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Abstract
In bioacoustic recognition approaches, a “flat” classifier is usually trained to recognize sev-
eral species of anurans, where the number of classes is equal to the number of species.
Consequently, the complexity of the classification function increases proportionally with the
number of species. To avoid this issue, we propose a “hierarchical” approach that decomposes
the problem into three taxonomic levels: the family, the genus, and the species. To accom-
plish this, we transform the original single-labelled problem into a multi-output problem
(multi-label and multi-class) considering the biological taxonomy of the species. We then
develop a top-down method using a set of classifiers organized as a hierarchical tree. We test
and compare two hierarchical methods, using (1) one classifier per parent node and (2) one
classifier per level, against a flat approach. Thus, we conclude that it is possible to predict
the same set of species as a flat classifier, and additionally obtain new information about the
samples and their taxonomic relationship. This helps us to better understand the problem
and achieve additional conclusions by the inspection of the confusion matrices at the three
classification levels. In addition, we propose a soft decision rule based on the joint probabil-
ities of hierarchy pathways. With this we are able to identify and reject confusing cases. We
carry out our experiments using cross-validation performed by individuals. This form of CV
avoids mixing syllables that belong to the same specimens in the testing and training sets,
preventing an overestimate of the accuracy and generalizing the predictive capabilities of the
system. We tested our methods in a dataset with sixty individual frogs, from ten different
species, eight genera, and four families, achieving a final Macro-Fscore of 80 and 70% with
and without applying the rejection rule, respectively.
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1 Introduction

Among all animal species, amphibians are themost sensitive to environmental changes (Carey
and Alexander 2003; Cole et al. 2014). This observation has motivated many researchers to
monitor the decline of amphibian populations through time and use it as an indicator of
environmental problems (Adams et al. 2013; Houlahan et al. 2000). Among all amphibian
species that may be monitored, anuran (frogs and toads) are preferred, because they have a
semi-permeable skin which makes them sensitive to aquatic and terrestrial conditions (King
1969).

Nowadays, the most widely used method to monitor frog populations takes advantage
of the vocalization capability to apply acoustics surveys (Marques et al. 2013; Silva 2010).
The manual application of these surveys requires many human and economic resources,
as well as expert knowledge, being difficult to apply in remote tropical areas such as the
Amazon rainforest. Therefore, our goal is to develop an Automatic Calls Recognition (ACR)
system to automatically monitor frog populations in a less invasive manner using acoustic
sensors. The general idea consists in treating the challenge of anuran monitoring as a species
recognition task using their calls combining Signal Processing and Machine Learning (ML)
techniques (Colonna et al. 2015, 2012; Huang et al. 2009; Xie et al. 2015).

In bioacoustics, most of the related works deal with the species recognition problem using
“flats” classifiers,where each instance belongs to one class (or “species” in this case), omitting
any kind of hierarchical structure of the problem, e.g.: the taxonomy of the species (Colonna
et al. 2016a, b; Han et al. 2011; Jaafar et al. 2014; Ribas et al. 2012; Vaca-Castaño and
Rodriguez 2010; Xie et al. 2015).

The phylogenetic taxonomy aims to organize animal species into hierarchical categories
(Fig. 1a). Then, using this pre-defined organization for anurans, we can build a hierarchical
classification system combining classifiers at different levels. In this way we leave implicit
the supposition that species close within the taxonomic tree may or may not produce similar
sounds. Therefore, in thiswork,we address the problemof anuran species recognition through
their calls using two hierarchical approaches considering the family and genus taxonomy as
additional labels. Thus, our hypothesis is that using the phylogenetic taxonomy it is possible:
(1) to better discriminate the classes by reduction of the feature space or by aggregating the
decision functions of each classification level, (2) it is possible to reduce the complexity of the
models involved in the classification, and (3) we can apply a decision rule based on the joint
probabilities of the three levels that allows to eliminate cases with low degree of confidence.

To achieve our purpose, the family and genus information of the species were aggregated
as new labels to each instance of our dataset, transforming the original multi-class dataset,
with a single column of labels, into a multi-output dataset, i.e., a problem where the output
space is multi-class and multi-label at the same time.1 The addition of these two extra labels
implies in an augmentation of the output space as shown in Fig. 1b.

The two hierarchical approaches compared here are (1) One Classifier per Parent Node
and (2) One Classifier per Level, also known as Local Classifier per Node (LCPN) and
Local Classifier per Level (LCPL), respectively (Ceci and Malerba 2007; Silla and Freitas
2011). Here, we refer to these approaches by the acronyms LCPN and LCPL to be consistent
with the related literature. Then, we compare these approaches between them and against a
traditional flat classifier, where we can consider the flat classifier and the LCPL model as
baseline approaches.

1 Our dataset is public available in the UCI repository through the link: https://archive.ics.uci.edu/ml/datasets/
Anuran+Calls+(MFCCs).
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(a) (b)

Fig. 1 aAbstract example of phylogenetic taxonomy. b The original dataset (left) with species names as labels
s. Output space augmentation (right) aggregating the family f and genus g labels obeying the phylogenetic
taxonomy

Using the LCPN, we gain in simplicity being possible to decompose the feature space
of the original problem into sub-problems with a smaller number of classes. In addition,
we present a probabilistic decision rule that takes advantage of the constrain imposed in the
LCPN model. With the second method, the LCPL, we can treat it as an ensemble of classi-
fiers with a particular hierarchical organization taking advantage of the classifier diversity.
Additionally, in both strategies, we can inspect the confusion matrix at each hierarchical
level to obtain additional information about the relationship between the samples and their
classes.

In summary, we present a comparative study of such hierarchical approaches for our
bioacoustics application context. We would like to emphasize that our work is the first one
regarding the combination and comparison of hierarchical approaches together with a CV
procedure by individuals using the phylogenetic taxonomy for anuran calls recognition.

The fundamental concepts about hierarchical approaches are explained in Sect. 3.3. In
addition, inSect. 4,wediscuss howhierarchicalmodelswere applied to the anuran recognition
task (particularly the prediction of frog and toad species) and, in general, to the bioacoustics
problems in which a hierarchical relationship between the labels could be modeled. In Sect. 5
we give an intuitive and detailed explanation about how LCPN can reduce the complexity
of the model, and how the LCPL can be used. In order to test our proposal, we performed
several experiments using the dataset shown inSect. 6.Also, in all of our tests,we applyCross-
Validation (CV) by individuals (or specimens) as recommended by Colonna et al. (2016a)
and explained in Sect. 6.3. The results and conclusion are supported by the calculation of
Macro-metrics by level (see Sects. 6.4, 7 and 8).

2 Motivation for using a hierarchical approach

Anura is the name of an order in the Amphibian class of animals that includes frogs and
toads. According to recent reports, there are more than 6600 different anuran species in the
world, classified into 56 families and several genera (Frost 2016). The anuran diversity in the
tropical areas of South America is the greatest, concentrating approximately 70% of the total
global biodiversity of amphibians (IUCN 2016). Thus, in order to develop a flat classifier,
we have to train it with the number of classes equal to the number of species that we intend
to recognize. Therefore, the complexity of the decision function increases with the number
of species, as well as the probability of misclassifications.

As mentioned early, a hierarchical approach using LCPN can alleviate the complexity
of this problem by decomposing the feature space in levels. Thus, we use the well-known
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Fig. 2 Species tree. From Top-to-Down levels: order, family, genus and species. The # stands for node ID

Fig. 3 Automatic call recognition system (ACR)

taxonomy2 to construct a tree with three levels: family, genus, and species (Fig. 2). With this,
every time we go down through the levels of the tree, the input and output spaces are reduced
(see Fig. 7a).

In contrast, the LCPL approach does not reduce the feature space because the last level
has to be trained with the same number of classes as a flat classifier. However, the LCPL
allows us to treat the problem at different levels of granularity and combine the decision in a
similar way as an ensemble learning (see Fig. 7b). Another advantage compared to the LCPN
lies in the cases in which the branches of the tree have only one leaf node, i.e., parent nodes
that have not division in its lower levels, such as the Bofunidae family depicted in Fig. 2. In
such cases, the LCPL gives us a posterior probability for those leaf nodes. Nonetheless, the
applications of this approach have been limited in the related works and most of the time it
is used as a baseline method (Silla and Freitas 2011; Silla and Kaestner 2013). We therefore
decided to include it for comparison purposes.

Regardless the method (LCPN or LCPL), the paths between the highest and lowest levels
of nodes are fixed and predefined by the taxonomy (see Fig. 2). These configurations allow
us to investigate the error rates between families or genera to get some insights about the
acoustical proximity of the samples, or to help us to develop more accurate monitoring
methods in areas populated by different frog’s families or genera independent of the species.

3 Fundamentals

In order to understand the methodology adopted in this work, two concepts are described in
this section: how a bioacoustic recognition frameworkworks, and how to create a hierarchical
classification approach.

3.1 Bioacoustics systems

Anuran call classification systems are traditionally composed of three main steps with differ-
ent purposes (seeFig. 3) (Colonna et al. 2015;Huang et al. 2009;Xie et al. 2016). Formally, the

2 This taxonomy is maintained by the International Commission on Zoological Nomenclature (ICZN) and
can be consulted in: https://amphibiaweb.org/taxonomy/index.html.
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(a) (b)

Fig. 4 A framework for automatic frog’s calls recognition. a An audio record with three syllables of the
speciesHyla minuta. bMFCCs steps. Here, FFT stands for fast Fourier transform and DCT for discrete cosine
transform

input bioacoustic signal X = {x1, x2, . . . , xN } is a time series of length N , in which its values
represent the acoustics pressure levels (or amplitude). A syllable xk = {xt , xt+1, . . . , xt+n} is
a subset of n consecutive signal values (see Fig. 4a). Thus, the pre-processing step segments
the signal X by identifying the beginning and the endpoints of xk (Colonna et al. 2015).

After syllable extraction, we need to represent each xk by a set of features, commonly
called Low Level acoustic Descriptors (LLDs). The most frequent LLDs in this applica-
tion context are the Mel-Frequency Spectral Coefficients (MFCCs). The MFCCs perform a
spectral analysis based on a triangular filter-bank logarithmically spaced in the frequency
domain (see Fig. 4b) (Colonna et al. 2012; Rabiner and Schafer 2007). Feature extraction
using the MFCCs allows one to represent and reduce the dimensionality of any syllable to a
finite set of coefficients (MFCC(xk) → ck), i.e., X → {(c1, si ), (c2, si ), . . . , (ck, si )}, where
each ck = [c1, c2, . . . , cl ] is a feature vector with l coefficients, and si is the species name
(or label). The representation of xk through ck is more robust, more compact, and easier to
recognize compared to the use of raw data.

Finally, the challenge is how to assign species names to a new syllable by using theMFCCs
values. This is a supervised classification task and it is performed by the last step of the system.
For this purpose, several ML algorithms could be applied to creating and training a model
f (·)with capabilities to predict new incoming samples, i.e., given an unknown c estimates the
most probable label by evaluating f (c) → si , where S = {s1, s2, . . . , si } is the set of species.

3.2 Syllable segmentation

For the segmentation and syllable extraction tasks we use the Spectral entropy (HFFT) of the
signal in a batch mode setting, i.e., frame-by-frame. The Spectral Entropy of a frame was
defined by Sueur et al. (2008) as:

HFFT = −
n/2∑

f =0

S( f ) log(S( f ))

log (n/2)
, (1)

where n is the frame length and S( f ) is the spectrum of xk calculated with the Fast Fourier
Transform (S( f ) = F(xk)). In this case, only the positive part of the spectrum is used. The
S( f ) is normalized to obtain a probability mass function:

S( f ) = |S( f )|
∑n/2

f =0 |S( f )|
, (2)

which is used to compute the normalized Spectral Entropy.
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Fig. 5 Example of syllable extraction using spectral entropy

After that, we applied the binary decision rule to detect the consecutively frames that
compose a syllable:

class(xk) =
{
1 if H(xk) ≤ TH
0 if H(xk) > TH

, (3)

in which TH is a threshold for the entropy value of each frame. With this rule, we assign
the class “signal” to frames of low entropy. Since entropy can be interpreted as a measure
of “impurity”, the higher the value, the greater the probability that the underlying signal is a
random noise.

The optimal TH value is a trade-off between the number of correctly recovered syllables
and discarded noise segments. Our proposed procedure to find that threshold is summarized
as follows:

1. assign T t
H ← mean({HFFT1:n });

2. divide the {HFFT1:n } set into one subset of components with entropy less than T t
H and a

second subset with the remaining components;
3. obtain the mean values μ1 and μ2 of each subset;
4. update T t+1

H ← (μ1+μ2)/2;
5. repeat steps 2–4 until convergence (|T t+1

H − T t
H | < 0.01).

This procedure, known as a binary clustering method (Sezgin and Sankur 2004), was
evaluated in the context of bioacoustic signal segmentation by Colonna et al. (2018). By
applying this, a different optimal TH value is found for each recording, where the input is a set
of entropies {HFFT1 ,HFFT2 , . . . ,HFFTn } corresponding with the n frames of the signal. Thus,
this algorithm divides the entropy set into two groups of maximum separation between their
means trying tomaximize the inter-class distance. Different from other clustering techniques,
such as k-means, thismethod attempts to balance the PDFs of the resulting separation to avoid
creating thin clusters while reducing the squared error in each cluster (Magid et al. 1990).

The chosen frame size was 0.0464s with 66% of overlap to obtain a good segmentation-
time resolution. Figure 5 depicts a syllable segmentation of the Adenomera andreae species.
Note that applying this procedure to our database of recordings each signal sample that the
classifier will classify corresponds to a single species excluding the possibility of a mixture
of signals.

After all the syllables were extracted, the mapping of these to the set of features is carried
out according to Fig. 4b. This figure depicts the calculation of the Mel-frequency cepstral
coefficients (MFCCs) applying the following equation (Rabiner and Schafer 2007):

MFCCm = 1

R

R∑

r=1

log(Mr ) cos

(
2π

R

(
r + 1

2

)
m

)
, (4)
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(a) (b) (c)

Fig. 6 Different manners to create a hierarchical classifier combining flat classifiers. From top-to-down levels:
f stands for family, g for genus, and s for species. a and b are examples of LCPN and LCPL approaches,
respectively. a Flat classifier. b One classifier per parent node. c One classifier per level

whereMr are the values produced by each triangular filter over the spectrum generated by the
Fast Fourier Transform, m is the number of coefficients and R is the amount of filters. With
these coefficients each syllable is represented in a uniqueway through a vector. Subsequently,
the dataset is completed by assigning to each vector its respective label, as explained in the
previous section.

3.3 Review of hierarchical classification approaches

Hierarchical methods are often used to solve multi-label problems in which the classes have
an inherent taxonomy structure, i.e., an instance that belongs to a subclass, naturally belongs
to its higher level classes (Ceci andMalerba 2007; Silla and Freitas 2011). Suchmethods help
to simplify complex multi-class problems by transforming these into a multi-label approach
by considering the hierarchical relationship between the labels. For instance, with the LCPN
configuration, every time we go down to a level of the hierarchy, the number of possible
solutions is reduced, simplifying the decision function, as shown in Fig. 7a. There are two
common models to describe the hierarchical relationships between the classes: (a) trees, and
(b) Direct Acyclic Graphs (DAG). A tree structure connects a set of leaves nodes to a single
parent node forming several subtrees not interconnected on the same level. A DAG is a more
flexible structure allowing the leafs to have more than one parent node (Freitas et al. 2007). In
our approach, we adopted a tree structure, due to the taxonomic constraints of our problem,
in which every species can belong to just one genus and one family classes at the same
time.

Figure 6 illustrates the differences between a flat classifier and two commonly used hierar-
chical approaches. In Fig. 6b, c a set of flat classifiers is employed to construct twomulti-label
hierarchical trees (Silla and Freitas 2011). These trees may be imbalanced depending on the
taxonomic structure of the problem. The classifiers inside each node should be trained sepa-
rately and assembled after that. During the prediction phase, the strategy adopted to determine
the class of a new sample is top-down. This strategy starts from the top nodes performing
the corresponding predictions and goes down until it reaches a leaf node in the last hierar-
chical level. Thus, the decision results in a unique relationship among the set of predicted
labels. An obvious disadvantage associated with this top-down approach is the error prop-
agation coming from the higher levels of the tree. However, these hierarchical approaches
are well suited for the context of species recognition where the class labels have an inherent
taxonomy.
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4 Related works

Hierarchical approaches have been shown to be useful in several application contexts when
compared to flat classifiers, for example in protein classification (Zimek et al. 2010),
on text categorization (Ceci and Malerba 2007) or recognizing user emotions on social
networks (Angiani et al. 2016), and especially in problems with large-scale taxonomic struc-
tures (Babbar et al. 2013).

Into the bioacoustic context, several authors have already studied the problem of recog-
nition and classification of anuran species through their calls. Among these, Huang et al.
(2009) and Colonna et al. (2012) studied the best acoustic features to recognize different
species. Jaafar and Ramli (2013) and Colonna et al. (2015) focused on comparing some syl-
lable extraction procedures as a pre-processing step. Finally, Ribas et al. (2012) and Colonna
et al. (2014) evaluated the possibility of embedding a classifier into the nodes of a wireless
sensor network (WSN). However, little effort was made to link the hierarchical taxonomy
of the species with an automatic classification system. The hierarchical taxonomic organiza-
tion of the species is a standard approach in ecology since it was proposed in 1735 by Carl
Linnaeus.

Gingras and Fitch (2013) formulated the hypothesis that anuran species, which are phy-
logenetically or taxonomically close, have more similar calls. To test this hypothesis the
authors developed a three-parameter model using the mean values of dominant frequency,
the variation coefficient of root-mean square energy, and spectral flux of the signals. Calls
from 142 species belonging to four genera were analyzed and classified applying a logistic
regression model, a Support Vector Machine (SVM), a k-Nearest Neighbors (kNN), and a
Gaussian mixture model (GMM) achieving an accuracy of approximately 70%. During the
test, different specimens (or individuals) were used for training and testing in order to prove
the generalization capabilities of the model.

An acoustic feature extraction and a comparative analysis of these features, for developing
a hierarchical classification technique of Australian frog calls, was proposed by Xie et al.
(2015). This work studies which acoustics features should be used in each classification
level, considering the taxonomy information separated into three levels: family, genus, and
species. The contribution was a correlation method, able to select the better features for each
level, but the final classification was addressed as three separate problems using SVM. The
levels were not integrated into one single approach leaving two open questions: (1) how to
integrate these classifiers in one single method capable of reducing the complexity by taking
advantage of the hierarchical taxonomy, and (2) how to handle the disagreement between the
levels.

The technique called Balance-Guaranteed Optimized Tree with Reject option (BGOTR)
is a hierarchical classification system which includes the reject option. This was developed
byHuang (2016) for fish image recognition using underwater cameras. In this system, amulti-
class classifier and a feature selection are built together into a hierarchical tree, and this is
optimized to maximize the classification accuracy by grouping the classes based on their
inter-class similarities. The rejection option is performed after the hierarchical classification
by applying a Gaussian mixture model (GMM) to fit the distribution of the features in the
images. Despite the interesting results, the authors highlight that this approach does not
consider the taxonomy of the problem. Indeed, this method was not developed for a multi-
label purpose, and therefore it is not possible to evaluate the similarities between family,
genus, and species.
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An evaluation of different hierarchical approaches applied to the bird species recogni-
tion was performed by Silla and Kaestner (2013). The authors compared three different
approaches: a flat classification where the class hierarchy is disregarded, one classifier per
parent node (see Fig. 6), and one global approach where a single algorithm is used to predict
classes at any level of the hierarchy based on Global-Model Hierarchical Classification Naive
Bayes (GMNB). Moreover, an extension of the Precision, Recall, and F-measure metrics was
introduced, tailored to the hierarchical classification scenario. The results show that the hier-
archical approaches outperform flat classifiers when the number of species is large and that
the labels can be organized in an adequate hierarchy.

Finally, Colonna et al. (2016b) proposed and evaluated an LCPN approach to recognizing
anuran species. The results were promising, however, a baseline comparison against a flat
classifier or another hierarchical approach was not presented. They applied Cross Validation
on individuals (or specimens) to test the model generalization capabilities as recommended
in the related works (Colonna et al. 2016a). To the best of our knowledge, the work presented
here shows such baseline comparisons, integrating the family, the genus, and the species
labels of anurans to be solved as a multi-output problem.

5 Proposed approach

The phylogenetic taxonomy aims to organize animals into hierarchical categories. Using
this pre-defined organization for anurans, we can build our hierarchical classification system
adding two extra labels to the original dataset (g and f ):

Dataset =

⎡

⎢⎢⎢⎣

c1 = [c1, c2, . . . , cl ], s, g, f
c2 = [c1, c2, . . . , cl ], s, g, f

...
...

...
...

ck = [c1, c2, . . . , cl ], si , g j , fm

⎤

⎥⎥⎥⎦

with these new labels, we have turned our multiclass problem with a single label into a multi-
label and multi-class problem (MM). ThisMM is a generalization of the commonmulti-label
problems, where the classes are binary in each column. These MM problems are also called
Multi-output because the output is composed of a tuple of labels (Borchani et al. 2016),
which are three in our case [s, g, f ].

This is possible because there is an unequivocal relationship between the species names
and its genus and family names. That is, a subset S0 = {s1, . . . sp} of species belongs to a
singular genus (S ⊆ gm), while a subset of genus G0 = {g1, . . . , gm, . . . , gp} also belongs
to a particular family (G ⊆ fm) such that fm ⊆ F0. Therefore, any si is from G0 and F0

without ambiguity. Thus, if a flat classifier correctly predicts a particular species, the system
is effectively predicting not only the species at the last level, but also the genus and the family
classes at the first two levels together.

With this concept, we can apply reverse engineering and develop a hierarchical top-down
approach as depicted in Fig. 6b, c. Our hierarchical tree is represented in Fig. 2 of Sect. 2.
An example of problem simplification using LCPN decomposition with two attributes is
shown in Fig. 7a. As we can note, at the beginning, all the samples belong to two families (or
classes). After the family classification, the problem is reduced and consequently simplified
by the simple decomposition of the feature space, in which only the samples of the first family
remain. This process is repeated until the last classification level is reached (the species label).
Thus, the class of a leaf node is used to estimate the label of new samples.
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(a)

(b)

Fig. 7 Comparison between LCPN and LCPL approaches from the feature space perspective. a Problem
decomposition stages when performing the hierarchical LCPN from top to down described by an example of
prune training data. b Overlap of decision functions by levels of LCPL. The final decision corresponds to the
superposition of three individual decision

An example of decision function ensemble using LCPL is depicted in Fig. 7b. The final
decision then corresponds to the overlapped decision of the three levels. Notice that the
boundaries of such functions are not necessarily equal at all three levels. As each level is
trained with a different number of classes but with the same number of samples, we can
consider this method as views of the same problem with distinct granularities.

A remarkable advantage of this approach is that we do not have to perform every classifi-
cation for some branches in all levels. This is the main advantage of the customization based
on the taxonomy and the reason why we chose the approaches described in Fig. 6b, c. For
instance, if the first classifier assigns the Bufonidae label to a new sample at the top level, it is
not necessary to continue classifying the remaining levels, because there are no more splits
for this branch. Therefore, the genus label Rhinella and the species label Rhinella granulosa
are assigned automatically. The remaining settings of our approach are detailed in Sect. 6.

6 Methodology description

In order to develop our hierarchical method, the first step is to obtain the family and genus
labels for each sample of our dataset. Given this context, we used the taxonomy informa-
tion available in Frost (2016). The dataset description, the classifier setting, the validation
procedure and the metrics used are described in the following subsections.
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Table 1 Species dataset

Family Genus Species s k

Leptodactylidae Leptodactylus Leptodactylus fuscus∗ 4 270

Adenomera Adenomera andreae∗ 8 672

Adenomera hylaedactyla∗∗ 11 3478

Hylidae Dendropsophus Hyla minuta∗∗ 11 310

Scinax Scinax ruber∗∗ 5 148

Osteocephalus Osteocephalus oophagus∗ 3 114

Hypsiboas Hypsiboas cinerascens∗ 4 472

Hypsiboas cordobae∗∗∗ 4 1121

Bufonidae Rhinella Rhinella granulosa∗ 5 68

Dendrobatidae Ameerega Ameerega trivittata∗∗ 5 542

The s and the k stands for the number of specimens and the number of syllables respectively
∗Amazonas, ∗∗Mata Atlântica, ∗∗∗Córdoba

6.1 Dataset description

The dataset used in our experiments is summarized in Table 1. It has 10 different species,
60 specimens and 7195 syllables. These records were collected in situ under real noise
conditions. Some species are from the Federal University of Amazonas, others from Mata
Atlântica, Brazil and the last one from Córdoba, Argentina. These recordings were stored
in wav format with 44.1kHz of sampling frequency and 32bit, which allows us to analyze
signals up to 22.05kHz. From each extracted syllable, 22MFCCswere calculated by using 44
triangular filters and these coefficients were normalized between−1 ≤ cl ≤ 1 (see Sect. 3.1).

6.2 Node classifier description

In our experiments, we chose four classifiers for comparison: a kNN with 3 neighbors, a
Support Vector Machine with an RBF kernel (RBF-SVM), a polynomial kernel (Poly-SVM)
of degree three, and aDecision Tree. The parameters of RBF-SVMkernel were automatically
setup using the default implementation of the Matlab Software which uses cross-validation.
The same is valid for the Decision Tree. Thus, these classifiers were used to fill the nodes of
the hierarchical approach, as depicted in Fig. 6.

Besides that, in all parent nodes we decomposed the multiclass model f (·) into a com-
bination of smaller binary models f ′(·) applying the One-against-All procedure (Fürnkranz
2001). After that, the result of each binary model was combined by using the majority voting
rule through the Error Correction Output Code procedure (ECOC). This decomposition tech-
nique reduces the complexity of each sub-problem compared to the multiclass approach and
does not increase the computational load as much as the One-against-One method (Colonna
et al. 2016a).

During the training phase of the internal nodes of our hierarchy the dataset is splitted
according to the structure shown in Fig. 2. For instance, the classifier corresponding to node
# 1.4.1.1 in the hierarchy is trained onlywith samples of theAdenomera hylaedactyla species,
whereas its top level node # 1.4.1 is trained with samples of both Adenomera hylaedactyla
and Adenomera andreae species since these two species belong to the same genera. This split
procedure is repeated in most hierarchy pathways except for those branches having only one
path.
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6.3 Special type of cross-validation

Becausewe are dealingwith a supervised problem, andwewant to consider the generalization
capabilities of the system, we need to apply a cross-validation (CV) procedure to estimate
the expected error in a real situation (Friedman et al. 2001). With k-CV the original dataset
is split into k disjoint folds, and for each one, the conditional error (ek) is estimated by
training the model f (·) with k-1 folds. Thus, this procedure is repeated k times and the
expected generalized error can be obtained by averaging ek . When the information of the
individuals (or specimens) is omitted, we may fall into a situation in which the split could
leave syllables of the same individuals in the testing and training sets causing an overestimate
on the accuracy (Colonna et al. 2016a). To overcome this problem, we consider the specimen
information during the k-CV fold splitting, i.e., we leave all the syllables that belong to
the same specimen together, avoiding mixing them in the testing and training sets. In other
words, we perform a Leave-one-Out Cross Validation by individuals. To accomplish this, we
introduce an extra label with the record ID that will only be considered during the k-CV split.
Thus, we assume that the generalization error will be more realistic because we are training
with one specimen to predict a different one.

6.4 Performancemeasures

Diverse anuran species have different syllable rates in their calls (number of syllables per
unit time). This is a particular vocalization characteristic of each anuran species. Hence,
an unequal number of samples (or syllables) are retrieved from each record producing an
unbalanced dataset (see Colonna et al. 2015). This problem affects the traditional accuracy
measures knowing as the Micro-metrics. For instance, a classification model that always
predicts the species with the higher number of samples might have a high accuracy, even
in the extreme case of losing all syllables from the other classes. To overcome this matter,
we suggest to use the Macro-Precision (M-Prec or Average-Precision), the Macro-Recall
(M-Rec or Average-Recall) and Macro-Fscore (M-F1) (Colonna et al. 2015; Sokolova and
Lapalme 2009).

7 Experiments and results

In this section, we present the species recognition results comparing the three approaches: a
Flat classifier, anLCPN, and anLCPL.Also,we showacomparisonbetween these approaches
using four different classifiers for the nodes, described in Sect. 6.2.

7.1 Baseline flat classifier

With the purpose of having a baseline comparison,we test a flat Classifier. The results, divided
by species, are shown in Table 2. The last rows of this table present the Macro-metrics (M-
Prec, M-Rec, and M-F1). The best results are highlighted in boldface. The statistical t-test
with 95% of confidence was applied in order to detect a tie between the distribution of results.
Thus, the Precision columns are compared among themselves, and the same is valid for the
Recall columns. The same considerations apply to Tables 7 and 8 in Section 7.2.

Among all the classifiers we note that the best precision was achieved by RBF-SVM,
but compared to kNN and Poly-SVM the differences were not statistically significant. With
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Table 2 Flat classifier

Species kNN RBF-SVM Poly-SVM Tree

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Adenomera a. 0.74 0.37 0.82 0.24 0.61 0.35 0.40 0.36

Adenomera h. 0.99 0.98 0.99 0.96 0.99 0.99 0.97 0.94

Ameerega t. 0.85 0.61 0.95 0.34 0.74 0.57 0.62 0.40

Hyla m. 0.66 0.73 0.87 0.43 0.70 0.78 0.25 0.47

Hypsiboas cin. 0.86 0.85 0.67 0.59 0.72 0.89 0.81 0.72

Hypsiboas cor. 0.90 0.96 0.38 0.89 0.94 0.96 0.80 0.89

Leptodactylus f. 0.53 0.78 0.95 0.40 0.57 0.80 0.43 0.39

Osteocephalus o. 0.37 0.46 0.97 0.28 0.70 0.60 0.02 0.03

Rhinella g. 0.16 0.83 1.00 0.77 0.25 0.83 0.32 0.60

Scinax r. 0.84 0.61 0.91 0.52 0.91 0.84 0.32 0.19

Average- 0.69 0.72 0.85 0.54 0.71 0.76 0.49 0.50

Macro-F1 0.70 0.66 0.74 0.50

Table 3 Confusion matrix of species with a flat kNN classifier

a b c d e f g h i j Reci

a 249 0 35 26 12 2 139 59 150 0 0.37

b 0 3436 0 37 0 4 0 0 0 1 0.98

c 39 0 333 14 0 29 0 0 126 1 0.61

d 34 14 19 229 0 0 0 0 1 13 0.73

e 7 0 0 0 405 29 20 11 0 0 0.85

f 1 6 0 2 13 1077 11 10 0 1 0.96

g 3 4 1 8 8 23 211 2 10 0 0.78

h 1 0 0 0 29 20 9 53 2 0 0.46

i 1 1 0 0 1 1 6 0 57 1 0.83

j 0 1 1 26 1 11 0 8 9 91 0.61

Preci 0.74 0.99 0.85 0.66 0.86 0.90 0.53 0.37 0.16 0.84

(a) Adenomera andreae, (b) Adenomera hylaedactyla, (c) Ameerega trivittata, (d)Hyla minuta, (e)Hypsiboas
cinerascens, (f) Hypsiboas cordobae, (g) Leptodactylus fuscus, (h) Osteocephalus oophagus, (i) Rhinella
granulosa, and (j) Scinax ruber. Prec and Rec stand for precision and recall respectively

RBF-SVM the species Adenomera hylaedactyla and Rhinella granulosa got the best results.
Thus, if the goal is to monitor these two species, RBF-SVM is a good choice. Nonetheless,
the best trade-off between precision and recall was obtained by Poly-SVM, with a Fscore
equal to 0.74, showing a better generalization capability. Lastly, the decision tree approach
performed the worst.

An example of a kNN classifier confusion matrix is present in Table 3. In this matrix, the
rows represent the Ground Truth (GT) labels and the columns indicate the predicted labels.
The main diagonal corresponds to the number of hits. The last column and row show the
recall and precision by class, from which we can get the Macro-metrics by averaging these
values. From this matrix, we noticed that the greatest number of confusions occur between
the species Adenomera andreae and the species Leptodactylus fuscus, Hypsiboas cordobae
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Table 4 Confusion matrix of family level with kNN and LCPL

Bufonidae Dendrobatidae Hylidae Leptodactylidae Reci

Bufonidae 57 0 3 8 0.83

Dendrobatidae 126 333 44 39 0.61

Hylidae 12 21 2030 102 0.93

Leptodactylidae 158 38 182 4042 0.91

Preci 0.16 0.84 0.89 0.96

Prec and Rec stand for precision and recall respectively

Table 5 Confusion matrix of genus level with kNN and LCPL

a b c d e f g h Reci

a 3685 37 64 19 138 57 148 2 0.88

b 39 333 13 29 0 1 126 1 0.61

c 48 20 228 0 0 0 1 13 0.73

d 17 0 2 1537 26 10 0 1 0.96

e 7 1 8 30 212 2 10 0 0.78

f 1 0 0 50 9 52 2 0 0.45

g 2 0 0 2 6 0 57 1 0.83

h 1 1 26 12 0 8 9 91 0.61

Preci 0.96 0.84 0.66 0.91 0.54 0.40 0.16 0.83

(a) Adenomera, (b) Ameerega, (c) Dendropsophus, (d) Hypsiboas, (e) Leptodactylus, (f) Osteocephalus, (g)
Rhinella, and (h) Scinax. Prec and Rec stand for precision and recall respectively

and Rhinella granulosa. Since we use a flat approach, it is not possible discern at what level
of taxonomy the confusions take place.

7.2 Hierarchical approach

The structure of our hierarchical approach was introduced in Fig. 2. The first parent node
corresponds to the order (Anura) and is responsible for the classification of the samples into
four family classes (column 1 in Table 1). In the second level (the family level) the parent
nodes are trained with the genus labels that correspond to each particular family. Thus, the
family branches are able to predict their own genus labels. The last prediction takes place at
the genus level being responsible for predicting their own species names, as shown by their
leaf nodes. With this configuration, we obtain a confusion matrix per level, i.e.: one matrix
for the family labels (Table 4), one for the genus labels (Table 5), and one for the species
labels (Table 6). These confusion matrices (Tables 4, 5 and 6) correspond to the hierarchical
LCPL using kNN with three neighbors.

From these confusion matrices, it is possible to obtain the Macro-Precision, -Recall and
-Fscore by level to conduct further analysis, being impossible with a flat classifier. For
instance, we can note that the low precision of the Bufonidae family is due to the fact that
the species A. andreae and A. trivittata were mostly confused with R. granulosa, but not
the A. hylaedactyla species which belong to the same family as A. andreae. It suggests
two important things, first, we can monitor with good accuracy a real scenario with the R.
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Table 6 Confusion matrix of species level with kNN and LCPL

a b c d e f g h i j Reci

a 249 0 37 27 13 2 138 57 148 1 0.37

b 0 3436 0 37 0 4 0 0 0 1 0.98

c 39 0 333 13 0 29 0 1 126 1 0.61

d 34 14 20 228 0 0 0 0 1 13 0.73

e 11 0 0 0 412 31 16 2 0 0 0.87

f 0 6 0 2 13 1081 10 8 0 1 0.96

g 3 4 1 8 8 22 212 2 10 0 0.78

h 1 0 0 0 30 20 9 52 2 0 0.45

i 1 1 0 0 1 1 6 0 57 1 0.83

j 0 1 1 26 1 11 0 8 9 91 0.61

Preci 0.73 0.99 0.84 0.66 0.86 0.90 0.54 0.40 0.16 0.83

(a) Adenomera andreae, (b) Adenomera hylaedactyla, (c) Ameerega trivittata, (d)Hyla minuta, (e)Hypsiboas
cinerascens, (f) Hypsiboas cordobae, (g) Leptodactylus fuscus, (h) Osteocephalus oophagus, (i) Rhinella
granulosa, and (j) Scinax ruber. Prec and Rec stand for precision and recall respectively

Fig. 8 Spectrograms of three species. The white color symbolizes greater concentration of energy. Each figure
depicts the main call frequencies, where we note that the frequency band centered around 2.5kHz is present
in the three species. The A. andreae species also presents a main frequency band of 5kHz. a A. andreae. b A.
trivittata. c R. granulosa

granulosa and A. hylaedactyla species together, using only a family classifier, and secondly,
there are acoustic similarities in the feature space between these families. Figure 8 depicts
three spectrograms (time versus frequency) showing the acoustic similarities. Furthermore,
comparing Table 3 with Table 6, we observed that the LCPL approach achieved a greater
number of true positives forHypsiboas cinerascens,Hypsiboas cordobae, and Leptodactylus
fuscus species.

Additionally, analyzing the confusion matrix at the family level and comparing it with the
genus level, we note that Adenomera hylaedactyla lost about 50% of its samples at the genus
level against theHypsiboas class.We also found it difficult to recognizeRhinella granulosa in
the presence ofHypsiboas cinerascens andHypsiboas cordobae. However, the opposite case
is not equally true. It suggests that the samples of the Rhinella genus are probably surrounded
and overlapped with samples ofHypsiboas into the feature space. Similar conclusions can be
achieved for other genera and species. For instance, several samples of Scinaxwere confused
with Dendropsophus and Hypsiboas. Inside the Hypsiboas genus, Hypsiboas cordobae was
mostly confused species with Scinax ruber.

One advantage of this hierarchical method lies in the fact that, for a real scenario with
the Rhinella granulosa, Hyla minuta, Sinax ruber, Osteocephalus oophagus, Hypsiboas cin-
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Table 7 Hierarchical LCPN

Species kNN RBF SVM Poly SVM Tree

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

A. andreae 0.73 0.37 0.80 0.22 0.60 0.34 0.72 0.50

A. hylaedactyla 0.99 0.98 0.99 0.94 0.99 0.98 0.98 0.97

A. trivittata 0.84 0.61 0.97 0.29 0.70 0.58 0.71 0.43

H. minuta 0.67 0.73 0.83 0.43 0.70 0.84 0.32 0.64

H. cinerascens 0.84 0.87 0.16 0.72 0.89 0.84 0.67 0.60

H. cordobae 0.89 0.96 0.87 0.82 0.86 0.96 0.88 0.91

L. fuscus 0.54 0.78 0.98 0.30 0.71 0.72 0.35 0.20

O. oophagus 0.42 0.43 0.97 0.33 0.15 0.35 0.21 0.13

R. granulosa 0.16 0.83 0.96 0.82 0.27 0.79 0.11 0.72

S. ruber 0.84 0.61 0.88 0.47 0.94 0.70 0.72 0.45

Average 0.69 0.72 0.84 0.54 0.68 0.71 0.57 0.56

Macro-F1 0.70 0.65 0.70 0.56

Table 8 Hierarchical LCPL

Species kNN RBF SVM Poly SVM Tree

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

A. andreae 0.73 0.37 0.87 0.22 0.60 0.35 0.54 0.44

A. hylaedactyla 0.99 0.98 0.99 0.95 0.99 0.99 0.98 0.93

A. trivittata 0.84 0.61 0.97 0.30 0.74 0.56 0.71 0.43

H. minuta 0.66 0.73 0.83 0.43 0.65 0.83 0.31 0.50

H. cinerascens 0.86 0.87 0.36 0.56 0.72 0.85 0.58 0.70

H. cordobae 0.90 0.96 0.43 0.93 0.90 0.96 0.87 0.84

L. fuscus 0.54 0.78 0.98 0.31 0.70 0.74 0.25 0.20

O. oophagus 0.40 0.45 0.97 0.28 0.48 0.55 0.07 0.08

R. granulosa 0.16 0.83 0.96 0.82 0.22 0.79 0.11 0.72

S. ruber 0.83 0.61 0.94 0.45 0.92 0.79 0.34 0.17

Average 0.69 0.72 0.83 0.52 0.69 0.74 0.47 0.50

Macro-F1 0.70 0.64 0.72 0.49

erascens, and Hypsiboas cordobae species, the method can get a high recognition rate, even
better than a flat classifier, because these species belong to different families. Another option
is to train the hierarchical method until the genus level to separate, with high precision, the
set of species {Adenomera andreae and Adenomera hylaedactyla} from the set {Hypsiboas
cinerascens andHypsiboas cordobae} or from {Scinax ruber}, decreasing the computational
load. However, the major problem with this approach occurs when misclassifications take
place at the higher levels and propagate to the lowest levels.

A summary of the results by species is given in Tables 7 and 8. Again, the statistical t-test
was applied to the precision and recall columns. It may be noted that the best precision was
achieved by the RBF-SVM of the LCPN method. However, the best hierarchical M-F1 was
using the combination Poly-SVMand LCPL. Comparing Tables 2, 7 and 8we noticed that the
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gains of the hierarchical models were moderate, but we showed how the constraints imposed
in the hierarchies impact on the final results, and this was part of our initial hypothesis.

7.3 Probabilistic rule with rejection

The response of the different hierarchical levels allows us to reduce the space of possible
solutions (see Fig. 7), as well as to combine such solutions to increase the confidence of the
final response. If we consider the probability that each classifier associates with the class of
its respective level, then we can compose a rule that uses those probabilities to obtain the
final probability of each sample.

For instance, let us consider the proposed LCPN model. In this model the first level gives
us the probability that any sample belongs to one of the family classes, i.e. P( f ). Given
that the second level classifiers of the LCPN hierarchy are trained only with samples from
one of the four possible families, each one of them can only have confidence in recognizing
the genus from a single family. Therefore, the outputs of the second level classifiers can be
interpreted as P(g| f ), i.e. the probability of a sample being of the genus g given that it belongs
to the family f . The last level of classifiers was trained only with samples of the different
species belonging to the genus and the families given by taxonomy of the higher levels. In
other words, the output of the last classification level of the LCPN model is P(s| f , g).

Therefore, by applying the chain rule we can calculate the joint probability P(s ∩ g ∩ f )
in each branch of the LCPN model using only the conditional probabilities as:

P(s, g, f ) = P(s|g, f )P(g| f )P( f ), (5)

and use it as a final decision score. Note that after classifying a new sample we will have ten
P(s, g, f ) values, one for each branch of the taxonomy proposed in Fig. 2, and then we can
normalize each P(s, g, f ) by the sum of all the joint probabilities as:

Pi (s, g, f ) = Pi (s, g, f )
∑10

i=1 Pi (s, g, f )
. (6)

where the index i indicates one of our ten species.
Now, the decision to accept or reject a new sample can be taken by applying a threshold T to

themaximum confidence level Pi (s, g, f ). Thus if a classified sample gets a Pi (s, g, f ) value
greater than T (e.g. Pi (s, g, f ) ≥ T ) we accept it as correct, otherwise (e.g. Pi (s, g, f ) < T )
we reject it or store it for future inspection by a specialist. This procedure allows us to evaluate
different values of T, thus obtaining the performance of the proposed model and the rejection
rate.

In Fig. 9a we observe different values of Macro-F1 in relation to the variation of the
threshold between 0 ≤ T ≤ 1 for the LCPN. As expected, when T increases, the cases with
lower confidence are rejected improving the performance of our model. However, for high T
values, the amount of rejected samples may become unacceptable. The relationship between
T and the rejection rate is shown in Fig. 9b. Among all the curves illustrated in Fig. 9, we
observed that using RBF as the base classifier in the LCPN model we obtain a considerable
improvement in the classification rate, but the number of rejected samples grows rapidly until
reaching unacceptable values of almost 50% of the total samples. The best trade-off curve
corresponds to kNN. This curve showed an improvement of 10% in model performance but
maintaining the lowest rejection rate. This shows that, when we used kNN in the hierarchical
classifier, the intermediary nodes of the hierarchy were less likely to err. Lastly, Table 9
summarizes different trade-offs for the value T = 0.98.
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(a) (b)

Fig. 9 Impacts of the probabilistic decision rule on performance (a) and number of rejected samples (b), for
several levels of T . a Decision versus Macro-F1. b Decision versus rejection rate

Table 9 Best trade-offs between
rejection and performance for a
threshold equals to 0.98 in LCPN
model

kNN RBF SVM Poly SVM Tree

Macro-F1 0.80 0.98 0.74 0.73

Rejection (%) 14.13 40.92 43.79 23.10

Finally,wewould like to point out that our rejection strategy using conditional probabilities
can be applied to the LCPL model and also to discover new samples that do not correspond
to the set of species used to train the hierarchical classifier. In LCPL case, the number of
possible paths from the root of the hierarchy to the final nodes includes a higher number
of combinations to obtain Pi (s, g, f ), since each Pi should be obtained by aggregating all
possible paths. Such a number of combinations grows exponentially with the amount of
species and with the number of hierarchical levels. Besides that, there are some pathways on
the hierarchy for which the score is meaningless. For instance, no matter how much is the
score Pi (s, g, f ) for the path: Bufonidae family, Scinax genus and Adenomera hylaedactyla
species, such a combination is not a valid taxonomy.

8 Conclusion

We presented a hierarchical classification approach for frog species recognition using their
calls and the biological taxonomy information. The main algorithmic contribution is how
to prune the training data using a tree customized structure, i.e., after the high-level class is
decided, the number of class options in the lower levels is reduced considering an LCPN.
This procedure has two main advantages: (a) it helped us reduce the feature and the solution
spaces for the classifier, and (b) allowed us develop a decision rule based on the conditional
probabilities to access the final confidence of the hierarchical classification.

First, we transform the original multiclass problem with a single label into a multi-output
problem adding the genus and family labels. It allows us to understand and investigate
with greater depth, or different granularities, the relationship between the samples and their
taxonomy. Our LCPN hierarchical system is able to decompose and simplify this multi-
output problem into smaller subproblems avoiding the disadvantages of flat classifiers in
our application context. Also, our LCPL baseline performs an aggregation of decision into
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the feature space, adding more sources of information. The decision then corresponds to an
overlap of three decision functions. In addition, we present an example of a confusion matrix
analysis in three levels, useful for understanding the nature of our problemand the relationship
between the samples. Lastly, we used Macro-metrics suitable for unbalanced datasets.

The combination of the phylogenetic taxonomy together with the cepstral frequency coef-
ficients and the proximity obtained through the kNN classifier, enables us to notice the
bioacoustics similarities between different species from a classification point of view. We
can conclude that the Adenomera hylaedactyla, Ameerega trivittata, Hypsiboas cinerascens
and Scinax ruber species are clearly recognizable in the presence of other species using an
LCPLwith kNN, and therefore are good candidates for an automatic acousticmonitoring pro-
gram. We would like to emphasize that these species belong to different families and genera
confirming that our hierarchical strategy is indeed advantageous for this type of application.
Another interesting fact is that the Hypsiboas cordobae species, which belongs to another
country, far away from the tropical area, is easy to recognize.

In addition, we performed a similar test using a flat classifier with the same configurations
used for the nodes of the hierarchical approaches.With this,we achieved a similar performance
from that obtained with the hierarchical approach without probabilistic decision rule. How-
ever, by adding the new joint probabilistic rule in the hierarchical classification we obtained
better results as opposed to a flat classifier. Additionally, with our method we can obtain sev-
eral complementary information related to the taxonomy and to the inner organization of the
feature space. Previously, we highlighted that we are carrying out a cross-validation by speci-
mens. Therefore, comparing the results between the flat and hierarchical approaches, we note
that the error is more dependent on cross-validation than on the classification method itself.

Finally, one drawback in most of the hierarchical classification approaches is the error
propagation. Unfortunately, each level of the hierarchical tree could have some misclassifi-
cations that will compound the final error when we go down through the tree. As a result,
practical applications usually require corrections to eliminate the confusing cases, especially
when the hierarchy is deeper and composed frommany levels, i.e., the accuracymay decrease
when the number of levels increases.

In order to handle this problem, we proposed a soft decision strategy based on the posterior
probabilities of each level. Then, in Sect. 7.3 we showed how to get a score (Pi (s, g, f )) for
each hierarchy pathway, and how to use it to reject possibly confusing cases. With this, we
intend to correct the misclassifications of the highest levels using the confidence of the lower
levels. This rule may also help us identify vocalizations of new species that were absent in
the original training set, assigning them a low score.
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