
Mach Learn (2018) 107:1987–2025
https://doi.org/10.1007/s10994-018-5722-4

Clustering with missing features: a penalized
dissimilarity measure based approach

Shounak Datta1 · Supritam Bhattacharjee2 ·
Swagatam Das1

Received: 16 October 2017 / Accepted: 1 June 2018 / Published online: 12 June 2018
© The Author(s) 2018

Abstract Many real-world clustering problems are plagued by incomplete data character-
ized by missing or absent features for some or all of the data instances. Traditional clustering
methods cannot be directly applied to such data without preprocessing by imputation or
marginalization techniques. In this article,weovercome this drawbackbyutilizing a penalized
dissimilarity measure which we refer to as the feature weighted penalty based dissimilarity
(FWPD). Using the FWPD measure, we modify the traditional k-means clustering algo-
rithm and the standard hierarchical agglomerative clustering algorithms so as to make them
directly applicable to datasets with missing features. We present time complexity analyses
for these new techniques and also undertake a detailed theoretical analysis showing that the
new FWPD based k-means algorithm converges to a local optimum within a finite number
of iterations. We also present a detailed method for simulating random as well as feature
dependent missingness. We report extensive experiments on various benchmark datasets for
different types of missingness showing that the proposed clustering techniques have gen-
erally better results compared to some of the most well-known imputation methods which
are commonly used to handle such incomplete data. We append a possible extension of the
proposed dissimilarity measure to the case of absent features (where the unobserved features
are known to be undefined).
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1 Introduction

In data analytics, clustering is a fundamental technique concerned with partitioning a given
dataset into useful groups (called clusters) according to the relative similarity among the data
instances. Clustering algorithms attempt to partition a set of data instances (characterized by
some features), into different clusters such that the member instances of any given cluster
are akin to each other and are different from the members of the other clusters. Greater
the similarity within a group and the dissimilarity between groups, better is the clustering
obtained by a suitable algorithm.

Clustering techniques are of extensive use and are hence being constantly investigated in
statistics, machine learning, and pattern recognition. Clustering algorithms find applications
in various fields such as economics, marketing, electronic design, space research, etc. For
example, clustering has been used to group related documents for web browsing (Broder
et al. 1997; Haveliwala et al. 2000), by banks to cluster the previous transactions of clients to
identify suspicious (possibly fraudulent) behaviour (Sabau 2012), for formulating effective
marketing strategies by clustering customers with similar behaviour (Chaturvedi et al. 1997),
in earthquake studies for identifying dangerous zones based on previous epicentre locations
(Weatherill and Burton 2009; Shelly et al. 2009; Lei 2010), and so on. However, when we
analyze such real-world data, we may encounter incomplete data where some features of
some of the data instances are missing. For example, web documents may have some expired
hyper-links. Such missingness may be due to a variety of reasons such as data input errors,
inaccurate measurement, equipment malfunction or limitations, and measurement noise or
data corruption, etc. This is known as unstructuredmissingness (Chan and Dunn 1972; Rubin
1976).Alternatively, not all the featuresmay be defined for all the data instances in the dataset.
This is termed as structural missingness or absence of features (Chechik et al. 2008). For
example, credit-card details may not be defined for non-credit card clients of a bank.

Missing features have always been a challenge for researchers because traditional learn-
ing methods (which assume all data instances to be fully observed, i.e. all the features are
observed) cannot be directly applied to such incomplete data, without suitable preprocessing.
When the rate of missingness is low, the data instances with missing values may be ignored.
This approach is known as marginalization. Marginalization cannot be applied to data hav-
ing a sizable number of missing values, as it may lead to the loss of a sizable amount of
information. Therefore, sophisticated methods are required to fill in the vacancies in the data,
so that traditional learning methods can be applied subsequently. This approach of filling in
the missing values is called imputation. However, inferences drawn from data having a large
fraction of missing values may be severely warped, despite the use of such sophisticated
imputation methods (Acuña and Rodriguez 2004).

1.1 Literature

The initial models for feature missingness are due to Rubin (1976); Little and Rubin (1987).
They proposed a three-fold classification of missing data mechanisms, viz. Missing Com-
pletely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random
(MNAR). MCAR refers to the case where missingness is entirely haphazard, i.e. the likeli-
hood of a feature being unobserved for a certain data instance depends neither on the observed
nor on the unobserved characteristics of the instance. For example, in an annual income
survey, a citizen is unable to participate, due to unrelated reasons such as traffic or
schedule problems. MAR eludes to the cases where the missingness is conditional to the
observed features of an instance, but is independent of the unobserved features. Suppose,
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college-goers are less likely to report their income than office-goers. But, whether a college-
goerwill report his or her income is independent of the actual income.MNAR is characterized
by the dependence of the missingness on the unobserved features. For example, people who
earn less are less likely to report their incomes in the annual income survey.Datta et al. (2016b)
further classified MNAR into two sub-types, namely MNAR-I when the missingness only
depends on the unobserved features andMNAR-II when the missingness is governed by both
observed as well as unobserved features. Schafer and Graham (2002) and Zhang et al. (2012)
have observed that MCAR is a special case of MAR and that MNAR can also be converted
to MAR by appending a sufficient number of additional features. Therefore, most learning
techniques are based on the validity of the MAR assumption.

A lot of research on the problem of learning with missing or absent features has been
conducted over the past few decades, mostly focussing on imputationmethods. Several works
such as Little and Rubin (1987) and Schafer (1997) provide elaborate theories and analyses of
missing data. Common imputation methods (Donders et al. 2006) involve filling the missing
features of data instanceswith zeros [Zero Imputation (ZI)], or themeans of the corresponding
features over the entire dataset [Mean Imputation (MI)]. Class Mean Imputation or Concept
Mean Imputation (CMI) is a slight modification of MI that involves filling the missing
features with the average of all observations having the same label as the instance being
filled. Yet another common imputation method is k-Nearest Neighbor Imputation (kNNI)
(Dixon 1979), where the missing features of a data instance are filled in by the means
of corresponding features over its k-Nearest Neighbors (kNN), on the observed subspace.
Grzymala-Busse and Hu (2001) suggested various novel imputation schemes such as treating
missing attribute values as special values. Rubin (1987) proposed a technique calledMultiple
Imputation (MtI) to model the uncertainty inherent in imputation. In MtI, the missing values
are imputed by a typically small (e.g. 5–10) number of simulated versions, depending on the
percentage of missing data (Chen 2013; Horton and Lipsitz 2001). Some more sophisticated
imputation techniques have been developed, especially by the bioinformatics community, to
impute the missing values by exploiting the correlations between data. A prominent example
is the Singular Value Decomposition based Imputation (SVDI) technique (Troyanskaya et al.
2001) which performs regression based estimation of the missing values using the k most
significant eigenvectors of the dataset. Other examples inlcude Least Squares Imputation
(LSI) (Bo et al. 2004), Non-Negative LSI (NNLSI) and Collateral Missing Value Estimation
(CMVE) (Sehgal et al. 2005).Model-basedmethods are related to yet distinct from imputation
techniques. These methods attempt to model the distributions for the missing values instead
of filling them in Dempster and Rubin (1983); Ahmad and Tresp (1993); Wang and Rao
(2002a, b).

However,most of these techniques assume the pattern ofmissingness to beMCARorMAR
because this allows the use of simpler models of missingness (Heitjan and Basu 1996). Such
simple models are not likely to perform well in case of MNAR as the pattern of missingness
also holds information. Hence, other methods have to be developed to tackle incomplete data
due to MNAR (Marlin 2008). Moreover, imputation may often lead to the introduction of
noise and uncertainty in the data (Dempster and Rubin 1983; Little and Rubin 1987; Barceló
2008; Myrtveit et al. 2001).

In light of the observations made in the preceding paragraph, some learning methods
avoid the inexactmethods of imputation (aswell asmarginalization) altogether, while dealing
with missingness. A common paradigm is random subspace learning where an ensemble of
learners is trained on projections of the data in random subspaces and an inference is drawn
based on the concensus among the ensemble (Krause and Polikar 2003; Juszczak and Duin
2004; Nanni et al. 2012). Chechik et al. (2008) used the geometrical insight of max-margin
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classification to formulate an objective function which was optimized to directly classify the
incomplete data. This was extended to the max-margin regression case for software effort
prediction with absent features in Zhang et al. (2012). Wagstaff (2004); Wagstaff and Laidler
(2005) suggested a k-means algorithm with Soft Constraints (KSC) where soft constraints
determined by fully observed objects are introduced to facilitate the grouping of instances
withmissing features. Himmelspach andConrad (2010) provided a good review of partitional
clustering techniques for incomplete datasets, which mentions some other techniques that do
not make use of imputation.

The idea to modify the distance between the data instances to directly tackle missingness
(without having to resort to imputation) was first put forth by Dixon (1979). The Partial
Distance Strategy (PDS) proposed in Dixon (1979) scales up the observed distance, i.e. the
distance between two data instances in their common observed subspace (the subspace con-
sisting of the observed features common to both data instances) by the ratio of the total number
of features (observed as well as unobserved) and the number of common observed features
between them to obtain an estimate of their distance in the fully observed space. Hathaway
and Bezdek (2001) used the PDS to extend the Fuzzy C-Means (FCM) clustering algorithm
to cases with missing features. Furthermore, Millán-Giraldo et al. (2010) and Porro-Muñoz
et al. (2013) generalized the idea of the PDS by proposing to scale the observed distance by
factors other than the fraction of observed features. However, neither the PDS nor its exten-
sions can always provide a good estimate of the actual distance as the observed distance
between two instances may be unrelated to the distance between them in the unobserved
subspace.

1.2 Motivation

As observed earlier, one possible way to adapt supervised as well as unsupervised learning
methods to problems with missingness is to modify the distance or dissimilarity measure
underlying the learning method. The idea is that the modified dissimilarity measure should
use the common observed features to provide approximations of the distances between the
data instances if they were to be fully observed. PDS is one such measure. Such approaches
neither require marginalization nor imputation and are likely to yield better results than either
of the two. For example, let X f ull = {x1 = (1, 2), x2 = (1.8, 1), x3 = (2, 2.5)} be a dataset
consisting of three points in R

2. Then, we have dE (x1, x2) = 1.28 and dE (x1, x3) = 1.12,
dE (xi , x j ) being the Euclidean distance between any two fully observed points xi and x j in
X f ull . Suppose that the first coordinate of the point (1, 2) be unobserved, resulting in the
incomplete dataset X = {̃x1 = (∗, 2), x2 = (1.8, 1), x3 = (2, 2.5)} (‘*’ denotes a missing
value), on which learning must be carried out. Notice that this is a case of unstructured
missingness (because the unobserved value is known to exist), as opposed to the structural
missingness of Chechik et al. (2008) 0. Using ZI, MI and 1NNI respectively, we obtain the
following filled in datasets:

XZ I = {x̂1 = (0, 2), x2 = (1.8, 1), x3 = (2, 2.5)},
XMI = {x̂1 = (1.9, 2), x2 = (1.8, 1), x3 = (2, 2.5)},

and X1NN I = {x̂1 = (2, 2), x2 = (1.8, 1), x3 = (2, 2.5)},

where x̂1 denotes an estimate of x1. If PDS is used to estimate the corresponding distances
in X , then the distance dPDS(x1, xi ) between the implicit estimate of x1 and some other
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instance xi ∈ X is obtained by

dPDS(x1, xi ) =
√

2

1
(x1,2 − xi,2)2,

where x1,2 and xi,2 respectively denote the 2nd features of x1 and xi , and 2 is the numerator
of the multiplying factor due to the fact that xi ∈ R

2 and 1 is the denominator owing to the
fact that only the 2nd feature is observed for both x1 and xi . Then, we get

dPDS(x1, x2) =
√

2

1
(2 − 1)2 = 1.41,

and dPDS(x1, x3) =
√

2

1
(2 − 2.5)2 = 0.71.

The improper estimates obtained by PDS are due to the fact that the distance in the common
observed subspace does not reflect the distance in the unobserved subspace. This is the
principal drawback of the PDS method, as discussed earlier. Since the observed distance
between two data instances is essentially a lower bound on the Euclidean distance between
them (if they were to be fully observed), adding a suitable penalty to this lower bound can
result in a reasonable approximation of the actual distance. This approach (Datta et al. 2016b)
called the Penalized Dissimilarity Measure (PDM) may be able to overcome the drawback
which plagues PDS. Let the penalty between x1 and xi be given by the ratio of the number of
features which are unobserved for at least one of the two data instances and the total number
of features in the entire dataset. Then, the dissimilarity δPDM (x1, xi ) between the implicit
estimate of x1 and some other xi ∈ X is

δPDM (x1, xi ) =
√

(x1,2 − xi,2)2 + 1

2
,

where the 1 in the numerator of the penalty term is due to the fact that the 1st feature of x1
is unobserved. Therefore, the dissimilarities δPDM (x1, x2) and δPDM (x1, x3) are

δPDM (x1, x2) =
√

(2 − 1)2 + 1

2
= 1.5,

and δPDM (x1, x3) =
√

(2 − 2.5)2 + 1

2
= 1.

The situation is illustrated in Fig. 1a. The reader should note that the points estimated
using ZI, MI and 1NNI exist in the same 2-D Cartesian space to which X f ull is native. On
the other hand, the points estimated by both PDS and PDM exist in their individual abstract
spaces (likely distinct from the native 2-D space). Therefore, for the sake of easy comparison,
we illustrate all the estimates together by superimposing both these abstract spaces on the
native 2-D space so as to coincide at the points x2 and x3. It can be seen that the approach
based on the PDM does not suffer from the drawback of PDS and is better able to preserve
the relationship between the points. Moreover, it should be noted that there are two possible
images for each of the estimates obtained by both PDS and PDM. Therefore, had the partially
observed point instead been x′

1 = (3, 2)with the first feature missing (giving rise to the same
incomplete dataset X ; ˜x′

1 replacing the identical incomplete point x̃1), PDS and PDMwould
still find reasonably good estimates (PDM still being better than PDS). This situation is also
illustrated in Fig. 1b. In general,
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Fig. 1 Comparison of various techniques for handling missing features. a Comparison for x1. b Comparison
for x′

1

1. ZI works well only for missing values in the vicinity of the origin and is also origin
dependent;

2. MI works well only when the missing value is near the observed mean of the missing
feature;

3. kNNI is reliant on the assumption that neighbors have similar features, but suffers from
the drawbacks that missingness may give rise to erroneous neighbor selection and that
the estimates are restricted to the range of observed values of the feature in question;

4. PDS suffers from the assumption that the common observed distances reflect the unob-
served distances; and

5. None of these methods differentiate between identical incomplete points, i.e. x̃1 and x̃′
1

are not differentiated between.

However, a PDM successfully steers clear of all these drawbacks (notice that δ(x1, x′
1) = 1

2 ).
Furthermore, such a PDM can also be easily applied to the case of absent features, by slightly
modifying the penalty term (see “Appendix A”). This knowledge motivates us to use a PDM
to adapt traditional clustering methods to problems with missing features.

1.3 Contribution

The FWPD measure is a PDM used in Datta et al. (2016b) for kNN classification of datasets
with missing features.1 The FWPD between two data instances is a weighted sum of two
terms; the first term being the observed distance between the instances and the second being
a penalty term. The penalty term is a sum of the penalties corresponding to each of the
features which are missing from at least one of the data instances; each penalty being directly
proportional to the probability of its corresponding feature being observed. Such a weighting
scheme imposes greater penalty if a feature which is observed for a large fraction of the data
is missing for a particular instance. On the other hand, if the missing feature is unobserved
for a large fraction of the data, then a smaller penalty is imposed.

The contributions of the current article are in order:

1 The work of Datta et al. (2016b) is based on the FWPDmeasure originally proposed in the archived version
of the current article (Datta et al. 2016a).
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1. In the current article, we formulate the k-means clustering problem for datasets with
missing features based on the proposed FWPD and develop an algorithm to solve the
new formulation.

2. We prove that the proposed algorithm is guaranteed to converge to a locally optimal solu-
tion of the modified k-means optimization problem formulated with the FWPDmeasure.

3. We also propose Single Linkage, Average Linkage, and Complete Linkage based HAC
methods for datasets plagued by missingness, based on the proposed FWPD.

4. We provide an extensive discussion on the properties of the FWPD measure. The said
discussion is more thorough compared to that of Datta et al. (2016b).

5. We further provide a detailed algorithm for simulating the four types of missingness
enumerated in Datta et al. (2016b), namely MCAR, MAR, MNAR-I (missingness
only depends on the unobserved features) and MNAR-II (missingness depends on both
observed as well as unobserved features).

6. Moreover, since this work presents an alternative to imputation and can be useful in
scenarioswhere imputation is not practical (such as structuralmissingness), we append an
extension of the proposed FWPD to the case of absent features (where the absent features
are known to be undefined or non-existent). We also show that the FWPD becomes a
semi-metric in the case of structural missingness.

Experiments are reported on diverse datasets and covers all four types of missingness.
The results are compared with the popularly used imputation techniques. The comparative
results indicate that our approach generally achieves better performance than the common
imputation approaches used to handle incomplete data.

1.4 Organization

The rest of this paper is organized in the following way. In Sect. 2, we elaborate on the
properties of the FWPD measure. The next section (Sect. 3) presents a formulation of the
k-means clustering problem which is directly applicable to datasets with missing features,
based on the FWPD discussed in Sect. 2. This section also puts forth an algorithm to solve
the optimization problem posed by this new formulation. The subsequent section (Sect. 4)
covers the HAC algorithm formulated using FWPD to be directly applicable to incomplete
datasets. Experimental results (based on the missingness simulating mechanism discussed
in the same section) are presented in Sect. 5. Relevant conclusions are drawn in Sect. 6.
Subsequently, “Appendix A” deals with the extension of the proposed FWPD to the case of
absent features (structural missingness).

2 Feature weighted penalty based dissimilarity measure for datasets with
missing features

Let the dataset X ⊂ R
m , i.e. the data instances in X are each characterized by m feature

values in R. Further, let X consist of n instances xi (i ∈ {1, 2, · · · , n}), some of which have
missing features. Let γxi denote the set of observed features for the data point xi . Then, the
set of all features S = ⋃n

i=1 γxi and |S| = m. The set of features which are observed for
all data instances in X is defined as γobs = ⋂n

i=1 γxi . |γobs | may or may not be non-zero.
γmiss = S\γobs is the set of features which are unobserved for at least one data point in X .
The important notations used in this section (and beyond) are summarized in Table 1.
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Table 1 Some important notations used in Sect. 2 and beyond

Notation Meaning

X Dataset with incomplete data points

n Number of data points in X

xi A data point in X

xi,l l-th feature of xi
S Set of all features in X

m Number of features in S, i.e. |S|
γ General notation for a set of features in S

γxi Set of features observed for point xi
γobs Set of features observed for all instances in X

γmiss Set of features which are unobserved for some point in X

dγ (xi , x j ) Distance between poinst xi and x j in the subspace defined by the features in γ

d(xi , x j ) Observed distance between points xi and x j
dE (xi , x j ) Euclidean distance between fully observed points xi and x j
wl Number of instances in X having observed values for the l-th feature

p(xi , x j ) Feature Weighted Penalty (FWP) between xi and x j
pγ FWP corresponding to the subspace defined by γ

δ(xi , x j ) Feature Weighted Penalty based Dissimilarity (FWPD) between xi and x j
dmax Maximum observed distance between any two data points in X

α Coefficient of relative importance between observed distance and FWP for FWPD

ρi, j,k p(xi , x j ) + p(x j , xk ) − p(xk , xi ) for some xi , x j , xk ∈ X

φ An empty set

Definition 1 Let the distance between any two data instances xi , x j ∈ X in a subspace
defined by γ be denoted as dγ (xi , x j ). Then the observed distance (distance in the common
observed subspace) between these two points can be defined as

dγxi

⋂

γx j
(xi , x j ) =

√

∑

l∈γxi

⋂

γx j

(xi,l − x j,l)2, (1)

where xi,l denotes the l-th feature of the data instance xi . For the sake of convenience,
dγxi

⋂

γx j
(xi , x j ) is simplified to d(xi , x j ) in the rest of this paper.

Definition 2 If both xi and x j were to be fully observed, the Euclidean distance dE (xi , x j )

between xi and x j would be defined as

dE (xi , x j ) =
√

∑

l∈S(xi,l − x j,l)2.

Now, since (γxi ∩ γx j ) ⊆ S, and (xi,l − x j,l)2 ≥ 0 ∀ l ∈ S, it follows that

d(xi , x j ) ≤ dE (xi , x j ) ∀ xi , x j ∈ X.

Therefore, to compensate for the distance in the unobserved subspace, we add a Feature
Weighted Penalty (FWP) p(xi , x j ) (defined below) to d(xi , x j ).
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Definition 3 The FWP between xi and x j is defined as

p(xi , x j ) =
∑

l∈S\(γxi
⋂

γx j )
wl

∑

l ′∈S wl ′
, (2)

where wl ∈ (0, n] is the number of instances in X having observed values of the feature l. It
should be noted that FWP exacts greater penalty for unobserved occurrences of those features
which are observed for a large fraction of the data instances. Moreover, since the value of
the FWP solely depends on the taxable subspace S\(γxi

⋂

γx j ), we define an alternative
notation for the FWP, viz. pγ = ∑

l∈γ wl/
∑

l ′∈S wl ′ . Hence, p(xi , x j ) can also be written
as pS\(γxi

⋂

γx j )
.

Then, the definition of the proposed FWPD follows.

Definition 4 The FWPD between xi and x j is

δ(xi , x j ) = (1 − α) × d(xi , x j )

dmax
+ α × p(xi , x j ), (3)

where α ∈ (0, 1] is a parameter which determines the relative importance between the two
terms and dmax is the maximum observed distance between any two points in X in their
respective common observed subspaces.

2.1 Properties of the proposed FWPD

In this subsection, we discuss some of the important properties of the proposed FWPD
measure. The following theorem discusses some of the important properties of the proposed
FWPD measure and the subsequent discussion is concerned with the triangle inequality in
the context of FWPD.

Theorem 1 The FWPD measure satisfies the following important properties:

1. δ(xi , xi ) ≤ δ(xi , x j ) ∀ xi , x j ∈ X,
2. δ(xi , xi ) ≥ 0 ∀ xi ∈ X,
3. δ(xi , xi ) = 0 iff γxi = S, and
4. δ(xi , x j ) = δ(x j , xi ) ∀ xi , x j ∈ X.

Proof 1. From Eqs. (1) and (3), it follows that

δ(xi , xi ) = α × p(xi , xi ). (4)

It also follows fromEq. (2) that p(xi , xi ) ≤ p(xi , x j )∀xi , x j ∈ X . Therefore, δ(xi , xi ) ≤
α × p(xi , x j ). Since α ≤ 1, we have α × p(xi , x j ) ≤ p(xi , x j ). Now, it follows from
Eq. (3) that p(xi , x j ) ≤ δ(xi , x j ). Hence, we get δ(xi , xi ) ≤ δ(xi , x j ) ∀ xi , x j ∈ X .

2. It can be seen from Eq. (3) that δ(xi , xi ) = α × p(xi , xi ). Moreover, it follows from Eq.
(2) that p(xi , xi ) ≥ 0. Hence, δ(xi , xi ) ≥ 0 ∀ xi ∈ X .

3. It is easy to see from Eq. (2) that p(xi , xi ) = 0 iff γxi = S. Hence, it directly follows
from Eq. (4) that δ(xi , xi ) = 0 iff γxi = S.

4. From Eq. (3) we have

δ(xi , x j ) = (1 − α) × d(xi , x j )

dmax
+ α × p(xi , x j ),

and δ(x j , xi ) = (1 − α) × d(x j , xi )
dmax

+ α × p(x j , xi ).
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However, d(xi , x j ) = d(x j , xi ) and p(xi , x j ) = p(x j , xi ) ∀ xi , x j ∈ X (by definition).
Therefore, it can be easily seen that δ(xi , x j ) = δ(x j , xi ) ∀ xi , x j ∈ X .

��
The triangle inequality is an important criterion which lends some useful properties to

the space induced by a dissimilarity measure. Therefore, the conditions under which FWPD
satisfies the said criterion are investigated below. However, it should be stressed that the
satisfaction of the said criterion is not essential for the functioning of the clustering techniques
proposed in the subsequent text.

Definition 5 For any three data instances xi , x j , xk ∈ X , the triangle inequality with respect
to (w.r.t.) the FWPD measure is defined as

δ(xi , x j ) + δ(x j , xk) ≥ δ(xk, xi ). (5)

The three following lemmas deal with the conditions under which Inequality (5) will hold.

Lemma 1 For any three data instances xi , x j , xk ∈ X let ρi, j,k = p(xi , x j ) + p(x j , xk) −
p(xk, xi ). Then ρi, j,k ≥ 0 ∀ xi , x j , xk ∈ X.

Proof Let us rewrite the penalty term p(xi , x j ) in terms of the spanned subspaces as
p(xi , x j ) = pS\(γxi

⋃

γx j )
+ pγxi \γx j + pγx j \γxi . Now, accounting for the subspaces overlap-

ping with the observed subspace of xk , we get

p(xi , x j ) =pS\(γxi
⋃

γx j

⋃

γxk ) + pγxk \(γxi
⋃

γx j )
+ pγxi \(γx j

⋃

γxk )

+ p(γxi

⋂

γxk )\γx j + pγx j \(γxi
⋃

γxk ) + p(γx j

⋂

γxk )\γxi .

Similarly, p(x j , xk) =pS\(γxi
⋃

γx j

⋃

γxk ) + pγxi \(γx j
⋃

γxk ) + pγx j \(γxi
⋃

γxk )

+ p(γxi

⋂

γx j )\γxk + pγxk \(γxi
⋃

γx j )
+ p(γxi

⋂

γxk )\γx j ,

and p(xk, xi ) =pS\(γxi
⋃

γx j

⋃

γxk ) + pγx j \(γxi
⋃

γxk ) + pγxk \(γxi
⋃

γx j )

+ p(γx j

⋂

γxk )\γxi + pγxi \(γx j
⋃

γxk ) + p(γxi

⋂

γx j )\γxk .

Hence, after canceling out appropriate terms, we get

ρi, j,k = pS\(γxi
⋃

γx j

⋃

γxk ) + pγxk \(γxi
⋃

γx j )
+ 2p(γxi

⋂

γxk )\γx j
+pγxi \(γx j

⋃

γxk ) + pγx j \(γxi
⋃

γxk ).

Now, since

pγxi \(γx j
⋃

γxk ) + pγxk \(γxi
⋃

γx j )
+ p(γxi

⋂

γxk )\γx j = p(γxi

⋃

γxk )\γx j ,

we can further simplify to

ρi, j,k = p(γxi

⋃

γxk )\γx j + p(γxi

⋂

γxk )\γx j + pγx j \(γxi
⋃

γxk ) + pS\(γxi
⋃

γx j

⋃

γxk ). (6)

Since all the terms in Expression (6) must be either zero or positive, this proves that ρi, j,k ≥ 0
∀ xi , x j , xk ∈ X . ��
Lemma 2 For any three data points xi , x j , xk ∈ X, Inequality (5) is satisfied when
(γxi

⋂

γx j ) = (γx j

⋂

γxk ) = (γxk
⋂

γxi ).
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Proof From Eq. (3) the Inequality (5) can be rewritten as

(1 − α) × d(xi , x j )

dmax
+ α × p(xi , x j )

+ (1 − α) × d(x j , xk)
dmax

+ α × p(x j , xk)

≥ (1 − α) × d(xk, xi )
dmax

+ α × p(xk, xi ).

(7)

Further simplifying (7) by moving the penalty terms to the Left Hand Side (LHS) and the
observed distance terms to the Right Hand Side (RHS), we get

α × ρi, j,k ≥ (1 − α)

dmax
× (d(xk, xi ) − (d(xi , x j ) + d(x j , xk))). (8)

When (γxi
⋂

γx j ) = (γx j

⋂

γxk ) = (γxk
⋂

γxi ), as d(xi , x j ) + d(x j , xk) ≥ d(xk, xi ), the
RHS of Inequality (8) is less than or equal to zero. Now, it follows from Lemma 1 that the
LHS of Inequality (8) is always greater than or equal to zero as ρi, j,k ≥ 0 and α ∈ (0, 1].
Hence, LHS ≥ RHS, which completes the proof. ��
Lemma 3 If |γxi

⋂

γx j | → 0, |γx j

⋂

γxk | → 0 and |γxk
⋂

γxi | → 0, then Inequality (8)
tends to be satisfied.

Proof When |γxi
⋂

γx j | → 0, |γx j

⋂

γxk | → 0 and |γxk
⋂

γxi | → 0, then LHS → α+ and
RHS → 0 for the Inequality (8). As α ∈ (0, 1], Inequality (8) tends to be satisfied. ��

The following lemma deals with the value of the parameter α ∈ (0, 1] for which a relaxed
form of the triangle inequality is satisfied for any three data instances in a dataset X .

Lemma 4 Let P = min{ρi, j,k : xi , x j , xk ∈ X, ρi, j,k > 0}. Then, for any arbitrary
constant ε satisfying 0 ≤ ε ≤ P , if α ≥ (1 − ε), then the following relaxed form of the
triangle inequality

δ(xi , x j ) + δ(x j , xk) ≥ δ(xk, xi ) − ε2, (9)

is satisfied for any xi , x j , xk ∈ X.

Proof 1. If xi , x j , and xk are all fully observed, then Inequality (5) holds. Now, since ε ≥ 0,
therefore δ(xk, xi ) ≥ δ(xk, xi ) − ε2. This implies δ(xi , x j ) + δ(x j , xk) ≥ δ(xk, xi ) ≥
δ(xk, xi ) − ε2. Hence, Inequality (9) must hold.

2. If (γxi
⋂

γx j

⋂

γxk ) �= S i.e. at least one of the data instances is not fully observed, and
ρi, j,k = 0, then (γxi

⋃

γxk )\γx j = φ, (γxi
⋂

γxk )\γx j = φ, S\(γxi
⋃

γx j

⋃

γxk ) = φ,
and γx j \(γxi

⋃

γxk ) = φ. This implies that γx j = S, and γxk
⋃

γxi = γx j . More-
over, since ρi, j,k = 0, we have δ(xi , x j ) + δ(x j , xk) − δ(xk, xi ) = d(xi , x j ) +
d(x j , xk) − d(xk, xi ). Now, γxi

⋂

γxk ⊆ γxi , γxi
⋂

γxk ⊆ γxk and γxi
⋂

γxk ⊆
γx j as γxk

⋃

γxi = γx j = S. Therefore, d(xi , x j ) + d(x j , xk) − d(xk, xi ) ≥
dγxi

⋂

γxk
(xi , x j ) + dγxi

⋂

γxk
(x j , xk) − dγxi

⋂

γxk
(xk, xi ). Now, by the triangle inequal-

ity in subspace γxi
⋂

γxk , dγxi

⋂

γxk
(xi , x j ) + dγxi

⋂

γxk
(x j , xk) − dγxi

⋂

γxk
(xk, xi ) ≥ 0.

Hence, δ(xi , x j ) + δ(x j , xk) − δ(xk, xi ) ≥ 0, i.e. Inequalities (5) and (9) are satisfied.
3. If (γxi

⋂

γx j

⋂

γxk ) �= S andρi, j,k �= 0, asα ≥ (1−ε), LHSof Inequality (8)≥ (1−ε)×
(p(γxi

⋃

γxk )\γx j +p(γxi

⋂

γxk )\γx j +pγx j \(γxi
⋃

γxk )+pS\(γxi
⋃

γx j

⋃

γxk )). Since ε ≤ P , we

further get that LHS≥ (1−ε)ε. Moreover, as 1
dmax

(d(xk, xi )−(d(xi , x j )+d(x j , xk))) ≤
1, we get RHS of Inequality (8)≤ ε. Therefore, LHS - RHS≥ (1−ε)ε −ε = −ε2. Now,
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as Inequality (8) is obtained from Inequality (5) after some algebraic manipulation, it
must hold that (LHS - RHS) of Inequality (8) = (LHS - RHS) of Inequality (5). Hence, we
get δ(xi , x j )+ δ(x j , xk)− δ(xk, xi ) ≥ −ε2 which can be simplified to obtain Inequality
(9). This completes the proof.

��
Let us now elucidate the proposed FWP (and consequently the proposed FWPDmeasure)

by using the following example.

Example 1 Let X ⊂ R
3 be a dataset consisting of n = 5 data points, each having three

features (S = {1, 2, 3}), some of which (marked by ’*’) are unobserved. The dataset is
presented below (along with the feature observation counts and the observed feature sets for
each of the instances).

Data Point xi,1 xi,2 xi,3 γxi

x1 * 3 2 {2, 3}
x2 1.2 * 4 {1, 3}
x3 * 0 0.5 {2, 3}
x4 2.1 3 1 {1, 2, 3}
x5 −2 * * {1}
Obs. Count w1 = 3 w2 = 3 w3 = 4 –

The pairwise observed distancematrix Ad and the pairwise penaltymatrix Ap , are as follows:

Ad =

⎡

⎢

⎢

⎢

⎢

⎣

0, 2, 3.35, 1, 0
2, 0, 3.5, 3.13, 3.2

3.35, 3.5, 0, 3.04, 0
1, 3.13, 3.04, 0, 4.1
0, 3.2, 0, 4.1, 0

⎤

⎥

⎥

⎥

⎥

⎦

and Ap =

⎡

⎢

⎢

⎢

⎢

⎣

0.3, 0.6, 0.3, 0.3, 1
0.6, 0.3, 0.6, 0.3, 0.7
0.3, 0.6, 0.3, 0.3, 1
0.3, 0.3, 0.3, 0, 0.7
1, 0.7, 1, 0.7, 0.7

⎤

⎥

⎥

⎥

⎥

⎦

.

From Ad it is observed that the maximum pairwise observed distance dmax = 4.1. Then, the
normalized observed distance matrix Ad̄ is

Ad̄ =

⎡

⎢

⎢

⎢

⎢

⎣

0, 0.49, 0.82, 0.24, 0
0.49, 0, 0.85, 0.76, 0.78
0.82, 0.85, 0, 0.74, 0
0.24, 0.76, 0.74, 0, 1
0, 0.78, 0, 1, 0

⎤

⎥

⎥

⎥

⎥

⎦

.

P = 0.3. While it is not necessary, let us choose α = 0.7. Using Eq. (3) to calculate the
FWPD matrix Aδ , we get:

Aδ = 0.3 × Ad̄ + 0.7 × Ap =

⎡

⎢

⎢

⎢

⎢

⎣

0.21, 1.02, 1.22, 0.51, 0.7
1.02, 0.21, 1.47, 1.15, 1.45
1.22, 1.47, 0.21, 1.12, 0.7
0.51, 1.15, 1.12, 0, 1.72
0.7, 1.45, 0.7, 1.72, 0.49

⎤

⎥

⎥

⎥

⎥

⎦

.
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It should be noted that in keeping with the properties of the FWPD described in Sect. 2.1,
Aδ is a symmetric matrix with the diagonal elements being the smallest entries in their
corresponding rows (and columns) and the diagonal element corresponding to the fully
observed point x4 being the only zero element. Moreover, it can be easily checked
that the relaxed form of the triangle inequality, as given in Inequality (9), is always
satisfied.

3 k-means clustering for datasets with missing features using the proposed
FWPD

This section presents a reformulation of the k-means clustering problem for datasets with
missing features, using the FWPD measure proposed in Sect. 2. The important notations
used in this section (and beyond) are summarized in Table 2. The k-means problem (a term
coined by MacQueen (1967)) deals with the partitioning of a set of n data instances into
k(< n) clusters so as to minimize the sum of within-cluster dissimilarities. The standard
heuristic algorithm to solve the k-means problem, referred to as the k-means algorithm, was
first proposed by Lloyd in 1957 (Lloyd 1982), and rediscovered by Forgy (1965). Starting
with random assignments of each of the data instances to one of the k clusters, the k-means

Table 2 Some important notations used in Sect. 3 and beyond

Notation Counter-part in k-means-
FWPD iteration t

Meaning

k – Number of clusters for k-means

C j Ct
j j-th cluster for k-means

ui, j uti, j Membership of the data point xi in the cluster C j

U Ut n × k matrix of cluster memberships

U – Set of all possible U values

z j ztj Centroid of cluster C j

z j,l ztj,l l-th feature of the cluster centroid z j

Z Zt Set of cluster centroids

Z – Set of all possible Z values

f (U, Z) f (Ut , Zt ) k-means objective function defined on U × Z

Xl – Set of all xi ∈ X having observed values for feature l

U∗ – Final cluster memberships found by k-means-FWPD

Z∗ – Final cluster centroids found by k-means-FWPD

T – The convergent iteration of k-means-FWPD

– τ Any iteration preceding the current iteration t

F (Z) – Set of feasible membership matrices for Z

F (U ) – Set of feasible centroid sets for U

S (U ) – Set of super-feasible centroids sets for U

(Ũ , Z̃) – A partial optimal solution of the k-means-FWPD problem

D – A feasible direction of movement for U∗
O – Big O notation
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algorithm functions by iteratively recalculating the k cluster centroids and reassigning the data
instances to the nearest cluster (the cluster corresponding to the nearest cluster centroid), in
an alternatingmanner. Selim and Ismail (1984) showed that the k-means algorithm converges
to a local optimum of the non-convex optimization problem posed by the k-means problem,
when the dissimilarity used is the Euclidean distance between data points.

The proposed formulation of the k-means problem for datasets withmissing features using
the proposed FWPD measure, referred to as the k-means-FWPD problem hereafter, differs
from the standard k-means problem not only in that the underlying dissimilarity measure
used is FWPD (instead of Euclidean distance), but also in the addition of a new constraint
which ensures that a cluster centroid has observable values for exactly those features which
are observed for at least one of the points in its corresponding cluster. Therefore, the k-means-
FWPD problem to partition the dataset X into k clusters (2 ≤ k < n), can be formulated in
the following way:

P: minimize f (U,Z) =
n

∑

i=1

k
∑

j=1

ui, j ((1 − α) × d(xi , z j )
dmax

+ α × p(xi , z j )), (10a)

subject to
k

∑

j=1

ui, j = 1 ∀ i ∈ {1, 2, · · · , n}, (10b)

ui, j ∈ {0, 1} ∀ i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , k}, (10c)

and γz j =
⋃

xi∈C j

γxi ∀ j ∈ {1, 2, · · · , k}, (10d)

where U = [ui, j ] is the n × k real matrix of memberships, dmax denotes the maximum
observed distance between any two data points xi , xi ∈ X , γz j denotes the set of observed
features for z j ( j ∈ {1, 2, · · · , k}),C j denotes the j-th cluster (corresponding to the centroid
z j ), Z = {z1, · · · , zk}, and it is said that xi ∈ C j when ui, j = 1.

3.1 The k-means-FWPD algorithm

To find a solution to the problem P, which is a non-convex program, we propose a Lloyd’s
heuristic-like algorithm based on the FWPD (referred to as k-means-FWPD algorithm), as
follows:

1. Start with a random initial set of cluster assignments U such that
∑k

j=1 ui, j = 1. Set
t = 1 and specify the maximum number of iterations Max I ter .

2. For each cluster Ct
j ( j = 1, 2, · · · , k), calculate the observed features of the cluster

centroid ztj . The value for the l-th feature of a centroid ztj should be the average of the
corresponding feature values for all the data instances in the cluster Ct

j having observed
values for the l-th feature. If none of the data instances inCt

j have observed values for the

feature in question, then the value zt−1
j,l of the feature from the previous iteration should

be retained. Therefore, the feature values are calculated as follows:

ztj,l =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

∑

xi∈Xl

uti, j × xi,l

)

/

(

∑

xi∈Xl

uti, j

)

, ∀ l ∈ ⋃

xi∈Ct
j
γxi ,

zt−1
j,l , ∀ l ∈ γzt−1

j
\⋃

xi∈Ct
j
γxi ,

(11)

where Xl denotes the set of all xi ∈ X having observed values for the feature l.
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Fig. 2 Comparison of convergences of traditional k-means and k-means-FWPD algorithms. a Traditional
k-means. b k-means-FWPD

3. Assign each data point xi (i = 1, 2, · · · , n) to the cluster corresponding to its nearest (in
terms of FWPD) centroid, i.e.

ut+1
i, j =

{

1, if ztj = argmin
z∈Zt

δ(xi , z),

0, otherwise.

Set t = t + 1. IfUt = Ut−1 or t = Max I ter , then go to Step 4; otherwise go to Step 2.
4. Calculate the final cluster centroid set Z∗ as:

z∗j,l =
∑

xi∈Xl
ut+1
i, j × xi,l

∑

xi∈Xl
ut+1
i, j

∀ l ∈
⋃

xi∈Ct+1
j

γxi . (12)

Set U∗ = Ut+1.

Remark 1 The iterations of the traditional k-means algorithm are known to each result in a
decrease in the value of the objective function f (Selim and Ismail 1984) (Fig. 2a). However,
for the k-means-FWPD algorithm, the Zt calculations for some of the iterations may result
in a finite increase in f , as shown in Fig. 2b. We show in Theorem 3 that only a finite number
of such increments may occur during a given run of the algorithm, thus ushering in ultimate
convergence. Moreover, the final feasible, locally-optimal solution is obtained using Step 4
(denoted by dotted line) which does not result in any further change to the objective function
value.

3.2 Notions of feasibility in problem P

Let U and Z respectively denote the sets of all possible U and Z . Unlike the traditional
k-means problem, the entire U × Z space is not feasible for the Problem P. There exists a
set of feasible U for a given Z . Similarly, there exist sets of feasible and super-feasible Z (a
super-set of the set of feasible Z ) for a given U . In this subsection, we formally define these
notions.
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Definition 6 Given a cluster centroid set Z , the set F (Z) of feasible membership matrices
is given by

F (Ẑ) = {U : ui, j = 0 ∀ j ∈ {1, 2, · · · , k} such that γz j ⊂ γxi },
i.e. F (Z) is the set of all such membership matrices which do not assign any xi ∈ X to a
centroid in Z missing some feature l ∈ γxi .

Definition 7 Given a membership matrix U , the set F (U ) of feasible cluster centroid sets
can be defined as

F (U ) = {Z : Z satisfies constraint (10d)}.
Definition 8 Given a membership matrixU , the setS (U ) of super-feasible cluster centroid
sets is

S (U ) = {Z : γz j ⊇
⋃

xi∈C j

γxi ∀ j ∈ {1, 2, · · · , k}}, (13)

i.e. S (U ) is the set of all such centroid sets which ensure that any centroid has observed
values at least for those features which are observed for any of the points assigned to its
corresponding cluster in U .

Remark 2 The k-means-FWPD problem differs from traditional k-means in that not allU ∈
U are feasible for a given Z . Additionally, for a given U , there exists a set S (U ) of super-
feasible Z ; F (U ) a subset of S (U ) being the set of feasible Z . The traversal of the k-
means-FWPD algorithm is illustrated in Fig. 3 where the grey solid straight lines denote the

Fig. 3 Simplified representation of how the k-means-FWPD algorithm traverses the U × Z space (U and
Z are shown to be unidimensional for the sake of visualizability)
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set of feasible Z for the current Ut while the rest of the super-feasible region is marked by
the corresponding grey dotted straight line. Furthermore, the grey jagged lines denote the
feasible set of U for the current Zt . Starting with a random U 1 ∈ U (Step 1), the algorithm
finds Z1 ∈ S (U 1) (Step 2), U 2 ∈ F (Z1) (Step 3), and Z2 ∈ F (U 2) (Step 2). However,
it subsequently finds U 3 /∈ F (Z2) (Step 3), necessitating a feasibility adjustment (see Sect.
3.4) while calculating Z3 (Step 2). Subsequently, the algorithm converges to (U 5, Z4). For
the convergent (UT+1, ZT ),UT+1 ∈ F (ZT ) but it is possible that ZT ∈ S (UT+1)\F (UT )

(as seen in the case of Fig. 3). However, the final (U∗, Z∗) (obtained by the dotted black line
transition denoting Step 4) is seen to be feasible in both respects and is shown (in Theorem 5)
to be locally-optimal in the corresponding feasible region.

3.3 Partial optimal solutions

This subsection deals with the concept of partial optimal solutions of the problem P, to one
of which the k-means-FWPD algorithm is shown to converge (prior to Step 4). The following
definition formally presents the concept of a partial optimal solution.

Definition 9 A partial optimal solution (Ũ , Z̃) of problem P, satisfies the following condi-
tions (Wendel and Hurter Jr 1976):

f (Ũ , Z̃) ≤ f (U, Z̃) ∀ U ∈ F (Z̃) where Ũ ∈ F (Z̃),

and f (Ũ , Z̃) ≤ f (Ũ , Z) ∀ Z ∈ S (Ũ ) where Z̃ ∈ S (Ũ ).

To obtain a partial optimal solution of P, the two following subproblems are defined:

P1: Given U ∈ U , minimize f (U, Z) over Z ∈ S (U ).

P2: Given Z satisfying (10d), minimize f (U, Z) over U ∈ U .

The following lemmas establish that Steps 2 and 3 of the k-means-FWPD algorithm respec-
tively solve the problems P1 and P2 for a given iterate. The subsequent theorem shows that
the k-means-FWPD algorithm converges to a partial optimal solution of P.

Lemma 5 Given aUt , the centroidmatrix Z t calculated usingEq. (11) is an optimal solution
of the Problem P1.

Proof For a fixed Ut ∈ U , the objective function is minimized when ∂ f
∂ztj,l

= 0 ∀ j ∈
{1, · · · , k}, l ∈ γztj

. For a particular ztj , it follows fromDefinition 3 that {p(xi , ztj ) : xi ∈ Ct
j }

is independent of the values of the features of ztj , as γxi
⋂

γztj
= γxi ∀xi ∈ Ct

j . Since an

observed feature l ∈ γztj
\(⋃xi∈Ct

j
γxi ) of z

t
j has no contribution to the observed distances,

∂ f
∂ztj,l

= 0 ∀l ∈ γztj
\(⋃xi∈Ct

j
γxi ). For an observed feature l ∈ ⋃

xi∈Ct
j
γxi of z

t
j , differentiating

f (Ut , Zt ) w.r.t. ztj,l we get

∂ f

∂ztj,l
= (1 − α)

dmax
×

∑

xi∈Xl

uti, j

(

xi,l − ztj,l
d(xi , ztj )

)

.

Setting ∂ f
∂ztj,l

= 0 and solving for ztj,l , we obtain

ztj,l =
∑

xi∈Xl
uti, j × xi,l

∑

xi∈Xl
uti, j

.
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Since Eq. (11) is in keeping with this criterion and ensures that constraint (13) is satisfied,
the centroid matrix Zt calculated using Eq. (11) is an optimal solution of P1. ��
Lemma 6 For a given Zt , problem P2 is solved if ut+1

i, j = 1 and ut+1
i, j ′ = 0 ∀ i ∈ {1, · · · , n}

when δ(xi , ztj ) ≤ δ(xi , ztj ′ ), for all j
′ �= j .

Proof It is clear that the contribution of xi to the total objective function is δ(xi , ztj ) when

ut+1
i, j = 1 and ut+1

i, j ′ = 0 ∀ j
′ �= j . Since any alternative solution is an extreme point of

U (Selim and Ismail 1984), it must satisfy (10c). Therefore, the contribution of xi to the
objective function for an alternative solution will be some δ(xi , ztj ′ ) ≥ δ(xi , ztj ). Hence, the

contribution of xi is minimized by assigning ut+1
i, j = 1 and ut+1

i, j ′ = 0 ∀ j
′ �= j . This argument

holds true for all xi ∈ X , i.e. ∀ i ∈ {1, · · · , n}. This completes the proof. ��
Theorem 2 The k-means-FWPD algorithm finds a partial optimal solution of P.

Proof Let T denote the terminal iteration. Since Step 2 and Step 3 of the k-means-
FWPD algorithm respectively solve P1 and P2, the algorithm terminates only when
the obtained iterate (UT+1, ZT ) solves both P1 and P2. Therefore, f (UT+1, ZT ) ≤
f (UT+1, Z) ∀Z ∈ S (UT+1). Since Step 2 ensures that ZT ∈ S (UT ) and UT+1 = UT ,
we must have ZT ∈ S (UT+1). Moreover, f (UT+1, ZT ) ≤ f (U, ZT ) ∀U ∈ U which
implies f (UT+1, ZT ) ≤ f (U, ZT ) ∀U ∈ F (ZT ). Now, Step 2 ensures that γzTj

⊇
⋃

xi∈CT
j
γxi ∀ j ∈ {1, 2, · · · , k}. Since we must have UT+1 = UT for convergence to

occur, it follows that γzTj
⊇ ⋃

xi∈CT+1
j

γxi ∀ j ∈ {1, 2, · · · , k}, hence uT+1
i, j = 1 implies

γzTj
⊇ γxi . Therefore, U

T+1 ∈ F (ZT ). Consequently, the terminal iterate of Step 3 of the

k-means-FWPD algorithm must be a partial optimal solution of P. ��
3.4 Feasibility adjustments

Since it is possible for the number of observed features of the cluster centroids to increase
over the iterations tomaintain feasibility w.r.t. constraint (10d), we now introduce the concept
of feasibility adjustment, the consequences of which are discussed in this subsection.

Definition 10 A feasibility adjustment for cluster j ( j ∈ {1, 2, · · · , k}) is said to occur in
iteration t if γztj ⊃ γzt−1

j
or γztj \γzt−1

j
�= φ, i.e. if the centroid ztj acquires an observed value for

at least one feature which was unobserved for its counter-part zt−1
j in the previous iteration.

The following lemma shows that feasibility adjustment can only occur for a cluster as a result
of the addition of a new data point previously unassigned to it.

Lemma 7 Feasibility adjustment occurs for a cluster C j in iteration t iff at least one data
point xi , such that γxi \γzτj �= φ ∀τ < t , which was previously unassigned to C j (i.e. uτ

i, j = 0
∀τ < t) is assigned to it in iteration t.

Proof Due to Eq. (11), all features defined for zt−1
j are also retained for ztj . Therefore, for

γztj
\γzt−1

j
�= φ there must exist some xi such that uti, j = 1, ut−1

i, j = 0, and γxi \γzt−1
j

�= φ.

Since the set of defined features for any cluster centroid is a monotonically growing set, we
have γxi \γzτj �= φ ∀τ < t . It then follows from constraint (10d) that uτ

i, j = 0 ∀τ < t . Now, to
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prove the converse, let us assume the existence of some xi such that γxi \γzτj �= φ ∀τ < t and

uτ
i, j = 0 ∀τ < t . Since γxi \γzt−1

j
�= φ and γztj

⊇ γxi
⋃

γzt−1
j

, it follows that γztj \γzt−1
j

�= φ.
��

The following theorem deals with the consequences of the feasibility adjustment phe-
nomenon.

Theorem 3 For a finite number of iterations during a single run of the k-means-FWPD
algorithm, there may be a finite increment in the objective function f , due to the occurrence
of feasibility adjustments.

Proof It follows from Lemma 5 that f (Ut , Zt ) ≤ f (Ut , Z) ∀Z ∈ S (Ut ). If there is no
feasibility adjustment in iteration t ,S (Ut−1) = S (Ut ). Hence, f (Ut , Zt ) ≤ f (Ut , Zt−1).
However, if a feasibility adjustment occurs in iteration t , then γztj

⊂ γzt−1
j

for at least one j ∈
{1, 2, · · · , k}. Hence, Zt−1 ∈ Z \S (Ut ) andwemay have f (Ut , Zt ) > f (Ut , Zt−1). Since
both f (Ut , Zt ) and f (Ut , Zt−1) are finite, ( f (Ut , Zt ) − f (Ut , Zt−1)) must also be finite.
Now, the maximum number of feasibility adjustments occur in the worst case scenario where
each data point, having an unique set of observed features (which are unobserved for all other
data points), traverses all the clusters before convergence. Therefore, the maximum number
of possible feasibility adjustments during a single run of the k-means-FWPD algorithm is
n(k − 1), which is finite. ��
3.5 Convergence of the k-means-FWPD algorithm

We now show that the k-means-FWPD algorithm converges to the partial optimal solution,
within a finite number of iterations. The following lemma and the subsequent theorem are
concerned with this.

Lemma 8 Starting with a given iterate (Ut , Zt ), the k-means-FWPD algorithm either
reaches convergence or encounters a feasibility adjustment, within a finite number of itera-
tions.

Proof Let us first note that there are a finite number of extreme points of U . Then, we
observe that an extreme point of U is visited at most once by the algorithm before either
convergence or the next feasibility adjustment. Suppose, this is not true, and let Ut1 = Ut2

for distinct iterations t1 and t2 (t1 ≥ t, t1 < t2) of the algorithm. Applying Step 2 of the
algorithm, we get Zt1 and Zt2 as optimal centroid sets for Ut1 and Ut2 , respectively. Then,
f (Ut1 , Zt1) = f (Ut2 , Zt2) since Ut1 = Ut2 . However, it is clear from Lemmas 5, 6 and
Theorem 3 that f strictly decreases subsequent to the iterate (Ut , Zt ) and prior to either the
next feasibility adjustment (in which case the value of f may increase) or convergence (in
which case f remains unchanged). Hence, Ut1 �= Ut2 . Therefore, it is clear from the above
argument that the k-means-FWPD algorithm either converges or encounters a feasibility
adjustment within a finite number of iterations. ��
Theorem 4 The k-means-FWPD algorithm converges to a partial optimal solution within a
finite number of iterations.

Proof It follows from Lemma 8 that the first feasibility adjustment is encountered within a
finite number of iterations since initialization and that each subsequent feasibility adjustment
occurs within a finite number of iterations of the previous. Moreover, we know from Theo-
rem 3 that there can only be a finite number of feasibility adjustments during a single run of
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the algorithm. Therefore, the final feasibility adjustment must occur within a finite number
of iterations. Moreover, it follows from Lemma 8 that the algorithm converges within a finite
number of subsequent iterations. Hence, the k-means-FWPD algorithmmust convergewithin
a finite number of iterations. ��
3.6 Local optimality of the final solution

In this subsection, we establish the local optimality of the final solution obtained in Step 4
of the k-means-FWPD algorithm, subsequent to convergence in Step 3.

Lemma 9 Z∗ is the unique optimal feasible cluster centroid set for U∗, i.e. Z∗ ∈ F (U∗)
and f (U∗, Z∗) ≤ f (U∗, Z) ∀Z ∈ F (U∗).

Proof Since Z∗ satisfies constraint (10d) for U∗, Z∗ ∈ F (U∗). We know from Lemma 5
that for f (U∗, Z∗) ≤ f (U∗, Z) ∀Z ∈ F (U∗), we must have

z∗j,l =
∑

xi∈Xl
u∗
i, j × xi,l

∑

xi∈Xl
u∗
i, j

.

As this is ensured by Step 4, Z∗ must be the unique optimal feasible cluster centroid set for
U∗. ��
Lemma 10 If Z∗ is the unique optimal feasible cluster centroid set forU∗, then f (U∗, Z∗) ≤
f (U, Z∗) ∀U ∈ F (Z∗).

Proof We know from Theorem 2 that f (U∗, ZT ) ≤ f (U, ZT ) ∀U ∈ F (ZT ). Now, γz∗j ⊆
γzTj

∀ j ∈ {1, 2, · · · , k}. Therefore, F (Z∗) ⊆ F (ZT ) must hold. It therefore follows that

f (U∗, Z∗) ≤ f (U, Z∗) ∀U ∈ F (Z∗). ��
Now, the following theorem shows that the final solution obtained by Step 4 of the k-

means-FWPD algorithm is locally optimal.

Theorem 5 The final solution (U∗, Z∗) obtained by Step 4 of the k-means-FWPD algorithm
is a local optimal solution of P.

Proof We have from Lemma 10 that f (U∗, Z∗) ≤ f (U, Z∗) ∀U ∈ F (Z∗). Therefore,
f (U∗, Z∗) ≤ minU { f (U, Z∗) : U ∈ F (Z∗)} which implies that for all feasible directions
D at U∗, the one-sided directional derivative (Lasdon 2013),

trace(∇U f (U∗, Z)TD) ≥ 0. (14)

Now, since Z∗ is the unique optimal feasible cluster centroid set forU∗ (Lemma 9), (U∗, Z∗)
is a local optimum of problem P. ��
3.7 Time complexity of the k-means-FWPD algorithm

In this subsection,we present a brief discussion on the time complexity of the k-means-FWPD
algorithm. The k-means-FWPD algorithm consists of four basic steps, which are repeated
iteratively. These steps are

1. Centroid Calculation: As a maximum of m features of each centroid must be calculated,
the complexity of centroid calculation is at most O(kmn).
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Table 3 Some important notations used in Sect. 4 and beyond

Notation Meaning

Bt Set of hierarchical clusters obtained in iteration t of HAC-FWPD

βt
i i-th hierarchical cluster in Bt

Qt Matrix of dissimilarities between the hierarchical clusters in Bt

q(i, j) (i, j)-th element of Qt

qtmin Smallest non-zero value in Qt

M List of location in Qt having value qtmin

G New hierarchical cluster formed by merging two of the closest hierarchical clusters in Bt

iG Location of G in the set Bt+1

L(G, β) Linkage between two hierarchical clusters G and β

2. Distance Calculation: As each distance calculation involves at most m features, the
observed distance calculation between n data instances and k cluster centroids is at most
O(kmn).

3. Penalty Calculation: The penalty calculation between a data point and a cluster centroid
involves at most m summations. Hence, penalty calculation over all possible pairings is
at most O(kmn).

4. Cluster Assignment: The assignment of n data points to k clusters consists of the com-
parisons of the dissimilarities of each point with k clusters, which is O(nk).

Therefore, if the algorithm runs for T iterations, the total computational complexity is
O(kmnT ) which is the same as that of the standard k-means algorithm.

4 Hierarchical agglomerative clustering for datasets with missing features
using the proposed FWPD

In this section we present HAC clustering methods using the proposed FWPD measure that
can be directly applied to data with missing features. The important notations used in this
section (and beyond) are summarized in Table 3.

Hierarchical agglomerative schemes for data clustering seek to build a multi-level hier-
archy of clusters, starting with each data point as a single cluster, by combining two
(or more) of the most proximal clusters at one level to obtain a lower number of clus-
ters at the next (higher) level. A survey of HAC methods can be found in Murtagh and
Contreras (2012). However, these methods cannot be directly applied to datasets with
missing features. Therefore, in this section, we develop variants of HAC methods, based
on the proposed FWPD measure. Various proximity measures may be used to merge the
clusters in an agglomerative clustering method. Modifications of the three most popular
of such proximity measures [Single Linkage (SL), Complete Linkage (CL) and Average
Linkage (AL)] so as to have FWPD as the underlying dissimilarity measure, are as fol-
lows:

1. Single Linkage with FWPD (SL-FWPD): The SL between two clusters Ci and C j is
min{δ(xi , x j ) : xi ∈ Ci , x j ∈ C j }.

2. Complete Linkage with FWPD (CL-FWPD): The CL between two clusters Ci and C j is
max{δ(xi , x j ) : xi ∈ Ci , x j ∈ C j }.
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3. Average Linkage with FWPD (AL-FWPD): 1
|Ci |×|C j |

∑

xi∈Ci

∑

x j∈C j

δ(xi , x j ) is the AL

between two clusters Ci and C j , where |Ci | and |C j | are respectively the number of
instances in the clusters Ci and C j .

4.1 The HAC-FWPD algorithm

To achieve hierarchical clusterings in the presence of unstructured missingness, the HAC
method based on SL-FWPD, CL-FWPD, or AL-FWPD (referred to as the HAC-FWPD
algorithm hereafter) is as follows:

1. Set B0 = X . Compute pairwise dissimilarities δ(xi , x j ), ∀ xi , x j ∈ X and construct the
dissimilarity matrix Q0 so that q0(i, j) = δ(xi , x j ). Set t = 0.

2. Search Qt to identify the set M = {(i1, j1), (i2, j2), · · · , (ik, jk)} containing all the
pairs of indexes such that qt (ir , jr ) = qtmin ∀ r ∈ {1, 2, · · · , k}, qtmin being the smallest
non-zero element in Qt .

3. Merge the elements corresponding to any one pair in M , say β t
ir and β t

jr corresponding

to the pair (ir , jr ), into a single group G = {β t
ir , β

t
jr }. Construct Bt+1 by removing β t

ir

and β t
jr from Bt and inserting G.

4. Define Qt+1 on Bt+1 × Bt+1 as qt+1(i, j) = qt (i, j) ∀ i, j such that β t
i , β

t
j �= G and

qt+1(i, iG) = qt+1(iG , i) = L(G, β t
i ), where iG denotes the location of G in Bt+1 and

L(G, β) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
xi∈G,x j∈β

δ(xi , x j ) for SL-FWPD,

max
xi∈G,x j∈β

δ(xi , x j ) for CL-FWPD,

1
|G|×|β|

∑

xi∈G
∑

x j∈β

δ(xi , x j ) for AL-FWPD.

Set t = t + 1.
5. Repeat Steps 2-4 until Bt contains a single element.

FWPD being the underlying dissimilarity measure (instead of other metrics such as the
Euclidean distance), the HAC-FWPD algorithm can be directly applied to obtain SL, CL, or
AL based hierarchical clustering of datasets with missing feature values.

4.2 Time complexity of the HAC-FWPD algorithm

Irrespective of whether SL-FWPD, AL-SWPD or CL-FWPD is used as the proximity mea-
sure, the HAC-FWPD algorithm consists of the following three basic steps:

1. Distance Calculation: As each distance calculation involves at most m features, the
calculation of all pairwise observed distances among n data instances is at mostO(n2m).

2. Penalty Calculation: The penalty calculation between a data point and a cluster centroid
involves at most m summations. Hence, penalty calculation over all possible pairings is
at most O(n2m).

3. Cluster Merging: The merging of two clusters takes place in each of the n − 1 steps of
the algorithm, and each merge at most has a time complexity of O(n2).

Therefore, the total computational complexity of theHAC-FWPDalgorithm isO(n2m)which
is the same as that of the standard HAC algorithm based on SL, CL or AL.
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5 Experimental results

In this section, we report the results of several experiments carried out to validate the merit
of the proposed k-means-FWPD and HAC-FWPD clustering algorithms.2 In the following
subsections, we describe the experimental setup used to validate the proposed techniques. The
results of the experiments for the k-means-FWPD algorithm and the HAC-FWPD algorithm,
are respectively presented thereafter.

5.1 Experiment setup

Adjusted Rand Index (ARI) (Hubert and Arabie 1985) is a popular validity index used to
judge the merit of the clustering algorithms. When the true class labels are known, ARI
provides a measure of the similarity between the cluster partition obtained by a clustering
technique and the true class labels. Therefore, a high value of ARI is thought to indicate
better clusterings. But, the class labels may not always be in keeping with the natural cluster
structure of the dataset. In such cases, good clusterings are likely to achieve lower values of
these indexes compared to possibly erroneous partitions (which are more akin to the class
labels). However, the purpose of our experiments is to find out how close the clusterings
obtained by the proposed methods (and the contending techniques) are to the clusterings
obtained by the standard algorithms (k-means algorithm and HAC algorithm); the proposed
methods (and its contenders) being run on the datasets with missingness, while the standard
methods are run on corresponding fully observed datasets. Hence, the clusterings obtained
by the standard algorithms are used as the ground-truths using which the ARI values are
calculated for the proposed methods (and their contenders). The performances of ZI, MI,
kNNI (with k ∈ {3, 5, 10, 20}) and SVDI (using themost significant 10%of the eigenvectors)
are used for comparison with the proposed methods. The variant of MI that we impute with
for these experiments differs from the traditional technique in that we use the average of
the averages for individual classes, instead of the overall average. This is done to minimize
the effects of severe class imbalances that may exist in the datasets. We also conduct the
Wilcoxon’s signed rank test (Wilcoxon 1945) to evaluate the statistical significance of the
observed results.

Theperformanceof k-meansdependson the initial cluster assignment. Therefore, to ensure
fairness, we use the same set of random initial cluster assignments for both the standard k-
means algorithm on the fully observed dataset as well as the proposed k-means-FWPD
method (and its contenders). The maximum number of iterations of the k-means variants is
set as Max I ter = 500. Results are recorded in terms of average ARI values over 50 different
runs on each dataset. The number of clusters is assumed to be same as the number of classes.

For HAC experiments, Results are reported as average ARI values obtained over 20
independent runs. AL is chosen over SL and CL as it is observed to generally achieve higher
ARI values. The number of clusters is assumed to be same as the number of classes.

5.1.1 Datasets

We take 20 real-world datasets from the University of California at Irvine (UCI) repository
(Dheeru and Karra Taniskidou 2017) and the Jin Genomics Dataset (JGD) repository (Jin
2017). Each feature of each dataset is normalized so as to have zero mean and unit standard
deviation. The details of these 20 datasets are listed in Table 4.

2 Source codes are available at https://github.com/Shounak-D/Clustering-Missing-Features.
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Table 4 Details of the 20 real-world datasets

Dataset #Instances #Features #Classes Repository

Chronic kidney 800 24 2 UCI

Colon 62 2000 2 JGD

GSAD∗ 1† 445 128 6 UCI

Glass 214 9 6 UCI

Iris 150 4 3 UCI

Isolet 5† 1559 617 26 UCI

Landsat 6435 36 6 UCI

Leaf 340 15 36 UCI

Libras 360 90 15 UCI

Lung 181 12, 533 2 JGD

Lung Cancer 27 56 3 UCI

Lymphoma 62 4026 3 JGD

Pendigits 10, 992 16 10 UCI

Prostate 102 6033 2 JGD

Seeds 210 7 3 UCI

Sensorless† 6000 48 11 UCI

Sonar 208 60 2 UCI

Theorem proving† 3059 51 6 UCI

Vehicle 94 18 4 UCI

Vowel context 990 14 11 UCI

∗Gas sensor array drift
†Only a meaningful subset of the dataset is used

5.1.2 Simulating missingness mechanisms

Experiments are conducted by removing features from each of the datasets according to the
four missingness mechanisms, namely MCAR, MAR, MNAR-I and MNAR-II (Datta et al.
2016b). The detailed algorithm for simulating the fourmissingnessmechanisms is as follows:

1. Specify the number of entries MissCount to be removed from the dataset. Select the
missingness mechanism as one out of MCAR, MAR, MNAR-I or MNAR-II.

2. If the mechanism isMAR orMNAR-II, select a random subset γmiss ⊂ S containing half
of the features in S (i.e. |γmiss | = m

2 if |S| is even or m+1
2 if |S| is odd). If the mechanism

is MNAR-I, set γmiss = S. Identify γobs = S\γmiss . Otherwise, go to Step 5.
3. If the mechanism is MAR or MNAR-II, for each feature l ∈ γmiss , randomly select a

feature lc ∈ γobs on which the missingness of feature l may depend.
4. For each feature l ∈ γmiss randomly choose a type of missingness MissT ypel as one

out of CENTRAL, INTERMEDIATE or EXTREMAL.
5. Randomly select a non-missing entry xi,l from the data matrix. If the mechanism is

MCAR, mark the entry as missing and decrement MissCount = MissCount − 1 and
go to Step 11.

6. If the mechanism is MAR, set λ = xi,lc , μ = μlc and σ = σlc , where μlc and σlc are
the mean and standard deviation of the lc-th feature over the dataset. If the mechanism
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is MNAR-I, set λ = xi,l , μ = μl and σ = σl . If the mechanism is MNAR-II, randomly
set either λ = xi,l , μ = μl and σ = σl or λ = xi,lc , μ = μlc and σ = σlc .

7. Calculate z = 1
σ

√

(λ − μ)2.
8. If MissT ypel = CENTRAL, set μz = 0. If MissT ypel = INTERMEDIATE, set

μz = 1. If MissT ypel = EXTREMAL, set μz = 2. Set σz = 0.35.

9. Calculate pval = 1√
2πσz

exp(− (z−μz)
2

2σ 2
z

).

10. Randomly generate a value qval in the interval [0, 1]. If pval ≥ qval, then mark the
entry xi,l as missing and decrement MissCount = MissCount − 1.

11. If MissCount > 0, then go to Step 5.

In the above algorithm, the dependence of the missingness on feature values for MAR,
MNAR-I andMNAR-II is achievedby removing entries basedon thevalues of control features
for their corresponding data points. The control feature may be the feature itself (forMNAR-I
and MNAR-II) or may be another feature for the same data point (as in the case of MAR and
MNAR-II). The dependence can be of three types, namely CENTRAL, INTERMEDIATE
or EXTREMAL. CENTRAL dependence removes a feature when its corresponding control
feature has a value close to the mean of the control feature over the dataset. EXTREMAL
dependence removes a feature when the value of its control feature lies near the extremes.
INTERMEDIATE dependence removes a feature when the value of the control lies between
the mean and the extremes.

For our experiments, we set MissCount = nm
4 to remove 25% of the features from each

dataset. Thus, an average of m
4 of the features are missing from each data instance.

5.1.3 Selecting the parameter α

In order to conduct experiments using the FWPD measure, we need to select a value of
the parameter α. Proper selection of α may help to boost the performance of the pro-
posed k-means-FWPD and HAC-FWPD measures. Therefore, in this section, we undertake
a study on the effects of α on the performance of FWPD. Experiments are conducted using
α ∈ {0.1, 0.25, 0.5, 0.75, 0.9} on the datasets listed in Table 4 using the experimental setup
detailed above. The summary of the results of this study is shown in Table 5 in terms of
average ARI values.

A choice of α = 0.25 performs best overall as well as individually except for MAR
missingness (where α = 0.1 proves to be a better choice). This seems to indicate some
correlation between the extent of missingness and the optimal value of α (25% of the features
aremissing in our experiments asmentioned in Sect. 5.1.2). However, the correlation is rather
weak for k-means-FWPD where all values of alphas seem to have competitive performance.
On the other hand, the correlation is seen to bemuch stronger for HAC-FWPD. This indicates
that the optimal α varies considerably with the pattern of missingness for k-means-FWPD
but not as much for HAC-FWPD. Another interesting observation is that performance of
HAC-FWPD deteriorates considerably for high values of α implying that the distance term
is FWPD must be given greater importance for HAC methods. As α = 0.25 has the best
performance overall, we report the detailed experimental results in the subsequent sections
for this choice of α.

5.2 Experiments with the k-means-FWPD algorithm

We compare the proposed k-means-FWPD algorithm to the standard k-means algorithm run
on the datasets obtained after performing ZI, MI, SVDI and kNNI. All runs of k-means-
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Table 5 Summary of results for different choices of α in terms of average ARI values

Clustering Type of α

Algorithm Missingness 0.1 0.25 0.5 0.75 0.9

k-means-FWPD MCAR 0.682 0.712 0.664 0.691 0.683

MAR 0.738 0.730 0.723 0.729 0.711

MNAR-I 0.649 0.676 0.675 0.613 0.666

MNAR-II 0.711 0.718 0.689 0.665 0.678

Overall 0.695 0.709 0.688 0.675 0.685

HAC-FWPD MCAR 0.665 0.709 0.389 0.073 0.017

MAR 0.740 0.724 0.441 0.210 0.094

MNAR-I 0.720 0.721 0.458 0.158 0.036

MNAR-II 0.708 0.716 0.443 0.140 0.025

Overall 0.709 0.718 0.433 0.145 0.043

Best values shown in boldface

FWPD were found to converge within the stipulated budget of Max I ter = 500. The results
of the experiments are listed in terms of the means and standard deviations of the obtained
ARI values, in Tables 6, 7, 8 and 9. Only the best results for kNNI are reported, along with the
best k values. The statistically significance of the listed results are summarized at the bottom
of the table in terms of average ranks as well as signed rank test hypotheses and p values
(H0 signifying that the ARI values achieved by the proposed method and the contending
method originate from identical distributions having the same medians; H1 implies that the
ARI values achieved by the proposed method and the contender originate from different
distributions).

We know from Theorem 3 that the maximum number of feasibility adjustments that can
occur during a single run of k-means-FWPD is n(k−1). This begs the question ofwhether one
should choose Max I ter ≥ n(k − 1). However, k-means-FWPD was observed to converge
within the stipulated Max I ter = 500 iterations even for datasets like Isolet 5, Pendigits,
Sensorless, etc. which have relatively large values of n(k−1). This indicates that the number
of feasibility adjustments that occur during a run is much lower in practice. Therefore, we
conclude that it is not required to set Max I ter ≥ n(k − 1) for practical problems.

It is seen from Tables 6, 7, 8 and 9 that the k-means-FWPD algorithm performs best,
indicated by the consistently minimum average rankings on all types of missingness. The
proposed method performs best on the majority of datasets for all kinds of missingness.
kNNI is overall seen to be the second best performer (being statistically comparable to k-
means-FWPD in case of MAR). It is also interesting to observe that the performance of MI
is improved in case of MAR and MNAR-II, indicating that MI tends to be useful for parti-
tional clustering when the missingness depends on the observed features. Moreover, SVDI is
generally observed to perform poorly irrespective of the type of missingness, implying that
the linear model assumed by SVDI is unable to conserve the convexity of the clusters (which
is essential for good performance in case of partitional clustering).

5.3 Experiments with the HAC-FWPD algorithm

The experimental setup described in Sect. 5.1 is also used to compare the HAC-FWPD
algorithm (with AL-FWPD as the proximity measure) to the standard HAC algorithm (with
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AL as the proximity measure) in conjunction with ZI, MI, SVDI and kNNI. Results are
reported as means and standard deviations of obtained ARI values over the 20 independent
runs. AL is preferred here over SL and CL as it is observed to generally achieve higher ARI
values. The results of the experiments are listed in Tables 10, 11, 12 and 13. The statistically
significance of the listed results are also summarized at the bottom of the respective tables in
terms of average ranks as well as signed rank test hypotheses and p values (H0 signifying that
the ARI values achieved by the proposed method and the contending method originate from
identical distributions having the same medians; H1 implies that the ARI values achieved by
the proposed method and the contender originate from different distributions).

It is seen from Tables 10, 11, 12 and 13 that the HAC-FWPD algorithm is able to perform
best on all types of missingness, as evident from the consistently minimum average ranking.
The proposed method performs best on the majority of datasets for all types of missingness.
Moreover, the performance of HAC-FWPD is observed to be significantly better than kNNI
which performs poorly overall, indicating that kNNI may not be useful for hierarchical clus-
tering applications with missingness. Interestingly, in case of MAR and MNAR-II, both of
which are characterized by the dependence of the missingness on the observed features, ZI,
MI as well as SVDI show improved performance. This indicates that the dependence of the
missingness on the observed features aids these imputation methods in case of hierarchical
clustering. Another intriguing observation is that all the contending HAC methods consis-
tently achieved the best possible performance on the high-dimensional datasets Lung and
Prostate. This may indicate that while convexity of the cluster structures may be harmed due
to missingness, the local proximity among the points is preserved owing to the sparse nature
of such high-dimensional datasets.

6 Conclusions

In this paper, we propose to use the FWPD measure as a viable alternative to imputation
and marginalization approaches to handle the problem of missing features in data clustering.
The proposed measure attempts to estimate the original distances between the data points
by adding a penalty term to those pair-wise distances which cannot be calculated on the
entire feature space due to missing features. Therefore, unlike existing methods for handling
missing features, FWPD is also able to distinguish between distinct data points which look
identical due to missing features. Yet, FWPD also ensures that the dissimilarity for any data
instance from itself is never greater than its dissimilarity from any other point in the dataset.
Intuitively, these advantages of FWPD should help us better model the original data space
which may help in achieving better clustering performance on the incomplete data.

Therefore, we use the proposed FWPD measure to put forth the k-means-FWPD and
the HAC-FWPD clustering algorithms, which are directly applicable to datasets with miss-
ing features. We conduct extensive experimentation on the new techniques using various
benchmark datasets and find the new approach to produce generally better results (for both
partitional as well as hierarchical clustering) compared to some of the popular imputation
methodswhich are generally used to handle themissing feature problem. In fact, it is observed
from the experiments that the performance of the imputation schemes varies with the type
of missingness and/or the clustering algorithm being used (for example, kNNI is useful for
k-means clustering but not for HAC clustering; SVDI is useful for HAC clustering but not for
k-means clustering; MI is effective when the missingness depends on the observed features).
The proposed approach, on the other hand, exhibits good performance across all types of
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missingness as well as both partitional and hierarchical clustering paradigms. The experi-
mental results attest to the ability of FWPD to better model the original data space, compared
to existing methods.

However, it must be stressed, that the performance of all these methods, including the
FWPD based ones, can vary depending on the structure of the dataset concerned, the choice
of the proximity measure used (for HAC), and the pattern and extent of missingness plaguing
the data. Fortunately, the α parameter embedded in FWPD can be varied in accordance with
the extent of missingness to achieve desired results. The results in Sect. 5.1.3 indicate that it
may be useful to choose a high value ofα when a large fraction of the features are unobserved,
and to choose a smaller value when only a few of the features are missing. However, in the
presence of a sizable amount of missingness and the absence of ground-truths to validate
the merit of the achieved clusterings, it is safest to choose a value of α proportional to the
percentage of missing features restricted within the range [0.1, 0.25]. We also present an
appendix dealing with an extension of the FWPD measure to problems with absent features
and show that this modified form of FWPD is a semi-metric.

An obvious follow-up to this work is the application of the proposed PDM variant to
practical clustering problems which are characterized by large fractions of unobserved data
that arise in various fields such as economics, psychiatry, web-mining, etc. Studies can be
undertaken to better understand the effects that the choice of α has on the clustering results.
Another rewarding topic of research is the investigation of the abilities of the FWPD variant
for absent features (see “Appendix A”) by conducting proper experiments using benchmark
applications characterized by this rare form of missingness (structural missingness).

Acknowledgements We would like to thank Debaleena Misra and Sayak Nag, formerly of the Department
of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, India, for their extensive help
with the computer implementations of the different techniques used in our experiments.

Appendix A: Extending the FWPD to problems with absent features

This appendix proposes an extension of the FWPD measure to the case of absent features or
structural missingness. The principal difference between missing and absent features lies in
the fact that the unobserved features are known to be undefined in the latter case, unlike the
former. Therefore, while it makes sense to add penalties for features which are observed for
only one of the data instances (as the very existence of such a feature sets the points apart), it
makes little sense to add penalties for features which are undefined for both the data points.
This is in contrast to problems with unstructured missingness where a feature missing from
both the data instances is known to be defined for both points (which potentially have distinct
values of this feature). Thus, the fundamental difference between the problems ofmissing and
absent features is that two points observed in the same subspace and having identical observed
features should (unlike themissing data problem) essentially be considered identical instances
in the case of absent features, as the unobserved features are known to be non-existent. But,
in case of the unobserved features being merely unknown (rather than being non-existent),
such data points should be considered distinct because the unobserved features are likely
to have distinct values (making the points distinct when completely observed). Hence, it is
essential to add penalties for featuresmissing from both points in the case ofmissing features,
but not in the case of absent features. Keeping this in mind, we can modify the proposed
FWPD (essentially modifying the proposed FWP) as defined in the following text to serve
as a dissimilarity measure for structural missingness.
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Let the dataset Xabs consist of n data instances xi (i ∈ {1, 2, · · · , n}). Let ζxi denote the
set of features on which the data point xi ∈ Xabs is defined.

Definition 11 The FWP between the instances xi and x j in Xabs is defined as

pabs(xi , x j ) =
∑

l∈(ζxi

⋃

ζx j )\(ζxi
⋂

ζx j )
νl

∑

l ′∈ζxi

⋃

ζx j
νl ′

(15)

where νs ∈ (0, n] is the number of instances in Xabs that are characterized by the feature
s. Like in the case of unstructured missingness, this FWP also exacts greater penalty for the
non-existence of commonly features.

Then, the definition of the FWPD modified for structural missingness is as follows.

Definition 12 The FWPD between xi and x j in Xabs is

δabs(xi , x j ) = (1 − α) × d(xi , x j )

dmax
+ α × pabs(xi , x j ), (16)

where α ∈ (0, 1) is a parameter which determines the relative importance between the two
terms and d(xi , x j ) and dmax retain their former definitions (but, in the context of structural
missingness).

Now, having modified the FWPD to handle structural missingness, we show in the fol-
lowing theorem that the modified FWPD is a semi-metric.

Theorem 6 The FWPD for absent features is a semi-metric, i.e. it satisfies the following
important properties:

1. δabs(xi , x j ) ≥ 0 ∀ xi , x j ∈ Xabs ,
2. δabs(xi , x j ) = 0 iff xi = x j , i.e. ζxi = ζx j and xi,l = x j,l ∀ l ∈ ζxi , and
3. δabs(xi , x j ) = δabs(x j , xi ) ∀ xi , x j ∈ Xabs .

Proof 1. From Eq. (15) we can see that pabs(xi , x j ) ≥ 0 ∀ xi , x j ∈ Xabs and Eq. (1)
implies that d(xi , x j ) ≥ 0 ∀ xi , x j ∈ Xabs . Hence, it follows that δabs(xi , x j ) ≥ 0 ∀
xi , x j ∈ Xabs .

2. It is easy to see from Eq. (15) that pabs(xi , xi ) = 0 iff ζxi = ζx j . Now, if xi,l = x j,l ∀
l ∈ ζxi , then d(xi , x j ) = 0. Hence, δabs(xi , x j ) = 0 when ζxi = ζx j and xi,l = x j,l ∀
l ∈ ζxi . The converse is also true as δabs(xi , x j ) = 0 implies ζxi = ζx j and d(xi , x j ) = 0;
the latter in turn implying that xi,l = x j,l ∀ l ∈ ζxi .

3. From Eq. (16) we have

δabs(xi , x j ) = (1 − α) × d(xi , x j )

dmax
+ α × pabs(xi , x j ),

and δabs(x j , xi ) = (1 − α) × d(x j , xi )
dmax

+ α × pabs(x j , xi ).

But, d(xi , x j ) = d(x j , xi ) and pabs(xi , x j ) = p(x j , xi ) ∀ xi , x j ∈ Xabs (by definition).
Therefore, it can be easily seen that δabs(xi , x j ) = δabs(x j , xi ) ∀ xi , x j ∈ Xabs .

��
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