
Machine Learning (2019) 108:1231–1260
https://doi.org/10.1007/s10994-018-5769-2

Aggregating Algorithm for prediction of packs

Dmitry Adamskiy1,2 · Anthony Bellotti3 · Raisa Dzhamtyrova4 ·
Yuri Kalnishkan2,4,5

Received: 10 December 2017 / Accepted: 25 October 2018 / Published online: 7 January 2019
© The Author(s) 2019

Abstract
This paper formulates a protocol for prediction of packs, which is a special case of on-line
prediction under delayed feedback. Under the prediction of packs protocol, the learner must
make a few predictions without seeing the respective outcomes and then the outcomes are
revealed in one go. The paper develops the theory of prediction with expert advice for packs
by generalising the concept of mixability. We propose a number of merging algorithms for
prediction of packs with tight worst case loss upper bounds similar to those for Vovk’s Aggre-
gating Algorithm. Unlike existing algorithms for delayed feedback settings, our algorithms
do not depend on the order of outcomes in a pack. Empirical experiments on sports and house
price datasets are carried out to study the performance of the new algorithms and compare
them against an existing method.

Keywords Machine learning · On-line learning · Prediction with expert advice · Sport ·
House prices

Editors: Jesse Davis, Elisa Fromont, Derek Greene, and Bjorn Bringmann.

B Yuri Kalnishkan
Yuri.Kalnishkan@rhul.ac.uk

Dmitry Adamskiy
D.Adamskiy@cs.ucl.ac.uk

Anthony Bellotti
A.Bellotti@imperial.ac.uk

Raisa Dzhamtyrova
Raisa.Dzhamtyrova.2015@live.rhul.ac.uk

1 Department of Computer Science, University College London, 66-72, Gower Street,
London WC1E 6EA, UK

2 Computer Learning Research Centre, Royal Holloway, University of London, Egham,
Surrey TW20 0EX, UK

3 Department of Mathematics, Imperial College London, London SW7 2AZ, UK

4 Department of Computer Science, Royal Holloway, University of London, Egham,
Surrey TW20 0EX, UK

5 Laboratory of Advanced Combinatorics and Network Applications, Moscow Institute of Physics and
Technology, Institutsky per., 9, Dolgoprudny, Russia 41701

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-018-5769-2&domain=pdf
http://orcid.org/0000-0003-1134-8937

1232 Machine Learning (2019) 108:1231–1260

1 Introduction

This paper deals with the on-line prediction protocol, where a learner needs to predict out-
comes ω1, ω2 . . . occurring in succession. The learner is getting feedback along the way.

In the basic on-line prediction protocol, on step t the learner outputs a predictionγt and then
immediately sees the true outcome ωt , which is the feedback. The quality of the prediction
is assessed by a loss function λ(γ, ω) measuring the discrepancy between the prediction
and outcome or, generally speaking, quantifying the (adverse) effect when a prediction γ

confronts the outcome ω. The performance of the learner is assessed by the cumulative loss
over T trials

∑T
t=1 λ(γt , ωt).

In this paper, we are concernedwith the problem of predictionwith expert advice. Suppose
that the learner has access to predictions of a number of experts. Before the learner makes
a prediction, it can see experts’ predictions and its goal is to suffer loss close to that of the
retrospectively best expert.

In a protocol with delayed feedback, there may be a delay getting true outcomes ωt . The
learner may need to make a few predictions before actually seeing the outcomes of past trials.
We will consider a special case of that protocol when outcomes come in packs: the learner
needs to make a few predictions, than all outcomes are revealed, and again a few predictions
need to be made.

A problem naturally fitting this framework is provided by aggregation of bookmakers’
prediction. Vovk and Zhdanov (2009) predict the outcomes of sports matches on the basis of
probabilities calculated from the odds quoted by bookmakers. If matches occur one by one,
the problem naturally fits the basic prediction with expert advice framework. However, it is
common (e.g., in the English Premier League) that a few matches occur on the same day. It
would be natural to try and predict all the outcomes beforehand. All matches from the same
day can be treated as a pack in our framework.

We develop a theory of prediction with expert advice for packs by extending Aggregating
Algorithm (AA) introduced by Vovk (1990, 1998). In Sect. 2.2 and Appendix A, we survey
the existing theory of the AA for predicting single outcomes (in our terminology, packs of
size one). The theory is based on the concept of mixability of prediction environments called
games. In Sect. 3, we develop the theory of mixability for games with packs of outcomes.
Theorem 1 shows that a game involving packs of K outcomes has the same profile of mix-
ability constants as the original game with single outcomes, but the learning rate divides by
K . This observation allows us to handle packs of constant size. However, as discussed above,
in really interesting cases the size of the pack varies with time and thus the mixability of
the environment varies from step to step. This problem can be approached in different ways
resulting in different algorithms with different performance bounds. In Sect. 4, we intro-
duce three Aggregating Algorithms for prediction of Packs, AAP-max, AAP-incremental,
and AAP-current and obtain worst-case upper bounds for their cumulative loss.

The general theory of the AA (Vovk 1998) allows us to show in Sect. 5 that in some sense
our bounds are optimal. In Sect. 5.1, we provide a standalone derivation of a lower bound
for the mix-loss framework of Adamskiy et al. (2016). However, the question of optimality
for packs is far from being fully resolved and requires further investigation.

Asmentioned before, the problemof prediction of packs can be considered as a special case
of the delayed feedback problem. This problemhas been studiedmostlywithin the framework
of on-line convex optimisation (Zinkevich 2003; Joulani et al. 2013; Quanrud and Khashabi
2015). The terminology and approach of on-line convex optimisation is different from ours,

123

Machine Learning (2019) 108:1231–1260 1233

which go back to Littlestone and Warmuth (1994) and were surveyed by Cesa-Bianchi and
Lugosi (2006).

The problem of prediction with expert advice for delayed feedback can be solved by
running parallel copies of algorithms predicting single outcomes. In Sect. 2.3, we describe
the algorithm Parallel Copies, which is essentially BOLD of Joulani et al. (2013) using the
Aggregating Algorithm as a base algorithm for single outcomes. The theory of the Aggre-
gating Algorithm implies a worst case upper bound on the loss of Parallel Copies. We see
that the regret term multiplies by the maximum delay or pack size as in the existing literature
(Joulani et al. 2013; Weinberger and Ordentlich 2002).

The bounds we obtain for our new algorithms are the same (AAP-max and AAP-
incremental) or incompatible (AAP-current) with the bound for Parallel Copies. We discuss
the bounds in Sect. 5 and then in Sect. 6 carry out an empirical comparison of the performance
of the algorithms.

For experiments we predict outcomes of sports matches based on bookmakers’ odds
and work out house prices based on descriptions of houses. The sports datasets include
football matches, which naturally contain packs, and tennis matches, where we introduce
packs artificially in two different ways. The house price datasets contain records of property
transactions in Ames in the US and the London area. The datasets only record the month of a
transaction, so they are naturally organised in packs. The house price experiments follow the
approach ofKalnishkan et al. (2015): predictionwith expert advice can be used to find relevant
past information. Predictors trained on different sections of past data can be combined in the
on-line mode so that relevant past data is used for prediction.

The performance of the Parallel Copies algorithm depends on the order of outcomes in
the packs, while our algorithms are order-independent. We compare the cumulative loss of
our algorithms against the loss of Parallel Copies averaged over random permutations within
packs. We conclude that while Parallel Copies can perform very well, especially if the order
of outcomes in the packs carries useful information, the loss of our algorithms is always close
to the average loss of Parallel Copies and some algorithms beat the average.

We then compare our algorithms between each other concluding that AAP-max is the
worst and AAP-current outperforms AAP-incremental if the ratio of the maximum to the
minimum pack size is small.

2 Preliminaries and background

In this section we introduce the framework of prediction of packs and review connections
with the literature.

2.1 Protocols for prediction of packs

A game G = 〈Ω,Γ , λ〉 is a triple of an outcome space Ω , prediction space Γ , and loss
function λ : Γ × Ω → [0,+∞].

Outcomes ω1, ω2, . . . ∈ Ω occur in succession. A learner or prediction strategy outputs
predictions γ1, γ2, . . . ∈ Γ before seeing respective outcomes. The learner may have access
to some side information; we will say that the learner sees signals xt coming from a signal
space X .

In the classical protocol, the learner makes a prediction (possibly upon using a signal)
and then the outcome is immediately revealed. In this paper we consider an extension of

123

1234 Machine Learning (2019) 108:1231–1260

this protocol and allow the outcomes to come in packs of possibly varying size. The learner
must produce a pack of predictions before seeing the true outcomes. The following protocol
summarises the framework.

Protocol 1 (Prediction of packs)

FOR t = 1, 2, . . .
nature announces xt,k ∈ X, k = 1, 2, . . . , Kt

learner outputs γt,k ∈ Γ , k = 1, 2, . . . , Kt

nature announces ωt,k ∈ Ω, k = 1, 2, . . . , Kt

learner suffers losses λ(γt,k, ωt,k), k = 1, 2, . . . , Kt

ENDFOR

At every trial t the learner needs to make Kt predictions rather than one. We will be
speaking of a pack of the learner’s predictions γt,k ∈ Γ , k = 1, 2, . . . , Kt , a pack of
outcomes ωt,k ∈ Ω , k = 1, 2, . . . , Kt etc.

In this paper, we assume a full information environment. The learner knows Ω , Γ , and
λ. It sees all ωt,k as they become available. On the other hand, we make no assumptions on
the mechanism generating ωt,k and will be interested in worst-case guarantees for the loss.
The outcomes do not have to satisfy probabilistic assumptions such as i.i.d., and can behave
maliciously.

Now let E1, E2, . . . , EN be learners working according to Protocol 1. We will refer to
these learners as experts. Suppose that on each turn, their predictions are made available to
a learner S as a special kind of side information. The learner then works according to the
following protocol.

Protocol 2 (Prediction of packs with expert advice)

FOR t = 1, 2, . . .
each expert Ei, i = 1, 2, . . . , N, announces

predictions γt,k(i) ∈ Γ , k = 1, 2, . . . , Kt

learner outputs predictions γt,k ∈ Γ , k = 1, 2, . . . , Kt

nature announces ωt,k ∈ Ω, k = 1, 2, . . . , Kt

each expert Ei, i = 1, 2, . . . , N, suffers
losses λ(γt,k(i), ωt,k), k = 1, 2, . . . , Kt

learner suffers losses λ(γt,k, ωt,k), k = 1, 2, . . . , Kt

ENDFOR

The goal of the learner in this setup is to suffer a loss close to the best expert in retrospect
(inwhatever formal sense that can be achieved).We look formerging strategies for the learner
making sure that the learner achieves low cumulative loss as compared to the experts; we
will see that one can quantify cumulative loss in different ways.

The merging strategies we are interested in are computable in some natural sense; we will
not make exact statements about computability though. We do not impose any restrictions
on experts. In what follows, the reader may substitute the clause ‘for all predictions γt,k(i)
appearing in Protocol 2’ for the more intuitive clause ‘for all experts’.

There can be subtle variations of this protocol. Instead of getting all Kt predictions from
each expert at once, the learner may be getting predictions for each outcome one by one and
making its own before seeing the next set of experts’ predictions. For most of our analysis
this does not matter, as we will see later. The learner may have to work on each ‘pack’ of
experts’ predictions sequentially without even knowing its size in advance. The only thing
that matters is that the outcomes come in one go after the learner has finished predicting the
pack.

123

Machine Learning (2019) 108:1231–1260 1235

2.2 Packs of size one

For packs of size 1 (Kt = 1, t = 1, 2, . . .), the Aggregating Algorithm (AA) by Vovk (1990,
1998) solves the problem of prediction with expert advice in a very general sense.

The algorithm is based on the notion of mixability.
Consider a game G = 〈Ω,Γ , λ〉. A constant C > 0 is admissible for a learning rate

η > 0 if for every N = 1, 2, . . ., every set of predictions γ (1), γ (2), . . . , γ (N), and every
distribution p(1), p(2), . . . , p(N) (such that p(i) ≥ 0 and

∑N
i=1 p(i) = 1) there is γ ∈ Γ

ensuring for all outcomes ω ∈ Ω the inequality

λ(γ, ω) ≤ −C

η
ln

N∑

i=1

p(i)e−ηλ(γ (i),ω) . (1)

The mixability constant Cη is the infimum of all C > 0 admissible for η. This infimum
is usually achieved. For example, it is achieved for all η > 0 whenever Γ is compact and
e−λ(γ,ω) is continuous1 in γ .

The Aggregating Algorithm takes a learning rate η > 0, a constant C admissible for G
with η, and a prior distribution p(1), p(2), . . . , p(N) (p(i) ≥ 0 and

∑N
i=1 p(i) = 1) on

experts E1, E2, . . . , EN .
We use the notation

LossT (S) =
T∑

t=1

λ(γt , ωt) ,

LossT (Ei) =
T∑

t=1

λ(γt (i), ωt) , i = 1, 2, . . . , N

for the cumulative loss of a learner and experts (as the pack size is always 1, we omit the
second index k and write, say, ωt instead of ωt,1). The following proposition provides an
upper bound on the learner’s loss.

Proposition 1 (Vovk 1990, 1998) Let C be admissible for η > 0. Then for every
N = 1, 2, . . ., the loss of a learner S using the AA with η and a prior distribution
p(1), p(2), . . . , p(N) satisfies

LossT (S) ≤ CLossT (Ei) + C

η
ln

1

p(i)
(2)

for every expert Ei , i = 1, 2, . . . , N, all time horizons T = 1, 2, . . ., and all outputs made
by the nature. 	

The pseudocode of the Aggregating Algorithm and the proof of the proposition are given
in Appendix A.

The choice of a particular learning rate depends on the size of the mixability constants.
For some games we have natural optimal choices. For example, consider the general square
loss game with Ω = Γ = [A, B] and λ(γ, ω) = (γ − ω)2 used for the experiments in this
paper. It is one of the so called mixable games with C achieving 1. The natural choice of η is
then the maximum value such that Cη = 1; it minimises the second term on the right-hand
side of (2). Such η is given by η0 = 2/(B − A)2; one can easily adapt to the interval [A, B]
the derivation of Vovk (2001) for the interval [− Y , Y].
1 Or λ(γ, ω) is continuous w.r.t. the extended topology of [0,+ ∞].

123

1236 Machine Learning (2019) 108:1231–1260

Remark 1 For the general square loss game, if the learning rate η0 is used, one can find a
value of γ satisfying (1) for all ω ∈ [A, B] using an explicit substitution function

γ = A + B

2
− g(B) − g(A)

2
,

where

g(ω) = − 1

η0
ln

N∑

i=1

p(i)e−η0λ(γ (i),ω)

following Vovk (2001). This makes the Aggregating Algorithm for the general square loss
game efficient.

For non-mixable games (such as the absolute loss game with λ(γ, ω) = |γ − ω|), bound
(2) provides a trade-off. Optimising the bound is a more difficult task and may require
assumptions on the behaviour of experts or the time horizon T .

The importance of the AA follows from the results of Vovk (1998). Under some mild
regularity assumptions on the game and assuming the uniform initial distribution, it can be
shown that the constants in inequality (2) are optimal. If any merging strategy achieves the
guarantee (with A > 0)

LossT (S) ≤ CLossT (Ei) + A ln N

for all experts E1, E2, . . . , EN , N = 1, 2, . . ., all time horizons T , and all outcomes, then the
AA with the uniform prior distribution p(i) = 1/N and some η > 0 provides the guarantee
with the same or lower C and A. We discuss this result in more detail in Appendix A.

2.3 Delayed feedback approach

The protocol of prediction with packs we describe can be considered as a special case of the
delayed feedback settings surveyed by Joulani et al. (2013).

In the delayed feedback prediction with expert advice protocol, on every step the learner
gets just one round of predictions from each expert and must produce its own. However, the
outcome corresponding to these predictions may become available later. If it is revealed on
the same trial as in Sect. 2.2, we say that the delay is one. If it is revealed on the next trial,
the delay equals two, etc. Prediction of packs of size not exceeding K can be considered as
prediction with delays not exceeding K .

The algorithm BOLD (Joulani et al. 2013) for this protocol works as follows. Take an
algorithm working with delays of 1 (or packs of size 1); we will call it the base algorithm.
In order to merge experts predictions, we will run several copies of the base algorithm. They
are independent in the sense that they do not share information. Each copy will repeatedly
receive experts’ predictions for merging, output a prediction, and then wait for the outcome
corresponding to the prediction. At every moment a copy of the base algorithm either knows
all outcomes for the predictions it has made or is expecting the outcome corresponding to
the last prediction. In the former case we say that the copy is ready (to merge more experts’
predictions) and in the later case we say that the copy is blocked (and cannot merge).

At each trial, when a new round of experts’ predictions arrives, we pick a ready algorithm
(say, one with the lowest number) and give the experts’ predictions to it. It produces a
prediction, which we pass on, and the algorithm becomes blocked until the outcome for that
trial arrives. If all algorithms are currently blocked, we start a new copy of the base algorithm.

123

Machine Learning (2019) 108:1231–1260 1237

Suppose that we are playing a game G and C is admissible for G with a learning rate η.
For the base algorithm take AA with C , η and initial weights p(1), p(2), . . . , p(N). If the
delay never exceeds D, we never need more than D algorithms in the array and each of them
suffers loss satisfying Proposition 1. Summing the bounds up, we get that the loss of S using
this strategy satisfies

LossT (S) ≤ CLossT (Ei) + CD

η
ln

1

p(i)
(3)

for every expert Ei , where the sum in LossT is taken over all outcomes revealed before step
T + 1. The value of D does not need to be known in advance; we can always expand the
array as the delay increases. We will refer to the combination of BOLD and AA in the above
fashion as the Parallel Copies algorithm.

For Protocol 2 we can define plain cumulative loss

LossT (S) =
T∑

t=1

Kt∑

k=1

λ(γt,k, ωt,k) , (4)

LossT (Ei) =
T∑

t=1

Kt∑

k=1

λ(γt,k(i), ωt,k) , i = 1, 2, . . . , N . (5)

Then (3) implies

LossT (S) ≤ CLossT (Ei) + CK

η
ln

1

p(i)
, (6)

where K = maxt=1,2,...,T Kt , for S following Parallel Copies.
However, the Parallel Copies algorithm has two disadvantages. First, it requires us to

maintain D arrays of experts’ weights (see Protocol 7 in Appendix A). Each copy of AA
needs to maintain N weights, one for each expert. If packs of size D come up, we will
need D such arrays. Secondly, and more importantly, the algorithm depends on the order
of predictions in the pack. It matters what copy of the AA will pick a particular round of
experts’ predictions and the result is not invariant w.r.t. the order within the packs.

Below we will build algorithms that are order-independent and have loss bounds both
similar (Sect. 4.1) and essentially different (Sect. 4.2) from (6). Our method is based on
a generalisation of the concept of mixability and a direct application of AA to packs. The
resulting algorithms will maintain one array of N weights (or losses).

3 Mixability

In this section we extend the concept of mixability defined in Sect. 2.2 to packs of outcomes.
This will be a key tool for the analysis of the algorithms we will construct. We need an upper
bound on admissible constants in order to get upper loss bounds and lower bounds in order
to establish some form of optimality. As we cannot restrict ourselves to packs of constant
size, we need to consider suboptimal constants too.

For a game G = 〈Ω,Γ , λ〉 and a positive integer K consider the game GK with the
outcome and prediction space given by the Cartesian products ΩK and Γ K and the loss
function λ(K)((γ1, γ2, . . . , γK), (ω1, ω2, . . . , ωK)) = ∑K

k=1 λ(γk, ωk). What are the mixa-

bility constants for this game? Let Cη be the constants for G and C (K)
η be the constants for

GK .
The following lemma provides an upper bound for C (K)

η .

123

1238 Machine Learning (2019) 108:1231–1260

Lemma 1 If C > 0 is admissible for a game G with a learning rate η > 0, then C is
admissible for the game GK with the learning rate η/K.

Proof Take N predictions in the game GK , γ (1) = (γ 1
1 , γ 1

2 , . . . , γ 1
K), …, γ (N) =

(γ N
1 , γ N

2 , . . . , γ N
K) and weights p(1), p(2), . . . , p(N). Since C is admissible for G, there

are predictions γ1, γ2, . . . , γK ∈ Γ such that

e−ηλ(γk ,ωk)/C ≥
N∑

i=1

p(i)e−ηλ(γ i
k ,ωk)

for every ωk ∈ Ω . We will use (γ1, γ2, . . . , γK) ∈ Γ K to show that C is admissible forGK .
Multiplying the inequalities we get

e−η
∑K

k=1 λ(γk ,ωk)/C ≥
K∏

k=1

N∑

i=1

p(i)e−ηλ(γ i
k ,ωk) .

We will now apply the generalised Hölder inequality. On measure spaces, the inequality
states that ‖ ∏K

k=1 fk‖r ≤ ∏K
k=1 ‖ fk‖rk , where

∑K
k=1 1/rk = 1/r . This follows by induction

from the version of the inequality given by Loève (1977, Sect. 9.3). Interpreting a vector
xk = (xk(1), xk(2), . . . , xk(N)) ∈ R

N as a function on a discrete space {1, 2, . . . , N } and
introducing on this space a measure p(i), i = 1, 2, . . . , N , we obtain

⎛

⎝
N∑

i=1

p(i)

∣
∣
∣
∣
∣

K∏

k=1

xk(i)

∣
∣
∣
∣
∣

r⎞

⎠

1/r

≤
K∏

k=1

(
N∑

i=1

p(i) |xk(i)|rk
)1/rk

.

Letting rk = 1 and r = 1/K we get

e−η
∑K

k=1 λ(γk ,ωk)/C ≥
K∏

k=1

N∑

i=1

p(i)e−ηλ(γ i
k ,ωk)

≥
(

N∑

i=1

p(i)e− ∑K
k=1 ηλ(γ i

k ,ωk)/K

)K

.

Raising the resulting inequality to the power 1/K completes the proof. 	

Remark 2 Note that the proof of the lemma offers a constructive way of solving (1) for GK

provided we know how to solve (1) forG. Namely, to solve (1) forGK with the learning rate
η/K , we solve K systems for G with the learning rate η.

We will now show that the admissible constants given by Lemma 1 cannot be decreased
for a wide class of games. In order to get a lower bound for C (K)

η , we need the following
concepts.

Ageneralised predictionw.r.t. a gameG is a function fromΩ to [0,+∞]. Every prediction
γ ∈ Γ specifies a generalised prediction by λ(γ, ·), hence the name.

A superprediction is a generalised prediction minorised by the loss of some prediction,
i.e., a superprediction is a function f : Ω → [0,+∞] such that for some γ ∈ Γ we have
f (ω) ≥ λ(γ, ω) for all ω ∈ Ω . The shape of the set of superpredictions plays a crucial role
in determining Cη.

Lemma 2 Let a game G have a convex set of superpredictions. If C > 0 is admissible for
GK with a learning rate η/K > 0, then C is admissible for G with the learning rate η.

123

Machine Learning (2019) 108:1231–1260 1239

The requirement of convexity is not too restrictive. For a wide class of games the following
implication holds. If the game is mixable (i.e., Cη = 1 for some η > 0), then its set of
superpredictions is convex. Kalnishkan et al. (2004, Lemma 7) essentially prove this for
games with finite sets of outcomes.

Proof Since C > 0 is admissible for GK with the learning rate η/K > 0, for every N
arrays of predictions γ (1) = (γ 1

1 , γ 1
2 , . . . , γ 1

K),…, γ (N) = (γ N
1 , γ N

2 , . . . , γ N
K) and weights

p(1), p(2), . . . , p(N) there are γ1, γ2, . . . , γK ∈ Γ such that

K∑

k=1

λ(γk, ωk) ≤ − C

η/K
ln

N∑

i=1

p(i)e−η
∑K

k=1 λ(γ i
k ,ωk)/K

for all ω1, ω2, . . . , ωK ∈ Ω .
Given N predictions γ1, γ2, . . . , γN ∈ Γ , we can turn them into predictions from Γ K by

considering N arrays γ (i) = (γi , . . . , γi) ∈ Γ K , i = 1, 2, . . . , N . By the above there are
predictions γ ∗

1 , γ ∗
2 , . . . , γ ∗

K ∈ Γ satisfying

1

K

K∑

k=1

λ(γ ∗
k , ω) ≤ −C

η
ln

N∑

i=1

p(i)e−ηλ(γi ,ω)

for all ω ∈ Ω (we let ω1 = ω2 = . . . = ωK = ω).
We have found a prediction from Γ K , but we need one from Γ . The problem is that γ ∗

k do

not have to be equal. However,
∑K

k=1 λ(γ ∗
k , ω)/K is a convex combination of superpredic-

tions w.r.t.G. Since the set of superpredictions is convex, this expression is a superprediction
and there is γ ∈ Γ such that λ(γ, ω) ≤ ∑K

k=1 λ(γ ∗
k , ω)/K for all ω ∈ Ω . 	

Since Cη and C (K)
η/K are the infimums of admissible values, Lemmas 1 and 2 can be

combined into the following theorem.

Theorem 1 For a game G with a convex set of superprediction, any positive integer K and
learning rate η > 0, we have C (K)

η/K = Cη.

This theorem allows us to merge experts’ predictions in an optimal way for the case when
all packs are of the same size. In this case, we simply apply Proposition 1 and all the existing
theory of the AA to the game GK .

In order to analyse the case when pack sizes vary, we need to make a simple observation
on the behaviour of C (K1)

η/K2
for K1 ≤ K2.

Lemma 3 For every game G, if C > 0 is admissible with a learning rate η1 > 0, it is also
admissible with every η2 ≤ η1. Hence the value of Cη is non-decreasing in η.

Proof Raising the inequality

e−η1λ(γ,ω)/C ≥
N∑

i=1

p(i)e−η1λ(γ (i),ω)

to the power η2/η1 ≤ 1 and using Jensen’s inequality we get

e−η2λ(γ,ω)/C ≥
(

N∑

i=1

p(i)e−η1λ(γ (i),ω)

)η2/η1

≥
N∑

i=1

p(i)e−η2λ(γ (i),ω) .

Thus as we decrease η, the infimum of admissible C can only go down. 	

123

1240 Machine Learning (2019) 108:1231–1260

Corollary 1 For every game G and positive integers K1 ≤ K2, we have C
(K1)
η/K2

≤ C (K1)
η/K1

.

Proof The proof is by applying Lemma 3 to GK1 . 	

Remark 3 The proofs of the lemma and corollary are again constructive in the following
sense. If we know how to solve (1) for G with a learning rate η1 and an admissible C , we
can solve (1) for η2 ≤ η1 and the same C .

Suppose we play the game GK1 but have to use the learning rate η/K2, where K2 ≥ K1,
with C admissible for G with η. To solve (1), we can take K1 solutions for (1) for G with
the learning rate η. 	

4 Algorithms for prediction of packs

In this section we apply the theory we have developed to obtain prediction algorithms. This
can be done in two essentially different ways leading to different types of bounds. In Sect. 4.1
we introduce AAP-max and AAP-incremental, and in Sect. 4.2 we introduce AAP-current.

4.1 Prediction with plain bounds

Consider a game G = {Ω,Γ , λ}. The Aggregating Algorithm for Packs with the Known
Maximum (AAP-max) and the Aggregating Algorithm for Packs with an UnknownMaximum
(AAP-incremental) take as parameters a prior distribution p(1), p(2), . . . , p(N) (such that
p(i) ≥ 0 and

∑N
i=1 p(i) = 1), a learning rate η > 0 and a constant C admissible for η.

AAP-max also takes a constant K > 0. The intuitive meaning is that K is an upper bound
on pack sizes, Kt ≤ K .

The algorithms follow very similar protocols and we will describe them in parallel. The
algorithm AAP-max works as follows.

Protocol 3 (AAP-max)

1 initialise losses L0(i) = 0, i = 1, 2, . . . , N
2 this step is skipped
3 set weights to w0(i) = p(i), i = 1, 2, . . . , N
4 FOR t = 1, 2, . . .
5 normalise the weights pt−1(i) = wt−1(i)/

∑N
i=1 wt−1(i)

6 FOR k = 1, 2, . . . , Kt

7 read the experts’ predictions γt,k(i), i = 1, 2, . . . , N
8 output γt,k ∈ Γ satisfying for all ω ∈ Ω the

inequality λ(γt,k, ω) ≤ −C
η
ln

∑N
i=1 pt−1(i)e−ηλ(γt,k (i),ω)

9 ENDFOR
10 observe the outcomes ωt,k, k = 1, 2, . . . , Kt

11 update the losses Lt (i) = Lt−1(i) + ∑Kt
k=1 λ(γt,k(i), ωt,k),

i = 1, 2, . . . , N
12 let Kmax

t = K
13 update the experts’ weights wt (i) = p(i)e−ηLt (i)/Kmax

t ,
i = 1, 2, . . . , N

14 END FOR

123

Machine Learning (2019) 108:1231–1260 1241

The algorithm AAP-incremental follows a protocol that is the same except for the follow-
ing lines:

Protocol 4 (AAP-incremental)

2 initialise Kmax
0 = 1

12 update Kmax
t = max(Kmax

t−1 , Kt)

As AAP-max always uses the same K for calculating the weights, line 13 can be replaced
with an equivalent

wt (i) = wt−1(i)e
−η

∑Kt
k=1 λ(γt,k (i),ωt,k)/K

and losses do not need to be maintained explicitly.
If C is admissible for G with the learning rate η and pt−1(i), i = 1, 2, . . . , N , the step

on line 8 can always be performed and the (plain) cumulative losses (4) and (5) satisfy the
following inequalities.

Theorem 2 Let C be admissible for G with the learning rate η. Then

1. The learner following AAP-max suffers loss satisfying

LossT (S) ≤ CLossEi (S) + KC

η
ln

1

p(i)

for all outcomes and experts’ predictions as long as the pack size does not exceed K , i.e.,
Kt ≤ K, t = 1, 2, . . . , T .

2. The learner following AAP-incremental suffers loss satisfying

LossT (S) ≤ CLossEi (S) + KC

η
ln

1

p(i)
,

where K is the maximum pack size over T trials, K = maxt=1,2,...,T Kt , for all outcomes
and experts’ predictions.

Proof The proof essentially repeats that of Proposition 1. By induction one can show that

e−ηLosst (S)/(CK t
max) ≥

N∑

i=1

p(i)e−ηLosst (S)/K t
max . (7)

Indeed, Lemma 1 with Remark 2, Corollary 1 with Remark 3, and the step on line 8 of
Protocols 3 and 4 ensure that

e
− η

Kt+1
max

∑Kt+1
k=1 λ(γt+1,k ,ωt+1,k)/C ≥

N∑

i=1

pt (i)e
− η

Kt+1
max

∑Kt+1
k=1 λ(γt+1,k (i),ωt+1,k)

. (8)

If K t+1
max = K t

max, then we simply multiply inequality (7) by inequality (8) and substitute the
expression for pt (i) to get the analogue of inequality (7) for time t + 1. If K t+1

max > K t
max, we

first raise inequality (7) to the power K t
max/K

t+1
max < 1 and apply Jensen’s inequality.

To complete the proof, it remains to drop all terms from the sum in inequality 7 except
for one. 	

123

1242 Machine Learning (2019) 108:1231–1260

4.2 Prediction with bounds on pack averages

The Aggregating Algorithm for Pack Averages (AAP-current) takes as parameters a prior
distribution p(1), p(2), . . . , p(N) (such that p(i) ≥ 0 and

∑N
i=1 p(i) = 1), a learning rate

η > 0 and a constant C admissible for η.

Protocol 5 (AAP-current)

1 initialise weights w0(i) = p(i), i = 1, 2, . . . , N
2 FOR t = 1, 2, . . .
3 normalise the weights pt−1(i) = wt−1(i)/

∑N
i=1 wt−1(i)

4 FOR k = 1, 2, . . . , Kt

5 read the experts’ predictions γt,k(i), i = 1, 2, . . . , N
6 output γt,k ∈ Γ satisfying for all ω ∈ Ω the

inequality λ(γt,k, ω) ≤ −C
η
ln

∑N
i=1 pt−1(i)e−ηλ(γt,k (i),ω)

7 ENDFOR
8 observe the outcomes ωt,k, k = 1, 2, . . . , Kt

9 update the experts’ weights wt (i) = wt−1(i)e−η
∑K

k=1 λ(γt,k (i),ωt,k)/Kt,
i = 1, 2, . . . , N

10 END FOR

In line 9 we divide by the size of the current pack.
Defining cumulative average loss of a strategyS and expertsEi working in the environment

specified by Protocol 1 as

LossaverageT (S) =
T∑

t=1

∑Kt
k=1 λ(γt,k, ωt,k)

Kt
,

LossaverageT (Ei) =
T∑

t=1

∑Kt
k=1 λ(γt,k(i), ωt,k)

Kt
, i = 1, 2, . . . , N ,

we get the following theorem.

Theorem 3 If C is admissible for G with the learning rate η, then the learner following
AAP-current suffers loss satisfying

LossaverageT (S) ≤ CLossaverageEi (S) + C

η
ln

1

p(i)
(9)

for all outcomes and experts’ predictions. 	

Proof We again prove by induction that

e−ηLossaveraget (S)/C ≥
N∑

i=1

p(i)e−ηLossaveraget (S) . (10)

The step on line 6 of Protocol 5 ensures, as in the proof of Theorem 2, that

e
− η

Kt+1

∑Kt+1
k=1 λ(γt+1,k ,ωt+1,k)/C ≥

N∑

i=1

pt (i)e
− η

Kt+1

∑Kt+1
k=1 λ(γt+1,k (i),ωt+1,k)

. (11)

The induction step is by multiplying inequalities (10) and (11). 	

123

Machine Learning (2019) 108:1231–1260 1243

5 Discussion and optimality

The loss bounds from Theorem 2 do not improve on inequality (6), which holds for
Parallel Copies (see Sect. 2.3 for details). However, the performance of AAP-max and AAP-
incremental does not depend on the order of outcomes in packs. In Sect. 6.2.1 we describe
numerical experiments comparing AAP-max, AAP-incremental, and AAP-current against
the loss of Parallel Copies averaged over permutations within packs.

If all Kt are equal, K1 = K2 = · · · = KT = K , the algorithms AAP-max and AAP-
incremental are identical and equivalent to applying the Aggregating Algorithm with the
learning rate η/K to the game GK . Under the conditions of Theorem 1, the optimality
property of the Aggregating Algorithm proven by Vovk (1998) apply. Thus the constants
in the bounds of Theorem 2 cannot be improved without the loss of generality. However, if
the pack size varies, AAP-max clearly uses a suboptimal learning rate η/K where η/Kt is
needed. AAP-incremental does that if the pack size decreases.We compare AAP-incremental
and AAP-max experimentally in Sect. 6.2.2.

The bound of Theorem 3 is, to our knowledge, novel and cannot be straightforwardly
obtained using a parallel copies-type merging strategy. If the pack size is the same, the bound
is optimal (and identical to those fromTheorem2). If the pack size varies,AAP-current always
uses the optimal learning rate. However, technically it is not covered by the optimality results
of Vovk (1998) as the game changes from step to step. We leave this as an open problem.

The bound of Theorem 3 involves cumulative average loss and do not imply good bounds
for plain cumulative loss straightforwardly. If Kmin ≤ K1, K2, . . . , KT ≤ Kmax, then
LossaverageT (S) ≥ LossT (S)/Kmax and Loss

average
Ei (S) ≤ LossEi (S)/Kmin. We get the bound

LossT (S) ≤ Kmax

Kmin
CLossEi (S) + CKmax

η
ln

1

p(i)
(12)

for the cumulative loss of AAP-current, which appears inferior to those from Theorem 2.
However, in experiments AAP-current shows good performance even in terms of the plain
cumulative loss; see Sect. 6.2.3. Bound (12), loose it may be, provides an explanation to
some phenomena we observe in Sect. 6.2.3.

5.1 Amix loss lower bound

In this section we present a self-contained lower bound formulated for the mix loss protocol
of Adamskiy et al. (2016). The proof sheds some further light on the extra term in the bound.

The mix loss protocol covers a number of learning settings including prediction with
a mixable loss function (Adamskiy et al. 2016, Sect. 2). Consider the following protocol
porting mix loss Protocol 1 of Adamskiy et al. (2016) to prediction of packs.

Protocol 6 (Mix loss)

FOR t = 1, 2, . . .
nature announces Kt

learner outputs Kt arrays of N probabilities
pt,k(1), pt,k(2), . . . , pt,k(N), k = 1, 2, . . . , Kt, such that

pt,k(i) ∈ [0, 1] for all i and k and
∑N

i=1 pt,k(i) = 1 for all k
nature announces losses �t,1(i), �t,2(i), . . . , �t,Kt (i) ∈ (−∞,+∞]
learner suffers loss �t = −∑Kt

k=1 ln
∑N

i=1 pt,k(i)e
−�t,k (i)

ENDFOR

123

1244 Machine Learning (2019) 108:1231–1260

The total loss of the learner over T steps is LT = ∑T
t=1 �t . It should compare well against

LT (i) = ∑T
t=1 �t (i), where �t (i) = ∑Kt

k=1 �t,k(i). The values of LT (i) are the counterparts
of experts’ total losses. We shall propose a course of action for the nature leading to a high
value of the regret LT − mini=1,2,...,N LT (i).

Lemma 4 For any K arrays of N probabilities pk(1), pk(2), . . . , pk(N), k = 1, 2, . . . , K
(where pk(i) ∈ [0, 1] for all i = 1, 2, . . . , N and k = 1, 2, . . . , K, and

∑N
i=1 pk(i) = 1 for

all k), there is i0 such that
K∏

k=1

pk(i0) ≤ 1

NK
.

Proof Assume the converse. Let
∏K

k=1 pk(i) > 1/NK for all i . By the inequality of arithmetic
and geometric means

K∑

k=1

pk(i)

K
≥

(
K∏

k=1

pk(i)

) 1
K

for all i = 1, 2, . . . , N . Summing the left-hand side over i we get

N∑

i=1

K∑

k=1

pk(i)

K
= 1

K

K∑

k=1

N∑

i=1

pk(i) = 1 .

Summing the right-hand side over n and using the assumption on the products of pk(i), we
get

N∑

i=1

(
K∏

k=1

pk(i)

) 1
K

>

N∑

i=1

(
1

NK

) 1
K =

N∑

i=1

1

N
= 1 .

The contradiction proves the lemma. 	

Here is the strategy for the nature. Upon getting the probability distributions from the

learner, it finds i0 such that
∏Kt

k=1 pt,k(i0) ≤ 1/NKt and sets �t,1(i0) = �t,2(i0) = · · · =
�t,Kt (i0) = 0 and �t,k(i) = +∞ for all other n and k = 1, 2, . . . , Kt . The learner suffers
loss

�t = −
Kt∑

k=1

ln pt,k = − ln
Kt∏

k=1

pt,k(i0) ≥ − ln
1

NKt
= Kt ln N

while �t (i0) = 0. We see that over a single pack of size K we can achieve the regret of
K ln N . Thus every upper bound of the form LT ≤ LT (i) + R should have R ≥ K1 ln N ,
where K1 is the size of the first pack.

6 Experiments

In this section, we present some empirical results.2 We want to compare the behaviour of
the AAP family algorithms against each other and against the Parallel Copies algorithm of
Sect. 2.3. Appendices B and C investigate related questions concerned with the power of
on-line learning.

2 The code written in R is available at https://github.com/RaisaDZ/AAP-.

123

https://github.com/RaisaDZ/AAP-

Machine Learning (2019) 108:1231–1260 1245

Histogram of Losses: tennis
C

ou
nt

2 34 51

1 AA with Order
2 AAP−current
3 Mean
4 AAP−incremental
5 AAP−max

(a) Tennis data, small packs

Histogram of Losses: tennis

C
ou

nt

2 34 5 1

1 AA with Order
2 AAP−current
3 Mean
4 AAP−incremental
5 AAP−max

(b) Tennis data, large packs

Histogram of Losses: football

C
ou

nt

0
50

10
0

15
0

0
50

10
0

15
0

0
20

40
60

80
10

0
12

0

2 34 5 1

1969 1970 1971 1972 1973 1969.5 1970.5 1971.5 1972.5

856.5 856.6 856.7 856.8 856.9 857.0 857.1 857.2

1 AA with Order
2 AAP−current
3 Mean
4 AAP−incremental
5 AAP−max

(c) Football data

Fig. 1 Histogram of total losses of Parallel Copies with total losses of AAP algorithms on sports datasets

6.1 Datasets and experts

For our experiments, we used two sports datasets and two datasets of house prices.
The idea of using odds output by bookmakers for testing prediction with expert advice

algorithms goes back to Vovk and Zhdanov (2009). The bookmakers are treated as black
boxes; we take the odds they quote from publicly available sources and do not look into tech-
niques they use to work out the odds. This fits perfectly with the methodology of prediction
with expert advice.

There is a tradition of using house prices as a benchmark for machine learning algorithms
going back to the Boston housing dataset. However, batch learning protocols have hitherto
been used in most studies. Recently extensive datasets with timestamps have become avail-
able. They call for on-line learning protocols. Property prices are prone to strong movements

123

1246 Machine Learning (2019) 108:1231–1260

Histogram of Losses: Ames
C

ou
nt

1 2 34
5

1 AA with Order
2 AAP−current
3 Mean
4 AAP−incremental
5 AAP−max

(a) Regression on Ames house prices

Histogram of Losses: Ames

C
ou

nt

1 2 34 5
1 AA with Order
2 AAP−current
3 Mean
4 AAP−incremental
5 AAP−max

(b) RF on Ames house prices

Histogram of Losses: Ames

C
ou

nt

1
2 3

4
5

1 AA with Order
2 AAP−current
3 Mean
4 AAP−incremental
5 AAP−max

(c) Regression on Ames house log-prices

Histogram of Losses: Ames

C
ou

nt

82.75 82.80 82.85 82.90 82.95 83.00 61.60 61.61 61.62 61.63 61.64 61.65 61.66 61.67

0
20

40
60

80
10

0
12

0

0
50

10
0

15
0

0
20

40
60

80

0
50

10
0

15
0

1 2 3 4 5

2.93e+12 2.95e+12 2.97e+12
μ − σ μ μ + σ

1.900e+12 1.910e+12 1.920e+12
μ − σ μ μ + σ

μ − σ μ μ + σ μ − σ μ μ + σ

1 AA with Order
2 AAP−current
3 Mean
4 AAP−incremental
5 AAP−max

(d) RF on of Ames house log-prices

Fig. 2 Histogram of total losses of Parallel Copies with total losses of AAP algorithms on house price datasets

over time and the pattern of change may be complicated. On-line algorithms should capture
these patterns.

We train learning algorithms (regression and trees) on housing data and then use methods
of prediction with expert advice to merge their predictions.

6.1.1 Sports datasets

In order to establish continuity with the existing empirical work, we use the tennis dataset3

studied by Vovk and Zhdanov (2009). It contains historical information about tennis tour-
naments from 2004, 2005, 2006, and 2007, including Australian Open, French Open, US
Open, and Wimbledon. The outcomes in the dataset are results of tennis matches coded as 0

3 Available at http://vovk.net/ICML2008/.

123

http://vovk.net/ICML2008/

Machine Learning (2019) 108:1231–1260 1247

Time

Lo
ss

 A
A

P
−i

nc
re

m
en

ta
l −

 L
os

s
A

A
P

−m
ax

Loss difference
current max pack

(a) Tennis data, small packs
Time

Lo
ss

 A
A

P
−i

nc
re

m
en

ta
l −

 L
os

s
A

A
P

−m
ax

Loss difference
current max pack

(b) Tennis data, large packs

0 1000 2000 3000 4000 5000 0 200 400 600 800

0 100 200 300 400

Time

Lo
ss

 A
A

P
−i

nc
re

m
en

ta
l −

 L
os

s
A

A
P

−m
ax

−0
.1

2
−0

.0
8

−0
.0

4
0.

00

2
4

6
8

10
12

−0
.0

14
−0

.0
10

−0
.0

06
−0

.0
02

10
11

12
13

14
15

16

−0
.0

4
−0

.0
3

−0
.0

2
−0

.0
1

0.
00

2
4

6
8

10

Loss difference
current max pack

(c) Football data

Fig. 3 Difference of cumulative losses of AAP-incremental and AAP-max versus time on sports data with
cumulative maximum pack sizes superimposed

or 1 according to which side wins (there can be no draws). The total number of outcomes is
10,087. A prediction is γ ∈ [0, 1], which can be understood as the probability of the outcome
1. We use the quadratic loss function λ(γ, ω) = (γ − ω)2. This falls under the definition of
the general square loss game described in Sect. 2.2 (see Remark 1 for the discussion of the
substitution function). Note that the loss function used in this paper equals one half of the
one used by Vovk and Zhdanov (2009); we make this choice for consistency with regression
experiments.

Four bookmakers are taken as experts, Bet365, Centrebet, Expekt, and Pinnacle Sports.
What bookmakers output is odds and we need probabilities for the experiments. Vovk and
Zhdanov (2009) give two methods for calculating the probabilities. For this dataset Khut-
sishvili’s method (Vovk and Zhdanov 2009, Sect. 3) was used.

The dataset does not contain packs, so we introduced them artificially. We did this in two
ways. First, we grouped adjacent matches into packs of random size from 1 to 12. We refer to
the resulting dataset as tennis with small packs. Secondly, we grouped adjacent matched into
packs of random size from 5 to 16 and thus constructed the tennis with large packs dataset.
(The sizes were independently drawn from respective uniform distributions.)

123

1248 Machine Learning (2019) 108:1231–1260

Time

Lo
ss

 A
A

P
−i

nc
re

m
en

ta
l −

 L
os

s
A

A
P

−m
ax

Loss difference
current max pack

(a) Regression on Ames house prices

Time

Lo
ss

 A
A

P
−i

nc
re

m
en

ta
l −

 L
os

s
A

A
P

−m
ax

Loss difference
current max pack

(b) RF on Ames house prices

Time

Lo
ss

 A
A

P
−i

nc
re

m
en

ta
l −

 L
os

s
A

A
P

−m
ax

Loss difference
current max pack

(c) Regression on London house prices

0 10 20 30 40 0 10 20 30 40

0 10 20 30 40 50 0 10 20 30 40 50

Time

Lo
ss

 A
A

P
−i

nc
re

m
en

ta
l −

 L
os

s
A

A
P

−m
ax

−3
e+

08
−1

e+
08

0e
+0

0
1e

+0
8

40
60

80
10

0

−4
e+

08
−3

e+
08

−2
e+

08
−1

e+
08

0e
+0

0

40
60

80
10

0

−1
e+

13
−6

e+
12

−2
e+

12

15
00

0
20

00
0

25
00

0
30

00
0

−2
.5

e+
13

−1
.5

e+
13

−5
.0

e+
12

15
00

0
20

00
0

25
00

0
30

00
0

Loss difference
current max pack

(d) RF on London house prices

Fig. 4 Difference of cumulative losses of AAP-incremental and AAP-max versus time on house price datasets
with cumulative maximum pack sizes superimposed

The second sports dataset was compiled by us from historical information4 on football
matches and bookmakers’ odds. The dataset covers four seasons, 2013/2014, 2014/2015,
2015/2016, and 2016/2017 of the English Premier League and totals 1520 matches. Each
match can have three outcomes, ‘home win’, ‘draw’, or ‘away win’, interpreted as three
unit vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1). A prediction is a vector γ = (p1, p2, p3) from
the simplex, i.e., pi ≥ 0 and p1 + p2 + p3 = 1 and the loss is the quadratic norm of the
difference, λ(γ, ω) = ‖γ − ω‖22. This is a case of the multidimensional Brier game (Vovk
and Zhdanov 2009). The game is mixable and the maximum learning rate such that Cη = 1
is η0 = 1; the substitution function is provided by Vovk and Zhdanov (2009, Proposition 2).

We recalculated experts prediction probabilities from bookmakers’ odds using the simpler
method described by Vovk and Zhdanov (2009, “Appendix B”) for speed. We took Bet365,
Bet&Win, Interwetten, Ladbrokes, Sportingbet,Will Hill, Stan James, VCBet, and BetBrain.

The dataset is naturally organised in packs: from 1 to 10 matches occur on one day. We
treat matches from the same day as a pack.

4 Available at http://Football-Data.co.uk.

123

http://Football-Data.co.uk

Machine Learning (2019) 108:1231–1260 1249

0 10 20 30 40

−0
.0

25
−0

.0
15

−0
.0

05
0.

00
0

Time

Lo
ss

 A
A

P
−i

nc
re

m
en

ta
l −

 L
os

s
A

A
P

−m
ax

40
60

80
10

0

Loss difference
current max pack

(a) Regression on Ames house prices

0 10 20 30 40−0
.0

02
5

−0
.0

01
5

−0
.0

00
5

Time

Lo
ss

 A
A

P
−i

nc
re

m
en

ta
l −

 L
os

s
A

A
P

−m
ax

40
60

80
10

0

Loss difference
current max pack

(b) RF on Ames house prices

0 10 20 30 40 50

−1
2

−1
0

−8
−6

−4
−2

0

Time

Lo
ss

 A
A

P
−i

nc
re

m
en

ta
l −

 L
os

s
A

A
P

−m
ax

15
00

0
20

00
0

25
00

0
30

00
0

Loss difference
current max pack

(c) Regression on London house prices

0 10 20 30 40 50

−2
5

−2
0

−1
5

−1
0

−5
0

Time

Lo
ss

 A
A

P
−i

nc
re

m
en

ta
l −

 L
os

s
A

A
P

−m
ax

15
00

0
20

00
0

25
00

0
30

00
0

Loss difference
current max pack

(d) RF on London house prices

Fig. 5 Difference of cumulative losses of AAP-incremental and AAP-max versus time on logarithms of house
prices with cumulative maximum pack sizes superimposed

6.1.2 Ames house prices

The Ames dataset describes the property sales that occurred in Ames, Iowa between 2006
and 2010. The dataset contains records of 2930 house sales transactions with 80 attributes,
which are a mixture of nominal, ordinal, continuous, and discrete parameters (including
physical property measurements) affecting the property value. The dataset was compiled by
De Cock (2011) for use in statistics education as a modern substitute for the Boston Housing
dataset. For the outcome we take the raw sales prices or their logarithms; these make two
sets of experiment. We try to predict the outcomes measuring the deviation by the squared
difference. This again falls under the definition of the general square loss game of Sect. 2.2.
The bounds A and B are taken from the first year of data, which is used for training.

There are timestamps in the dataset, but they contain only the month and the year of the
purchase. The date is not available. We treat one month of transactions as a pack and interpret
the problem as an on-line one falling under Protocol 1.

We create two pools of experts for experiments. In the first pool, our experts are linear
regression models based on only two attributes: the neighbourhood and the total square

123

1250 Machine Learning (2019) 108:1231–1260

0 1000 2000 3000 4000 5000

−1
.0

−0
.5

0.
0

0.
5

1.
0

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
A

A
P

−i
nc

re
m

en
ta

l

(a) Tennis data, small packs

0 200 400 600 800

−0
.2

5
−0

.2
0

−0
.1

5
−0

.1
0

−0
.0

5
0.

00

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
A

A
P

−i
nc

re
m

en
ta

l

(b) Tennis data, large packs

0 100 200 300 400−0
.0

2
0.

00
0.

02
0.

04
0.

06
0.

08

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
A

A
P

−i
nc

re
m

en
ta

l

(c) Football data

Fig. 6 Difference of cumulative losses of AAP-current and AAP-incremental versus time on sports data

footage of the dwelling. These simple models explain around 80% of the variation in sales
prices and they are very easy to train. Each expert has been trained on onemonth from the first
year of the data. Hence there are 12 ‘monthly’ experts. For the second pool we use random
forests (RF) models after Bellotti http://wwwf.imperial.ac.uk/~abellott/publications.htm. A
model was built for each quarter of the first year. Hence there are four ‘quarterly’ experts.
They take longer to train but produce better results. Note that ‘monthly’ RF experts were
not practical; training a tree requires a lot of data and ‘monthly’ experts returned very poor
results. We apply the experts to predict the prices starting from year two.

6.1.3 London house prices

Another dataset we used contains house prices in and around London over the period 2009
to 2014. This dataset was made publicly available by the Land Registry5 in the UK and was
originally sourced as part of a Kaggle competition. The Property Price data consists of details

5 SeeHMLandRegistryMonthlyPropertyTransactionData onhttp://data.gov.uk, https://data.gov.uk/dataset/
7d866093-2af5-4076-896a-2d19ca2708bb/hm-land-registry-monthly-property-transaction-data.

123

http://wwwf.imperial.ac.uk/~abellott/publications.htm
http://data.gov.uk
https://data.gov.uk/dataset/7d866093-2af5-4076-896a-2d19ca2708bb/hm-land-registry-monthly-property-transaction-data
https://data.gov.uk/dataset/7d866093-2af5-4076-896a-2d19ca2708bb/hm-land-registry-monthly-property-transaction-data

Machine Learning (2019) 108:1231–1260 1251

0 10 20 30 40−3
.0

e+
09

−2
.0

e+
09

−1
.0

e+
09

0.
0e

+0
0

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
A

A
P

−i
nc

re
m

en
ta

l

20
40

60
80

10
0

Loss difference
current size of pack

(a) Regression on Ames house prices

0 10 20 30 40−3
.0

e+
09

−2
.0

e+
09

−1
.0

e+
09

0.
0e

+0
0

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
A

A
P

−i
nc

re
m

en
ta

l

20
40

60
80

10
0

Loss difference
current size of pack

(b) RF on Ames house prices

0 10 20 30 40 50−1
e+

13
−6

e+
12

−2
e+

12

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
A

A
P

−i
nc

re
m

en
ta

l

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

Loss difference
current size of pack

(c) Regression on London house prices

0 10 20 30 40 50−2
.5

e+
13

−1
.5

e+
13

−5
.0

e+
12

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
A

A
P

−i
nc

re
m

en
ta

l

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

Loss difference
current size of pack

(d) RF on London house prices

Fig. 7 Difference of cumulative losses of AAP-current and AAP-incremental versus time on house price data
with current pack sizes superimposed

for property sales and contains around 1.38 million observations. This dataset was studied
by Bellotti (2017) to provide reliable region predictions for Automated Valuation Models of
house prices. Again, we try to predict sales prices and their logarithms.

As with the Ames dataset, we use linear regression models that were built for each month
of the first year of the data as experts of AAP. The features that were used in regression
models contain information about the property: property type, whether new build, whether
free- or leasehold. Along with the information about the proximity to tube and railway
stations, our models use the English indices of deprivation from 2010,6 which measures
relative levels of deprivation. The following deprivation scores were used in models: income,
employment, health and disability, education for children and skills for adults, barriers to
housing and serviceswith sub-domainswider barriers and geographical barriers, crime, living
environment score with sub-domains for indoor and outdoor living (i.e., quality of housing
and external environment, respectively). In addition to the general income score, separate
scores for income deprivation affecting children and the older population were used.

6 See https://www.gov.uk/government/statistics/english-indices-of-deprivation-2010.

123

https://www.gov.uk/government/statistics/english-indices-of-deprivation-2010

1252 Machine Learning (2019) 108:1231–1260

0 10 20 30 40

−0
.0

4
−0

.0
3

−0
.0

2
−0

.0
1

0.
00

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
A

A
P

−i
nc

re
m

en
ta

l

20
40

60
80

10
0

Loss difference
current size of pack

(a) Regression on Ames house prices

0 10 20 30 40−0
.0

07
−0

.0
05

−0
.0

03
−0

.0
01

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
A

A
P

−i
nc

re
m

en
ta

l

20
40

60
80

10
0

Loss difference
current size of pack

(b) RF on Ames house prices

0 10 20 30 40 50

−1
0

−8
−6

−4
−2

0

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
A

A
P

−i
nc

re
m

en
ta

l

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

Loss difference
current size of pack

(c) Regression on London house prices

0 10 20 30 40 50

−2
0

−1
5

−1
0

−5
0

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
A

A
P

−i
nc

re
m

en
ta

l

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

Loss difference
current size of pack

(d) RF on London house prices

Fig. 8 Difference of cumulative losses of AAP-current and AAP-incremental versus time on logarithms of
house price datasets with current pack sizes superimposed

In the second set of experiments on London house price dataset, we use RF models built
for each month of the first year as experts. Unlike the Ames dataset, London dataset contains
enough observations to train RF models on one month of data. Hence we get 12 ‘monthly’
experts.

6.2 Comparison of merging algorithms

6.2.1 Comparison of AAP with parallel copies of AA

We start by comparing the family of AAP merging algorithms against parallel copies of AA.
While for AAP algorithms the order of examples in the packmakes no difference, for Parallel
Copies it is important. To analyse the dependency on the order we ran Parallel Copies 500
times randomly shuffling each pack each time. The experiments were only carried out on
sports andAmes data, as onLondon data theywould take too long to complete. Figures 1 and 2

123

Machine Learning (2019) 108:1231–1260 1253

Ames

size of pack

C
ou

nt

0 20 40 60 80 100 120

0
5

10
15

(a) Ames pack sizes

Football

size of pack
C

ou
nt

2 4 6 8 10

0
50

10
0

15
0

(b) Football pack sizes

Fig. 9 Histograms of pack sizes

show histograms of total losses of Parallel Copies, total losses of AAP family algorithms,
and the total loss of Parallel Copies with one particular order, as in the database.

We see that while the performance of Parallel Copies can be better for particular orderings,
order-independent performance loss of AAP family algorithms is always close to the average
loss of Parallel Copies and some algorithms from the family beat it. AAP-current is always
better than the average. In experiments with Ames data and tennis data with large packs
AAP-current is the best while AAP-incremental is the best on tennis data with small packs
and football data.

There is one remarkable orderingwhereParallelCopies showgreatly superior performance
on Ames data. If packs are ordered by PID (i.e., as in the database), Parallel Copies suffer
substantially lower loss. PID (Parcel identification ID) is assigned to each property by the
tax assessor. It is related to the geographical location. When the packs are ordered by PID,
Parallel Copies benefit from geographical proximity of the houses; each copy happens to get
similar houses.

This effect is not observed on sports datasets as the order in the dataset does not convey
any particular information.

6.2.2 Comparison of AAP-incremental and AAP-max

As one can see from Figs. 1 and 2, AAP-max is usually the worst among the AAP bunch.
In this section we check this by comparing AAP-max against AAP-incremental. Here AAP-
max receives the maximum pack size calculated retrospectively from the start and AAP-
incremental uses the current maximum.

For a detailed comparison of two on-line learning algorithms, S1 and S2, it is not enough
to consider the two values of their total losses LossS1(T) and LossS2(T). We need to see
how these losses were accumulated. So, following Vovk and Zhdanov (2009) and Kalnishkan
et al. (2015), we plot the difference of their cumulative losses, LossS1(t) −LossS2(t) versus
time t . If the difference steadily decreases, then S1 consistently outperforms S2.

123

1254 Machine Learning (2019) 108:1231–1260

Figures 3, 4, and 5 plot the differences in total losses of AAP-incremental and AAP-max
on sports datasets, house prices, and logarithms of house prices, respectively. Over the graphs
of the difference of losses, the values of K t

max = maxs=1,2,...,t , the current maximum pack
size, are superimposed.

We see that AAP-incremental generally performs better at the beginning of the period
when the current maximum size of the pack is much lower than the maximum pack of the
whole period. The difference of the losses then goes down in the figure. As the current
maximum reaches the overall maximum, the difference of losses may level out or even go
up sometimes. This means that the performance of AAP-incremental is no longer superior
to the performance of AAP-max.

These observations are consistent with the discussion in Sect. 5: AAP-max uses a subop-
timal learning rate before the maximum pack size is achieved.

On London house prices (and their logarithms), where the maximum pack size is achieved
very late, AAP-incremental outperforms AAP-max in a steady fashion. After the maximum
pack size has been reached, the effect lingers. A possible explanation is that AAP-incremental
was learning from its feedback in a more effective way throughout the most of the dataset.

6.2.3 Comparison of AAP-current and AAP-incremental

The comparison ofAAP-current andAAP-incremental provides amore challenging problem:
sometimes one performs better and sometimes the other. Recall that we assess AAP-current
by the plain cumulative loss (4) for comparison purposes.

Figures 6, 7, and 8 show the difference in plain cumulative losses of AAP-current and
AAP-incremental for sports dataset, house prices and logarithms of house prices, respectively.

We see that AAP-current outperforms AAP-incremental on house prices and tennis data
with large packs. The performance of AAP-current is remarkable because by design it is not
optimised to minimise the total loss; see the discussion in Sect. 5. In a way, here we assess
AAP-current with a measure it is not good at. Still optimal decisions of AAP-current produce
superior performance.

Poor performance of AAP-current on tennis data with small packs and football data calls
for an explanation. We attempt to explain this using upper bound (12). By design, the two
tennis datasets differ in the ratio of the maximum and the minimum pack size: for the dataset
with small packs it is 12/1 = 12 and for the dataset with large packs it is 16/5 = 3.2 (note
that the differences are the same).

For the football and housing datasets we do not control the ratio of the maximum and
minimum pack sizes. For the football dataset, where AAP-current performs poorly, the ratio
is 10/1 = 10 and for the London house prices, where it performs well, the ratio is much less
and equals 29,431/8900 = 3.3.

The Ames dataset apparently does not fit the pattern with a large ratio of 112/8 = 14.
However, one can see from the histogram shown on Fig. 9 that packs of small size are
relatively rare; if we ignore them, the ratio immediately goes down. The same argument does
not apply to the football dataset with plenty of small packs.

6.3 Conclusions

This section summarises the conclusions from empirical experiments.
We have found that the average performance of Parallel Copies of AA is close to the

performance of the AAP family. Some members of the family (especially AAP-incremental

123

Machine Learning (2019) 108:1231–1260 1255

and AAP-current) often perform better than the average. However, Parallel Copies may be
able to benefit from extra information contained in the order.

We have also found that AAP-incremental typically outperforms AAP-max, especially
before the pack size has reached the maximum. Therefore, we do not need to know the
maximum size of the pack in advance.

AAP-current may outperform AAP-incremental in terms of the plain loss, especially if
the ratio of maximum and minimum pack sizes is small.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Aggregating Algorithm for making individual predictions

In this appendix we formulate the Aggregating Algorithm for making individual predictions
following Vovk (1990, 1998), prove Proposition 1, and discuss optimality of its bound.

Consider Protocol 2, where Kt = 1, t = 1, 2, . . .; we drop the second lower index k for
brevity.

As discussed in Sect. 2.2, the AA takes as parameters a learning rate η > 0, a constant
C admissible for G with η, and a prior distribution p(1), p(2), . . . , p(N) (p(i) ≥ 0 and∑N

i=1 p(i) = 1) on experts E1, E2, . . . , EN . The algorithm works according to the following
protocol.

Protocol 7 (AA)

1 initialise weights w0(i) = p(i), i = 1, 2, . . . , N
2 FOR t = 1, 2, . . .
3 read the experts’ predictions γt (i), i = 1, 2, . . . , N
4 normalise the weights pt−1(i) = wt−1(i)/

∑N
i=1 wt−1(i)

5 output γt ∈ Γ satisfying for all ω ∈ Ω the inequality

λ(γt , ω) ≤ −C
η
ln

∑N
i=1 pt−1(i)e−ηλ(γt (i),ω)

6 observe the outcome ωt

7 update the experts’ weights wt (i) = wt−1(i)e−ηλ(γt (i),ωt),
i = 1, 2, . . . , N

8 END FOR

Since C is admissible, a suitable γt can always be found on line 5. For a particular game
G, a simple method can usually be used, such as the substitution function from Remark 1.

We can now sketch the proof of Proposition 1.

Proof Inequality (1) can be rewritten as

e−ηλ(γ,ω)/C ≥
N∑

i=1

p(i)e−ηλ(γ (i),ω) .

One can check by induction that the equality

e−ηLosst (S)/C ≥
N∑

i=1

p(i)e−ηLosst (Ei)

123

http://creativecommons.org/licenses/by/4.0/

1256 Machine Learning (2019) 108:1231–1260

holds for all t = 1, 2, Dropping all terms but one on the right-hand side we get the desired
inequality. 	

Let us discuss the optimality of AA following Vovk (1998). Consider the set L ⊆
[0,+∞)2 of points (c, a) such that there is a strategy for the learner S making sure for
any finite set of experts E1, E2, . . . , EN that

Losst (S) ≤ cLosst (Ei) + a ln N (13)

for all t = 1, 2, . . . and i = 1, 2, . . . , N . If (c1, a1) ∈ L and c2 and a2 are such that c2 ≥ c1
and a2 ≥ a1, then clearly (c2, a2) ∈ L.

Let C = {(c(η), a(η)) | η ∈ [0,+∞]} ⊆ [0,+∞]2, where
c(η) = Cη ,

a(η) = Cη

η

for η ∈ (0,+∞) and c(0), a(0), c(+∞), and a(+∞) are the limits of c(η) and a(η) as
η → 0 or η → +∞, respectively (the limits always exist). Vovk (1998, Theorem 1,) shows
that under the following assumptions

1. The prediction space Γ is a compact topological space.
2. The function λ(·, ω) is continuous in the first argument for every ω ∈ Ω .
4. There is γ0 ∈ Γ such that λ(γ0, ω) < +∞ for every ω ∈ Ω .
5. There is no γ ∈ Γ such that λ(γ, ω) = 0 for every ω ∈ Ω .

the boundary of L relative to [0,+∞)2 coincides with C ∩ R
2, the finite part of C.

Under the assumptions either the set C collapses to one point (+∞,+∞) or the part cor-
responding to η ∈ (0,+∞) is a continuous curve (Vovk 1998, Lemma 10) going ‘northwest
to southeast’, i.e., c(η) is non-decreasing and a(η) is non-increasing (Vovk 1998, Lemma 9).

Since c(η) ≥ 1 (Vovk 1998, Lemma 8), we get a(η) ≥ 1/η and a(0) = +∞. Thus
the curve C starts ‘at the top’ of the quadrant [0,+∞)2. Since a(η)/c(η) = 1/η → 0 as
η → +∞, we get either a(+∞) = 0 or c(+∞) = +∞, i.e., the curve C finishes ‘at the
bottom’ or ‘on the right’ of [0,+∞)2 or both (Vovk 1998, Lemma 11).

It is easy to see that every point from L is lower bounded by some point from C, i.e., for
every (c, a) ∈ L there is η ∈ [0,+∞] such that c(η) ≤ c and a(η) ≤ a. If a > 0, then we
can choose η ∈ (0,+∞) and the Aggregating Algorithmwith the learning rate η, admissible
Cη, and uniform prior distribution achieves loss satisfying

Losst (S) ≤ CηLosst (Ei) + Cη

η
ln N ,

where Cη ≤ c and Cη/η ≤ a. Thus if any algorithm assures bound (13) with a > 0, then the
Aggregating Algorithm can do the same or better.

Remark 4 It is possible to define a special ‘limit case’ of theAAforη = +∞ to drop thea > 0
clause (Vovk 1998, Sect. 4). It is easy to see that for any distribution p(1), p(2), . . . , p(N)

we have

−1

η

N∑

i=1

p(i)e−η�i → min
i=1,...,N : p(i)>0

�i

123

Machine Learning (2019) 108:1231–1260 1257

as η → +∞. We can thus call C admissible for η = +∞ if for every positive integer N and
every set of predictions γ (1), γ (2), . . . , γ (N) ∈ Γ there is γ ∈ Γ such that for all outcomes
ω ∈ Ω the inequality

λ(γ, ω) ≤ C min
i=1,...,N

λ(γ (i), ω) (14)

holds. If c(+∞) < +∞, then C = c(+∞) is admissible for η = +∞ by continuity
and we can formulate the Aggregating Algorithm as follows. It is independent of prior
probabilities p(i), maintains no weights wt (i), and on line 5 outputs a prediction γt such
that λ(γt , ω) ≤ Cλ(γt (i), ω) for all i = 1, 2, . . . , N and ω ∈ Ω . The learner S using this
algorithm achieves the bound

Losst (S) ≤ CLosst (Ei) . (15)

The special case appears to be of little practical use.

Appendix B: Comparison of AAPwith batchmodels

In this appendixwe compareAAP-currentwith two straightforwardways of prediction,which
are essentially batch. One goal we have here is to do a sanity check and verify whether we are
not studying properties of very bad algorithms. Secondly, we want to show that prediction
with expert advice may yield better ways of handling the available historical information as
suggested by Kalnishkan et al. (2015).

In AAP we use linear regression models that have been trained on each month of the first
year of data. Is the performance of these models affected by straightforward seasonality?
What if we always predict January with the January model, February with the February
model etc?

The first batch model we compare our on-line algorithm to is the seasonal model that
predicts Januarywith the linear regressionmodel trained on January of the first year, February
with the linear model trained on February of the first year, etc.

0 10 20 30 40

−1
.5

e+
12

−1
.0

e+
12

−5
.0

e+
11

0.
0e

+0
0

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
M

on
th

ly

(a) Loss difference of AAP-current and
monthly batch

0 10 20 30 40

−2
e+

10
0e

+0
0

2e
+1

0

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
Ye

ar

(b) Loss difference of AAP-current and
year batch

Fig. 10 Difference of cumulative losses of AAP and batch models versus time on house price data

123

1258 Machine Learning (2019) 108:1231–1260

0 10 20 30 40

−3
5

−3
0

−2
5

−2
0

−1
5

−1
0

−5
0

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
M

on
th

ly

(a) Loss difference of AAP-current and
monthly batch

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
Ye

ar

(b) Loss difference of AAP-current and
year batch

Fig. 11 Difference of cumulative losses of AAP and batch models versus time on log prices

In the case of ‘quarterly’ RF experts, we compete with a seasonal model that predicts the
first quarter with the RF model trained on the first quarter, second quarter with the RF model
trained on the second quarter, etc.

Secondly, what if we train a model on the whole of the first year? This may be more
expensive than training smaller models, but what do we gain in performance? The second
batch model is the linear model trained on the whole first year of data. In case of RF experts,
we compete with RF model trained on the first year of data.

Figures 10 and 11 show the comparison of total losses of AAP-current and batch linear
regression models for Ames house dataset for prices and logarithmic prices respectively.
AAP-current consistently performs better than the seasonal batch model. Thus the straight-
forward utilisation of seasonality does not help.

When compared to the linear regression model of the first year, AAP-current initially
has higher losses but it becomes better towards the end. It could be explained as follows.
AAP-current needs time to train until it becomes good in prediction. These results show that
we can make a better use of the past data with prediction with expert advice than with models
trained in the batch mode. However, these results do not hold for logarithmic prices where
the linear regression model of the first year outperforms AAP-current almost on the whole
period of the dataset.

Appendix C: Improving predictions with inflation data

In the evolution of house prices a significant role is played by inflation. While on Ames
data the overall trend is hardly visible, London house prices show a clear upward trend. One
may wonder to what extent taking inflation information into account improves the quality of
predictions and whether the effects we observed still stand if inflation is considered.

We used Acadata House Price Index (HPI) data7 to improve the quality of our prediction.
Every expert was adjusted on the basis of inflation data. For every month passed since the
expert had been trained, we added to the log price it predicted the value of ln(1 + r), where

7 Available at http://www.acadata.co.uk/acadataHousePrices.php.

123

http://www.acadata.co.uk/acadataHousePrices.php

Machine Learning (2019) 108:1231–1260 1259

Fig. 12 Cumulative losses of
AAP-current with experts
adjusted and not adjusted for
inflation

0 10 20 30 40 50

0
50

00
0

10
00

00
15

00
00

20
00

00

Time

C
um

ul
at

iv
e

Lo
ss

1

2

3

4

1 AAP−current regression
2 AAP−current regression with inf
3 AAP−current RF
4 AAP−current RF with inf

0 10 20 30 40 50

−1
2

−1
0

−8
−6

−4
−2

0

Time

Lo
ss

 A
A

P
−i

nc
re

m
en

ta
l −

 L
os

s
A

A
P

−m
ax

15
00

0
20

00
0

25
00

0
30

00
0

Loss difference
current max pack

(a) Regression on London house prices

0 10 20 30 40 50

−2
5

−2
0

−1
5

−1
0

−5
0

Time

Lo
ss

 A
A

P
−i

nc
re

m
en

ta
l −

 L
os

s
A

A
P

−m
ax

15
00

0
20

00
0

25
00

0
30

00
0

Loss difference
current max pack

(b) RF on London house prices

Fig. 13 Difference of cumulative losses of AAP-incremental and AAP-max versus time on log prices with
inflation

0 10 20 30 40 50

−1
0

−8
−6

−4
−2

0

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
A

A
P

−i
nc

re
m

en
ta

l

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

Loss difference
current size of pack

(a) Regression on London house prices

0 10 20 30 40 50

−2
0

−1
5

−1
0

−5
0

Time

Lo
ss

 A
A

P
−c

ur
re

nt
 −

 L
os

s
A

A
P

−i
nc

re
m

en
ta

l

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

Loss difference
current size of pack

(b) RF on London house prices

Fig. 14 Difference of cumulative losses of AAP-current and AAP-incremental versus time on log prices with
inflation

123

1260 Machine Learning (2019) 108:1231–1260

r is the monthly index calculated by Acadata. (The index for the month when transactions
occurred was not used; we assumed this information is only available afterwards.)

Figure 12 shows the comparison of cumulative losses of AAP-current with and without
inflation. It is clear from the graph that taking inflation into account improves both linear
regression and random forests experts. As original experts were built on the first year of the
dataset, they consistently under-estimate house prices for more recent data.

Figure 13 illustrates the comparison of total losses of AAP-incremental and AAP-max
on log prices with experts adjusted for inflation. Figure 14 illustrates the comparison
of total losses of AAP-current and AAP-incremental. The patterns are similar to what
we previously observed: AAP-current consistently outperforms AAP-incremental, whereas
AAP-incremental is better than AAP-max on the whole period of data.

References

Adamskiy, D., Koolen, W. M., Chernov, A., & Vovk, V. (2016). A closer look at adaptive regret. The Journal
of Machine Learning Research, 17(23), 1–21.

Bellotti, A. Reliable region predictions for automated valuation models: supplementary material for Ames
housing data. Retrieved 20 December 2018, from http://wwwf.imperial.ac.uk/~abellott/publications.
htm.

Bellotti, A. (2017). Reliable region predictions for automated valuation models. Annals of Mathematics and
Artificial Intelligence, 81, 71–74.

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge: Cambridge University
Press.

De Cock, D. (2011). Ames, Iowa: Alternative to the Boston housing data as an end of semester regression
project. Journal of Statistics Education, 19(3). https://doi.org/10.1080/10691898.2011.11889627.

Joulani, P., Gyorgy, A., & Szepesvári, C.: Online learning under delayed feedback. In Proceedings of the 30th
international conference on machine learning (ICML-13), (pp. 1453–1461).

Kalnishkan, Y., Vovk, V., & Vyugin, M. V. (2004). Loss functions, complexities, and the Legendre transfor-
mation. Theoretical Computer Science, 313(2), 195–207.

Kalnishkan,Y.,Adamskiy,D.,Chernov,A.,&Scarfe, T.: Specialist experts for predictionwith side information.
In 2015 IEEE international conference on data mining workshop (ICDMW), (pp. 1470–1477). IEEE,
(2015).

Littlestone, N., & Warmuth, M. K. (1994). The weighted majority algorithm. Information and Computation,
108, 212–261.

Loève, M. (1977). Probability theory I (4th ed.). New York: Springer.
Quanrud, K., Khashabi, D. (2015). Online learning with adversarial delays. In Advances in neural information

processing systems, (pp. 1270–1278).
Vovk, V. (1990). Aggregating strategies. InProceedings of the 3rd annual workshop on computational learning

theory, (pp. 371–383), San Mateo, CA: Morgan Kaufmann.
Vovk, V. (1998). A game of prediction with expert advice. Journal of Computer and System Sciences, 56,

153–173.
Vovk, V. (2001). Competitive on-line statistics. International Statistical Review, 69(2), 213–248.
Vovk, V., & Zhdanov, F. (2009). Prediction with expert advice for the Brier game. Journal ofMachine Learning

Research, 10, 2445–2471.
Weinberger, M. J., &Ordentlich, E. (2002). On delayed prediction of individual sequences. IEEE Transactions

on Information Theory, 48(7), 1959–1976.
Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In Proceed-

ings of the 20th international conference on machine learning (ICML-03), (pp. 928–936).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://wwwf.imperial.ac.uk/~abellott/publications.htm
http://wwwf.imperial.ac.uk/~abellott/publications.htm
https://doi.org/10.1080/10691898.2011.11889627

	Aggregating Algorithm for prediction of packs
	Abstract
	1 Introduction
	2 Preliminaries and background
	2.1 Protocols for prediction of packs
	2.2 Packs of size one
	2.3 Delayed feedback approach

	3 Mixability
	4 Algorithms for prediction of packs
	4.1 Prediction with plain bounds
	4.2 Prediction with bounds on pack averages

	5 Discussion and optimality
	5.1 A mix loss lower bound

	6 Experiments
	6.1 Datasets and experts
	6.1.1 Sports datasets
	6.1.2 Ames house prices
	6.1.3 London house prices

	6.2 Comparison of merging algorithms
	6.2.1 Comparison of AAP with parallel copies of AA
	6.2.2 Comparison of AAP-incremental and AAP-max
	6.2.3 Comparison of AAP-current and AAP-incremental

	6.3 Conclusions

	Appendix A: Aggregating Algorithm for making individual predictions
	Appendix B: Comparison of AAP with batch models
	Appendix C: Improving predictions with inflation data
	References

