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Abstract Coordinated movements of players are key to success in team sports. However,
traditional models for player movements are based on unrealistic assumptions and their
analysis is prone to errors. As a remedy, we propose to estimate individual movement models
from positional data and show how to turn these estimates into accurate and realistic zones of
control. Our approach accounts for characteristic traits of players, scales with large amounts
of data, and can be efficiently computed in a distributed fashion. We report on empirical
results.
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1 Introduction

Player coordination is perhaps the most important aspect in team sports. In soccer, for exam-
ple, collective movements are inalienable for controlling the midfield, counter attacks, or
effective pressing (Taki and Hasegawa 2000; Fonseca et al. 2012; Gudmundsson and Wolle
2014; Horton et al. 2015). Therefore, models that quantify the probability that a player attains
a certain position in a given time are crucial. Such models are called movement models.
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Fig. 1 An exemplary movement model shown as contour plot in red around player 16. The black squares
indicate the position of player 16 a second in the past and in the future. The black arrows are showing 10 s of
the ball movement

Traditional movement models ground on the assumption that players are able to move
in all directions equally fast and ignore velocities (Taki et al. 1996; Taki and Hasegawa
2000; Fonseca et al. 2012), leading to implausible Voronoi-like tessellations (Voronoi 1908)
of the pitch. More sophisticated models incorporate some basic laws of physics but either
suffer fromunrealistic assumptions or remain intellectual pastimes (Taki andHasegawa 2000;
Fujimura and Sugihara 2005; Gudmundsson and Wolle 2014). All existing approaches treat
every player the same by assuming that a single movement model serves all players equally
well, hence, ignoring individual differences between players.

Consequences arise for applications that build upon player movement such as the com-
putation of zones of control (sometimes also called dominant regions). The zone that is
controlled by a player is characterized by her being the person on the pitch to attain any
position within this region first (Taki and Hasegawa 2000). The underlying idea is that if
the ball falls inside a player’s zone of control, she will likely be able to bring the ball under
control after receiving it and the more space a team controls, the more dominant they are.

In this paper, we propose to estimate individual movement models from positional data.
Our probabilistic approach leverages positions, directions, and velocities of a player at
observed timestamps and returns a distribution of all reachable positions in a given time.
Figure 1 shows an example. We present an efficient computational schema for processing
positional data at large scales and show how to turn the probabilistic movement models
into zones of control. Compared to traditional one-serves-all methods, our approach leads to
realistic movement models, which in turn lead to realistic zones of control.

The remainder is organized as follows. Section 2 reviews related work. Section 3 presents
the estimation of individual movement models and Sect. 4 the computation of the resulting
zones of control. Section 5 provides a discussion and Sect. 6 concludes.

2 Related work

Trajectory analyses are often carried out for wearable devices like smart phones, accelerom-
eters, or gyroscopes (Zheng 2015; Mazimpaka and Timpf 2016). Often, the trajectories
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serve only as proxies for a higher level research question such as the identification of road
defects (see, e.g., Byrne et al. 2013; Mohan et al. 2008), discrimination of drivers by insur-
ance companies (Paefgen et al. 2011), or activity recognition (Avci et al. 2010; Lasek and
Gagolewski 2015).

Similarly, trajectory data in sports is used to identify movement patterns. At an individual
level, Zhao et al. (2016) use Gaussian processes to model velocity (flow) of athletes in
ski races. Laube et al. (2005) propose to analyze relative motions and different temporal
patterns across many subjects. As an exemplary application, the authors analyze positional
data to retrieve patterns from coordinated teammotions. The problem of pattern identification
in groups of moving objects is also studied by Gottfried (2008, 2011). The author proposes
qualitative descriptions of motion patterns using a set of atomic motions as building blocks to
analyze and describe more complex behaviors; Sprado andGottfried (2009) apply this idea to
robocup and soccer games.Knauf et al. (2016) propose spatio-temporal convolution kernels as
a similarity measure over time and space and identify game initiations and offensive patterns
using a clustering approach. Similarly, Janetzko et al. (2014) group attacking patterns of
strikers. Generally, frequent patterns in multi-trajectory data can also be found using episode
mining algorithms (Haase and Brefeld 2014).

Zhang et al. (2016) visualize time interval data to analyze player and team performance.
They include a variety of features ranging from player velocities and ball possession as
the team dominance metrics. Other methods include, for example, estimating the probabili-
ties of a shot being made (Link et al. 2016; Harmon et al. 2016). Generally, the application
of neural networks to player trajectories, represented either as sequences or images, ren-
der the need for engineering hand-crafted features unnecessary and may thus be beneficial
in situations where sufficient statistics are unknown or difficult to obtain, as for analyzing
player positioning. For instance, Zheng et al. (2016) and Le et al. (2017) propose to model
player trajectories with recurrent neural networks for player positioning in basketball and
soccer. Similarly, convolutional neural networks are used by Harmon et al. (2016) to esti-
mate the probability of scoring opportunities. Memmert et al. (2016) and Gudmundsson and
Horton (2017) provide a general overview of positional data applications in team sports.
Other interesting applications include pass quality evaluation (Brooks et al. 2016) or injury
prediction (Rossi et al. 2017).

Taki and Hasegawa (2000) propose a movement model that is based on a player’s current
speed, her direction, and an acceleration profile along different directions. The authors discuss
the dependency of acceleration on velocity and direction and also emphasize that the acceler-
ation decreases with increasing speed. Unfortunately, the authors ignore physical details and
focus on a very basic and unrealistic version of their model, in which a player is able to move
in all directions with the same acceleration; hence, accepting the consequence of unbounded
velocities. Fujimura and Sugihara (2005) extend this approach by adding a resistive force to
prevent velocities to grow infinitely. Thus, the two approaches drastically simplify physical
laws to model player movements. Note that both also constitute one-serves-all approaches as
themodel is not personalized to account for individual differences between players. Recently,
Gudmundsson and Wolle (2014) sketch how such an individual movement model could be
estimated from data. They suggest approximating a player’s reachable region at time t by
constructing a convex polygon for all historic points she reached within this time given her
actual position. However, they leave it a play of thoughts and do not present technical or
algorithmic details of their approach.

Once a movement model is established, it serves as a foundation for various applications
in the analysis of matches. Perhaps the most important one being the computation of zones
of control, or, alternatively, dominant regions. This concept has been introduced by Taki and
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Hasegawa (2000) as the part of the pitch that can be attained by a player before all others.
Consequently, zones of control are necessary to compute and evaluate pass quality and success
(Taki and Hasegawa 2000; Nakanishi et al. 2009; Gudmundsson and Wolle 2014; Horton
et al. 2015), pressing (Taki and Hasegawa 2000), as well as the analysis of team behavior
and interaction (Fonseca et al. 2012), or organization and positioning in both offense and
defense (Ueda et al. 2014).

3 Estimating individual movement models

3.1 Preliminaries

Let pk = (xkt , y
k
t )t∈R≥0 be the trajectory of player k describing her position in area F ⊂ R

2

and let vkt ∈ R
2 be her velocity vector at time t ∈ R≥0 with itsmagnitude (speed) vkt = ‖vkt ‖2,

where ‖ · ‖2 denotes the �2-norm.1 The time index t is typically discrete as samples are
generated with equidistant timestamps t1, t2, . . . , tn , where ti+1 − ti = τ > 0 is fixed. The
trajectories and the associated velocities form the dataset D = {(pti , vti )}ni=1. The goal is to
generate a probabilistic model of the player’s whereabouts in time horizon tΔ > 0 given her
current position pkt and velocity vkt :

P
k
tΔ

(
(x, y) | pkt , vkt

)
.

To not clutter notation unnecessarily, we discard the player index k whenever possible and
focus on data from a single player.

3.2 Existing approaches

Before we introduce the estimation of probabilistic movement models from positional data,
we briefly review existing approaches. The simplest model assumes that all players are able
to move in all directions equally fast at a constant speed. Thus, there is no acceleration or
direction of movement and the resulting zones of control are equal to Voronoi tessellations
(Voronoi 1908) of the pitch using the players as center points. This model is referred to as
Voronoi.

Taki and Hasegawa (2000) improve on this by incorporating the notion of velocity and
acceleration. Their model is based on the assumption that every player is able to accelerate
in each direction equally fast with the magnitude of amax > 0. Thus, at time t = 0 the player
begins to move with acceleration amax in a direction given by the angle φ ∈ [−π, π).
Assuming that a player is moving with speed v in the direction of the x-axis, in time t her
position p = (x, y) is given by

p = (x, y) with

{
x = 1

2amax · cos(φ) · t2 + vt

y = 1
2amax · sin(φ) · t2. (1)

In other words, the set of points that can be reached in time t forms a circle centered at c ∈ R
2

with radius r > 0, where

c = (vt, 0) and r = 1

2
amaxt

2,

1 Note that the velocity can be estimated from positional data in case it is not provided directly.
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Fig. 2 Movement models for a player running with 7.0 km/h (top row) and 24km/h (bottom row) in direction
of x-axis. Voronoi is computed like Taki & Hasegawa but with a velocity of zero

thus, allowing for unbounded velocities. Themodel is depicted in Fig. 2. The details of setting
the model’s parameters are relegated to Sect. 3.7.We refer to this model as Taki &Hasegawa.

Fujimura and Sugihara (2005) introduce a resistive force proportional to the current speed
to render the movement model more realistic. The resistive force prevents the speed to grow
infinitely and even clips it atmaximal value vmax > 0. Thus, at time t = 0, a player accelerates
in direction φ ∈ [−π, π) with the underlying assumption that she can exert the maximum
speed in any direction. The position p = (x, y) of the player at time t is given by

p = (x, y) with

⎧
⎨
⎩
x = vmax · cos(φ) ·

(
t − 1−exp(−αt)

α

)
+ v · 1−exp(−αt)

α

y = vmax · sin(φ) ·
(
t − 1−exp(−αt)

α

)
,

(2)

where v is the initial velocity in the direction of the x-axis and the parameter α > 0 is
responsible for the resistive force. Hence, the set of points within reach of the player in time
t forms a circle centered at c ∈ R

2 with radius r > 0, where

c =
(

v · 1 − exp(−αt)

α
, 0

)
and r = vmax ·

(
t − 1 − exp(−αt)

α

)
.

The model is referred to as Fujimura & Sugihara.
Figure 2 visualizes the existing movement models obtained by Voronoi-based approaches

(from left to right). While all models realize similar circular-shaped movements for slowly
moving players, differences become significantwith increasing velocities.While theVoronoi-
based approach yields perfect circles for any velocity, the approach by Fujimura & Sugihara
leads to a conical structure assembled by nested circles. Finally, Taki & Hasegawa-based
movement models become drop-shaped and oblique conical. Simply by being intrinsically
circular for arbitrary velocities, it becomes obvious that the existing models serve only as
crude approximations of reality. Intuitively, one would expect an elliptically shaped move-
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Fig. 3 Left: Illustration of the ψ function. Center and right: Example for a time horizon of tΔ = 1 s and a
player velocity of 14–20km/h. Position triplets (ps , pt , pu) are used to obtain data samples (center) which
are then smoothed using a KDE with Gaussian kernel to obtain the movement model (right)

mentmodel, and,wewill show in the next section that the data-drivenmodels take on elliptical
shapes.

3.3 Estimating individual movement models from positional data

We now describe how to compute probabilistic movement models from positional data.
The computation is based on triplets (ps,pt ,pu) with s < t < u, t − s = tδ and u − t = tΔ
that are drawn from a player’s trajectory. The coordinates ps and pt will be used to estimate
the direction in which the player moves while pu will be used to estimate her ability to move.
First, the triplet is transformed by a translation so that point pt is centered at (0, 0) followed
by a rotation so that the vector −−→pspt = (xt − xs, yt − ys) is aligned with the x-axis. This
way, the transformed position pu describes the point the player reaches assuming her current
position is the origin, moving in direction of x-axis with a given speed vt = ‖vt‖2. Figure 3
provides an overview of this approach.

Let (ps,pt ,pu) be a triplet of positionswithin a player’s trajectory and letψ be the function
that maps such a triplet to (x, y) coordinates,

ψ : R2 × R
2 × R

2 → R
2, (ps,pt ,pu) �→ p = (x, y). (3)

We obtain the destination point p = (x, y) using a representation in polar coordinates

(x, y) = (r · cos(θ), r · sin(θ)),

where θ is a signed angle and r the distance. The angle θ is computed via the following direct
calculation

θ = �(
−−→pspt ,

−−→ptpu) = atan2(yt − ys, xt − xs) − atan2(yu − yt , xu − xt ) (4)

for ps �= pt ,pt �= pu , where atan2(y, x) is a function that yields an angle θ ∈ [−π, π)

between point (x, y) and the positive x–axis. The distance is given by

r = ‖−−→ptpu‖2. (5)

Figure 3 (left) illustrates how the mapping ψ processes data triplets to derive the position
p. Samples of the transformed positions and the associated speed values are collected within
the set StΔ . This approach is summarized in Algorithm 1.

Having obtained set StΔ , it is possible to define a probability distribution over possible
player whereabouts given her position and initial velocity. This can be done with a two-
dimensional kernel density estimate (KDE). Due to practical considerations, we suggest to
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Algorithm 1 Computation of movement samples.
Input: Data set D = {(pti , vti )}ni=1
Output: Set StΔ of attained positions in time tΔ including initial velocities
1: for s < t < u s.t. s = t − tδ, u = t + tΔ do
2: p = ψ(ps , pt , pu) 	 transformed destination as outlined in Eq. (3)
3: StΔ = StΔ ∪ {(p, vt )} 	 append the derived sample to set StΔ
4: end for

discretize the speed range and include it in the model at a lower level of granularity. To this
end, we define a subset of points

StΔ,V = {(p, v) | v ∈ V } ⊆ StΔ
for a range of velocity values in the interval V = [vmin, vmax] and compute the individual
movement model using a KDE based on samples from this set. We obtain several KDEs
depending on different velocity ranges denoted as PKDE

tΔ,V . To evaluate the likelihood of attain-

ing a given position p ∈ R
2, we use

PtΔ (p | pt , vt ) = PtΔ

(
p | pt ,pt−tδ , vt

) = P
KDE
tΔ,V

(
ψ(pt−tδ ,pt ,p)

)
(6)

for vt ∈ V . We introduce an extra conditioning on the previous player’s position pt−tδ
utilized for the estimation of the direction (angle θ ) in which the player moves. Figure 3
(center) presents a set of samples collected and Fig. 3 (right) a corresponding movement
model based on a KDE.2

The model relies on a particular discretization of the speed range V denoted by Ṽ . Anal-
ogously, different models are obtained for different values of the time horizon parameter tΔ.
In fact, we are interested in several values of this parameter for different time horizons (of
about one second) in a given interval T .

In some cases, the triplets of points used to estimate the model can contain outliers. They
may stem from an interruption during a match (e.g., due to a foul or corner kick) or errors in
the data collecting process. Hence, triplets containing outliers should be discarded. Finally,
given that a player’s ability to move should be symmetric with respect to the direction
she is facing, the set can be augmented with (p̄, v) using p̄ = (x,−y) for each sample
(p, v) ∈ StΔ,V .

3.4 Large-scale movement models

Considering the huge amount of data possibly covering multiple seasons per player, using
KDEs to estimate the movement model for a player can be problematic due to efficiency
issues. Clearly, the more data points are used for training, the better the KDE and hence
the final model. However, more points slow down the prediction and KDE-based move-
ment models may become prohibitive for real-time analysis. An alternative way of defining
the movement models is to compute two-dimensional histograms as follows.

We denote the equidistant discretization of an interval Z by Z̃ , which is of size nZ .
More specifically, Z̃ is a sequence of Zi = min(Z) + i · Δ, i = 0, 1, 2, . . . , nZ and
Δ = max(Z)−min(Z)

nZ
. Hence, the i th cell is [Zi−1,Zi ) ⊆ Z and Z = [Z0,Z1) ∪ [Z1,Z2) ∪

· · ·∪ [ZnZ−1,ZnZ ). The spaceX ×Y covers the possible whereabouts of a player in a given
time horizon. Interval V contains all possible velocities as introduced in the previous section.

2 In the figure, a Gaussian-based KDE is used with the bandwidth parameter set to 0.7 [see, e.g., Turlach
(1993) for an overview of bandwidth selection methods].
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Algorithm 2 Computation of the count matrix A
Input: Data set D = {(pti , vti )}ni=1
Output: Matrix A containing all counts.
1: A = 0nX ×nY×nV×nT 	 initialize empty matrix of counts
2: for tΔ ∈ T̃ do
3: for s < t < u s.t. s = t − tδ, u = t + tΔ do

4: (a, b, c, d) = indices
(
ψ(ps , pt ,pu), vt , tΔ

)
	 outlined in Eq. (7)

5: Aabcd = Aabcd + 1 	 increment Aabcd
6: end for
7: end for

Finally, T̃ denotes a sequence of all time horizons of interest within an interval T . Let X̃ ,
Ỹ , and Ṽ be the discretizations of X , Y , and V with sizes nX , nY , and nV , respectively.
Furthermore, let A be a nX × nY × nV × nT matrix containing the counts of points. Here,
entry Aabcd ∈ N contains the counts for all points within the ath cell in X , the bth cell in Y ,
the cth speed range in V , and the dth time delta from T . Given a time delta tΔ, we compute
the indices a, b, c, and d for the trajectory point corresponding to the transformed position
p = (x, y) and the speed v as discussed in the previous section. The assignment of the indices
is done by the following function:

indices : R
2 × R × R → N

4
0,

(
p, v, tΔ

) �→ (a, b, c, d),

where x ∈ [Xa−1,Xa), y ∈ [Yb−1,Yb), v ∈ [Vc−1,Vc), tΔ = Td . (7)

After obtaining the indices (a, b, c, d), we increment Aabcd . This is repeated for every triplet
within the dataset. The approach is summarized in Algorithm 2. In order to obtain the move-
ment model, i.e., the two-dimensional histogram, we need to condition on a specific speed
value vt as well as a time delta of interest tΔ and normalize the resulting slice:

PtΔ

(
p | pt ,pt−tδ , vt

) = Aabcd∑nX
a′=1

∑nY
b′=1 Aa′b′cd

, for

(a, b, c, d) = indices
(
ψ(pt−tδ ,pt ,p), vt , tΔ

)
. (8)

With this definition, the model can be updated in an online fashion. Moreover, in this way
a given position can be evaluated in constant time. If prediction performance is an issue, i.e.,
for real-time analysis, the counts should be held static. This way, the sums in the denominator
can be precomputed leading to an increased computational efficiency.

3.5 Distributed computation

The procedure in Algorithm 2 can be translated to the MapReduce framework (Dean and
Ghemawat 2008). Looping over positions in a player’s trajectory, we can feed each mapper
with a triplet of positions (ps,pt ,pu) including the corresponding velocities and a given tΔ.
The mapper transforms the last part of the three-point movement into the space X ×Y , uses
the velocity during the movement and tΔ and maps the result to the corresponding indices
(a, b, c, d). The resulting key-value pair of the mapper consists of the concatenated indices,
which serve as the key and a static one as the value. We suggest one reducer per matrix entry
indexed by (a, b, c, d). Each reducer obtains the concatenated indices as a key and a list
of ones. The count for Aabcd is simply obtained by summing up the ones within the list.
The pseudo codes for the mapper and reducer are depicted in Algorithms 3 and 4. After
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Algorithm 3Mapper
Input: (ps , pt ,pu), s = t − tδ and u = t + tΔ
Output: key (a, b, c, d), value 1

1: (a, b, c, d) = indices
(
ψ(ps , pt , pu), vt , tΔ

)

Algorithm 4 Reducer
Input: key (a, b, c, d), values (1, . . . , 1)
Output: value for Aabcd
1: return sum of values (1, . . . , 1)

(

executing theMapReduce procedure, we obtain the counts of A for a fixed time delta tΔ = Td .
Multiple runs over all time deltas are needed to fill the entire matrix. The movement model
is then given as in Eq. (8).

3.6 Complexity

We now consider the complexities for training, prediction, and memory consumption of
the proposed approaches for a single player. Let mtΔ,v ∈ N denote the number of samples
within the set StΔ,V of transformed locations generated by Algorithm 1 when conditioning
on a specific time delta tΔ and speed v, i.e., mtΔ,v = |StΔ,V |. First, we consider movement
models based on kernel density estimates as introduced in Eq. (6). The complexity of train-
ing a KDE is equivalent to the cardinality of the set StΔ,V and thus equal to O(mtΔ,v).
Since there is a separate KDE for every time delta and speed, the complexity of training all
KDEs for a single player isO(

∑
v∈Ṽ

∑
tΔ∈T̃ mtΔ,v) and thus linear in the player’s trajectory

data. The complexity of predicting, i.e., obtaining the probability for a given position, using
a KDE is O(mtΔ,v). Clearly it holds that the larger the training set, the better the model.
However, increasing the size of samples mtΔ,v makes it prohibitive to use the individual
movement models based on KDEs in real-time scenarios. Considering the memory demand
of the KDE-based approach, it becomes obvious that all samples are needed as the KDE is

a non-parametric method. Hence, O
(∑

v∈Ṽ
∑

tΔ∈T̃ mtΔ,v

)
points need to be stored.

Second, we report on the complexities regarding the count-based movement model as
introduced in Eq. (8). The learning procedure is outlined in Algorithm 2 and has the same

complexity of constructing all sets StΔ,V and that is O
(∑

v∈Ṽ
∑

tΔ∈T̃ mtΔ,v

)
. Hence,

the complexity of building the KDE-based model and the count matrix A is identical. Pre-
dicting using the count matrix A when conditioning on a time delta tΔ and a speed value v

isO(1), assuming no online training. This holds true if the denominator in Eq. (8) is applied
not at prediction time but right after the learning. Computing the probability of attaining
a given position then boils down to a simple look up within a table. The memory demand
of the count matrix A is O(nX · nY · nV · nT ). This means that the finer the discretiza-
tion, the larger the matrix and hence more memory is needed. The complexities of both
approaches are summarized in Table 1. It shows that training complexities are equal in both
cases. However, evaluating the probability of a position (and thus the most probable location

Table 1 Complexity overview

Approach Training Predicting Memory

KDE-based O
(∑

v∈Ṽ
∑

tΔ∈T̃ mtΔ,v

)
O(mtΔ,v) O

(∑
v∈Ṽ

∑
tΔ∈T̃ mtΔ,v

)

count-based O
(∑

v∈Ṽ
∑

tΔ∈T̃ mtΔ,v

)
O(1) O(nX · nY · nV · nT )
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of a player) is constant for the counting-based approach while it depends on the number
of samples for the KDE-based approach; hence, a trade-off between accuracy and speed is
possible. Furthermore, the memory requirements grow for the KDE-based approach as more
samples are collected. By contrast, the space demand for the counting-based approach is
constant in the number of samples but large when high precision and accuracy is necessary.

3.7 Empirical results

There are two typical ways of collecting positional data in sports. The first way is to attach
sensors to players and ball to monitor their positions (Grün et al. 2011; Mutschler et al.
2013). The second way is to use computer vision algorithms for retrieving players’ and
ball’s trajectories in consecutive frames (Barris and Button 2008; D’Orazio and Leo 2010).
The positional data we use in the experiments stem from the latter and is recorded at 25 Hz.
For a single match, this usually yields over 25 · 60 · 90 = 1,35,000 samples (due to possible
extra time by the end of each half). The dimensions of a soccer field are 105.0 and 68.0 m and
the coordinates of positions in the trajectory data are given relative to the origin of the field,
which is set to (0, 0). Hence, player coordinates (x, y) are within F = [−52.5,+52.5] ×
[−34.0,+34.0] ⊂ R

2.
Except for the Voronoi-based approach, the models discussed in Sect. 3 involve user-

defined parameters that need to be specified. For Taki&Hasegawa, the acceleration parameter
amax can be derived from the corresponding speed samples vt using at = 1

h (vt+h −vt ). Here,
these are computed for a time horizon of h = 1s using data from a single match. Based on
this, we set amax = 4.2m/s2, which is equal to the 0.999-quantile of the derived values.
The quantile instead of the maximum acceleration observed is used to ignore outliers.
The model by Fujimura & Sugihara includes two parameters, α and vmax. We use α = 1.3,
which is the value proposed in the original paper (Fujimura and Sugihara 2005), and
vmax = 8.0m/s, where the latter corresponds to the 0.999-quantile of the observed speed
values (analogously as in the case of amax parameter in the previous model).

To compute the individual movement models presented in Sect. 3.3, we use tδ = 0.2 s and
tΔ = 1s in Algorithm 1. We use five different speed intervals shown in Table 2. Note that
such a discretization is a common way to bin velocities to account for sparseness in real data,
as the number of samples per speed interval may vary significantly (Lago-Peñas et al. 2009;
Coutts et al. 2010; Gudmundsson and Wolle 2014). Table 2 also presents speed distributions
for three different players: a goalkeeper, a defender, and an attacking midfielder. On average,
field players walk and jog and save their energy for only a few sprints.

Movement estimates for these three players are presented in Fig. 4 using a Gaussian KDE
with bandwidth equal to 1.0 for simplicity. Note that there are small but distinctive differences
between players’ ability to move.3 For example, the goalkeeper has a significantly lower
probability to reach distant positions compared to the field players. The reason lies, however,
not in her ability to move but in the lack of corresponding observations: Goalkeepers hardly
push forward and usually cover a smaller radius than field players. The figures clearly show
that the midfielder covers a wider area and is, on average, moving faster than her peers.
The few data samples collected for the goalkeeper could be balanced with an average model,
see discussion in Sect. 5.

3 Differences in Table 2 between the defender and the midfielder are significant according to a χ2-test.
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Fig. 4 Individual movement models for three different players with initial speed in the range 14–20km/h in
the direction of the x-axis: goalkeeper (left), defender (center), and midfielder (right)

Table 2 Distribution of speed classes for three different players

Speed Range (km/h) Goalkeeper (%) Defender (%) Midfielder (%)

Stand < 1 27.19 11.25 12.01

Walk 1−7 66.68 53.22 50.90

Jog 7−14 5.44 27.57 28.11

Run 14−20 0.57 5.97 6.36

Sprint > 20 0.12 2.00 2.62

4 Zones of control

4.1 Motivation

Movement models can be used to compute zones of control (or dominant regions) of individ-
ual players and teams as a whole (Taki and Hasegawa 2000; Gudmundsson and Wolle 2014;
Horton et al. 2015). Below we formally define dominant regions for the models presented
in the previous section. To do so, it is beneficial to recall the definition of the traditional
movement models that are inspired by physical laws. The definition of probabilistic models
is analogous and discussed later.

Let function Γ :R2 → R≥0 yield the time needed to reach position p ∈ R
2 for a player k

at position pkt movingwith velocity vkt in a given direction, i.e.,Γ
(
p | pkt , vkt

)
. This function is

specific to a given physical model governing player movements. In other words, for a given
player, function Γ yields the minimal time that satisfies Eq. (1) and (2) for the Taki &
Hasegawa and the Fujimura & Sugihara models, respectively. In Taki and Hasegawa (2000),
the concept of a player’s zone of control is defined as follows.

Definition 1 The zone of control of player i is defined as the subset Di of the playing area
field F , where player i can arrive before any other player k �= i .

Formally, this is to say that Di ⊆ F is defined such that ∀p ∈ Di :

i = argmink∈{1,2,...,K } Γ
(
p | pkt , vkt

)
.

It should be noted that interdependencies between playersmay be complex enough to produce
a player’s zone of control that is not a single connected region (Taki and Hasegawa 2000).
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Fig. 5 The same scene as in Fig. 1 but with all movement models for all players shown

The zone of control of a team is defined analogously. Note that in our setup a different
perspective is taken by considering probabilistic movement models for a given time hori-
zon. That is, the zones of control are derived on the basis of density functions of possible
players’ whereabouts. Therefore, we obtain probability distributions of individual players
over the playing area. This is depicted in Fig. 5. The computation of those regions using
probabilistic movement models is presented in detail below.

4.2 Problem formulation

Let Pk
tΔ

(
p | pt ,pt−tδ , vt

)
be the movement model of the kth player as introduced in Eq. (6). It

quantifies the likelihood of player k to reach position p given her current pt and last position
pt−tδ , velocity vkt , and time horizon tΔ. The position p is controlled by player i having
the highest likelihood:

i = argmax
k∈{1,2,...,K }

P
k
tΔ

(
p | pt ,pt−tδ , vt

)
.

Hence, we can define a function

φtΔ : F → {1, 2, . . . , K }, p �→ argmaxk∈{1,2,...,K } P
k
tΔ

(
p | pt ,pt−tδ , vt

)

that determines the index of the dominating player. Thus, the zone of control of a player i is
given as the set of all points Di = {p ∈ F | φtΔ(p) = i} that are controlled by her. It should
be noted that ties may occur if the likelihood of two or more players is equal, especially in
the counting-based setting. If ties are broken, then the set {D1, D2, . . . , DK } is a partition
of F . The procedure is summarized in Algorithm 5.

4.3 Approximating zones of control

Unfortunately, the execution of Algorithm 5 is not practicable. This is because the set F is
not iterable since it is uncountable. A typical workaround is to use a finite approximation
of the playing area (Nakanishi et al. 2009; Lucey et al. 2012; Narizuka et al. 2014; Franks
et al. 2015). Let G ⊂ F be a finite grid over F containing nx · ny equally spaced points in
F with (axis-aligned) distance Δ to each other. Player domination is then computed using G
rather than F , which yields a finite approximation of the zones of control with precision Δ.
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Algorithm 5 Exact computation

Input: Movement models P
k
tΔ

for players k =
1, 2, . . . , K

Output: Sets D1, D2, . . . , DK

1: for k = 1, 2, . . . , K do
2: Dk = {

p ∈ F | φtΔ(p) = k
}

3: end for

Algorithm 6 Finite approximation

Input: Movement models P
k
tΔ

for players k =
1, 2, . . . , K

Output: Set B
1: B = ∅
2: for g ∈ G do
3: B = B ∪ {

(g, φtΔ(g))
}

4: end for

Fig. 6 Controlled zones for different movement models. Black plays from left to right. The two arrows
attached to player positions indicate their whereabouts one and two seconds ago, respectively

The smaller Δ is, the better the approximation. The procedure is presented in Algorithm 6.
For visualization purposes, the set B = {(g, φtΔ(g)) | g ∈ G} can then be used to compute
zones of control by assigning each position p ∈ F the same label as its closest neighbor from
the grid G.

4.4 Empirical results

We now compare zones of control obtained by a Voronoi tessellation, the movement models
by Taki & Hasegawa and Fujimura & Sugihara, respectively, and the proposed data-driven
movement model for the same situation. Figure 6 shows the resulting regions where arrows
indicate directions and velocities of movements.

The top left shows a Voronoi tessellation and implements the assumption that every player
is able to run in any direction equally fast, hence ignoring actually observed movements. In
other words: the closest player always wins and borders of controlled zones are half cuts
between players. The assumption leads to implausible zones of control as we will showcase
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on the example of the white team playing right to left. The white player on the right wing,
for example, has a large zone although she is running towards the center of the pitch. Most of
the controlled area of that player lies in her back and she would need to turn before being able
to head in that direction. The Voronoi model clearly overestimates the right wing of the white
team. By contrast, their left wing is underestimated. Although the left winger pushes forward
and although her direct opponents only move slowly and head towards the center of the pitch,
her zone is small. In contrast to Voronoi tessellations, the proposed approach in the upper
right part of the figure clearly eliminates the depicted limitations. For the white team, the zone
of the right winger is realistically small and the zone of the left winger realistically large.

Computing controlled zones using the movement model by Taki & Hasegawa leads to
the bottom left figure. Borders between zones are often curly as a direct consequence of
the nested circles that originate from the assumption that players may accelerate in any
direction unbounded (see Fig. 2). The zone of the white left winger evolves drop-like from
the actual player position. The underlyingmovement model also assigns a big part of the right
half of the pitch to the black team although white players are closer positioned and some of
them even move into this direction. Figure 6 exhibits the limitations of the approach by Taki
& Hasegawa.

The movement model by Fujimura & Sugihara corrects some of the limitations of
the model by Taki & Hasegawa and, correspondingly, the bottom right part of Fig. 6 appears
more realistic. For instance, similar to the proposed approach, the zone of the white left
winger seems more appropriate than the Voronoi-based zone. Nevertheless, there are other
problems with this model as can be seen on the right wing of the white team. The zone of
the winger has shrunk to almost zero although her opponent is still far away and both are
moving slowly.

To sum up, out of the four movement models, only the proposed approach leads to realistic
controlled zones that are in line with player movements and distances. Either of the competi-
tors suffer from oversimplified assumptions in the movement models and yield unrealistic
zones of control. Analyses that build upon one of the three competitors are likely to be crude
as they rely on rough approximations of reality. We include more examples of the methods
in the “Appendix”.

5 Discussion

The previous sections show theoretically and empirically that existing movement models
suffer from implausible assumptions. Particularly in the previous section,we observe the clear
influence of such oversimplifications in the resulting zones of control forVoronoi tessellations
and underlying movement models by Taki & Hasegawa and Fujimura & Sugihara.

The idea of this paper is to avoid cumbersome definitions of complex physics (and possibly
oversimplifications) by simply observing playermovements.We propose a purely data-driven
movement model that intelligently combines all movements of a player into either a proba-
bilistic model or grid-based frequencies. Depending on the application at hand, either the full
distribution, some quantile thereof, or the convex hull of observed positions can be processed
to compute reachable positions in a predetermined time. Further exploiting the probabilistic
nature of the model (or turning the frequencies into probabilities) may provide confidences
to possible movements. Empirically, the resulting zones of control are intuitive and can be
straightforwardly interpreted with player movements and, hence, constitute a realistic picture
of a situation.
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As a remark, we note that the zones of control for the three baseline approaches are
identical when no player is moving. This can be seen by setting v = 0 in Eq. (1) and (2) for
Taki & Hasegawa and Fujimura & Sugihara, respectively, which then reduces the resulting
zones of control to a Voronoi tessellation. The time needed to reach an arbitrary position is
now a strictly increasing function of the distance to that position. As Fig. 2 shows, the greater
the velocities of the players, the greater the differences of the resulting zones.

However, also note that using positional data for estimating movements of players also
comes with limitations. The angle estimation from trajectory data via Eq. (4), for instance,
is based on the assumption that players always move forward. In other words, the model
assumes that the direction a player is facing is in line with her movement. This is not always
the case as particularly goalkeepers often move backwards. The model would thus over- or
underestimate the time needed for turning around depending on the actual change of direction.
A possible remedy could be a better approximation of the angle θ rather than using Eq. (4)
or devising the angle from an auxiliary data source. Using positional data alone is, however,
not sufficient to solve this matter.

The goalkeeper serves as an example for another problem of the proposed approach as
she is hardly running at full speed. Thus, just by observing her movements on the pitch, one
will hardly be able to assess her full potential. The same problem occurs with players that are
substituted for the first time as the proposed approach does not apply off-the-shelf to unseen
players. The problem is also known as the cold-start problem and similar instances occur in
recommendation scenarios (see, e.g., Son 2016). To overcome this problem, a two-component
mixturemodel can be used. The first component utilizes the actual (and continuously updated)
movement model Pk

nk of the new player k, which is learned on nk points. The second com-
ponent is an average model Pavg over all players (with a similar role) and their data points.
The idea is to blend the personalized component with the average component until the former
is accurate enough to be used alone. Hence, the model is given by a convex combination of
movement models

P
k = λ · Pk

nk + (1 − λ) · Pavg with λ = min
(nk
N

, 1
)

.

Ifnk = 0, then only the averagemodelwill be used.Oncenk exceeds the number of data points
N , λ = 1 and the average model is weighted by zero and hence automatically deactivated
as desired. The required number of observations depends both on the domain and a player’s
speed. In case of soccer and for a given speed range, several thousands of samples appear
sufficient to produce satisfactory results. For a field player, those samples can, for instance, be
collected in a single match. However, in case of a goalkeeper, it is recommended to always
maintain an additional average movement model due to the small number of samples for
higher values of initial velocities as she mostly stands or walks during a match. Note that
this mixture-approach works for both, the movement models based on KDEs and based on
the count matrix A.

There are many possible use cases where realistic movement models may give an edge
toward existing techniques. For instance, player performance indices that groundon the ability
to move (Taki et al. 1996; Ueda et al. 2014) may be revised accordingly. Similarly, player
ratings that measure to what extend their controlled zone contributes to the overall area
controlled by their team (Link et al. 2016; Harmon et al. 2016) may be revisited. Figure 7
shows a potential application that deals with estimating probabilities of passing and pass
completion given the context of the ball possessing player to test the hypothesis that players
try more difficult passes when they have enough space. While the space is directly given by
their zone of control, pass interception and pass completion probabilities could be conditioned
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Fig. 7 Mockup showing possible passes

on the available area to shed light on which player to attack in what situations and also where
to position the own defenders to possibly intercept and defend the receiving player.

Along these lines is also the prediction of pass outcomes (Nakanishi et al. 2009).
The idea is to split the trajectory of the ball into small units that are processed one after
another. For every unit, the probability that a player reaches the position of the ball during
the lifespan of the unit is computed. If an opposing player fulfills this criterion, she inter-
cepts the ball and the computation terminates. If no player intercepts the ball, the pass
is completed after processing the final unit. A preliminary 10-fold cross validation on
1194 passes shows that underlying probabilistic movement models lead to prediction accu-
racies of 97.5% for pass interception and 88.5% for pass completion. The approaches
by Taki & Hasegawa and Fujimura & Sugihara perform similarly and achieve accu-
racies of about 93.7 and 94.5% for interception and 69.1 and 79.5% for completion,
respectively. Voronoi tesselations perform worst and yield only a correct interception in
50.9%. Note that the underlying Voronoi model always predicts an interception since
there is always a player closer to the ball trajectory than the player making the pass in
at least one unit. However, a thorough evaluation is necessary to confirm these promising
results.

6 Conclusion

We proposed a novel data-driven method for estimating individual movement models using
positional data. The model is generated by conditioning a player’s whereabouts after a given
time on her initial position and velocity.We obtained tables of reachable (x, y) coordinates for
every velocity and time interval and proposed to turn these tables into a probabilistic move-
mentmodel using kernel density estimation. Alternatively, the tablesmay be discretized using
a grid (ε-net) to work directly with counts instead of probabilities and hence speed-up com-
putation for (near) real-time scenarios. Movement models were computed for every player
individually and the computation could be distributed on many machines to compute move-
ment models for many players and process many games at once. Empirically, we showed
the limitations of existing movement models and exemplified the usefulness of the contribu-
tion on the example of zones of control. Computing these zones using existing approaches
led to crude approximation due to oversimplified assumptions in the respective models. By
contrast, the proposed movement models led to realistic and intuitive zones of control.
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Appendix

To shed more light on the different movement models and their implication on the zones of
control, the following Figures show four exemplary situations for Voronoi-based movement
models, approaches by Taki & Hasegawa and Fujimura & Sugihara as well as the proposed
probabilistic movement model.

Figure 8 shows perhaps the most relevant situation for coaches and analysts. The proba-
bilistic movement model on the top right clearly identifies a scoring opportunity for the white
team. The white player in the center of the pitch creates a large zone of control behind
the defending black players. If the ball possessing player plays the ball into this zone, thewhite
player may have enough time to control the ball and to create a one-on-one with the goal
keeper. Except for Taki & Hasegawa, the baselines fail to detect this.

In general, Fig. 9 shows that the baselines either lead to unnatural square- and rectangle-like
shapes (Voronoi and Fujimura&Sugihara) or implausible drop-like areas (Taki&Hasegawa)
as a consequence of implicit assumptions and constraints in the models. Our approach allows
to capture movements irrespectively of the resulting shapes of the zones as there are no
assumptions on the movements.

Velocities are generally an issue for the baseline approaches. Figure 10 shows an example
where we focus only on the ball possessing player and the white striker that runs towards her.
The region in the Voronoi-based approach are clearly too small for the running player. By

Fig. 8 Scoring opportunity for the white team
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Fig. 9 Implicit assumptions in baselines constrain possible shapes of zones
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Fig. 10 High velocities not appropriately captured by baselines

contrast, Taki&Hasegawa andFujimura&Sugihara overestimate the impact of the approach-
ing white player and render the ball possessing player outside of her own region of control.
The approach by Taki & Hasegawa even credits a surprisingly large area to the second white
player from the left. Interestingly, this player is almost standing and only gets an area this
large because the zones of the other players evolve drop-like into the direction of movement.
A remedy to such artefacts is to compute the controlled zones with underlying probabilistic
movement models. The respective figure on the top right shows realistic areas that are easily
interpreted.
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