is infinite such as with a Gaussian kernel (then M has infinite eigenvalues,
but only r are non-zero).

TheRKHSof K ,H, is thenof infinite dimension.We splitH in twoparts:Hs = span(Z P̂ ),
and its orthogonal complement H⊥

s . Then for any vector in a ∈ H, a = as + a⊥
s , where

as ∈ Hs and a⊥
s ∈ H⊥

s . In particular we have that after training a kernel regularized model,
we have h ∈ as due to the regularization term in the training procedure. Furthermore, for
any observed f , we have

L P̂ (h, f ) = L P̂ (h, fs), (29)

since Z P̂ f ⊥
s = 0. The same thing holds for L Q̂(h, f ). Therefore, we may consider it redun-

dant to consider f , h, and we may limit our analysis to fs and hs . In addition we have
that

G(u, MZ ) = G(us, MZ ), (30)

since u is projected on eigenvectors ofMZ , and only eigenvectors in span(Z P̂ ) have non-zero
eigenvalue, and thus u⊥

s only has components that correspond to eigenvalues that are zero.
Thus any u has the same objective as the corresponding us . Therefore, instead of defining a
pdf over U , we define a pdf over Us = {u ∈ Hs : ||u||K ≤ 2Λ}. Then by construction the
dimension of u is at most r = rank(MZ ) ≤ n P̂ , which is always finite. Then sampling u is a
well defined procedure even in infinite dimensional RKHS.

D Computation of the decomposition of the probabilistic bounds

To compute each term of G(u, MZ ), we can compute the eigendecomposition of MK to
compute the eigenvalues, however we also need to know ūi for each i . The computation of
ūi , the projection of u onto the eigenvector vi of MZ is non-trivial to compute in case kernels
are used. Observe that here vi is the i th eigenvector and not a component. Here we assume
vi is not normalized to unit norm (which is why we write it differently from ei ). We give a
detailed description in this appendix how to compute ūi . In this case the equation for ūi is:

ūi = uT vi√
vTi vi

(31)

The difficulty in this derivation is finding the vector vi in case kernels are used. Then we
need to find vi expressed in terms of the datamatrix Z . Then we can apply the ‘kernel trick’
to compute (31).

By the eigenvalue equation of MZ we have:

MZvi = λivi (32)

In case of the linear kernel it is straightforward to compute vi . However, to compute vi for
any K , we have to take extra steps. First we show that vi can be expressed in terms of the
datamatrix Z , and afterward we find this expression of vi in terms of Z . Note that:
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MZvi =
n P̂∑

j=1

d j z j z
T
j vi =

n P̂∑

j=1

(zTj vi )d j z j = λivi

Thus we have that:
n P̂∑

j=1

(zTj vi )d j

λi
z j = vi

Thus we have that each eigenvector vi is a linear combination of the vectors z j . Here the sum
is taken over all objects z(x) : x ∈ P̂ . Since Q̂ ⊆ P̂ , this includes all data the active learner
has access to. Then we can write each eigenvector vi as:

vi = ZT
P̂
αi (33)

Thus we can express each vector vi using the datamatrix Z P̂ . Now we will have to find the
vector αi to find vi . We substitute the equation above in (32) to obtain:

MZ Z
T
P̂
αi = λi Z

T
P̂
αi

Now we multiply left with DZ P̂ on both sides to obtain:

DZP̂MZ Z
T
P̂
αi = λi DZ P̂ Z

T
P̂
αi

Observe that this is equal to:

MT
K MT

Kαi = λi M
T
Kαi

Where MK was defined in (17). Now we define βi = MT
Kαi . Then we find:

MT
Kβi = λiβi (34)

We can compute the eigenvectors β by computing the eigendecomposition of MT
K . This

is possible even when using kernels, since MK is expressed in terms of the kernel matrix.
However we require the vector αi to compute the eigenvector vi . Thus now we will aim to
express αi in terms of βi . Observe that if we multiply (34) by (MT

K )−1 on both sides we
obtain:

βi = λi (M
T
K )−1βi (35)

Now observe that due to the definition of βi we have that:

βi (M
T
K )−1 = αi (36)

Combining (35) and (36) we find that:

αi = βi

λi

Substituting this in (33) we find the vector vi :

vi = ZT
P̂

βi

λi
(37)

Now we have found vi . Now we can proceed to compute ui .
Note that due to the representer theorem we have that the hyperplane of each model can

be written as a linear combination of the data:

u = f − h = ZT
D̂
c′ − ZT

Q̂
c ≡ ZT

D̂
c̃ (38)
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Here f is given as a linear combination of ZD̂ , which we define as the complete datamatrix.
This datamatrix includes the training and test set, since f in our experiments was obtained
by training on the whole dataset where the original binary labels of the dataset are used (in
the realizeable setting). However note that for any f ∈ H the model f can be written in this
way. Similarly, since h is trained on the dataset Q̂, we can write h as a linear combination of
objects ZQ̂ . Combining (37) and (38) with (31) we find that:

ūi =
c̃Z D̂ Z

T
P̂

βi
λi√

βT
i

λi
Z P̂ Z

T
P̂

βi
λi

= c̃K D̂ P̂βi√
βi K P̂ P̂βi

E Experimental settings and dataset characteristics

The active learning methods are evaluated on the datasets shown in Table 4. The datasets
marked with ∗ were provided by Cawley and Talbot (2004). Other datasets originate from
the UCI Machine Learning repository (Lichman 2013), except the MNIST dataset (LeCun
et al. 1998) which is a standalone dataset.

The parameter settings used are displayed in Table 5. To obtain these hyperparameters we
repeated the following procedure multiple times. We randomly select 25 examples from the
dataset and label these.We train a KRLSmodel on these samples and evaluate theMSE on all
unselected objects. The hyperparameters that result in the best performance after averaging
are used in the active learning experiments.

Table 4 Characteristics of
evaluation datasets

Dataset # Objects # Positive class Dimensionality

vehicles 435 218 18

heart 297 137 13

sonar 208 97 60

thyroid∗ 215 65 5

ringnorm∗ 1000 503 20

ionosphere 351 126 33

diabetes 768 500 8

twonorm∗ 1000 500 20

banana∗ 1000 439 2

german 1000 700 20

splice 1000 541 60

breast 699 458 9

mnist 3vs5 1000 484 784

mnist 7vs9 1000 510 784

mnist 5vs8 1000 535 784
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Table 5 Table with parameters
used for the benchmark datasets

Dataset σ log10(μ)

vehicles 5.270 −3.0

heart 5.906 −1.8

sonar 7.084 −2.6

thyroid 1.720 −2.6

ringnorm 1.778 −3.0

ionosphere 4.655 −2.2

diabetes 2.955 −1.4

twonorm 5.299 −2.2

banana 0.645 −2.2

german 4.217 −1.4

splice 9.481 −2.6

breast 4.217 −1.8

mnist 3vs5 44.215 −6.0

mnist 7vs9 44.215 −3.6

mnist 5vs8 44.215 −8.9

F Results of the agnostic setting

For completenesswe discuss the results of the agnostic settingwhere the original binary labels
are used. In this setting η �= 0, but η will be small due to our choice of hyperparameters,
and therefore we ignore it during active learning (since we also cannot estimate it unless we
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Fig. 3 Learning curves for several datasets for the agnostic setting. Results are averaged over 100 runs. Observe
that compared to the realizable setting the variability of the performance increases and therefore performance
differences become less significant. Due to unexpected effects of η > 0 the ranking of the methods may
change
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Table 6 Area Under the mean squared error Learning Curve (AULC) for the strategies in the agnostic setting,
averaged over 100 runs

Dataset Random Discrepancy MMD Nuclear Discrepancy

vehicles 25.8 (4.7) 22.9 (2.7) 23.9 (3.2) 23.5 (2.6)

heart 34.9 (4.0) 32.7 (3.3) 32.4 (3.8) 32.4 (3.7)

sonar 40.6 (4.3) 39.8 (4.4) 38.3 (3.6) 37.3 (4.2)

thyroid 17.9 (3.4) 16.4 (3.5) 16.3 (3.1) 15.7 (2.9)

ringnorm 35.9 (1.4) 37.5 (0.7) 33.1 (1.0) 33.5 (1.0)

ionosphere 28.9 (3.4) 26.7 (2.5) 26.3 (2.7) 27.3 (3.4)

diabetes 40.5 (3.2) 39.6 (3.2) 39.7 (3.0) 40.2 (2.7)

twonorm 19.3 (2.4) 17.3 (1.6) 17.0 (1.6) 16.2 (1.3)

banana 32.1 (3.4) 28.5 (3.4) 28.6 (2.9) 27.8 (2.5)

german 42.2 (3.2) 40.8 (2.3) 41.1 (2.6) 40.6 (2.4)

splice 45.4 (3.1) 45.2 (3.5) 44.6 (2.8) 43.7 (2.6)

breast 11.7 (2.7) 10.3 (1.7) 10.1 (1.7) 10.1 (1.8)

mnist 3vs5 30.6 (4.5) 28.1 (2.5) 26.1 (2.2) 25.0 (1.8)

mnist 7vs9 27.5 (3.6) 25.5 (2.4) 24.6 (2.0) 23.2 (1.6)

mnist 5vs8 30.2 (3.4) 26.9 (2.7) 26.1 (2.3) 24.5 (2.1)

Bold indicates the best result, or results that are not significantly worse than the best result, according to a
paired t-test (p = 0.05). Parenthesis indicate standard deviation

have the labels of P̂). Several illustrating learning curves are shown in Fig. 3, all results are
summarized in Table 6, all learning curves can be found in Appendix H.3.

The curves are less smooth and have larger standard errors compared to the realizable
setting. Therefore the active learning methods are harder to distinguish which is reflected in
Table 6 by larger standard deviations and more bold numbers in a single row. Observe that
the ranking of the methods can also change, see for example the learning curve on ringnorm:
in the realizable setting the ND improved upon the Discrepancy, while in the agnostic setting
the reverse is the case for large budgets. In this setting, sometimes the Discrepancy performs
the best. From Table 6 we can see that the trends observed in the realizable setting are still
observed in the agnostic setting: the ND improves more upon the MMD than the reverse,
however, the trend is weaker. This is likely the case because for this setting ηMMD and ηdisc
are non-zero, and therefore our theoretical analysis is weakened. Finally, observe that for
the MNIST dataset, the learning curves and results as summarized by the AULC for 5vs8
are almost completely identical as in the realizeable setting. Similarly, for 3vs5 differences
are also quite small. This indicates that MNIST is very close to realizeable with these found
hyperparameter settings.

G Influence of subsampling on performance

We perform an additional experiment on the splice dataset to see how subsampling affects
performance. To this endwemeasure the performancewhilewevary the pool size by changing
the amount of subsampling, The subsampled pool is used as training set (this is the pool from
which active learners can select queries, P̂), all remaining samples are used as testset T̂ .
Furthermore we use the same experimental protocol as for the other experiments.
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Fig. 4 Dataset size versus performance of the active learners on splice. We observe that for larger dataset
sizes, the active learners typically improve with respect to random sampling, but the improvement levels off
for large dataset sizes

We display the performance of the active learners in terms of MSE on the testset after
50 queries in Fig. 4 for both the realizeable and agnostic setting. The curve is averaged
over 100 runs. Error bars represent the 95% confidence interval computed using the standard
error. As expected, the trends in the realizeable setting are more clear, while due to model
misspecification and other effects in the agnostic case performance differences are less clear
due to larger standard deviations.

For small pool sizes all active learners experience a drop in performance. In this case the
probability is large that ‘good’ queries may be missing because of an unlucky draw from the
dataset. For larger pool sizes most active learners perform better. For larger pool sizes the
performance at some point levels. At this point the pool contains sufficient representative
samples for it to contain all possible ‘good’ queries the active learners will be looking for. The
experiment provides evidence that if finer subsampling is used, methods typically improve
in performance up to a point where performance levels off.
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H Additional experimental results

H.1 Learning curves on all datasets for the realizable setting

(See Fig. 5.)
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Fig. 5 Results on all benchmark datasets for the realizable setting
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H.2 Decomposition of the probabilistic bounds for all datasets

(See Fig. 6.)
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Fig. 6 Decomposition of the sumG(u, M) during active learning for all datasets for the active learner ‘random
sampling’
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H.3 Learning curves on all datasets for the agnostic setting

(See Fig. 7.)
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Fig. 7 Results on all benchmark datasets for the agnostic setting
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