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Abstract
Conditional expectiles are becoming an increasingly important tool in finance as well as in
other areas of applications. We analyse a support vector machine type approach for esti-
mating conditional expectiles and establish learning rates that are minimax optimal modulo
a logarithmic factor if Gaussian RBF kernels are used and the desired expectile is smooth
in a Besov sense. As a special case, our learning rates improves the best known rates for
kernel-based least squares regression in aforementioned scenario. Key ingredients of our
statistical analysis are a general calibration inequality for the asymmetric least squares loss,
a corresponding variance bound as well as an improved entropy number bound for Gaussian
RBF kernels.

Keywords Support vector machines · Self-calibration inequality · Variance bound · Entropy
number bound · Learning rates

1 Introduction

Given i.i.d samples D := ((x1, y1), . . . , (xn, yn)) drawn from some unknown probability
distribution P on X × Y , where X is an arbitrary set and Y ⊂ R, the goal to explore the
conditional distribution of Y given x ∈ X beyond the center of the distribution can be
achieved, e.g., by using quantile regression, see Koenker and Bassett Jr. (1978), or expectile
regression. Recall that the τ -expectile denoted by μτ,Q , where Q := P(Y |x), is the unique
solution of

τ

∫ ∞

μτ,Q

(y − μτ,Q)dQ(y) = (1 − τ)

∫ μτ,Q

−∞
(μτ,Q − y)dQ(y),
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provided that |Q|1 := ∫
Y y dQ(y) < ∞, see Newey and Powell (1987). Algorithmically,

expectiles are computed by minimizing expectation of the asymmetric least squares (ALS)
loss function

Lτ (y, t) =
{

(1 − τ)(y − t)2, if y < t,
τ (y − t)2, if y � t,

(1)

for all t ∈ R and a fixed τ ∈ (0, 1), see primarily Newey and Powell (1987) and also
Efron (1991) and Abdous and Remillard (1995) for further references. These expectiles have
attracted considerable attention due to successful application in many areas, for instance,
in demography (see, Schnabel and Eilers 2009), in education (see, Sobotka et al. 2013)
and extensively in finance, see for instance Wang et al. (2011), Hamidi et al. (2014), Xu
et al. (2016) and Kim and Lee (2016). In fact, it has recently been shown (see, e.g. Bellini
et al. 2014; Steinwart et al. 2014) that expectiles are the only coherent and elicitable risk
measures, and thus they have been suggested as potentially better alternative to Value-at-
Risk (VaR) measures, see e.g. Taylor (2008), Ziegel (2016) and Bellini et al. (2014). For
more applications of expectiles, we refer the interested readers to, e.g. Aragon et al. (2005),
Guler et al. (2014) and references therein.

As already mentioned above, for a predictor f : X → R and any τ ∈ (0, 1), the τ -
expectile can be computed with the help of asymmetric risks

RLτ ,P( f ) :=
∫
X

∫
Y
Lτ (y, f (x)) P(dy|x) dPX (x), (2)

To be more precise, there exists a PX -almost surely unique f ∗
Lτ ,P satisfying

RLτ ,P( f
∗
Lτ ,P) = R∗

Lτ ,P := inf{RLτ ,P( f ) | f : X → R measurable},

provided that |P|2 := ( ∫
X×Y y2dP(x, y)

)1/2
< ∞. Here we note that f ∗

Lτ ,P(x) equals the
τ -expectile of the conditional distribution P(·|x) for PX -almost all x ∈ X . The corresponding
empirical estimator of f ∗

Lτ ,P denoted by fD : X → R is obtained, for example, with the help
of empirical Lτ -risks

RLτ ,D( f ) := 1

n

n∑
i=1

Lτ (yi , f (xi )),

where D is the empirical measures associated to data D.
A typical way to access the quality of an estimator fD is to measure its distance to

the target function f ∗
Lτ ,P, e.g. in terms of ‖ fD − f ∗

Lτ ,P‖L2(PX ). For estimators obtained by
some empirical risk minimization scheme, however, one can hardly ever estimate this L2-
norm directly. Instead, the standard tools of statistical learning theory give bounds on the
excess risk RLτ ,P( fD) − R∗

Lτ ,P. Therefore, our first goal in this paper is to establish a so-
called calibration inequality that relates both quantities. To be more precise, we will show in
Theorem 3 that

‖ fD − f ∗
Lτ ,P‖L2(PX ) ≤ c−1/2

τ

√
RLτ ,P( fD) − R∗

Lτ ,P, (3)

holds for all fD ∈ L2(PX ) and some constant cτ only depending on τ . In particular, (3)
provides rates for ‖ fD − f ∗

Lτ ,P‖L2(PX ) as soon as we have established rates forRLτ ,P( fD) −
R∗

Lτ ,P. Furthermore, it is common knowledge in statistical learning theory that bounds on
RLτ ,P( fD) −R∗

Lτ ,P can be improved if so-called variance bounds are available. We will see
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in Lemma 4 that (3) leads to an optimal variance bound for Lτ whenever Y is bounded. Note
that both (3) and the variance bound are independent of the considered expectile estimation
method. In fact, both results are key ingredients for the statistical analysis of any expectile
estimation method based on some form of empirical risk minimization.

Some semiparametric and nonparametric methods for expectile regression have already
been proposed in literature, however, in almost all cases the focus has been put on the
computation of fD, see for instance Sobotka and Kneib (2012), Yao and Tong (1996) and
Yang and Zou (2015) for further details. In fact, to the best of our knowledge, the only
two papers dealing with the statistical analysis of expectile estimation methods are Zhang
(1994) and Yang et al. (2017). However, both papers only established consistency results for
expectile regression, so that it seems fair to say that our paper is the very first one on learning
rates for expectile regression.

The expectile estimation method we consider in this paper belongs to the family of so-
called kernel-based regularized empirical risk minimization, methods, which are also known
as support vector machine (SVM) methods. Recall that given a regularization parameter
λ > 0, a fixed τ ∈ (0, 1) and a reproducing kernel Hilbert space (RKHS) H over X with
bounded, measurable kernel k : X × X → R, an SVM builds a predictor fD,λ by solving an
optimization problem of the form

fD,λ = arg min
f ∈H

(
λ‖ f ‖2H + RLτ ,D( f )

)
. (4)

Note that learning methods of the form (4) but with different loss functions have attracted
many theoretical and algorithmic considerations, see for example Wu et al. (2006), Bauer
et al. (2007), and Tacchetti et al. (2013) as well as the articles mentioned below for least
squares regression, Takeuchi et al. (2006), Steinwart and Christmann (2011) and Eberts
and Steinwart (2013) for quantile regression, and Glasmachers and Igel (2006), Blanchard
et al. (2008), and Steinwart et al. (2011) for classification with hinge loss. Recently, Farooq
and Steinwart (2017) proposed an algorithm for solving (4) considering the ALS loss and
Gaussian RBF kernels

kγ (x, x ′) := exp(−γ −2‖x − x ′‖2), x, x ′ ∈ R
d ,

where γ > 0, and obtained the unique solution for fD,λ of the form

fD,λ :=
n∑

i=1

(α∗
i − β∗

i )K (xi , ·),

where α∗
i ≥ 0, β∗

i ≥ 0 for all i = i, . . . , n. This paper also provides detailed statistical
support to the empirical findings of Farooq and Steinwart (2017).

Since 2L1/2 equals the least squares loss, any statistical analysis of (4) in the case τ = 1/2
also provides results for SVMs using the least squares loss. The latter have already been
extensively investigated in the literature. For example, learning rates for generic kernels can
be found in Cucker and Smale (2002), De Vito et al. (2005), Caponnetto and De Vito (2007),
Steinwart et al. (2009) Mendelson and Neeman (2010) and references therein. Among these
articles, only Cucker and Smale (2002), Steinwart et al. (2009) and Mendelson and Neeman
(2010) obtain learning rates inminimax sense under some specific assumptions. For example,
Cucker and Smale (2002) assume that the target function f ∗

L1/2,P
∈ H , while Steinwart et al.

(2009) and Mendelson and Neeman (2010) establish optimal learning rates for the case
in which H does not contain the target function. In addition, Eberts and Steinwart (2013)
have recently established (essentially) asymptotically optimal learning rates for least squares
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SVMs using Gaussian RBF kernels under the assumption that the target function f ∗
L1/2,P

is
contained in some Sobolev or Besov space Bα

2,∞ with smoothness index α. A key ingredient
of this work is to control the capacity of RKHS Hγ (X) for Gaussian RBF kernel kγ on the
closed unit Euclidean ball X ⊂ R

d by an entropy number bound

ei
(
id : Hγ (X) → l∞(X)

) ≤ cp,d(X)γ
− d

p i−
1
p , (5)

see Steinwart and Christmann (2008, Theorem 6.27), which holds for all γ ∈ (0, 1] and
p ∈ (0, 1]. Unfortunately, the constant cp,d(X) derived from Steinwart and Christmann
(2008, Theorem 6.27) depends on p in an unknown manner. As a consequence, Eberts and
Steinwart (2013) were only able to show learning rates of the form

n− 2α
2α+d +ξ

for all ξ > 0. To address this issue, we use Lemma 4.5 in van der Vaart and van Zanten
(2009) to derive the following new entropy number bound

ei
(
id : Hγ (X) → l∞(X)

) ≤ (3K )
1
p

(
d + 1

ep

) d+1
p

γ
− d

p i−
1
p ,

which holds for all p ∈ (0, 1], γ ∈ (0, 1] and some constant K only depending on d . In
other words, we establish an upper bound for cp,d(X) whose dependence on p is explicitly
known. Using this new bound, we are then able to find improved learning rates of the form

(log n)
2α(d+1)
2α+d n− 2α

2α+d .

Clearly these new rates replace the nuisance factor nξ of Eberts and Steinwart (2013) learning
rates by some logarithmic term, and up to this logarithmic factor our new rates are minimax
optimal, see Györfi et al. (2002) for further details. In addition, our new rates also hold for
τ �= 1/2, that is for general expectiles.

The rest of this paper is organized as follows: In Sect. 2, some properties of the ALS
loss function are established including the self-calibration inequality and variance bound.
Section 3 presents oracle inequalities and learning rates for learning problem (4) considering
Gaussian RBF kernels. The proofs of our results can be found in Sect. 4.

2 Properties of the ALS loss: self-calibration and variance bounds

This section contains some properties of the ALS loss function i.e. convexity, local Lipschitz
continuity, a self-calibration inequality, a supremumbound and a variance bound. Throughout
this and subsequent sections, we assume that X is an arbitrary, non-empty set equipped with
σ -algebra, and Y ⊂ R denotes a closed non-empty set. In addition, we assume that P is the
probability distribution on X × Y , P(·|x) is a regular conditional probability distribution on
Y given x ∈ X and Q is some distribution on Y . Furthermore, Lτ : Y × R → [0,∞) is the
ALS loss defined by (1) and f : X → R is a measurable function.

It is trivial to show that Lτ is convex in t . This convexity further ensures that the opti-
mization problem (4) is efficiently solvable. Moreover, by Steinwart and Christmann (2008,
Lemma 2.13) convexity of Lτ implies convexity of corresponding risks (2). In the follow-
ing, we recall Steinwart and Christmann (2008, Definition 2.22) which present the idea of
clipping to restrict the prediction t to the domain Y = [−M, M] where M > 0.
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Definition 1 We say that a loss L : Y × R → [0,∞) can be clipped at M > 0, if, for all
(y, t) ∈ Y × R, we have

L(y,Ût ) ≤ L(y, t), (6)

where Ût denotes the clipped value of t at ±M , that is

Ût :=
⎧⎨
⎩

−M if t < −M,

t if t ∈ [−M, M],
M if t > M .

Moreover, we say that L can be clipped if t can be clipped at some M > 0.

Recall that this clipping assumption has already been utilizedwhile establishing learning rates
for SVMs, see for instance Chen et al. (2004), Steinwart et al. (2006) and Steinwart et al.
(2011) for hinge loss, and Christmann and Steinwart (2007) and Steinwart and Christmann
(2011) for pinball loss. It is trivial to show by convexity of Lτ together with Lemma 2.23
in Steinwart and Christmann (2008) that Lτ can be clipped at M and has at least one global
minimizer in [−M, M]. This also implies thatRLτ ,P( Ûf ) ≤ RLτ ,P( f ) for every f : X → R.
In other words, the clipping operation potentially reduces the risks. We therefore bound the
riskRLτ ,P( ÛfD,λ) of the clipped decision function rather than the riskRLτ ,P( fD,λ), which we
will see in Sect. 3. From a practical point of view, this means that the training algorithm for
(4) remains unchanged and the evaluation of the resulting decision function requires only a
slight change. For further details on algorithmic advantages of clipping for SVMs using the
hinge loss and the ALS loss, we refer the reader to Steinwart et al. (2011) and Farooq and
Steinwart (2017) respectively.

We further recall Steinwart and Christmann (2008, Definition 2.18) that a loss function is
called locally Lipschitz continuous if for all M > 0 there exists a constant cM such that

sup
y∈Y

|L(y, t) − L(y, t ′)| ≤ cM |t − t ′|, t, t ′ ∈ [−M, M].

In the following we denote for a given M > 0 the smallest such constant cM by |L|1,M and
show that the ALS loss is locally Lipschitz continuous.

Lemma 2 Let Y ⊆ [−M, M] with M > 0 and t ∈ Y , then the loss function Lτ : Y × R →
[0,∞) is locally Lipschitz continuous with Lipschitz constant

|Lτ |1,M = Cτ 4M,

where Cτ := max{τ, 1 − τ }.
For later use note that Lτ being locallyLipschitz continuous implies that Lτ is also aNemit-

ski loss in the sense of Definition 18 in Steinwart and Christmann (2008), and by Steinwart
and Christmann (2008, Lemma 2.13 and 2.19), this further implies that the corresponding
risk RLτ ,P( f ) is convex and locally Lipschitz continuous.

Empirical methods of estimating expectile using Lτ loss typically lead to the function fD
forwhichRLτ ,P( fD) is close toR∗

Lτ ,P with high probability. The convexity of Lτ then ensures
that fD approximates f ∗

Lτ ,P in a weak sense, namely in probability PX (see Steinwart 2007,
Remark 3.18). However, no guarantee on the speed of this convergence can be given, even
if we know the convergence rate of RLτ ,P( fD) → R∗

Lτ ,P. The following theorem addresses
this issue by establishing a so-called self-calibration inequality for the excess Lτ -risk.

123



208 Machine Learning (2019) 108:203–227

Theorem 3 Let Lτ be the ALS loss function defined by (1) and P be the distribution on X×Y .
Moreover, assume that f ∗

Lτ ,P(x) < ∞ is the conditional τ -expectile for fixed τ ∈ (0, 1) and
f ∗
Lτ ,P ∈ L2(PX ) for PX -almost all x ∈ X. Then, for all measurable f : X → R, we have

C−1
τ (RLτ ,P( f ) − R∗

Lτ ,P) ≤ ‖ f − f ∗
Lτ ,P‖2L2(PX ) ≤ c−1

τ (RLτ ,P( f ) − R∗
Lτ ,P), (7)

where cτ := min{τ, 1 − τ } and Cτ is defined in Lemma 2.

Note that the right-hand side of the inequality (7) in particular ensures that fD → f ∗
Lτ ,P

in L2(PX )wheneverRLτ ,P( fD) → R∗
Lτ ,P. In addition, the convergence rates can be directly

translated. The inequality on the left of (7) shows that modulo constants the calibration
inequality is sharp. We will use this left inequality in the proof of Theorem 6 in order to
establish bound for the approximation error function for Gaussian RBF kernels

At the end of this section, we denote Lτ ◦ f by a function (x, y) �→ Lτ (y, f (x)) and
present in the following supremum and variance bounds of Lτ -loss.

Lemma 4 Let X ⊂ R
d be non-empty set, Y ⊆ [−M, M] be a closed subset where M > 0,

and P be a distribution on X × Y . Additionally, we assume that Lτ : Y × R → [0,∞) is
the ALS loss and f ∗

Lτ ,P(x) is the conditional τ -expectile for fixed τ ∈ (0, 1). Then for all
f : X → [−M, M] we have
(i) ‖Lτ ◦ f − Lτ ◦ f ∗

Lτ ,P‖∞ ≤ 4Cτ M2.

(ii) EP (Lτ ◦ f − Lτ ◦ f ∗
Lτ ,P)

2 ≤ 16C2
τ c

−1
τ M2(RLτ ,P( f ) − R∗

Lτ ,P).

Like the calibration inequality established inTheorem3 these twobounds inLemma4 are also
important for analyzing the statistical properties of any Lτ -based empirical riskminimization
scheme.

3 Oracle inequalities and learning rates

In this section, we first introduce some notions related to kernels. We assume that k : X ×
X → R is a measurable, symmetric and positive definite kernel with associated RKHS H .
Additionally, we assume that k is bounded, that is, ‖k‖∞ := supx∈X

√
k(x, x) ≤ 1, which

implies that H consists of bounded functions with ‖ f ‖∞ ≤ ‖k‖∞‖ f ‖H for all f ∈ H . In
practice, we often consider SVMs that are equipped with well-known Gaussian RBF kernels
for input domain X ⊂ R

d , (see Steinwart et al. 2011; Farooq and Steinwart 2017). Recall
that the latter are defined by

kγ (x, x ′) := exp
(−γ −2‖x − x ′‖22

)
,

where γ is called the width parameter that is usually determined in a data dependent way,
i.e. by cross validation. By Steinwart and Christmann (2008, Corollary 4.58) the kernel kγ is
universal on every compact set X ∈ R

n and in particular strictly positive definite. In addition,
the RKHS Hγ of kernel kγ is dense in L p(μ) for all p ∈ [1,∞) and all distributions μ on
X , see Steinwart and Christmann (2008, Proposition 4.60).

One requirement for establishing learning rates is to control the capacity of RKHS H .
One way to do this is to estimate eigenvalues of a linear operator induced by kernel k. Given
a kernel k and a distribution μ on X , we define the integral operator Tk : L2(μ) → L2(μ)

by

Tk f (·) :=
∫
X
k(x, ·) f (x)dμ(x) (8)
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for μ-almost all x ∈ X . In the following, we assume that μ = PX . Recall Steinwart and
Christmann (2008, Theorem 4.27) that Tk is compact, positive, self-adjoint and nuclear, and
thus has at most countably many non-zero (and non-negative) eigenvalues λi (Tk). Ordering
these eigenvalues (with geometric multiplicities) and extending the corresponding sequence
by zeros, if there are onlyfinitelymanynon-zero eigenvalues,weobtain the extended sequence
of eigenvalues (λi (Tk))i≥1 that satisfies

∑∞
i=1 λi (Tk) < ∞ (see Steinwart and Christmann

2008, Theorem 7.29). This summability implies that for some constant a > 1 and i ≥ 1, we
have λi (Tk) ≤ ai−1. By Steinwart et al. (2009), this eigenvalues assumption can converge
even faster to zero, that is, for p ∈ (0, 1), we have

λi (Tk) ≤ ai−
1
p , i ≥ 1. (9)

It turns out that the speed of convergence of λi (Tk) influences learning rates for SVMs. For
instance, Blanchard et al. (2008) used (9) to establish learning rates for SVMs using hinge
loss, and Caponnetto and De Vito (2007) and Mendelson and Neeman (2010) for SVMs
using least square loss.

Another way to control the capacity of RKHS H is based on the concept of covering
numbers or its dual called entropy numbers. To recall the latter, let T : E → F be a bounded,
linear operator between the Banach spaces E and F , and i ≥ 1 be an integer. Then the i-th
(dyadic) entropy number of T is defined by

ei (T ) := inf
{
ε > 0 : ∃x1, . . . , x2i−1 such that T BE ⊂ ∪2i−1

j=1(x j + ε BF )
}

,

see Steinwart and Christmann (2008, Definition A.5.26). In the Hilbert space case, the eigen-
values and entropy number decay are closely related. For example, Steinwart (2009) showed
that (9) is equivalent (modulo a constant only depending on p) to

ei (id : H → L2(PX )) ≤ √
ai−

1
2p , i ≥ 1, (10)

It is further shown by Steinwart (2009) that (10) implies a bound on average entropy numbers,
that is, for empirical distribution associated to the data set DX := (x1, · · · , xn) ∈ Xn , the
average entropy number is

EDX∼PnX
ei (id : H → L2(PX )) ≤ ai−

1
2p , i ≥ 1,

which is used in Steinwart and Christmann (2008, Theorem 7.24) to establish the general
oracle inequality for SVMs. A bound of the form (10) was also established by Steinwart and
Christmann (2008, Theorem 6.27) for Gaussian RBF kernels and certain distributions PX

having unbounded support. To be more precise, let X ⊂ R
d be a closed unit Euclidean ball.

Then for all γ ∈ (0, 1] and p ∈ (0, 1), there exists a constant cp,d(X) such that

ei
(
id : Hγ (X) → l∞(X)

) ≤ cp,d(X)γ
− d

p i−
1
p , (11)

which has been used by Eberts and Steinwart (2013) to establish leaning rates for least
squares SVMs. Note that the constant cp,d(X) depends on p in an unknown manner. To
address this issue, we use the result of van der Vaart and van Zanten (2009, Lemma 4.5) and
derive an improved entropy number bound in the following theorem. As a result we obtain
an upper bound for cp,d(X) whose dependence on p is explicitly known. We will further see
in Corollary 8 that this improved bound is one factor to achieve better learning rates than the
one obtained by Eberts and Steinwart (2013).
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Theorem 5 Let X ⊆ R
d be a closed Euclidean ball. Then there exists a constant K > 0,

such that, for all p ∈ (0, 1), γ ∈ (0, 1] and i ≥ 1, we have

ei
(
id : Hγ (X) → l∞(X)

) ≤ (3K )
1
p

(
d + 1

ep

) d+1
p

γ
− d

p i−
1
p . (12)

Another requirement for establishing learning rates is to bound the approximation error
function considering Gaussian RKHS Hγ . If the distribution P is such thatR∗

Lτ ,P < ∞, then
the approximation error function Aγ : [0,∞) → [0,∞) is defined by

Aγ (λ) := inf
f ∈Hγ

λ‖ f ‖2Hγ
+ RLτ ,P( f ) − R∗

Lτ ,P. (13)

For λ > 0, the approximation error function Aγ (λ) quantifies how well an infinite sample
L2-SVMwith RKHS Hγ , that is, λ‖ f ‖2Hγ

+RLτ ,P( f ) approximates the optimal riskR∗
Lτ ,P.

By Steinwart and Christmann (2008, Lemma 5.15), one can show that limλ→0 Aγ (λ) = 0
since Hγ is dense in L2(PX ). In general, however, the speed of convergence can not be
faster than O(λ) and this rate is achieved, if and only if, there exists an f ∈ Hγ such that
RLτ ,P( f ) = R∗

Lτ ,P (see Steinwart and Christmann 2008, Lemma 5.18).
In order to bound Aγ (λ), we first need to know one important feature of the target func-

tion f ∗
Lτ ,P, namely, the regularity which, roughly speaking, measures the smoothness of the

target function. Different function spaces norms e.g. Hölder norms, Besov norms or Triebel-
Lizorkin norms can be used to capture this regularity. In this work, following Eberts and
Steinwart (2013), see also Meister and Steinwart (2016), we assume that the target function
f ∗
Lτ ,P is in a Sobolev or a Besov space. Recall Tartar (2007, Definition 5.1) and Adams and

Fournier (2003, Definitions 3.1 and 3.2) that for any integer k ≥ 0, 1 ≤ p ≤ ∞ and a subset
Ω ⊂ R

d with non-empty interior, the Sobolev space Wk
p(Ω) of order k is defined by

Wk
p(Ω) :=

{
f ∈ L p(Ω) : D(α) f ∈ L p(Ω) exists for all α ∈ N

d
0 with |α| ≤ k

}
,

with the norm

‖ f ‖Wk
p(Ω) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( ∑
|α|≤k

‖D(α) f ‖p
L p(Ω)

) 1
p

, if p ∈ [1,∞),

max
∑

|α|≤k
‖D(α) f ‖L∞(Ω), if p = ∞,

where D(α) is the α-th weak partial derivative for multi-index α = (α1, . . . , αd) ∈ N
d
0 of

modulus |α| = |α1| + · · · + |αd |. In other words, the Sobolev space is the space of functions
with sufficiently many derivatives and equipped with a norm that measures both the size and
the regularity of the contained functions. Note that Wk

p(Ω) is a Banach space (Tartar 2007,

Lemma 5.2). Moreover, by Adams and Fournier (2003, Theorem 3.6), Wk
p(Ω) is separable

if p ∈ [1,∞), and is uniformly convex and reflexive if p ∈ (1,∞). Furthermore, for p = 2,
Wk

2 (Ω) is a separable Hilbert space that we denote by Hk(Ω). Despite the aforementioned
advantages, Sobolev spaces can not be immediately applied when α is non-integral or when
p < 1, however, the smoothness spaces for these extended parameters are also needed when
engaging nonlinear approximation. This shortcoming of Sobolev spaces is covered by Besov
spaces that bring together all functions for which the modulus of smoothness have a common
behavior. Let us first recall DeVore and Sharpley (1993, Section 2) and DeVore and Popov
(1988, Section 2) that for a subset Ω ⊂ R

d with non-empty interior, a function f : Ω → R
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with f ∈ L p(Ω) for all p ∈ (0,∞] and s ∈ N, the modulus of smoothness of order s of a
function f is defined by

ws,L p(Ω)( f , t) = sup
‖h‖2≤t

‖�s
h( f , ·)‖L p(Ω), t ≥ 0,

where the s-th difference �s
h( f , ·) given by

�s
h( f , x,Ω) :=

⎧⎨
⎩

s∑
i=0

(r
i

)
(−1)r−i f (x + ih) if x, x + h, . . . , x + sh ∈ Ω,

0, otherwise,

for h ∈ R
d , is used to measure the smoothness. Note that ws,L p(Ω)( f , t) → 0 as t → 0,

which means that the faster this convergence to 0 the smoother is the function f . For more
details on properties of the modulus of smoothness, we refer the reader to Nikol’skii (2012,
Chapter 4.2). Now for 0 < p, q ≤ ∞, α > 0, s := �α�+ 1, the Besov space Bα

p,q(Ω) based

on modulus of smoothness for domainΩ ⊂ R
d , see for instance DeVore (1998, Section 4.5),

Nikol’skii (2012, Chapter 4.3) and DeVore and Sharpley (1993, Section 2), is defined by

Bα
p,q(Ω) :=

{
f ∈ L p(Ω) : | f |Bα

p,q (Ω) < ∞
}

,

where the semi-norm |·|Bα
p,q (Ω) is given by

| f |Bα
p,q (Ω) :=

(∫ ∞

0
(t−αws,L p(Ω)( f , t))

q dt

t

) 1
q

, q ∈ (0,∞),

and for q = ∞, the semi-norm |·|Bα
p,q (Ω) is defined by

| f |Bα
p,q (Ω) := sup

t>0
(t−αws,L p(Ω)( f , t)).

In other words, Besov spaces are collections of functions f with common smoothness. For
more general definition ofBesov-like spaces,we refer toMeister andSteinwart (2016, Section
4.1). Note that ‖ f ‖Bα

p,q (Ω) := ‖ f ‖L p(Ω)+| f |Bα
p,q (Ω) is the norm of Bα

p,q(Ω), see e.g. DeVore
and Sharpley (1993, Section 2) and DeVore and Popov (1988, Section 2). It is well known
(see e.g. Nikol’skii 2012, Section 4.1) that Ws

p(Ω) ⊂ Bs
p,∞(Ω) for all 1 ≤ p ≤ ∞, p �= 2,

where for p = q = 2 the Besov space is the same as the Sobolev space.
In the next step, we find a function f0 ∈ Hγ such that both the regularization term

λ‖ f0‖2Hγ
and the excess risk RLτ ,P( f0) − R∗

Lτ ,P are small. For this, we define the function

Kγ : Rd → R (see Eberts and Steinwart 2013) by

Kγ (x) :=
r∑
j=1

(
r

j

)
(−1)1− j 1

jd

(
2

γ 2π

) d
2

exp

(
−2‖x‖22

j2γ 2

)
, (14)

for all r ∈ N, γ > 0 and x ∈ R
d . Additionally, we assume that there exists a function

f ∗
Lτ ,P : Rd → R that satisfies f ∗

Lτ ,P ∈ L2(R
d) ∩ L∞(Rd) andRLτ ,P( f ∗

Lτ ,P) = R∗
Lτ ,P. Then

f0 is defined by

f0(x) := Kγ ∗ f ∗
Lτ ,P (x) :=

∫
R

Kγ (x − t) f ∗
Lτ ,P(t)dt, x ∈ R.

With these preparation, we now establish an upper bound for the approximate error function
Aγ (λ).
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Theorem 6 Let Lτ be the ALS loss defined by (1), P be the probability distribution onRd ×Y ,
andPX be themarginal distribution ofP onRd such that X := supp PX satisfiesPX (∂X) = 0.
Moreover, assume that the conditional τ -expectile f ∗

Lτ ,P satisfies f ∗
Lτ ,P ∈ L2(R

d)∩ L∞(Rd)

as well as f ∗
Lτ ,P ∈ Bα

2,∞(PX ) for some α ≥ 1. In addition, assume that kγ is the Gaussian
RBF kernel over X with associated RKHS Hγ . Then for all γ ∈ (0, 1] and λ > 0, we have

‖ f0‖2Hγ
+ RLτ ,P( f0) − R∗

Lτ ,P ≤ C1λγ −d + Cτ,sγ
2α,

where the constant C1 > 0 and the constant Cτ,s > 0 depends on s and τ .

Clearly, the upper bound of the approximation error function in Theorem 6 depends on
the regularization parameter λ, the kernel width γ , and the smoothness parameter α of the
target function f ∗

Lτ ,P. Note that in order to shrink the right-hand side we need to let γ → 0.
However, this would let the first term go to infinity unless we simultaneously let λ → 0 with a
sufficient speed. Now using Theorem 7.24 in Steinwart and Christmann (2008) together with
Lemma 4, Theorem 6 and the entropy number bound (12), we establish an oracle inequality
of SVMs for Lτ in the following theorem.

Theorem 7 Consider the assumptions of Theorem 6 and additionally assume that Y ⊆
[−M, M] for M ≥ 1. Then, for all n ≥ 1, 
 ≥ 1, γ ∈ (0, 1) and λ ∈ (0, e−2], the
SVM using the RKHS Hγ and the ALS loss satisfies

λ‖ fD,λ,γ ‖2Hγ
+ RLτ ,P( ÛfD,λ,γ ) − R∗

Lτ ,P

≤ CM2
(
λγ −d + γ 2α + (log λ−1)d+1 n−1γ −d + n−1


)
, (15)

with probability Pn not less than 1 − 3e−
. Here C > 0 is some constant independent of
λ, γ, n and 
.

It is well known that there exists a relationship between Sobolev spaces and the scale of
Besov spaces, that is, Bα

p,u(R
d) ↪→ Wα

p (Rd) ↪→ Bα
p,v(R

d), whenever 1 ≤ u ≤ min{p, 2}
and max{p, 2} ≤ v ≤ ∞ (see e.g. Edmunds and Triebel 2008, pp. 25 and 44). In particular,
for p = u = v = 2, we have Wα

2 (Rd) = Bα
2,2(R

d) with equivalent norms. In addition,

by Eberts and Steinwart (2013, p. 7) we have Bα
p,q(R

d) ⊂ Bα
p,q(PX ). Thus, Theorem 7

also holds for decision functions f ∗
Lτ ,P : Rd → R with f ∗

Lτ ,P ∈ L2(R
d) ∩ L∞(Rd) and

f ∗
Lτ ,P ∈ Wα

2 (Rd).
By assuming some suitable values for λ and γ that depends on data size n, the smoothness

parameter α, and the dimension d , we obtain learning rates for learning problem (4) in the
following corollary.

Corollary 8 Under the assumptions of Theorem 7 and with

λn = (log n)δ1n−1,

γn = (log n)δ2n− 1
2α+d ,

where δ1 := d + 1 and δ2 := d+1
2α+d , we have, for all n ≥ 3 and 
 ≥ 1,

RLτ ,P( ÛfD,λ,γ ) − R∗
Lτ ,P ≤ 4CM3
(log n)

2α(d+1)
2α+d n− 2α

2α+d (16)

with probability Pn not less than 1 − 3e−
.
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Note that learning rates in Corollary 8 depend on the choice of λn and γn , where the
kernel width γn requires knowing α which, in practice, is not available. However, Steinwart
and Christmann (2008, Chapter 7.4), Steinwart et al. (2009) and Eberts and Steinwart (2013)
showed that one can achieve the same learning rates adaptively, i.e. without knowing α. Let
us recall Definition 6.28 in Steinwart and Christmann (2008) that describes amethod to select
λ and γ , which in some sense is a simplification of the cross-validation method.

Definition 9 Let Hγ be a RKHS over X and Λ := (Λn) and Γ := (Γn) be the sequences
of finite subsets Λn, Γn ⊂ (0, 1]. We define for a data set D := ((x1, y1), . . . , (xn, yn)) ∈
(X × R)n

D1 := ((x1, y1), . . . , (xm, ym)),

D2 := ((xm+1, ym+1), . . . , (xn, yn)),

where m = � n
2 � + 1 and n ≥ 4. Then use D1 as a training set to compute the SVM decision

function

fD1,λ,γ := arg min
f ∈Hγ

λ‖ f ‖2Hγ
+ RLτ ,D1( f ), (λ, γ ) ∈ (Λn, Γn),

and use D2 to determine (λ, γ ) by choosing (λD2 , γD2) ∈ (Λn, Γn) such that

RLτ ,D2(
ÛfD1,λD2 ,γD2

) = min
(λ,γ )∈(Λn ,Γn)

RLτ ,D2(
ÛfD1,λ,γ ).

Every learning method that produce the resulting decision functions ÛfD1,λD2 ,γD2
is called a

training validation SVM with respect to (Λ, Γ ).

In the next Theorem,we use this training-validation SVM(TV-SVM) approach for suitable
candidate sets Λn := (λ1, . . . , λr ) and Γn := (γ1, . . . , γs) with λr = γs = 1, and establish
following learning rates similar to (16).

Theorem 10 With the assumptions of Theorem 7, let Λ := (Λn) be a sequence of finite
subset Λn ∈ (0, e−2] such that (log n)−(d+1)n−1 ≤ λi ≤ (log n)d+1n−1 for all n ≥ 3, and
Γ := (Γn) be the sequences of finite subsets Γn ⊂ (0, 1] such that Λn is an δn-net of (0, 1]
where δn > 0. In addition, we assume that the cardinalities |Λn | and |Γn | are polynomially
growing in n. Then for all 
 ≥ 1, the TV-SVM produces fD1,λD2 ,γD2

that satisfies

RLτ ,P( ÛfD1,λD2 ,γD2
) − R∗

Lτ ,P ≤ CM3
(log n)
2α(d+1)
2α+d n− 2α

2α+d

with probability Pn not less than 1− 3e−
, where C > 0 is a constant independent of n and

.

So far we have only considered the case of bounded noise with known bounds, that is,
Y ⊆ [−M, M] where M > 0. In practice, M is usually unknown and in this situation,
one can still achieve the same learning rates by simply increasing M slowly. However, more
interesting is the case of unbounded noise. In the following we treat this case for distributions
for which there exist constants c ≥ 1 and l > 0 such that

P({(x, y) ∈ X × Y : |y| ≤ c
l}) ≥ 1 − e−
 (17)

for all 
 > 1. In other words, the tails of the response variable Y decay sufficiently fast.
Different examples are given by Eberts and Steinwart (2013) to show that such an assumption
is realistic. For instance, if P(.|x) ∼ N (μ(x), 1), the assumption (17) is satisfied for l = 1

2 ,
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and for the case where P(.|x) has the density whose tails decay like e−|t |, the assumption
(17) holds for l = 1 (see Eberts and Steinwart 2013, Examples 3.7 and 3.8).

With this additional assumption, we present learning rates for the case of unbounded noise
in the following theorem.

Theorem 11 Let Y ⊂ R and P be a probability distribution on R
d × Y such that X :=

supp PX ⊂ Bld2
. Moreover, assume that the τ -expectile f ∗

Lτ ,P satisfies f ∗
Lτ ,P(x) ∈ [−1, 1] for

PX -almost all x ∈ X, and both f ∗
Lτ ,P ∈ L2(R

d) ∩ L∞(Rd) and f ∗
Lτ ,P ∈ Bα

2,∞(PX ) for some
α ≥ 1. In addition, assume that (17) holds for all 
 ≥ 1. We define

λn = c1(log n)d+1n−1

γn = c2(log n)
d+1
2α+d n− 1

2α+d ,

where c1 > 0 and c2 > 0 are user-specified constants. Moreover, for some fixed 
̃ ≥ 1 and
n ≥ 3 we define 
 := 
̃ + ln n and Mn := 2c
l . Furthermore, we consider the SVM that
clips decision function fD,λn ,γn at Mn after training. Then there exists a C > 0 independent
of n, p and 
̃ such that

RLτ ,P( ÛfD,λn ,γn ) − R∗
Lτ ,P ≤ C 
̃3l+1(log n)3l+

2α(d+1)
2α+d n− 2α

2α+d (18)

holds with probability Pn not less than 1 − 2e−
̃.

Note that the assumption (17) on the tail of the distribution does not influence learning
rates achieved in the Corollary 8. Furthermore, we can also achieve the same rates adaptively
using TV-SVM approach considered in Theorem 10 provided that we have an upper bound
of the unknown parameter l, which depends on the distribution P.

Let us now compare our results with the oracle inequalities and learning rates established
by Eberts and Steinwart (2013) for least square SVMs. This comparison is justifiable because
a) the least square loss is a special case of Lτ -loss for τ = 0.5, b) the target function f ∗

Lτ ,P
is assumed to be in the Sobolev or Besov space similar to Eberts and Steinwart (2013), and
c) the supremum and the variance bounds for Lτ with τ = 0.5 are the same as the ones used
by Eberts and Steinwart (2013). Furthermore, recall that Eberts and Steinwart (2013) used
the entropy number bounds (11) to control the capacity of the RKHS Hγ which contains
a constant cp,d(X) depending on p in an unknown manner. As a result, they obtained a
leading constant C in their oracle inequality, see Eberts and Steinwart (2013, Theorem 3.1)
for which no upper bound can be determined explicitly.We cope this problem by establishing
an improved entropy number bound (12)which not only provides the upper bound for cp,d(X)

but also helps to determine the value of the constantC in the oracle inequality (15) explicitly.

As a consequence we can improve their learning rates of the form n− 2α
2α+d +ξ , where ξ > 0,

by

(log n)
2α(d+1)
2α+d n− 2α

2α+d . (19)

In other words, the nuisance parameter nξ of learning rates from Eberts and Steinwart (2013)
is replaced by the logarithmic term (log n)d+1. Moreover, our learning rates, up to this
logarithmic term, areminimax optimal, see e.g. the discussion in Eberts and Steinwart (2013).
Finally note that unlike Eberts and Steinwart (2013) we have not only established learning
rates for the least squares case for which τ = 0.5 but actually for all τ ∈ (0, 1).
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4 Proofs

4.1 Proofs of Section 2

Proof of Lemma 2 We define ψ : R → R by

ψ(r) :=
{

(1 − τ)r2, if r < 0,
τr2, if r � 0.

Clearly, ψ is convex and thus by Lemma A.6.5 in Steinwart and Christmann (2008) ψ is
locally Lipschitz continuous. Moreover, for y ∈ [−M, M] (see Steinwart and Christmann
2008, Lemma A.6.8) we obtain

|Lτ |1,M = sup
y∈[−M,M]

|ψ(y − ·)|1,M
= sup

y∈[−M,M]
sup

t∈[−M,M]
|ψ ′(y − t)|1,M

= max{τ, 1 − τ } sup
y∈[−M,M]

sup
t∈[M,−M]

|2(y − t)|

= Cτ 4M,

where Cτ := max{τ, 1− τ }. A simple consideration shows that this estimate is also sharp. ��
In order to prove Theorem 3 recall that the riskRLτ ,P( f ) in (2) uses regular conditional

probability P(Y |x), which enable us to computeRLτ ,P( f ) by treating the inner and the outer
integrals separately. Following Steinwart and Christmann (2008, Definitions 3.3, 3.4), we
therefore use inner Lτ -risks as a key ingredient for establishing self-calibration inequalities.

Definition 12 Let Lτ : Y × R → [0,∞) be the ALS loss function defined by (1) and Q be
a distribution on Y ⊆ [−M, M]. Then the inner Lτ -risks of Q are defined by

CLτ ,Q(t) :=
∫
Y
Lτ (y, t)dQ(y), t ∈ R,

and the minimal inner Lτ -risk is

C∗
Lτ ,Q := inf

t∈R CLτ ,Q(t).

In the latter definition, the inner risks CLτ ,Q(·) for a suitable classes of distributions Q
on Y are considered as a template for CLτ ,P(·|x)(·). From this, we immediately can obtain the
risk of function f , i.e.

RLτ ,P( f ) =
∫
X
CLτ ,P(·|x)( f (x))dPX (x).

Moreover, by Steinwart and Christmann (2008, Lemma 3.4), the optimal risk R∗
Lτ ,P can be

obtained by minimal inner Lτ -risks, that is,

R∗
Lτ ,P =

∫
X
C∗
Lτ ,P(·|x)dPX (x).

Consequently, the excess Lτ -risk when R∗
Lτ ,P < ∞ is obtained by

RLτ ,P( f ) − R∗
Lτ ,P =

∫
X
CLτ ,P(·|x)( f (x)) − C∗

Lτ ,P(·|x)dPX (x). (20)
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Besides some technical advantages, this approach makes the analysis rather independent of
the specific distribution P. In the following theorem, we use this approach and establish the
lower and the upper bound of excess inner Lτ -risks.

Theorem 13 Let Lτ be the ALS loss function defined by (1) and Q be a distribution on R

with |Q|1 < ∞ and C∗
Lτ ,Q < ∞ holds. Then for all t ∈ R and all τ ∈ (0, 1) we have

cτ (t − t∗)2 ≤ CLτ ,Q(t) − C∗
Lτ ,Q ≤ Cτ (t − t∗)2, (21)

where cτ := min{τ, 1 − τ } and Cτ is defined in Lemma 2.

Proof Let us fix τ ∈ (0, 1). Since the distribution Q on R has finite first moment, that is,
|Q|1 < ∞, we obtain following Newey and Powell (1987) the τ -expectile t∗ as a unique
solution of

τ

∫
y≥t∗

(y − t∗)dQ(y) = (1 − τ)

∫
y<t∗

(t∗ − y)dQ(y). (22)

For establishing bound for excess inner risks of Lτ with respect to Q, we fix a t ≥ t∗. Then
we have

∫
y<t

(y − t)2dQ(y)

=
∫
y<t

(y − t∗ + t∗ − t)2dQ(y)

=
∫
y<t

(y − t∗)2dQ(y) + 2(t∗ − t)
∫
y<t

(y − t∗)dQ(y) + (t∗ − t)2Q((−∞, t))

=
∫
y<t∗

(y − t∗)2dQ(y) +
∫
t∗≤y<t

(y − t∗)2dQ(y) + (t∗ − t)2Q((−∞, t))

+ 2(t∗ − t)
∫
y<t∗

(y − t∗)dQ(y) + 2(t∗ − t)
∫
t∗≤y<t

(y − t∗)dQ(y),

and

∫
y≥t

(y − t)2dQ(y)

=
∫
y≥t∗

(y − t∗)2dQ(y) −
∫
t∗≤y<t

(y − t∗)2dQ(y) + (t∗ − t)2Q([t,∞))

+ 2(t∗ − t)
∫
y≥t∗

(y − t∗)dQ(y) − 2(t∗ − t)
∫
t∗≤y<t

(y − t∗)dQ(y).
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By Definition 12 and using (22), we obtain

CLτ ,Q(t)

= (1 − τ)

∫
y<t

(y − t)2dQ(y) + τ

∫
y≥t

(y − t)2dQ(y)

= τ

∫
y<t∗

(y − t∗)2dQ(y) + (1 − τ)

∫
y≥t∗

(y − t∗)2dQ(y)

+ 2(t∗ − t)

(
τ

∫
y<t∗

(y − t∗)dQ(y) + (1 − τ)

∫
y≥t∗

(y − t∗)dQ(y)

)

+ (t∗ − t)2(1 − τ)Q((−∞, t)) + (t∗ − t)2τQ([t,∞))

+ (1 − 2τ)

∫
t∗≤y<t

(y − t∗)2dQ(y) + 2(1 − 2τ)

∫
t∗≤y<t

(y − t∗)dQ(y)

= CLτ ,Q(t∗) + (t∗ − t)2(1 − τ)Q((−∞, t)) + (t∗ − t)2τQ([t,∞))

+ (1 − 2τ)

∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗)dQ(y),

and this leads to the following excess inner Lτ -risk

CLτ ,Q(t) − CLτ ,Q(t∗)
= (t∗ − t)2(1 − τ)Q((−∞, t∗)) + (t∗ − t)2(1 − τ)Q([t∗, t)) + (t∗ − t)2τQ([t,∞))

+ (1 − 2τ)

∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗)dQ(y)

= (t∗ − t)2
(
(1 − τ)Q((−∞, t∗)) + τQ([t,∞))

)

− τ

∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗)dQ(y)

+ (t∗ − t)2(1 − τ)Q([t∗, t)) + (1 − τ)

∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗)dQ(y)

= (t∗ − t)2
(
(1 − τ)Q((−∞, t∗)) + τQ([t,∞))

)

− τ

∫
t∗≤y<t

(y − t∗)(y + t∗ − 2t)dQ(y)

+ (1 − τ)

∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗) + (t∗ − t)2dQ(y)

= (t∗ − t)2
(
(1 − τ)Q((−∞, t∗)) + τQ([t,∞))

)

+ τ

∫
t∗≤y<t

(y − t∗)(2t − t∗ − y)dQ(y)

+ (1 − τ)

∫
t∗≤y<t

(y − t)2dQ(y). (23)
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Let us define cτ := min{τ, 1 − τ }, then (23) leads to the following lower bound of excess
inner Lτ -risk when t ≥ t∗:

CLτ ,Q(t) − CLτ ,Q(t∗)
≥ cτ (t

∗ − t)2
(
Q((−∞, t∗)) + Q([t,∞))

)

+ cτ

∫
t∗≤y<t

(y − t∗)(2t − t∗ − y) + (y − t)2dQ(y)

= cτ (t
∗ − t)2

(
Q((−∞, t∗)) + Q([t,∞))

) + cτ

∫
t∗≤y<t

(t∗)2 + 2t t∗ + t2dQ(y)

= cτ (t
∗ − t)2

(
Q((−∞, t∗)) + Q([t,∞))

) + cτ (t
∗ − t)2Q([t∗, t))

= cτ (t
∗ − t)2. (24)

Likewise, the excess inner Lτ -risk when t < t∗ is

CLτ ,Q(t) − CLτ ,Q(t∗)

= (t∗ − t)2
(
(1 − τ)Q((−∞, t) + τ)Q([t∗,∞))

) + τ

∫
t≤y<t∗

(y − t)2dQ(y)

+ (1 − τ)

∫
t≤y<t∗

(t∗ − y)(y + t∗ − 2t)dQ(y),

(25)

that also leads to the lower bound (24). Now, for the proof of upper bound of the excess inner
Lτ -risks, we define Cτ := max{τ, 1 − τ }. Then (23) leads to the following upper bound of
excess inner Lτ -risks when t ≥ t∗:

CLτ ,Q(t) − CLτ ,Q(t∗) ≤ Cτ (t
∗ − t)2

(
Q((−∞, t∗)) + Q([t,∞))

)

+ Cτ

∫
t∗≤y<t

(
(y − t∗)(2t − t∗ − y) + (y − t)2

)
dQ(y)

= Cτ (t
∗ − t)2. (26)

Analogously, for the case of t < t∗, (25) also leads to the upper bound (26) for excess inner
Lτ -risks. ��

Proof of Theorem 3 For a fixed x ∈ X , we write t := f (x) and t∗ := f ∗
Lτ ,P(x). By Theo-

rem 13, for Q := P(·|x), we then immediately obtain

C−1
τ (CLτ ,P(·|x)( f (x)) − C∗

Lτ ,P(·|x))

≤ | f (x) − f ∗
Lτ ,P(x)|2 ≤ c−1

τ (CLτ ,P(·|x)( f (x)) − C∗
Lτ ,P(·|x)).

Integrating with respect to PX leads to the assertion. ��

Proof of Lemma 4 (i) Since Lτ can be clipped at M and the conditional τ -expectile satisfies
f ∗
Lτ ,P(x) ∈ [−M, M] almost surely. Then

‖Lτ (y, f (x)) − Lτ (y, f ∗
Lτ ,P(x))‖∞ ≤ max{τ, 1 − τ } sup

y,t∈[−M,M]
(y − t)2

= Cτ 4M
2,

for all f : X → [−M, M] and all (x, y) ∈ X × Y .
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(ii) Using the locally Lipschitz continuity of the loss Lτ and Theorem 3, we obtain

EP(Lτ ◦ f − Lτ ◦ f ∗
Lτ ,P)

2 ≤ |Lτ |21,M EPX | f − f ∗
Lτ ,P|2

≤ 16c−1
τ C2

τ M2 (RLτ ,P( f ) − R∗
Lτ ,P

)
.

��

4.2 Proofs of Section 3

Proof of Theorem 5 By van der Vaart and van Zanten (2009, Lemma 4.5), the ‖ · ‖∞-log
covering numbers of unit ball Bγ (X) of the Gaussian RKHS Hγ (X) for all γ ∈ (0, 1) and
ε ∈ (0, 1

2 ) satisfy

lnN (Bγ (X), ‖ · ‖∞, ε) ≤ K

(
log

1

ε

)d+1

γ −d , (27)

where K > 0 is a constant depending only on d . From this, we obtain

sup
ε∈(0, 12 )

ε p lnN (Bγ (X), ‖ · ‖∞, ε) ≤ Kγ −d sup
ε∈(0, 12 )

ε p
(
log

1

ε

)d+1

.

Let h(ε) := ε p
(
log 1

ε

)d+1
. In order to obtain the optimal value of h(ε), we differentiate it

with respect to ε

dh(ε)

dε
= pε p−1

(
log

1

ε

)d+1

− ε p(d + 1)

(
log

1

ε

)d 1

ε
,

and set dh(ε)
dε

= 0 which gives log 1
ε

= d+1
p , and hence

ε∗ = 1

e
d+1
p

.

By plugging ε∗ into h(ε), we obtain

h(ε∗) =
(
d + 1

ep

)d+1

,

and consequently, ‖ · ‖∞-log covering numbers (27) are

lnN (Bγ (X), ‖ · ‖∞, ε) ≤ K

(
d + 1

ep

)d+1

γ −dε−p =
(
a

1
p

ε

)p

,

where a := K
(
d+1
ep

)d+1
γ −d . Now, by inverse implication of Lemma 6.21 in Steinwart and

Christmann (2008), see also Steinwart and Christmann (2008, Exercise 6.8), the bound on
entropy number of the Gaussian RBF kernel is

ei
(
id : Hγ (X) → l∞(X)

) ≤ (3a)
1
p i−

1
p = (3K )

1
p

(
d + 1

ep

) d+1
p

γ
− d

p i−
1
p ,

for all i ≥ 1, γ ∈ (0, 1). ��
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Proof of Theorem 6 The assumption f ∗
Lτ ,P ∈ L2(R

d) and Theorem 2.3 in Eberts and Stein-
wart (2013) immediately yield that f0 := Kγ ∗ f ∗

Lτ ,P ∈ Hγ , i.e. f0 is contained in RKHS Hγ .
Furthermore, the latter theorem also yields the following upper bound for the regularization
term

‖ f0‖Hγ = ‖Kγ ∗ f ∗
Lτ ,P‖Hγ ≤ (γ

√
π)−

d
2 (2s − 1)‖ f ∗

Lτ ,P‖L2(Rd ).

In the next step, we bound the excess risk. By Eberts and Steinwart (2013, Theorem 2.2), the
upper bound for L2(PX )-distance between f0 and f ∗

Lτ ,P is

‖ f0 − f ∗
Lτ ,P‖2L2(PX ) = ‖Kγ ∗ f ∗

Lτ ,P − f ∗
Lτ ,P‖2L2(PX ) ≤ Cs,2‖g‖L2(Rd )c

2γ 2α, (28)

where Cs,2 :=:= ∑�2s�
i=0

(�2s�
i

)
(2d)

i
2
∏i

j=1( j − 1
2 )

1
2 (see Eberts and Steinwart 2013, p. 27)

is constant only depending on s and g ∈ L2(R
d) is the Lebesgue density of PX . Now using

Theorem 13 together with (28), we obtain

RLτ ,P( f0) − R∗
Lτ ,P ≤ Cτ ‖ f0 − f ∗

Lτ ,P‖2L2(PX ) = Cτ,sγ
2α,

where Cτ,s := c2 Cτ Cs,2 ‖g‖L2(Rd ). With these results, we finally obtain

inf
f ∈Hγ

λ‖ f ‖2Hγ
+ RLτ ,P( f ) − R∗

Lτ ,P ≤ λ‖ f0‖2Hγ
+ RLτ ,P( f0) − R∗

Lτ ,P,

≤ C1λγ −d + Cτ,sγ
2α,

where C1 := (
√

π)−d(2r − 1)2‖ f ∗
Lτ ,P‖2L2(Rd )

. ��

In order to prove the main oracle inequality given in Theorem 7, we need the following
lemma.

Lemma 14 The function h : (0, 1
2 ] → R defined by

h(p) :=
( √

2 − 1
√
2 − 2

2p−1
2p

)p

,

is convex. Moreover, we have supp∈(0, 12 ] h(p) = 1.

Proof By considering the linear transformation t := 2p, it is suffices to show that the function
g : (0, 1] → R defined by

g(t) :=
( √

2 − 1√
2 − 21− 1

t

) t
2

,

is convex. To solve the latter, we first compute the first and second derivative of g(t) with
respect to t , that is:

g′(t) = 1

2

( √
2 − 1√

2 − 21− 1
t

) t
2
⎛
⎝log

( √
2 − 1√

2 − 21− 1
t

)
+ 21− 1

t log 2

t
(√

2 − 21− 1
t

)
⎞
⎠ ,
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and

g′′(t) =
( √

2 − 1√
2 − 21− 1

t

) t
2
⎛
⎝1

2
log

( √
2 − 1√

2 − 21− 1
t

)
+ 21− 1

t log 2

2t
(√

2 − 21− 1
t

)
⎞
⎠

2

+
( √

2 − 1√
2 − 21− 1

t

) t
2

⎛
⎜⎝

(
21− 1

t

)2
(log 2)2

2t3
(√

2 − 21− 1
t

)2 + 21− 1
t (log 2)2

2t3
(√

2 − 21− 1
t

)
⎞
⎟⎠ (29)

Since t ∈ (0, 1], it is not hard to see that all terms in g′′(t) are strictly positive. Thus g′′(t) > 0
and hence g(t) is convex. Furthermore, by convexity of g(t), it is easy to find that

sup
t∈(0,1]

g(t) = max

{
lim
t→0

g(t), g(1)

}
= 1.

��

Proof of Theorem 7 The assumption f ∗
Lτ ,P ∈ L∞(Rd) and Theorem 2.3 in Eberts and Stein-

wart (2013) yield that

|Kγ ∗ f ∗
Lτ ,P(x)| ≤ (2s − 1)‖ f ∗

Lτ ,P‖L∞(Rd ),

holds for all x ∈ X . This implies that, for all (x, y) ∈ X × Y , we have

Lτ

(
y, Kγ ∗ f ∗

Lτ ,P(x)
) ≤ Cτ (M + ‖Kγ ∗ f ∗

Lτ ,P‖∞)2

≤ 4Cτ

(
M + 2s‖ f ∗

Lτ ,P‖L∞(Rd )

)2 := B0,

and hence we conclude that B0 ≥ 4Cτ M2 = B. Now, by plugging the result of Theo-

rem 6 together with a = (3K )
1
2p

(
d+1
ep

) d+1
2p

from Theorem 5 and V = 16 c−1
τ C2

τ M2 from

Lemma 4, into Theorem 7.23 in Steinwart and Christmann (2008) we obtain

λ‖ fD,λ,γ ‖2Hγ
+ RLτ ,P( ÛfD,λ,γ ) − R∗

Lτ ,P

≤ 9C1λγ −d + 9Cτ,sγ
2α + 3K (p) K

(
d + 1

e

)d+1
γ −d

pd+1λpn

+
(
3456M2 C2

τ c
−1
τ + 60

(
M + 2s‖ f ∗

Lτ ,P‖L∞(Rd )

)2) 


n
,

≤ 9C1λγ −d + 9Cτ,sγ
2α + Cd K (p)

γ −d

pd+1λpn
+ C2




n
, (30)

where C1 and Cτ,s are from Theorem 6, K (p) is a constant given in Theorem 7.23,
Steinwart and Christmann (2008) that depends on p, C2 := 3456M2 C2

τ c
−1
τ + 60(M +

2s‖ f ∗
Lτ ,P‖L∞(Rd ))

2, and Cd := 3K
( d+1

e

)d+1
is a constant only depending on d . Let us

assume that p := 1
log λ−1 . Since λ ≤ e−2 and λp = e−1, the result (30) becomes

λ‖ fD,λ,γ ‖2H + RLτ ,P( ÛfD,λ,γ ) − R∗
Lτ ,P

≤ 9C1λγ −d + 9Cτ,sγ
2α + Cd e K (p) (log λ−1)d+1 γ −d

n
+ C2




n
(31)
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We now consider the constant K (p) in more details. From the proof of Theorem 7.23 in
Steinwart and Christmann (2008) the constant K (p) for ϑ = 1 is

K (p) := max
{
2700 · 22p C2

1 (p)|Lτ |2p1,M V 1−p, 90 · (120)p C1+p
2 (p)|Lτ |2p1,M B1−p, 2B

}

(32)

where the constants C1(p) and C2(p) derived from the proof of Theorem 7.16 in Steinwart
and Christmann (2008) are

C1(p) := 2
√
ln 256C p

p

(
√
2 − 1)(1 − p)2p/2

and C2(p) :=
(

8
√
ln 16C p

p

(
√
2 − 1)(1 − p)4p

) 2
1+p

,

and by Steinwart and Christmann (2008, Lemma 7.15), we have

Cp :=
√
2 − 1

√
2 − 2

2p−1
2p

.
1 − p

p
.

In order to bound K (p) for p ∈ (0, 1
2 ], we first need to bound the constantsC1(p) andC2(p).

Let us start with Cp and obtain the following bound of it for p ∈ (0, 1
2 ].

C p
p =

( √
2 − 1

√
2 − 2

2p−1
2p

)p (
1 − p

p

)p

≤ e max
p∈(0, 12 ]

( √
2 − 1

√
2 − 2

2p−1
2p

)p

= e,

where we used
(
1−p
p

)p =
(
1
p − 1

)p ≤ e for all p ∈ (0, 1
2 ], and Lemma 14. Now the bound

for C1(p) is the following:

C1(p) ≤ max
p∈(0, 12 ]

2
√
ln 256C p

p

(
√
2 − 1)(1 − p)2p/2

≤ 4 e
√
ln 256√

2 − 1
max

p∈(0, 12 ]
1

2p/2
≤ 46 e.

Analogously, the bound for the constant C2(p) is:

C1+p
2 (p) ≤ max

p∈(0, 12 ]

(
8
√
ln 16C p

p

(
√
2 − 1)(1 − p)4p

)2

≤ 256 e2 ln(16)

(
√
2 − 1)2

max
p∈(0, 12 ]

1

42p
≤ 1035 e2.

By plugging C1(p) and C2(p) into (32), together with the Lipschitz constant |Lτ |1,M =
4Cτ M from Lemma 2 and the supremum bound B and variance bound V from Lemma 4
we thus obtain

K ≤ 3 max
{
4 · 107 C3

τ c
−1
τ M3, 2 · 109 C2

τ M
3, 8Cτ M2}

≤ 2 · 109 C3
τ c

−1
τ M3,

and by plugging this result into (31), we obtain

λ‖ fD,λ,γ ‖2H + RLτ ,P( ÛfD,λ,γ ) − R∗
Lτ ,P

≤ CM2
(
λγ −d + γ 2α + (log λ−1)d+1γ −dn−1 + 
 n−1

)
,

where C is a constant independent of λ, γ, n and 
. ��
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Proof of Corollary 8 For all n ≥ 1, Theorem 7 yields

λ‖ fD,λ,γ ‖2Hγ
+ RLτ ,P( ÛfD,λ,γ ) − R∗

Lτ ,P

≤ CM3
(
λnγ

−d
n + γ 2α

n + (log λ−1
n )d+1n−1γ −d

n + n−1

)

,

with probability Pn not less than 1 − 3e−
 and a constant c > 0. Using the sequences

λn = (log n)δ1n−1 and γn = (log n)δ2n− 1
2α+d , we obtain for n ≥ 3:

λ‖ fD,λ,γ ‖2Hγ
+ RLτ ,P( ÛfD,λ,γ ) − R∗

Lτ ,P

≤ CM3
((

(log n)δ1−dδ2 + (log n)2αδ2
)
n− 2α

2α+d

+ (log n − δ1 log log n)d+1 (log n)−dδ2n− 2α
2α+d + n−1


)

≤ CM3
((

(log n)δ1−dδ2 + (log n)2αδ2
)
n− 2α

2α+d + (log n)d+1−dδ2n− 2α
2α+d + n−1


)

≤ 3CM3
 (log n)max{δ1−dδ2,2αδ2,d+1−dδ2}n− 2α
2α+d + n−1
. (33)

Now, some simple calculations show that δ1 − dδ2 = d + 1 − dδ2 = (d + 1) · 2α
2α+d and

2αδ2 = (d + 1) · 2α
2α+d . This proves the assertion. ��

Before we proof the Theorem 10, we need the following technical lemma.

Lemma 15 Let n ≥ 3 and Λn ⊂ (0, 1] be a finite set such that there exists a λi ∈ Λn with
(log n)−(d+1)n−1 ≤ λi ≤ (log n)d+1n−1. Moreover assume that δn ≥ 0 and Γn ⊂ (0, 1] is
a finite δn-net of (0, 1]. Then for d ≥ 1 and α ≥ 1 we have

inf
(λ,γ )∈Λn×Γn

(
λγ −d + γ 2α + (log λ−1)d+1γ −dn−1

)
≤ c(log n)d+1

(
n− 2α

2α+d + δ2αn

)
,

where c is a constant independent of n, δn,Λn and Γn.

Proof Let us assume that Λn = {λ1, . . . , λr } and Γn = {γ1, . . . , γs}, and λi−1 < λi for all
i = 2, . . . , r and γ j−1 < γ j for all j = 2, . . . , s. We thus obtain

inf
(λ,γ )∈Λn×Γn

(
λγ −d + γ 2α + (log λ−1)d+1γ −dn−1

)

≤ inf
γ∈Γn

(
λiγ

−d + γ 2α + (log λ−1
i )d+1γ −dn−1

)

≤ inf
γ∈Γn

(
(log n)d+1γ −dn−1 + γ 2α + (log n − (d + 1) log log n)d+1 γ −dn−1

)

≤ inf
γ∈Γn

(
2(log n)d+1γ −dn−1 + γ 2α

)
(34)

It is not hard to see that the function γ �→ 2(log n)d+1γ −dn−1 + γ 2α is optimal at γ ∗
n :=

c1(log n)
d+1
2α+d n− 1

2α+d , where c1 > 0 is a constant only depending on α and d . Furthermore,
with γ0 = 0, we see that γ j − γ j−1 ≤ 2δn for all j = 1, . . . , s. In addition, there exits an
index j ∈ {1, . . . , s} such that γ j−1 ≤ γ ∗

n ≤ γ j . Consequently, we have γ ∗
n ≤ γ j ≤ γ ∗

n +2δn .
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Using this result in (34), we obtain

inf
(λ,γ )∈Λn×Γn

(
λγ −d + γ 2α + (log λ−1)d+1γ −dn−1

)

≤ 2(log n)d+1γ −d
j n−1 + γ 2α

j

≤ 2(log n)d+1(γ ∗
n )−dn−1 + (γ ∗

n + 2δn)
2α

≤ 2(log n)d+1(γ ∗
n )−dn−1 + cα(γ ∗

n )2α + cαδ2αn

≤ c
(
(log n)

2α(d+1)
2α+d n− 2α

2α+d + δ2αn

)
,

where c := 2c−d
1 + cαc2α1 + cα is a constant depending only on α and d . ��

Proof of Theorem 10 This proof is the repetition of the proof given by Eberts and Steinwart
(2013, Theorem 3.6) for the least squares loss. However, for the sake of completeness, we
present here in the case of the Lτ -loss. Let us define m := � n

2 � + 1 ≥ n
2 , then for all

(λ, γ ) ∈ Λn × Γn , Theorem 7 yields

RLτ ,P( ÛfD1,λ,γ ) − R∗
Lτ ,P ≤ c1

2

(
λγ −d + γ 2α + (log λ−1)d+1

γ dm
+ 


m

)

≤ c1

(
λγ −d + γ 2α + (log λ−1)d+1

γ dn
+ 


n

)
,

with probability Pm not less than 1 − 3|Λn × Γn | e−
. Now define n − m ≥ n
2 − 1 ≥ n

4
and 
n := 
 + ln(1 + |Λn × Γn |), then by using Theorem 7.2 in Steinwart and Christmann
(2008) and Lemma 15, we obtain

RLτ ,P( ÛfD1,λD2 ,γD2
) − R∗

Lτ ,P

≤ 6 inf
(λ,γ )∈Λn ,Γn

(
RLτ ,P( ÛfD1,λ,γ ) − R∗

Lτ ,P

)
+ 512M2c−1

τ


n

n − m

≤ 6c1 inf
(λ,γ )∈Λn ,Γn

(
λγ −d + γ 2α + (log λ−1)d+1

γ dn
+ 


n

)
+ 2048M2c−1

τ


n

n

≤ 6c1 c
(
(log n)

2α(d+1)
2α+d n− 2α

2α+d + δ2αn

)
+ 2048M2c−1

τ


n

n

≤ 
M2 (
6c1c + 6cc1δ

2α
n + 6c1 + 2048c−1

τ 
n
)
(log n)

2α(d+1)
2α+d n− 2α

2α+d

≤ c2M
3
(log n)

2α(d+1)
2α+d n− 2α

2α+d ,

with probability Pn not less than 1 − 3(1 + |Λn × Γn |)e−
. ��
Proof of Theorem 11 By (17), we obtain

Pn
({

D ∈ (X × Y )n : max
i∈{1,...,n}{|yi |} ≤ c
l

})
≥ 1 −

n∑
i=1

P(|εyi | ≥ c
l)

≥ 1 − e−(
−ln n).

This implies that

Pn
({

D ∈ (X × Y )n : max
i∈{1,...,n}{|yi |} ≤ c(
̃ + ln n)l

})
≥ 1 − e−
̃.
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This leads us to conclude with probability Pn not less than 1−e−
̃ that the SVM for ALS loss
with belatedly clipped decision function at Mn is actually a clipped regularized empirical risk
minimization (CR-ERM) in the sense of Definition 7.18 in Steinwart and Christmann (2008).
Consequently, Theorem 7.20 in Steinwart and Christmann (2008) holds for Ỹ := {−Mn, Mn}
modulo a set of probability Pn not less than 1 − e−
̃. From Theorem 7, we then obtain

λ‖ fD,λ,γ ‖2Hγ
+ RLτ ,P( ÛfD,λ,γ ) − R∗

Lτ ,P

≤ CM3
n

(
λγ −d + γ 2α + (log λ−1)d+1n−1γ −d + n−1
̄

)
.

with probability Pn not less than 1 − e−
̄ − e−
̃. As in the proof of Corollary (8) and by
using the inequality (a + b)c ≤ (2ab)c, for a, b ≥ 1 and c > 0, we finally obtain

λ‖ fD,λ,γ ‖2Hγ
+ RLτ ,P( ÛfD,λ,γ ) − R∗

Lτ ,P ≤ C 
̄M3
n (log n)

2α(d+1)
2α+d n− 2α

2α+d

= C 
̄
(
2c(
̃ + log n)l

)3
(log n)

2α(d+1)
2α+d n− 2α

2α+d

≤ C 
̄ 8c3 (2
̃ log n)3l (log n)
2α(d+1)
2α+d n− 2α

2α+d

≤ Ĉ 
̄
̃3l(log n)3l+
2α(d+1)
2α+d n− 2α

2α+d ,

for all n ≥ 3 with probability Pn not less than 1 − e−
̄ − e−
̃. Choosing 
̄ = 
̃ leads to the
assertion. ��
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