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Abstract
Automatic face recognition (AFR) has gained the attention of many institutes and researchers
in the past two decades due to its wide range of applications. This attention resulted in
the development of a variety of techniques for the particular task with a high recognition
accuracy when the environment is well-controlled. In the case of moderately controlled or
fully uncontrolled environments however, the performance ofmost techniques is dramatically
reduced due to the much higher difficulty of the task. As a result, the provision of some kind
of indication of the likelihood of a recognition being correct is a desirable property of AFR
techniques in many applications, such as the detection of wanted persons or the automatic
annotation of photographs. This work investigates the application of the conformal prediction
(CP) framework for extending the output of AFR techniqueswithwell-calibratedmeasures of
confidence. In particularwe combineCPwith one classifier based on patterns of oriented edge
magnitudes descriptors, one classifier based on scale invariant feature transform descriptors,
and aweighted combination of the similarities computedby the two.Weexamine and compare
the performance of five nonconformity measures for the particular task in terms of their
accuracy and informational efficiency.
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1 Introduction

Automatic Face Recognition (AFR) refers to the use of a computer for the identification
of a person from a digital photograph given a collection of digital photographs belonging
to a number of different people, called a gallery. Nowadays AFR can be seen as one of
the most progressive biometric authentication methods and represents a key task in several
commercial or law enforcement applications such as surveillance of wanted persons, access
control to restricted areas and automatic annotation of photos in photo sharing applications
or social networks. Given the importance of such applications, the particular task has been
the subject of many studies and many techniques have been proposed in the literature for it.
For well-controlled environments (sufficiently aligned faces, similar face pose and lighting
conditions, etc.) there are a number of approaches with a high recognition accuracy. How-
ever, in moderately controlled or fully uncontrolled environments the performance of most
techniques is significantly lower (Kral and Lenc 2015).

Considering the difficulty of the task in moderately controlled or fully uncontrolled envi-
ronments togetherwith the rather large number of candidate outputs (all people in the gallery),
some way of quantifying the uncertainty involved in each recognition would be very bene-
ficial to many AFR applications. Therefore this work examines the utilization of a Machine
Learning framework, called Conformal Prediction (Vovk et al. 2005), for quantifying uncer-
tainty in AFR. CP can be used for complementing the predictions of conventional Machine
Learning techniques with well-calibrated measures of confidence without assuming anything
stronger than that the data is exchangeable. In the particular case, CP can provide either a
confidencemeasure that indicates the likelihood of each recognition being correct, or produce
a prediction set that is guaranteed to satisfy a given confidence level, thus narrowing down the
possible candidates for each photograph with a guarantee on the frequency at which the true
candidate will not be considered. Consequently the produced prediction sets can significantly
reduce the workload of a manual identification process.

This paper is an extension of Eliades and Papadopoulos (2017) in which CP was com-
bined with SIFT based classifiers and its performance was examined on the AT&T and
Unconstrained Facial Images (UFI) corpora. Here we additionally consider POEM descrip-
tors, which have also been shown to perform well in uncontrolled environments (Vu et al.
2012). In particular we utilize CP for extending one POEM based classifier, one SIFT based
classifier and one classifier based on the weighted combination of the similarities computed
by the two. The performance of the three techniques is examined on the Labeled Faces in the
Wild (LFW) and UFI corpora, which both contain images taken in an uncontrolled environ-
ment as opposed to the AT&T corpus used in Eliades and Papadopoulos (2017). Furthermore
they are both much larger than the AT&T corpus.

The combination ofCPwith some conventional technique, called the underlying algorithm
of the CP, is performed through what is called a Nonconformity Measure (NCM), which
utilizes the conventional technique to assess how different an object is from the known
objects in the training set (Shafer and Vovk 2008). Though validity is guaranteed regardless
of the NCM used, this measure affects the informativeness of the CP outputs. We develop
and examine the performance of a number of NCMs for the three AFR techniques mentioned
above, and in fact any technique based on calculating similarities between images, in terms
of their accuracy and informational efficiency. The obtained results show that the proposed
approaches provide high accuracy andwell-calibrated confidencemeasures that can be useful
in practice.
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The rest of this paper is structured as follows. In Sect. 2 we provide an overview of related
work on AFR and of previous work on obtaining confidence information for the particular
task. Next, Sect. 3 gives a brief description of the general CP framework. Section 4 outlines
the usage and calculation of POEM and SIFT features and details the conventional AFR
techniques used as basis for the CPs proposed in this work. Section 5 defines the developed
NCMs and completes the description of the proposed CP approaches. Section 6 describes the
two corpora used for evaluating the proposed approaches, presents the experimental setting
and performance measures used in our evaluation, and reports and discusses the obtained
experimental results. Finally, Sect. 7 gives our conclusions and plans for future work.

2 Related work

The methods utilized for AFR can be divided into holistic and feature-based ones. We focus
in the following text mainly on the feature-based methods, because they achieve significantly
better results particularly in recent challenging AFR settings where the images are of uneven
quality and show variances in appearance. The common idea of feature-based methods is
the representation of the face as a set of features. In the identification scenario, the face
representations are compared against a gallery of known faces and the recognized person is
determined by some distance measure using the k-Nearest Neighbors (k-NN) algorithm.

A number of image descriptors have been used for creating the face representation. We
can mention the popular Local Binary Patterns (LBP) (Ahonen et al. 2004) and many of its
variants such as Local Ternary Patterns (LTP) (Tan and Triggs 2007) etc. Another successful
method is the Patterns of Oriented EdgeMagnitudes (POEM) (Vu et al. 2012) which is based
on image gradients. A more recent example of gradient-based descriptor was proposed in
Huang and Yin (2017). The authors propose Binary Gradient Patterns (BGP). The descrip-
tors encode the local structures into a set of binary strings. This descriptor surpasses the
performance of a variety of other descriptors on several standard corpora in the identification
scenario. It reaches comparable accuracy as Deep Neural Network (DNN) based methods
on the face verification task. These approaches usually divide the processed image using a
rectangular grid and compute features for each region (Ahonen et al. 2004). An alternative
way of feature extraction was proposed in Lenc and Král (2016) where the feature points
are found dynamically and may differ for each image. Scale Invariant Feature Transform
(SIFT) (Lowe 2004) is another popular descriptor used in many image processing tasks.
The method includes both feature point detection and feature extraction tasks. Nanni et al.
(2017) use an ensemble technique to combine face descriptors. The method is based on two
descriptors: POEM and Monogenic Binary Coding (MBC). Each classifier in the ensemble
determines the similarities that are subsequently fused by averaging (score-level fusion).
The method is evaluated on the face recognition technology (FERET) and LFW standard
corpora. The obtained results are slightly better than those of the descriptors used separately.
Multi-Directional Multi-Level Dual-Cross Patterns (MDML-DCPs) are proposed by Ding
et al. (2016). It is based on the first derivative of the Gaussian operator. The features are
computed from the whole image as well as from image regions. The authors report that the
descriptor outperforms state-of-the-art descriptors on several widely used datasets. Another
efficient face recognition approach is proposed by Ding and Tao (2017). This method is
particularly efficient when recognizing face images with arbitrary pose variations. A dense
grid of 3D facial landmarks are projected to each 2D face image. Then, an optimal warp is
estimated based on homography to correct texture deformation caused by pose variations.

123



514 Machine Learning (2019) 108:511–534

The reconstructed frontal-view patches are then used for face recognition with common
face descriptors. Experimental results demonstrate that this approach performs well on both
constrained and unconstrained scenarios.

We must also mention Artificial Neural Networks (ANN) that were used already in the
work of Lawrence et al. (1997). Some of the methods use neural networks for feature extrac-
tion. One approach for descriptor construction is described by Wen et al. (2016). This work
utilizes a Convolutional Neural Network (CNN) to learn discriminative features. A novel loss
function is proposed. It achieves state-of-the-art accuracy on LFW and MegaFace Challenge
datasets. Another learning approach for image descriptors is proposed by Lu et al. (2015).
Compact Binary Face Descriptor (CBFD) is another method that projects pixel difference
vectors into low-dimensional binary vectors. It is done in an unsupervisedmanner.Manyother
ANN approaches also emergedwith the recent boom of “Deep Learning” (Parkhi et al. 2015).

Confidence measures (CMs) have not been used in the field of AFR very often. However,
given the uncontrolled nature of the images used nowadays, it can be an invaluable tool for
the evaluation of the recognition result. It is beneficial in a wide range of applications because
the provision of information on “how good is the recognition result” is of high importance.
Studies examining CMs in AFR include a pseudo 2-D Hidden Markov Model classifier with
features created by the Discrete Cosine Transform (DCT) presented in Eickeler et al. (2000).
The authors propose three CMs based on the posterior probabilities and two others based on
ranking the results. They experimentally show that the posterior class probability gives better
results for the recognition error detection task. An ensemble of simple CMs was proposed
by Kral and Lenc (2015). The authors utilize four measures that are subsequently combined
using an Artificial Neural Network. The measures are based on posterior class probability
and predictor features. The techniques presented by Eickeler et al. (2000) and Kral and Lenc
(2015) however do not provide any guarantees on their CMs.

CP has previously been applied to AFR by Li andWechsler (2005) for rejecting unknown
individuals and identifying difficult to recognize faces in the open set setting. The same
authors also applied CP to the recognition by parts setting in Li and Wechsler (2009). Even
though Li and Wechsler (2005, 2009) applied CP to AFR, they did not evaluate the informa-
tiveness of the p values and prediction sets produced by CP. Our work differs in the setting
examined and the underlying techniques utilized, but most importantly we additionally eval-
uate the informativeness of the outputs provided by CP using the criteria defined by Vovk
et al. (2016) and investigate the performance of alternative NCMs.

3 Conformal prediction

This section gives a brief description of the main principles of CP. For more details see Vovk
et al. (2005).

Let A = {(xi , yi )|i = 1, . . . , N } denote our training set, where xi is an object given in the
form of an input vector or matrix, R = {t1, . . . , tc} is the set of possible labels and yi ∈ R is
the label of the corresponding input vector or matrix. Let B = {Xk |k = 1, . . . , M} denote
our test set, where Xk is a test instance (vector or matrix). We define asCk,l = A∪{(Xk , tl)},
where tl ∈ R, the training set extended with the test example Xk together with candidate
label tl . These sets will lead us to assessing predictions with confidence measures and finding
which candidate labels are possible for the test instance Xk given a desired confidence level.

A nonconformity score (NCS) is a numerical value assigned to each instance that indicates
how unusual or strange a pair (xs, ys) is, based on the underlying algorithm, where s ∈
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{1, . . . , N , new} is the index of the sth element in Ck,l and new corresponds to the test
instance. In particular, the underlying algorithm is trained on the instances belonging to Ck,l ,
for each l ∈ {1, . . . , c} and k ∈ {1, . . . , M}, and the nonconformity measure (NCM) utilizes
the resulting model to assign a NCS α

k,l
s to each example in Ck,l .

For every test example k we have c sequences of NCS denoted as Hk,l . Every sequence is
used to find the p value of a test example k with a candidate label tl . Given a sequence Hk,l

of NCS α
k,l
s we can calculate how likely a test instance (Xk, tl) is with the function:

pk(tl) =
∣
∣
∣

{

α
k,l
s ∈ Hk,l |αk,l

s ≥ α
k,l
new

}∣
∣
∣

N + 1
, (1)

where α
k,l
new is the NCS of the kth example in the test set with candidate label tl .

Given a pair (Xk, tl) with a p value of δ this means that this example will be generated
with at most δ frequency, under the assumption that the examples are exchangeable, proven
by Vovk et al. (2005).

After all p values have been calculated they can be used for producing prediction sets
that satisfy a preset confidence level 1 − δ (δ is called the significance level). Given the
significance level δ, a CP will output the prediction set:

{tl |pk(tl) > δ}.
We would like prediction sets to be as small as possible. The size of the prediction sets
depends on the quality of the p values and consequently on the NCM used.

If we want only a single prediction, or forced prediction, the CP outputs the label tr with

r = argmax l=1,...,c pk(tl),

in other words the tl with the highest p value. This prediction is complementedwithmeasures
of confidence and credibility. Confidence is defined as one minus the second largest p value.
Confidence is a measure that indicates the likelihood of a predicted classification compared
to all the other possible classifications. Credibility is defined as the largest p value. Low
credibility means that either the data violate the exchangeability assumption or the particular
test example is very different from the training set examples.

4 Automatic face recognition

In this work two efficient AFR techniques are used and combined with CP. We focus on the
face identification task where a gallery of known people is available and the task is to find
the identity of an unknown test face. We utilize a feature based face recognition method with
two techniques of feature extraction.

Each person is represented as a set of feature vectors constructed in specified image
locations. Therefore, the first step of our algorithm consists of the automatic detection of
key-points (the most representative points) in the face images. Then, we calculate the face
representation (feature vectors) in such points using two popular techniques, namely POEM
and SIFT. If the gallery contains more images of one person, we use the so called “composed
model” where features extracted from all images belonging to the given person are put
together and create a single representation. The last step is the recognition itself where the
face representations are compared with the gallery images in order to identify the person.
This procedure is depicted in Fig. 1.
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Fig. 1 Scheme of the proposed system combining face recognition and conformal prediction

4.1 Notation

In describing the techniques we use the following notation:

– We define as Gi the set of feature vectors (composed model) of person i in the training
set.

– We define as Tk the set of feature vectors for image k in the test set.
– qm ∈ Tk is a feature vector belonging to the set Tk and Qn ∈ Gi is a feature vector

belonging to the set Gi .
– < x, y > denotes the dot product of vectors x and y in the Euclidean space.
– |y| is the Euclidean norm if y is a vector of real values.
– |C | is the cardinality of set C .

Themethods of feature extraction are described in Sects. 4.2 and 4.3. Thematchingmethod
used to compare the face representations is described in detail in Sect. 4.4, while the combined
classifier is described in Sect. 4.5. The similarity scores provided by each technique are then
used to define the AFR-CP nonconformity measures.

4.2 POEM features

4.2.1 Key-point detection

We use the key-point extraction method utilized in Lenc and Král (2014). A set of NG Gabor
filters of different orientations and wavelengths is applied to the original image and then the
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key-points are determined from the filter responses. The filtered images are scanned using a
square sliding window W of size w × w. The window center (r0, c0) is considered to be a
key-point iff:

R j (r0, c0) = max
(r ,c)∈W R j (r , c), (2)

R j (r0, c0) >
1

wi ∗ hi

wi
∑

r=1

hi
∑

c=1

R j (r , c), (3)

where R j is the response of filter j (result of filtering the original image using filter j)
j = 1, . . . , NG (NG is the number of Gabor filters) and wi and hi are the image width and
height respectively. The key-point thus must have a value larger than all points in the defined
neighborhood and at the same time higher than the average value of all pixels in the response
j .

4.2.2 K-means clustering

The number of points determined in the previous section is usually too high (hundreds) and
the points are often concentrated near important facial parts. Moreover, a high number of
the points increases significantly the computation complexity. Therefore, we propose to use
clustering to identify only the most important points. This idea is supported by the fact that
similar methods use less than 100 points and achieve very good results.We chose the k-means
algorithm to cluster the key-points.

4.2.3 Descriptor calculation

The POEM descriptor was proposed by Vu et al. (2012). First the gradient in each pixel of
the input image is computed. An approximation utilizing a simple convolution operator such
as Sobel or Scharr is used to compute gradients in the x and y directions. These values are
used for the computation of gradient orientation and magnitude.

The gradient orientations are then discretized. The number of orientations is denoted as d
and is usually set to 3. Each pixel is now represented as a vector of length d . It is a histogram of
gradient values in a small square neighborhood of a given pixel called cell. The recommended
value for the cell size is 7 pixels (Vu et al. 2012). Figure 2 depicts the meaning of cell and
block terms.

The final encoding is similar to the local binary patterns algorithm (LBP). It is done in
a round neighborhood with diameter L called block. The algorithm assigns either a 0 or 1
value to the 8 neighboring pixels as:

Bi =
{

0 if gi < gc,
1 if gi ≥ gc,

(4)

where Bi is the binary value assigned to the neighboring pixel i ∈ {1, .., 8}, gi denotes the
gray-level value of the neighboring pixel i and gc is the gray-level value of the central pixel.
The resulting values are then concatenated into an 8 bit number. Its decimal representation
is used to create the feature vector. This is computed for each gradient orientation and thus
the descriptor is d times longer than in the case of LBP.
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Fig. 2 POEM computation (Vu
et al. 2012). The square regions
around pixels represent the cells
and the larger surroundings with
diameter L are called blocks.
Arrows represent the
accumulated gradients for one
direction

Fig. 3 Difference of Gaussian filters at different scales (Lowe 2004)

4.3 SIFT features

The SIFT algorithm (Lowe 2004) consists of four steps: extrema detection, removal of key-
points with low contrast, orientation assignment and descriptor calculation.

4.3.1 Extrema detection

The extrema detection process utilizes a Gaussian pyramid. The adjacent Gaussians are
subtracted to produce the difference of Gaussians (DoG). This process is illustrated in Fig. 3.
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Fig. 4 Maxima and minima of
the difference-of-Gaussian
images are detected by
comparing a pixel (marked with
X) to its 26 Neighbors in 3 × 3
regions at the current and
adjacent scales (marked with
circles) (Lowe 2004)

Each pixel is then compared with 8 neighbors in the current scale and 9 neighbors at the
scales above and below as depicted in Fig. 4. A pixel is selected as a key-point if it is larger
or smaller than all of the 26 neighbors.

4.3.2 Low contrast key-point removal

If the magnitude of the intensity (i.e., without sign) at the current pixel in the DoG is less than
a certain value, it is considered as a low contrast key-point. Key-points poorly localized along
an edge are detected if some inequalities related to the Hessian Matrix and its corresponding
eigenvalues are found, the derivatives are estimated by taking the differences of neighboring
sample points.

4.3.3 Orientation assignment

A consistent orientation is assigned to each key point based on the local image properties
ensuring invariance to image rotation. The calculation is based upon local gradient orienta-
tions in the neighborhood of the pixel, first a smoothed histogram of local gradient directions
is created, then the peaks in the histogram are assigned.

4.3.4 Descriptor calculation

The final step consists in the creation of descriptors for the local image regions. The descrip-
tors are highly distinctive and invariant as much as possible to changes in illumination and
3d camera viewpoint. The computation involves the 16 × 16 neighborhood of the key-point
location. Gradient magnitudes and orientations are computed in each point of the neighbor-
hood. Their values are weighted by a Gaussian window. For each sub-region of size 44 (16
regions), orientation histograms are created. Finally, a vector containing 128 (16× 8) values
is generated.

4.4 Lenc–Kral matching

This algorithm, called Lenc-Kral Matching (LKM), has been proposed in Lenc and Kral
(2012). In this work we use it with two different similarity measures. SIFT features are
mostly compared using cosine similarity (Lenc and Kral 2015a) defined by
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cos(qm, Qn) = < qm, Qn >

|qm |.|Qn | . (5)

POEM features are usually compared using χ2 statistic or Histogram intersection (HI).
Based on our preliminary experiments we chose HI which works slightly better. It is defined
as follows:

H I (qm, Qn) =
n

∑

i=1

min(qm(i), Qn(i)). (6)

For each feature vector qm of the recognized face Tk we determine the most similar vector
Q j

maxn of the gallery person G j as:

Q j
maxn = argmax

G j
(sim(qm, Qn)), (7)

where sim denotes one of the similarity measures.
The sum of those similarities is computed as follows:

Dk
j =

∑

n=1..|Tk |
Q j

maxn , (8)

where |Tk | is the number of test image feature vectors. The recognized face is then determined
by the following equation:

Ĝ j = argmax
G j

(Dk
j ). (9)

4.5 Combined classifier

We also examine a weighted combination of the similarities computed by the SIFT and
POEM classifiers discussed in Sect. 4.4. Specifically, the similarities Dk

j computed by each
classifier were mapped to the interval (0, 1) and their weighted average forms the combined
similarity:

Dk
j = wD(SI FT )kj + (1 − w)D(POEM)kj , (10)

where D(SI FT )kj is the normalized output of (8) with (5) as similarity and D(POEM)kj is
the normalized output of (8)with (6) as similarity. Theweightwwasdeterminedby examining
the accuracy on the training set using leave-one-out cross-validation and selecting the one
with best performance. After computing the combined similarities a person is recognized by
applying Eq. (9).

5 Nonconformity measures for AFR-CP

In this section we complete the description of the proposed Automatic Face Recognition
Conformal Predictor (AFR-CP) by defining the NCM’s used, these measures are based on
the three classifiers described inSect. 4.Wehave examined severalNCMs to investigatewhich
of themprovides themost informative p values. Recall fromSect. 3 thatCk,l = A∪{(Xk, tl)},
where {t1, . . . , tc} are the possible labels, corresponding to all persons in our gallery in this
case. For each test example Xk CP generates Ck,1, . . . ,Ck,c and assigns a NCS to each
example in each of the c sets. We denote as zk,ls the sth element of Ck,l and as α

k,l
s its
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NCS, with s = 1, . . . , N , new (where zk,lnew and α
k,l
new correspond to (Xk, tl) and its NCS

respectively).
When implementing (CP) for defining theNCMα

k,l
s weuse the Ds

j calculated by the under-

lying AFR technique [see Eqs. (8) and (10)] with {zk,li : i = 1, . . . , s−1, s+1, . . . , N , new}
as gallery, where zk,lnew = (Xk, tl). In other words Ds

j is the similarity of zk,ls with the person
t j . Our NCMs are defined in such way to contain at least one of two quantities: The first
quantity, Ds

j where ys = t j , summarizes the similarity of the instance s with the same per-
son, while the second quantity summarizes the similarity of the instance to all other persons.
The bigger the NCS the more non-conforming the example and the lower the NCS the less
non-conforming the example.

The following nonconformity measures have been used:
The 1st NCM is defined as

αk,l
s = 1

Ds
j
, (11)

where only the similarity of s with person t j is taken into account.
The 2nd NCM is defined as

αk,l
s = meani �= j (D

s
i ) − Ds

j , (12)

where the first quantity represents the mean similarity of image s with all other persons
excluding t j .

The 3rd NCM is defined as

αk,l
s = meani �= j (Ds

i )

Ds
j

, (13)

where the same quantities as in (12) are used, but now subtraction is replaced by division.
The 4th NCM for an image s corresponding to person t j is defined as

αk,l
s = max

i �= j
(Ds

i ) − Ds
j , (14)

where the first quantity represents the similarity of image s with the most similar of all other
persons excluding t j .

The 5th NCM is defined as

αk,l
s = maxi �= j (Ds

i )

Ds
j

, (15)

where the same quantities as in (14) are used, but now subtraction is replaced by division. It
should be noted that when s = new we use ys = tl (the assumed class). After calculating the
NCS we calculate p values and make predictions following the process described in Sect. 3.

6 Experiments and results

6.1 Corpora

6.1.1 Labeled faces in the wild

Weuse the cropped version of thewell-knownLFWcorpus, so calledLFWcrop.1 This version
was first utilized by Sanderson and Lovell (2009). The cropping is realized to ensure more

1 http://conradsanderson.id.au/lfwcrop/.
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Fig. 5 Three example images from the LFWcrop dataset

Fig. 6 Examples of one person from the UFI face corpus

standardized conditions for testing of face recognition approaches. The main reason for such
preprocessing is the presence of a background in the original images thatmay add information
and improve performance in some cases.

The extraction method places a bounding box around the faces and resizes the resulting
area to 64 × 64 pixels. The bounding box is placed at the same location in every image.

We use the identification scenario proposed by Xu et al. (2014). It uses a subset of 86
people with 11–20 images per person. Seven images of each person are used for the gallery
and the rest are used as the test set. The total number of images are 602 and 649 for the
gallery and test set respectively. Figure 5 shows three example images from the LFW face
dataset.

6.1.2 Unconstrained facial images

The UFI dataset was proposed by Lenc and Král (2015b). It is a real-world database created
from photographs acquired by reporters of a news agency. It thus shows significant variances
in the image quality, face orientation, face occlusion etc. The database is designated for
the identification task. It comes with two image sets. The Cropped images dataset contains
preprocessed faces extracted from photographs while the Large images includes a variable
amount of background. We utilize the cropped version as the other partition is intended to be
used with complete face recognition systems including the face localization stage.

The images have resolution of 128 × 128 pixels. The total number of individuals is 605.
On average 7.1 images of each person are in the gallery set. The total number of gallery
images is 4316. The test set contains just one image for every individual. Figure 6 shows
three example images from one individual.

6.2 Experimental setting and performancemeasures

In this section we detail the experiments and results of the proposed AFR-CPs and of the
three techniques used as their underlyingmodels on the LFWandUFI face datasets described
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previously. Our experiments on both datasets were performed using the provided training and
test sets.

In the case of the combined classifier the weights of the POEM and SIFT similarities
were estimated using the leave-one-out cross-validation method on the training set on the
conventional classifier. Leave-one-out was chosen due to the fact that the number of images
per subject in the galleries varied.

Due to the fact that the accuracy itself is not a good indication for the choice of a NCM
we used four probabilistic criteria for evaluating p values proposed in Vovk et al. (2016).
These criteria are divided into two main categories called Basic Criteria, which do not take
into account the true label, and Observed Criteria, which take into account the true label.
The two Basic Criteria we used are:

– The S-criterion

1

M

c
∑

l=1

M
∑

k=1

pk(tl), (16)

where pk(tl) is the p value of the test example Xk with candidate label tl . In effect the
S-criterion is the average sum of all p values.

– The N-criterion

1

M

M
∑

k=1

|{tl |pk(tl) > δ}|, (17)

which is the average size of the prediction sets with respect to a confidence level 1 − δ.

The two Observed Criteria we used are:

– The OF-criterion

1

M

M
∑

k=1

∑

l,tl �=tk

pk(tl), (18)

which corresponds to the average sum of the p values of the false labels.
– The OE-criterion

1

M

M
∑

k=1

|{tl |pk(tl) > δ, tl �= tk}|, (19)

which represents the average number of false labels included in the prediction sets, with
respect to a confidence level 1 − δ.

For all criteria smaller values indicate more informative p values. Note that their output
values are bounded below by zero.

6.3 LFWcrop corpus results

6.3.1 Accuracy

Table 1 presents the accuracy of the conventional AFR techniques on the LFW corpus in
comparison with that of state-of-the-art techniques on the same dataset. Table 2 reports the
accuracy of the corresponding AFR-CP techniques (using the conventional AFR techniques
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Table 1 Accuracy of the three
conventional AFR techniques on
the LFW dataset in comparison
with state-of-the-art techniques

Classifier Accuracy (%)

HMLBP (Guo et al. 2010) 36.28

NCC (Marsico et al. 2013) 48.37

M-BNCC (Gaston et al. 2017) 65.27

POEM 55.16

SIFT 35.75

Combined 56.24

Table 2 Average accuracy, credibility and confidence of the AFR-CPs on the LFW dataset computed using
non-conformity scores defined in Eqs. (11)–(15).

Underlying technique Nonconformity measure

(11) (12) (13) (14) (15)

Accuracy POEM 55.47 55.32 55.32 55.32 55.32

SIFT 34.21 35.90 35.90 35.75 35.90

Combined 55.62 56.24 56.24 56.24 56.24

Average confidence POEM 54.45 52.92 53.05 68.31 68.69

SIFT 49.94 35.14 35.31 48.69 49.23

Combined 53.32 53.65 53.45 70.76 71.01

Average credibility POEM 60.06 64.17 63.99 67.53 67.52

SIFT 51.13 73.42 72.60 77.37 77.47

Combined 52.99 63.84 63.50 66.96 66.93

as underlying algorithms) along with the average confidence and credibility measures they
produced using the five NCMs defined in Sect. 5. The results reported in these tables show
that the use of the POEM descriptors significantly improves performance over the previously
used SIFT descriptors. Additionally, a further improvement in accuracy is achieved by com-
bining the similarities produced by the POEM-based and SIFT-based techniques. In fact, the
accuracy of the POEM-based and combined classifiers is higher than that of two out of the
three state-of-the-art techniques while being rather close to that of the best performing one.

In comparing the accuracy of theAFR-CP techniques (Table 2, first three rows)with that of
their conventional counterparts (Table 1, last three rows), we observe that, with the exception
of NCM (11), the former is equal to or in some cases even slightly better than the latter. In
the case of NCM (11) the accuracy of the SIFT-based and combined classifiers is slightly
lower than that of the conventional techniques. The reason for this is that the particular NCM
only takes into account the similarity of the image to those of the correct/assumed person, as
opposed to all other measures that include additional information about the similarity of the
image to those of all other candidate persons.

Finally it is worth noting that the rather low accuracy even of the best performing tech-
niques indicates the difficulty of the problem and consequently the need for quantifying the
high uncertainty involved in uncontrolled environment face recognition, especially taking
into consideration the large number of possible labels involved.
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Fig. 7 Percentage of correct region predictions with respect to the confidence level of the CP combined with
the fiveNCMswith the POEM-based underlying technique on the LFWdataset. The y-axis is the percentage of
correct region predictions while the x-axis is the confidence level. aMeasure (11). bMeasure (12). cMeasure
(13). d Measure (14). e Measure (15)

Fig. 8 Percentage of correct region predictions with respect to the confidence level of the CP combined with
the five NCMs with the SIFT-based underlying technique on the LFW dataset. The y-axis is the percentage of
correct region predictions while the x-axis is the confidence level. aMeasure (11). bMeasure (12). cMeasure
(13). d Measure (14). e Measure (15)

6.3.2 Empirical validity

In this subsection we examine the empirical validity of the prediction regions produced by the
proposed techniques for the LFW corpus. Figures 7, 8 and 9 present the percentage of correct
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Fig. 9 Percentage of correct region predictions with respect to the confidence level of the CP combined with
the five NCMs with the combined underlying technique on the LFW dataset. The y-axis is the percentage of
correct region predictions while the x-axis is the confidence level. aMeasure (11). bMeasure (12). cMeasure
(13). d Measure (14). e Measure (15)

region predictions as a function of the confidence level for the five NCMs used on top of the
POEM-based, SIFT-based and combined techniques respectively. In all cases the plots are
very close (and slightly above) the diagonal indicating that the produced region predictions
are well-calibrated (the accuracy is equal to or slightly higher than the required confidence
level), as guaranteed by CP. It is worth noting that a small deviation from the diagonal is
expected since our experiments were performed on the particular test set provided with the
dataset. As test instances increase the plots will follow the diagonal even more closely.

6.3.3 Informational efficiency

Since the purpose of this work is to provide additional information for each test example,
here we examine the quality of the p values produced by the proposed approaches and
consequently how informative the resulting prediction regions are. This is done following
the informational efficiency criteria described in Sect. 6.2 and proposed byVovk et al. (2016).

Table 3 presents the values of the two unobserved criteria on the LFW corpus for the AFR-
CPs with the five NCMs. Specifically the second column of the table contains the values of
the S criterion, while the rest of the columns present the N criterion for the significance
levels 0.01, 0.05, 0.1, 0.15, 0.2 and 0.25. In the same manner Table 4 presents the values
of the two observed criteria. The second column contains the values of the OF criterion,
while the rest of the columns give the values of the OE criterion for the significance levels
0.01, 0.05, 0.10, 0.15, 0.2 and 0.25.

The results reported in the two tables show that in terms of informational efficiency
there is no significant difference between the AFR-CPs with the POEM-based and combined
classifiers as underlying techniques while they clearly outperform the SIFT-based AFR-
CP. Furthermore a comparison between the results obtained with the five different NCMs
shows that measures (14) and (15) produce the most informative p values according to all
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Table 3 Unobserved criteria for the AFR-CPs on the LFW dataset using the NCMs defined in Eqs. (11)–(15)

Underlying technique NCM S criterion N criterion (per significance level)

0.01 0.05 0.10 0.15 0.20 0.25

POEM (11) 13.48 83.79 60.60 45.99 33.73 27.28 19.31

(12) 8.48 67.72 44.98 27.39 18.67 13.42 9.19

(13) 8.49 67.95 45.00 27.25 18.47 13.39 9.21

(14) 6.09 48.07 31.53 17.99 12.99 9.34 7.39

(15) 6.13 49.17 31.94 18.32 13.12 9.44 7.52

SIFT (11) 40.28 85.12 81.26 75.81 70.69 65.95 63.05

(12) 18.14 83.33 71.46 56.88 45.63 35.71 28.42

(13) 18.40 83.77 70.77 56.81 45.87 36.14 29.19

(14) 15.86 74.06 57.05 46.50 39.81 31.74 27.18

(15) 16.64 77.52 61.57 48.66 40.30 34.16 28.76

Combined (11) 29.25 84.21 77.47 65.23 58.39 51.55 46.02

(12) 8.16 64.43 43.52 27.80 18.36 12.14 8.41

(13) 8.23 63.61 43.55 28.38 18.95 12.27 8.63

(14) 5.70 48.48 29.53 18.66 12.02 8.75 6.51

(15) 5.84 49.68 30.01 19.40 12.65 9.43 6.55

Table 4 Observed criteria for the AFR-CPs on the LFW dataset using the NCMs defined in Eqs. (11)–(15)

Underlying technique NCM OF criterion OE criterion (per significance level)

0.01 0.05 0.10 0.15 0.20 0.25

POEM (11) 12.96 82.80 59.66 45.09 32.86 26.45 18.53

(12) 7.94 66.73 44.03 26.47 17.80 12.56 8.39

(13) 7.96 66.96 44.04 26.34 17.59 12.54 8.41

(14) 5.55 47.09 30.58 17.07 12.10 8.48 6.57

(15) 5.60 48.19 30.98 17.41 12.23 8.58 6.69

SIFT (11) 39.78 84.13 80.31 74.92 69.84 65.17 62.28

(12) 17.58 82.33 70.48 55.94 44.72 34.83 27.59

(13) 17.84 82.77 69.80 55.86 44.96 35.27 28.35

(14) 15.30 73.06 56.07 45.56 38.89 30.86 26.32

(15) 16.09 76.53 60.59 47.72 39.38 33.28 27.90

Combined (11) 28.74 83.22 76.5 64.34 57.53 50.75 45.26

(12) 7.61 63.51 43.43 28.24 18.88 12.21 8.58

(13) 7.68 62.63 42.60 27.45 18.07 11.42 7.84

(14) 5.16 47.49 28.57 17.73 11.13 7.88 5.67

(15) 5.29 48.69 29.05 18.46 11.75 8.55 5.71

four criteria. The values of the N and OE criteria for these NCMs demonstrate the practical
usefulness of the produced prediction regions sincewhen using the POEM-based or combined
AFR-CPs together with these measures, the resulting prediction regions contain on average
less than 20 out of the possible 86 persons in the gallery and less than 19 wrong labels out of

123



528 Machine Learning (2019) 108:511–534

the possible 85 for a confidence level as high as 90% (Tables 3 and 4 respectively, significance
level 0.1). By lowering the confidence level to 75%, which is still well above the accuracy
of the best state-of-the-art technique, the aforementioned prediction sets contain less than
8 labels on average and less than 7 wrong labels on average (Tables 3 and 4 respectively,
significance level 0.25). This is arguably a good result considering the high difficulty of the
task and the moderate accuracy of conventional state-of-the art AFR techniques.

6.4 UFI corpus results

6.4.1 Accuracy

Table 5 presents the accuracy of the three conventional AFR techniques on the test set of
the UFI corpus subset in comparison with that of state-of-the-art techniques on the same set.
Table 6 reports the accuracy of the corresponding AFR-CP techniques along with the average
confidence and credibility measures they produced using the five NCMs defined in Sect. 5.
The results shown in these tables are consistent with the ones reported in Table 1 in that the
POEM-based classifier performs much better than the SIFT based one while the combination
of the two gives some further improvement. The accuracy of the POEM-based and combined
classifiers is higher than that of two out of the three state-of-the-art techniques while having
no significant difference with that of the best performing technique.

Table 5 Accuracy of the three
conventional AFR techniques on
the UFI dataset in comparison
with state-of-the-art techniques

Classifier Accuracy (%)

FS-LBP (Lenc and Král 2016) 63.31

POEM (Lenc and Král 2015c) 67.11

M-BNCC (Gaston et al. 2017) 74.55

POEM 71.07

SIFT 58.68

Combined 73.39

Table 6 Average accuracy, credibility and confidence of the AFR-CPs on the UFI dataset computed using
non-conformity scores defined in Eqs. (11)–(15)

Underlying technique Nonconformity measure

(11) (12) (13) (14) (15)

Accuracy POEM 70.91 71.07 71.07 71.07 71.07

SIFT 57.19 58.84 58.51 58.68 58.68

Combined 73.39 73.22 73.39 73.39 73.39

Average confidence POEM 66.03 68.20 68.04 85.52 85.91

SIFT 50.77 53.03 52.39 71.97 72.13

Combined 56.91 69.50 68.44 86.86 87.05

Average credibility POEM 57.36 58.60 58.56 60.81 60.74

SIFT 51.44 62.33 61.68 64.66 64.80

Combined 53.93 58.02 58.11 59.74 59.78
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Fig. 10 Percentage of correct region predictions with respect to the confidence level of the CP combined with
the five NCMs with the POEM underlying technique on the UFI corpus subset. The y-axis is the percentage
of correct region predictions while the x-axis is the confidence level. aMeasure 1. bMeasure 2. cMeasure 3.
d Measure 4. e Measure 5

In comparing the accuracy of the AFR-CP techniques (Table 6, first three rows) with that
of their conventional counterparts (Table 5, last three rows), we observe that in almost all
cases they are equal. The only two exceptions to this are the POEM-based technique with
NCM (11) and the combined technique with NCM (12) and in both cases the difference is
very small to be of significance.

6.4.2 Empirical validity

Figures 10, 11 and 12 examine the empirical validity of the prediction regions produced by
the proposed techniques for the UFI corpus. Specifically, they plot the percentage of correct
region predictions as a function of the confidence level for the five NCMs used on top of the
POEM-based, SIFT-based and combined techniques respectively. Like in the case of the LFW
corpus, in all cases the plots are very close to the diagonal indicating that the produced region
predictions are well-calibrated, as guaranteed by CP. Again note that the small deviation from
the diagonal is due to statistical fluctuations.

6.4.3 Informational efficiency

The most important evaluation and comparison of the different NCMs is in term of the infor-
mational efficiency of the corresponding AFR-CPs. Tables 7 and 8 report the performance
of the AFR-CPs on the UFI corpus in terms of the two unobserved and the two observed
efficiency criteria described in Sect. 6.2 respectively. The values reported in these tables
suggest that, as in the case of the LFW dataset, the NCMs (14) and (15) perform best with
all underlying techniques. Overall the p values produced by the AFR-CP for this corpus
are more informative than the ones produced for the LFW corpus. This is due to the better
performance of the three underlying techniques on this corpus. In particular the POEM-based
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Fig. 11 Percentage of correct region predictions with respect to the confidence level of the CP combined with
the five NCMs with the SIFT underlying technique on the UFI corpus subset. The y-axis is the percentage of
correct region predictions while the x-axis is the confidence level. a Measure 1. bMeasure 2. c Measure 3. d
Measure 4. e Measure 5

Fig. 12 Percentage of correct region predictions with respect to the confidence level of the CP combined with
the five NCMs with the combined underlying technique on the UFI corpus subset.The y-axis is the percentage
of correct region predictions while the x-axis is the confidence level. aMeasure 1. bMeasure 2. cMeasure 3.
d Measure 4. e Measure 5

and combined AFR-CPs with NCMs (14) and (15) for a confidence level of 90% (Table 7,
significance level 0.1) produce prediction regions that contain on average less than 21 out
of the possible 605 persons in the gallery (only 3.35% of all possible labels), while at the
80% confidence level (Table 7, significance level 0.2), which is still above the accuracy of
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Table 7 Unobserved criteria on the UFI dataset using the NCMs defined in Eqs. (11)–(15)

Underlying
technique

NCM S criterion N criterion (per significance level)

0.01 0.05 0.10 0.15 0.20 0.25

POEM (11) 49.17 587.12 309.13 165.93 98.20 45.32 28.36

(12) 24.58 459.02 138.88 53.61 23.43 9.66 4.44

(13) 25.01 461.41 142.16 55.89 23.93 11.37 5.09

(14) 11.65 245.87 56.38 20.80 10.10 3.79 1.90

(15) 11.15 232.36 51.97 20.19 9.64 3.85 1.90

SIFT (11) 275.37 596.68 568.44 532.60 500.82 464.83 421.81

(12) 64.17 559.30 389.71 225.31 146.53 80.75 51.82

(13) 70.02 566.97 391.45 230.34 146.95 100.68 70.30

(14) 41.62 466.98 245.20 134.67 96.53 57.93 27.36

(15) 45.39 487.33 259.44 166.01 112.48 67.12 33.89

Combined (11) 181.17 582.58 497.83 438.56 369.35 324.37 282.34

(12) 25.39 512.85 137.68 47.71 18.95 8.77 4.00

(13) 26.33 503.07 140.48 49.33 21.70 9.95 5.55

(14) 12.70 286.99 58.84 18.99 6.82 3.12 1.95

(15) 12.77 282.00 68.02 18.88 7.79 3.25 2.00

Table 8 Observed criteria on the UFI dataset using the NCMs defined in Eqs. (11)–(15).

Underlying
technique

NCM OF criterion OE criterion (per significance level)

0.01 0.05 0.10 0.15 0.20 0.25

POEM (11) 48.64 586.13 308.17 165.01 97.32 44.50 27.57

(12) 24.04 458.03 137.93 52.69 22.57 8.85 3.67

(13) 24.47 460.42 141.21 54.98 23.07 10.55 4.31

(14) 11.10 244.88 55.43 19.90 9.22 2.97 1.12

(15) 10.60 231.37 51.04 19.29 8.78 3.03 1.12

SIFT (11) 274.87 595.68 567.48 531.69 499.97 464.00 421.05

(12) 63.64 558.31 388.78 224.44 145.68 79.94 51.06

(13) 69.49 565.98 390.51 229.47 146.11 99.88 69.53

(14) 41.09 465.99 244.26 133.78 95.67 57.10 26.58

(15) 44.86 486.34 258.50 165.11 111.62 66.29 33.11

Combined (11) 180.65 581.59 496.89 437.65 368.49 323.55 281.57

(12) 24.85 511.86 136.74 46.80 18.09 7.96 3.23

(13) 25.79 502.09 139.54 48.43 20.85 9.15 4.78

(14) 12.17 285.99 57.91 18.08 5.96 2.31 1.16

(15) 12.23 281.00 67.08 17.98 6.93 2.43 1.21

the best performing state-of-the-art technique, they contain on average less than 4 persons
(only 0.66% of all possible labels). Given the very high number of possible persons in the
gallery, one can appreciate the practical usefulness of these prediction regions.
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7 Conclusions

We examined the application of conformal prediction in unconstrained environment
AFR. Unlike most existing AFR approaches that output only a single prediction, the
proposed CP approaches complement each of their predictions with probabilistically
valid measures of confidence. The difficulty of the particular task as well as the
large number of candidate labels (all persons in the gallery) indicate the usefulness
of providing confidence information rather than just the most likely person in the
gallery.

In particular we implemented CP on top of three AFR classifiers: one based on POEM
descriptors, one based on SIFT descriptors and a weighted combination of the two. The
combination of these classifiers with CP was performed through five different NCMs and
the performance of the resulting AFR-CPs was investigated experimentally on two corpora
consisting of images taken in an uncontrolled environment. Namely the performance of the
proposed approaches was evaluated experimentally on the LFW and UFI corpora.

Our experimental results show that in terms of accuracy the proposed approaches are com-
parable with state-of-the-art conventional AFR techniques while having the added advantage
of quantifying the uncertainty involved in each prediction. The empirical validity results
demonstrate that the prediction regions produced by the AFR-CPs are always valid, i.e.
having an accuracy equal to or higher than the desired confidence level. Based on the infor-
mational efficiency comparison of the produced p values the POEM-based and combined
underlying techniques together with (14) and (15) as NCMs seem to perform best. Consid-
ering the difficulty of the task combined with the large set of possible persons, the resulting
prediction sets can be very useful in the manual classification process by significantly reduc-
ing the number of candidate persons for each image.

The proposed CP method can be combined with any other underlying technique, while a
better performing underlying technique will result in more informative CP outputs. Thus our
future plans include examining alternatives to the conventional AFR techniques used here,
such as Deep Neural Networks, and the investigation of the performance of CP on much
larger datasets. Furthermore the examination of other AFR settings, such as the open set and
recognition by parts, is also a future goal.
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