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Abstract We present an algorithm for the unsupervised learning of latent variable models
based on the method of moments. We give efficient estimates of the moments for two models
that are well known, e.g., in text mining, the single-topic model and latent Dirichlet alloca-
tion, and we provide a tensor decomposition algorithm for the moments that proves to be
robust both in theory and in practice. Experiments on synthetic data show that the proposed
estimators outperform the existing ones in terms of reconstruction accuracy, and that the pro-
posed tensor decomposition technique achieves the learning accuracy of the state-of-the-art
method with significantly smaller running times.We also provide examples of applications to
real-world text corpora for both single-topic model and LDA, obtaining meaningful results.

Keywords Spectral methods · Method of moments · Latent variable models · Topic
modeling

1 Introduction

Latent variable models (LVM) are a wide class of parametric models characterized by the
presence of some hidden unobservable variables that influence the observable data. A lot
of widely used models belong to this class: Gaussian mixtures, latent Dirichlet allocation,
naïve Bayes and hidden Markov models and many others. The huge availability of data and
the diverse real-world applications, like health-care data mining, text analytics, vision and
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speech processing, has boosted the need for accurate and fast algorithms to learn models
belonging to this class.

For many decades, the standard approach to learn such models has been the Expectation
Maximizationmethod (EM) (Dempster et al. 1977), an iterative technique based on themaxi-
mum likelihood principle. EM is easy to understand and to implement and can be used for any
latent variablemodel. Nevertheless, EMhasmany drawbacks: it is known to produce subopti-
mal results and may be very slow when the model or data dimension grow (Balle et al. 2014).

To overcome these issues, a variety of techniques based on the method of moments and
tensor decomposition have been proposed in the last years (Anandkumar et al. 2014, 2012a, b;
Jain and Oh 2014; Hsu and Kakade 2013; Balle et al. 2014; Chaganty and Liang 2013; Song
et al. 2011). Generalizing an approach introduced by Pearson (1894), thesemethods first store
in multidimensional tensors the low-order moments of the observable data, and then recover
the parameters of the desired model via tensor decomposition techniques. Moment-based
algorithms are in general faster than EM as they require a single pass over the data, and have
provable guarantees of learning accuracy in polynomial time.

Anandkumar et al. (2014) presented an exhaustive survey showing that the spectral learn-
ing of most of the LVMs can be abstracted in two steps: first, given a prescribed LVM, they
show how to operate with the data to obtain an empirical estimate of the moments, expressed
in the form of symmetric low rank matrices and tensors; in the second step, the moments are
decomposed using tensor/matrix decomposition techniques, to obtain the unknown param-
eters of the model. That paper also provides a method to derive such a decomposition, the
Tensor Power Method (TPM). This abstraction allows to split the research on methods of
moments in two main non-disjoint areas.

A first area concentrates on methods to retrieve from data empirical estimates of the
moments for specific LVMs. Examples are the works by Jain and Oh (2014) for mixture
models with categorical observations, by Chaganty and Liang (2013) for mixtures of linear
regressions, by Anandkumar et al. (2012b) for naïve Bayes models, and by Hsu et al. (2012)
for hiddenMarkovmodels. Important examples come from textmining, where the observable
data, called features, generally coincides with the words appearing in a document, while the
hidden variable can be, for example, the topic of the document. A simple model is the single-
topic model, where each text is assumed to be about only one topic and the probability of
a given word appearing in a text depends on the topic of the text; equations to retrieve a
moment representation for this model are provided by Anandkumar et al. (2012b) and Zou
et al. (2013). An alternative and more complex model is Latent Dirichlet Allocation (LDA)
(see Griffiths and Steyvers 2004; Blei et al. 2003), for which Anandkumar et al. (2012a)
provide empirical estimators of the moments.

A second research area focuses on methods to decompose the low-order moments to
retrieve the parameters of the model. Literature on tensor decomposition is vast and it is
believed to originate from the works by Hitchcock (1927, 1928). The topic received attention
in the field of psychometrics (Carroll and Chang 1970; Harshman 1970; Tucker 1966) and
chemometrics (Appellof and Davidson 1981) and extensive surveys are provided by Tomasi
and Bro (2006), Kolda and Bader (2009) and Sidiropoulos et al. (2017). These works also
present several classical techniques to obtain the so-called canonical polyadic decomposition
(CPD) of a three dimensional tensor, which expresses it as a linear combination of rank-1
tensors. Kolda and Bader (2009) recall one of the most popular algorithms to obtain the
CPD of a generic tensor: Alternating Least Square (ALS) (whose origins traces back to
Carroll and Chang 1970; Harshman 1970). ALS is an heuristic that works by fixing all-but-
one of the factors decomposing a tensor, and updating the remaining factor by solving an
overdetermined linear least squares problem. ALS is easy to implement and to understand but
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is known to be prone to local minima, requiring several random restarts to return meaningful
results (see the discussion by Kolda and Bader 2009, p. 18). A different line of work consists
in approaching the tensor decomposition problem with simultaneous Schur decompositions
(Van Der Veen and Paulraj 1996; De Lathauwer et al. 2004; Colombo and Vlassis 2016) or
matrix optimizationmethods to perform simultaneous diagonalization (Kuleshov et al. 2015).
In theory, one could use any of these methods to decompose the three-dimensional tensor
containing the third order moments, but the high dimensionality of that tensor makes this
approach often computationally unfeasible. On the other hand, one can rely on the specific
structure of the whole set of low-order moments by using not only the third, but also the first
and the second order moments to explicitly exploit their symmetry properties and obtain the
desired model parameters more efficiently and with provable guarantees of global optimality.
This is the approach followed by methods of moments.

The reference method here is the Tensor Power Method (TPM) from Anandkumar et al.
(2014). TPM manipulates the low-order moments to obtain a symmetric orthogonal tensor
that is decomposed using a high-dimensional extension of the well-known matrix power
method, with an approach proposed by Zhang and Golub (2001) and Kolda (2001). The
main issue of this algorithm is its scalability, as its running time grows as k5 where k is the
number of latent components. An alternative, which in general has better dependence on
the number of latent factors, consists in using matrix-based techniques and a simultaneous
diagonalization approach, specializing an approach that can be traced back to Sanchez and
Kowalski (1990) and Leurgans et al. (1993). Examples of these methods of moments are
provided by Anandkumar et al. (2012b), with an algorithm based on the eigenvectors of a
linear operator and by Anandkumar et al. (2012a) that present an alternative method based
on the singular vectors of a singular-value decomposition (SVD). These two methods are
faster than TPM by far, but they are more sensitive to perturbations of the input data.

A method of moments uses a set of N samples to empirically estimate the moments
and then uses tensor decomposition methods to recover the model parameters from the
decompositions of the estimated, perturbed, moments. The decomposition methods listed
above differ from each other on how perturbations of the input moments affect the final
results. A method of moments can thus be improved by modifying two distinct points; one
is acting on the procedures to estimate the moments, by reducing their dependence on the
sample size to obtain more accurate estimates with less data. Another is by working on the
decomposition algorithms, reducing their sensitivity to input perturbations and improving
their performance. This paper presents improvements in both directions; in particular:

– We present improved estimators of the moments for the single-topic model and latent
Dirichlet allocation. These estimators modify the ones presented by Zou et al. (2013)
increasing the robustness and the stability with respect to the noise, as experimentally
shown in Sect. 4. Also, we present a novel theorem that relates the sample accuracy of
the proposed estimates to the sample size and to the lengths of the documents.

– Weprovide anewalgorithm (namedSVTD,SingularValuebased TensorDecomposition)
to decompose the retrieved low-rank symmetric tensors of the moments. This method is
alternative to the ones presented in the cited literature, and is based on the singular values
of a SVD, which are known to be stable under random perturbations (unlike the singu-
lar vectors, as shown by Stewart and Sun 1990). Our algorithm is simple to implement
and understand, is deterministic and based only on standard matrix operations rather
than tensor ones. Experimental results (see Sect. 4) show that SVTD outperforms exist-
ing matrix-based methods from Anandkumar et al. (2012a, b) in terms of reconstruction
accuracy, is an order of magnitude faster than TPM, and uses far less memory. In Sect. 3.1
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we outline in more detail the differences between the presented method and the existing
techniques.

– Finally, we test SVTD on real-world text corpora, both for single-topic model and LDA,
with satisfactory and meaningful results.

The outline of the paper is the following: Sect. 2 contains the proposed estimators of the
moments and a sample complexity bound; Sect. 3 contains the proposed decomposition
algorithm; Sect. 4 tests the presented methods on both synthetic and real-world data; Sect. 5
concludes the paper outlining possible future developments and applications.

2 Moments estimation for latent variable models

2.1 An improved estimator for the single-topic model

In this section we recall the single-topic model for which we introduce a new estimator of
the moments; we then provide a sample accuracy bound for this estimator and we compare
it with existing methods.

We consider a corpus of N text documents and a set of k topics; each document is deemed
to belong to only one topic. The vocabulary appearing in the corpus is constituted of n words,
from which it is immediate to label all the words of the vocabulary with a number between
1 and n. The generative process works as follows:

– First, a (hidden) topic Y ∈ {1, . . . , k} is drawn, according to a given probability dis-
tribution; we define, for any j ∈ {1, . . . , k} the probability of drawing the topic j as
follows:

ω j := P(Y = j), and ω := (ω1, . . . , ωk)
�.

– Once the topic has been chosen, all the words of the documents are generated according
to a multinomial distribution; for each i ∈ {1, . . . , n}, μi, j will be the probability of
generating word i under topic j :

P(Drawing word i |Y = j) = μi, j , and M = (μi, j )i, j ∈ R
n×k .

Also we will denote by μi the set of columns of M : M = [μ1|, . . . , |μk]. It is a common
practice to identify a topic with the probability distribution of the words under that topic,
i.e. with the columns μ1, . . . , μk of M .

A practical encoding of the words in a document consists of identifying each word with an
n−tuple x ∈ R

n , defined as:

(x)h :=
{
1 if the word is h,

0 otherwise.

In fact, if x j is the j th word of a document of c words, we can define a vector X whose
coordinate h represents the number of times the word h has appeared in the document:
X := ∑c

j=1 x j . It is common to call X a bag of words representation of a document. We can
see that, if the topic is j , each coordinate of X is distributed as a binomial distribution with
parameter c and μi, j :

Distr(Xi |Y = j) = B(c, μi, j ).
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We now consider a corpus of N documents; for each document i ∈ {1, . . . , N }we assume
knowing the word-count vector X (i) as above, and the total number of words in the document:
ci = ∑n

j=1(X
(i)) j . These are the only variables that we assume are known, while all the

parameters of the model, i.e. the pair (M, ω), and the hidden topic of each document are
supposed to be unknown.

Remark 1 Recovering the model parameters is a useful step to infer the hidden topic of each
document in a corpus. In fact, given a set of parameters (M, ω), and a document X , if Y is
the hidden topic of X we can calculate

P(Y = j |X) = P(X |Y = j) ω j∑k
i=1 P(X |Y = i) ωi

, (1)

and assign X to the topic that maximizes that probability.

The following theorem is a variation of Propositions 3 and 4 byZou et al. (2013) and relates
the observable moments of the known variables with the unknowns (M, ω). It provides three
estimators: M̃1 ∈ R

n , M̃2 ∈ R
n×n and M̃3 ∈ R

n×n×n converging to the symmetric low rank
tensors that will be used to retrieve the model parameters.1

Theorem 1 Fix a value N ∈ N, and let X (1), . . . , X (N ) be N sample documents generated
according to a single-topic model with parameters (M, ω). Define the vector M̃1 ∈ R

n, and
the symmetric tensors M̃2 ∈ R

n×n and M̃3 ∈ R
n×n×n whose entries are as follows, for

h ≤ l ≤ m:

(M̃1)h :=
∑N

i=1(X
(i))h∑N

i=1 ci
,

(M̃2)h,l :=
∑N

i=1(X
(i))h(X (i) − χh=l)l∑N
i=1(ci − 1)ci

,

(M̃3)h,l,m := χh<l<m

∑N
i=1(X

(i))h(X (i))l(X (i))m∑N
i=1(ci − 2)(ci − 1)ci

+ χ(h=l<m)∨(h<l=m)

∑N
i=1(X

(i))h(X (i) − 1)l(X (i))m∑N
i=1(ci − 2)(ci − 1)ci

+ χh=l=m

∑N
i=1(X

(i))h(X (i) − 1)l(X (i) − 2)m∑N
i=1(ci − 2)(ci − 1)ci

,

where χ is the indicator function and ci is the number of words appearing in document i .
We have:

E[M̃1] = M1 :=
k∑

i=1

ωiμi , E[M̃2] = M2 :=
k∑

i=1

ωiμi ⊗ μi ,

E[M̃3] = M3 :=
k∑

i=1

ωiμi ⊗ μi ⊗ μi ,

where ⊗ denotes the tensor product between vectors.

1 The proofs of all the results are provided in the “Appendix”.
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Notice that, becauseM2 andM3 are symmetric, the previous theoremdefines all the entries
of these tensors. Given a sample, we are able to calculate the three estimators M̃1, M̃2 and
M̃3. Theorem 1 allows to express observable moments in the form of a symmetric tensor. By
construction it is immediate to see that both M2 and M3 have symmetric-rank less than or
equal to k, and that limN→∞ M̃i = Mi for i = 1, 2, 3.

The following theorem provides a sample accuracy bound for the estimators of Theorem
1.

Theorem 2 Let M̃2 and M̃3 be the empirical estimates of M2 and M3 obtained using The-
orem 1, and let (c1, . . . , cN ) be a vector containing the lengths of the various documents of
the corpus. Define

C1 =
N∑
i=1

ci , C2 =
N∑
i=1

(ci − 1)ci , C3 =
N∑
i=1

(ci − 2)(ci − 1)ci ,

W (N )
2 =

∑N
i=1(ci (ci − 1))2

C2
2

, W (N )
3 =

∑N
i=1(ci (ci − 1)(ci − 2))2

C2
3

.

Then, for any pair ε > 0 and 0 ≤ δ < 1, such that

√
W (N )

2 (1 − ‖M2‖2F ) +
√
log

(
1

δ

)
max j (c j )

√
C1

C2
< ε,

it holds that

P(‖M2 − M̃2‖F < ε) > 1 − δ.

Also, for any pair ε > 0 and 0 ≤ δ < 1, such that

√
W (N )

3 (1 − ‖M3‖2F ) +
√
log

(
1

δ

)
max j (c j (c j − 1))

√
C1

C3
< ε,

it holds that

P(‖M3 − M̃3‖F < ε) > 1 − δ.

Remark 2 We briefly comment on the meaning of the theorem by focusing on M2 (similar
arguments hold for M3) and analyzing the case where all the documents have the same
length c (ci = c for all i) and c is asumed to be somewhat large (so c � c − 1). Then the
bound simplifies to: √

1

N
(1 − ‖M2‖2F ) +

√
1

Nc
log

(
1

δ

)
.

It is interesting to notice that the worst-case accuracy of the bound is ε = O(1/
√
N ). Also,

when c increases, the bound becomes smaller, with a clear limitation: if we have very few
documents (N small), even if they are very long (large c), it is impossible to accurately learn
the model, as in particular we may not even see all the topics.

Remark 3 (Alternative estimates of themoments) The simplest estimation of the low-order
moments for the single-topic model is provided by Anandkumar et al. (2012b), who, for each
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document i ∈ {1, . . . , N } consider three randomly selected words, x (i)
1 , x (i)

2 , x (i)
3 , and then

show that

∑N
i=1

(
x (i)
1

)
h

N
−−−−→
N→∞ (M1)h,

∑N
i=1

(
x (i)
1

)
h

(
x (i)
2

)
l

N
−−−−→
N→∞ (M2)h,l ,∑N

i=1

(
x (i)
1

)
h

(
x (i)
2

)
l

(
x (i)
3

)
m

N
−−−−→
N→∞ (M3)h,l,m .

This method only uses three words per document, and has mainly illustrative purposes, as
noticed by the authors. A method more similar to the one proposed in Theorem 1 is described
by Zou et al. (2013). Both the method by Zou et al. (2013) and that in Theorem 1 average
the estimators with the document lengths, taking into consideration all the words in each
document. However, in the method by Zou et al. (2013), the averaging is done for each
document and then they are averaged together with the same weight; for example, Zou et al.
(2013) calculate the off-diagonal entries of M̃2 as follows:

(M̃2)h,l := 1

N

N∑
i=1

(X (i))h(X (i))l

(ci − 1)ci
.

This calculation is a simple average of many estimators giving the same weight to all docu-
ments, namely 1/N . Instead, in Theorem 1, we propose the following different formula:

(M̃2)h,l :=
∑N

i=1(X
(i))h(X (i))l∑

i (ci − 1)ci
=

N∑
i=1

(X (i))h(X (i))l

(ci − 1)ci

(ci − 1)ci∑
j (c j − 1)c j

.

We can see that here we perform a weighted average, where the weight of the sample i is
(ci−1)ci∑
j (c j−1)c j

, giving in practice more weight to longer documents, which are supposed to be

the most reliable; we will experimentally see in Sect. 4 that the proposed approach is less
sensitive to noise, leading to improved results. If all the documents have the same length, the
two estimates will produce the same number.

2.2 Extension to latent Dirichlet allocation

In this section we extend the results of the previous section to a more complex latent variable
model, the latent Dirichlet allocation.

The obvious criticism of the single-topic model is that each document can deal with a
unique topic, a hypothesis that is commonly considered unrealistic. To overcome this issue,
more complex models have been introduced, one of them being the latent Dirichlet allocation
(LDA) (Griffiths and Steyvers 2004; Blei et al. 2003). In its simplest form, LDA assumes
that each document deals with a multitude of topics, in proportions that are governed by
the outcome of a Dirichlet distribution. More precisely, considering our text corpus with N
documents with a vocabulary of n words, the generative process for each text is the following:

– First a vector of topic proportions is drawn from a Dirichlet distribution with parameter
α ∈ R

k+, Dir(α); we recall that Dirichlet distribution is distributed over the simplex

Δk−1 =
{
v ∈ R

k : ∀i, vi ∈ [0, 1], and
∑

vi = 1
}

,
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and has the following density function, for h ∈ Δk−1:

P(h) = Γ (α0)
∏k

i=1 h
αi−1
i∏k

i=1 Γ (αi )
.

Where α0 = ∑
αi . From a practical point of view, this step consists of drawing a vector

of parameters h ∈ Δk−1 such that hi represents the proportion of the topic i in the
document.

– Once the topic proportions (also named mixture of topics) have been chosen, each word
of the document is generated according to the following procedure: First a (hidden) topic
of the word, say Y ∈ {1, . . . , k}, is drawn, according to the probabilities defined by h
(so we will have probability h j of drawing topic j) and then we will generate the word
itself according to a multinomial distribution; for each i ∈ {1, . . . , n}, μi, j will be the
probability of generating the word i under the topic j :

P(Drawing word i |Y = j) = μi, j , and M = (μi, j )i, j ∈ R
n×k .

Keeping the notation used in the previous section, we will write x (i)
j ∈ R

n for the coordinate

vector indicating the word at position j in document i , X (i) = ∑
x (i)
j for the word-count

vector of document i , and ci = ∑n
j=1(X

(i)) j for the number of words in that document. In
the case of LDA, the unknown model parameters are the pair (M, α).

As in the case of the single-topic model, wewant to manipulate the observable moments in
order to obtain a set of symmetric low-rank tensors. The following theorem is an immediate
modification of the one presented by Anandkumar et al. (2012a, Lemma 3.2), and relates
the observable moments of the known variables with the unknowns (M, α), providing the
required representation. The only modification consists of the fact that we have used the
estimates of Theorem 1 instead of the standard ones of Remark 3.

Theorem 3 Let M̃1, M̃2 and M̃3 be the empirical estimates defined in Theorem 1. Define

M̃α
2 := M̃2 − α0

α0 + 1
M̃1 ⊗ M̃1,

M̃α
3 := M̃3 − α0

α0 + 2
(M1,2) + 2α2

0

(α0 + 2)(α0 + 1)
M̃1 ⊗ M̃1 ⊗ M̃1,

where M1,2 ∈ R
n×n×n is a three-dimensional tensor such that

(M1,2)h,l,m := ((M̃2)h,l(M̃1)m + (M̃2)l,m(M̃1)h + (M̃2)m,h(M̃1)l).

Then

E[M̃α
2 ] =

k∑
i=1

αi

(α0 + 1)α0
μi ⊗ μi = Mα

2 ,

E[M̃α
3 ] =

k∑
i=1

2αi

(α0 + 2)(α0 + 1)α0
μi ⊗ μi ⊗ μi = Mα

3 .

This technique allows expressing the observable moments in the form of a symmetric tensor.
Both Mα

2 and Mα
3 have symmetric-rank less than or equal to k, and so we can use any

tensor decomposition algorithm to retrieve from them the unknownmodel parameters (M, α).
This approach has several advantages over traditional methods based on Markov Chain
Monte Carlo (MCMC) algorithms, like the one presented by Griffiths and Steyvers (2004).
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While MCMC methods require several passes over the data, the method presented here only
uses one pass to compute the moments described in Theorem 3. This guarantees higher
efficiency, which is confirmed by our experiments in Sect. 4.3. Furthermore, if the tensor
decomposition method applied to the moments is robust, and provably recovers (M, α) from
the moments, then the proposed approach will be guaranteed to recover the parameters of
the model generating the data, guarantees that do not seem to exist for MCMC approaches.

Remark 4 (Inference) Similarly to the single-topic model, one of the main usages of LDA
is to infer the mixture of hidden topics of each document in a corpus. Unfortunately, an exact
formula to perform this inference is not known, but a number of approximate approaches
exist, likeGibbs sampling (Griffiths and Steyvers 2004; Newman et al. 2009) and Expectation
Propagation (Blei et al. 2003). In our case, if we assume knowing the values of model
parameters (M, α), we can apply a modified Gibbs sampler to infer the topic mixture for
a given text; consider a text, whose words are x1, . . . , xc; then, in LDA, each word xi is
generated by a unique topic Yxi . Using the equations for Gibbs sampling from Griffiths and
Steyvers (2004), if Yxi is the hidden topic of word xi and Y−xi is the set of topic assignments
for all the words in the document excluding xi , it can be shown that

P(Yxi = j |Y−xi , xi ) ≈ μxi , j
n−i, j + αi

c − 1 + α0
, (2)

where n−i, j is the number of words assigned to topic j excluding xi , c is the total number of
words in the document and μxi , j is the probability of drawing the word xi under topic j . So,
given a document, first we have to assign to each word a hidden topic, and then update this
assignment word by word in a iterative way, using a Monte-Carlo assignment governed by
Eq. (2). Each iteration updates the number of words assigned to a given topic; after a suitable
number of iterations, we can estimate the topic mixture for a given document as the vector
h ∈ R

k such that h j = n j+αi
c+α0

, where n j is the number of words assigned to topic j .

2.3 Generic representation of the moments for latent variable models

In the previous sectionswe have seen, for the single-topicmodel and for LDA, how to estimate
from data three entities M1, M2 and M3 of the form

M1 =
k∑

i=1

ωiμi , (3)

M2 =
k∑

i=1

ωiμi ⊗ μi , (4)

M3 =
k∑

i=1

ωiμi ⊗ μi ⊗ μi . (5)

For several latent variable models, an analogous characterization of the moments to the one
presented in Eqs. (3), (4) and (5) is possible, allowing to manipulate a dataset to obtain
via linear transformations an empirical estimate of the triple (M1, M2, M3). Examples are
Gaussian mixture models (Hsu and Kakade 2013; Ge et al. 2015), hidden Markov models
(Balle et al. 2014) and mixtures of linear regressions (Chaganty and Liang 2013). This
characterization reduces the problemof learning the parameters of aLVMto that of solving the
system formed by Eqs. (3), (4) and (5), which can in general be assessed using matrix/tensor
decomposition techniques. The next section is dedicated to this task.
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Remark 5 (Identifiability of themodel parameters) It is important to remark that the system
of Eqs. (3), (4) and (5) admits (M, ω) as unique real solution (for generic parameters), which
guarantees the identifiability of the model. In fact, Comon et al. (2017) guarantee that if
Eq. (5) has a unique solution and system (3), (4) and (5) has at least one solution, then also
the whole system (3), (4) and (5) admits the same unique solution. Generic uniqueness of
the real solutions of (5) is guaranteed by known results on tensor decomposition (Chiantini
et al. 2017; Qi et al. 2016), and can be verified using Kruskal’s (1977) criterion (see also
Kolda and Bader 2009, Sec.3.2).

3 Singular value based tensor decomposition

In this section we present an algorithm to retrieve the parameters of a LVM from the triple
(M1, M2, M3). The proposed method only relies on matrix decomposition techniques, is
deterministic, scales better in time and memory than TPM, and is more robust than the
matrix-based ones described before, as confirmed by the experiments (Sect. 4).

Our method relies on the observation that M2 and the slices of M3 admit a representation
in terms of matrix products as

M2 = MΩM�, (6)

M3,r = MΩ1/2diag(mr )Ω
1/2M�, (7)

where Ω = diag(ω), M3,r ∈ R
n×n is the r th slice of M3 and mr is the r th row of M . As

a first step, it stores the whitened slices of M3 into a three-dimensional tensor H in R
n×k×k

and then performs n SVD on the slices of H (belonging to R
k×k) obtaining the rows of M

as the singular values of that slices; for this reason we name our method SVTD, Singular
Value based Tensor Decomposition. The key steps of our algorithm (SVTD) are outlined in
Algorithm 1.

Algorithm 1 SVTD
Require: M1, M2, M3, and the number of latent states k ≤ n
1: Decompose M2 as M2 = Uk SkU

�
k with a SVD truncated at the kth singular vector.

2: Define the whitening matrix E = Uk S
1/2
k and calculate its pseudoinverse E† = (Sk )

−1/2U�
k .

3: Select a feature r and compute M3,r

4: Compute O as the left singular vectors of Hr := E†M3,r E
†�

and mr as the singular values.
5: for i = 1 → n do
6: Compute Hi := E†M3,i E

†�
, where E† = (Sk )

−1/2U�
k is the Moore-Penrose pseudo-inverse of E

7: Obtain the i th row of M as the diagonal entries of O�Hi O
8: end for
9: Obtain ω solving M1 = Mω

10: Return (M, ω)

The constructive proof of the following theorem will explain why SVTD performs a
correct retrieval of the desired model parameters.

Theorem 4 Let r be the feature selected at Step 3 of SVTD, and assume k ≤ n. If all the
elements of mr are distinct and M2 and M3 have rank k, then SVTD produces the values of
(M, ω) exactly.
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Proof As a first stepwe perform a SVD toM2 = UkSkU�
k ,whereUk ∈ R

n×k and Sk ∈ R
k×k

are the matrices of the singular vectors and values truncated at the kth greatest singular value.
Then we define the whitening matrix E = UkS

1/2
k ∈ R

n×k, and for a slice M3,r of M3, we
define Hr ∈ R

k×k as

Hr = E†M3,r (E
�)†,

where E† = (Sk)−1/2U�
k is theMoore-Penrose pseudo-inverse of E . Now, observe that there

exists a unique orthogonal k × k matrix O , such that

MΩ1/2 = EO. (8)

To see that such a matrix exists, it is enough to observe that the matrix O = E†MΩ1/2 is
orthogonal (which can be seen from equation MΩM� = EE�) and fulfills the requested
relation. To see that it is unique, assume that that O1 and O2 are two orthogonal matrices
such that MΩ1/2 = EO1 = EO2. Then, multiplying by E† on the left, we obtain O1 =
E†EO1 = E†EO2 = O2.

Using Eq. (8), one gets the following characterization of M3,r :

M3,r = MΩ1/2diag(mr )Ω
1/2M� = EOdiag(mr )O

�E�,

from which it follows that

Hr = Odiag(mr )O
�.

Now, one gets the r th row of M as the singular values of Hr . Repeating these steps for all
the i ∈ {1, . . . , n} will provide the full matrix M . In order to avoid ordering issues with the
columns of the retrieved M , one can use the same matrix O to diagonalize all the matrices
Hi , as O is uniquely determined, because the elements of mr are distinct. So, compute O as
the singular vectors of Hr , for a certain feature r , and re-use it for all the other features. The
subsequent estimations of ω are straightforward, and can be obtained by solving the linear
system M1 = Mω. ��
Remark 6 (On the generality of the algorithm) Like other methods of moments, our algo-
rithm requires the number of topics to be smaller than the vocabulary size, k ≤ n, which is in
general a realistic requirement: in topic modeling applications one usually has thousands of
words and just tens of topics. Also, we remark that during the construction of the algorithm
we have not made any hypotheses on the probability distribution of the data; instead, we
have required the matrix M to be full rank and, in addition, to have at least one feature r
with different conditional expectations on the various topics. Also, we do not need to know
in advance what this feature is, as Remark 7 will explain. This last requirement is not present
in the other matrix-based methods, as they rely on a randomized matrix to guarantee the
uniqueness of the results (see Sect. 3.1); but the reconstruction accuracy of these methods is
significantly worse than that of SVTD, as we will show experimentally. Finding a determin-
istic method that joins the scalability properties of simultaneous diagonalization methods
without requiring this separation condition is an interesting open problem.

Remark 7 (On the selection of feature r ) The initial steps of the algorithm require the
isolation of a feature r to compute the matrix O . While theoretically we could select any
feature r such that all elements ofmr = (μr,1, . . . , μr,k) are distinct, it is clear that, ifmatrices
M1, M2 and M3 are subject to perturbations, the results obtained by the algorithm might
vary, depending on the selected feature r . However, known results from matrix perturbation
theory (see for example Stewart and Sun 1990), indicate that the matrix O (which contains
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the singular vectors of Hr ) is more sensitive to random perturbations when the minimum
difference between the entries of mr = (μr,1, . . . , μr,k) is small. This fact suggests that a
possible heuristic to choose the feature r (and hence a reliable matrix O), is to repeat the steps
3 and 4 of the algorithm, isolating different features and selecting the one that maximizes
the quantity mini �= j (|μr,i − μr, j |). With this heuristic, a user can run SVTD without any
previous knowledge on the feature to extract. Its cost is that of performing n times a k×k SVD,
therefore O(nk3), and dominated by the costs of other parts of the algorithm as discussed
next.

Remark 8 (Complexity analysis)We start analyzing the time complexity. Using randomized
SVD techniques (see Halko et al. 2011), step 1 can be carried out with a total of O(n2k)
steps, the SVD on E†M3,r (E�)† requires O(k3) steps while step 6 requires O(n2k) steps
for matrix multiplication for each one of the n iterations. So the overall complexity of the
Algorithm 1 is

O(n2k + k3 + n3k).

We need to add the additional cost of the feature-selection method outlined in Remark 7,
whose cost is O(nk3). Since n ≥ k, this cost is dominated by the larger O(n3k) component.

It is important to highlight that the general implementation given inAlgorithm1hasmainly
a descriptive purpose. For a specific LVM, optimized implementations may exists. For the
single-topic model, for example, the method can be implemented without ever computing
explicitly the tensor M3, instead computing in one step its whitened slices Hr , with a com-
plexity of O(Nnk), and then performing the subsequent diagonalizations in O(n2k2) time.
Computation can be further accelerated by exploiting the sparsity of the data, that is, using
sparse matrix arithmetic techniques. We also remark that the algorithm is trivially paralleliz-
able: Assuming that we havem machines on which to parallelize steps 5, 6, 7 of the algorithm
and the feature selection task, we can reduce the total running time to O(n2k+k3 +n3k/m).

Regarding memory, notice that we never use the full tensor M3, but only its r th slice, for
the selected feature r . This means that only that slice has to be computed and stored, and the
memory complexity of the algorithm is O(n2).

These complexity requirements are comparable to those of themethods fromAnandkumar
et al. (2012a, b); however, those methods are randomized, with nontrivial variance in their
output, so they may require several runs of the full algorithm in order to provide accurate
results. The tensor powermethod fromAnandkumar et al. (2014) has in general higher cost. It
is an iterative technique, with the number of iterations difficult to bound a priori; the authors
suggest that accuracy ε can be reached with O(k5+δ(log(k) + log log(1/ε))) operations,
among iterations, random restarts and actual matrix operations, higher than our O(k3). To
this time we need to add the time to get the k × k × k tensor from the sample, which is not
trivial for many LVMs.

3.1 Alternative algorithms

Mathematically speaking, SVTD is a method to solve the system of Eqs. (3), (4) and (5)
and find the unknown model parameters (M, ω). In theory, as Kruskal’s criterion guarantees
that M3 has a unique CP decomposition, one could simply try to directly decompose the
third order moment, using for example one of the general-purpose tensor decomposition
methods described by Tomasi and Bro (2006), Kolda and Bader (2009) and Sidiropoulos
et al. (2017). However this approach is impractical as M3 may be too large (for instance
in the topic modeling example, where n is quite high). Conversely, explicitly relying on
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the full set of Eqs. (3), (4) and (5) allows to find the pair (M, ω) that exactly solves those
equations—a guarantee that may not be present in general-purpose tensor decomposition
algorithms—while working with small, low dimensional tensors/matrices. For example, the
whitening step that SVTD performs at step 4 of Algorithm 1, reduces the slices of M3 to a
small k × k matrix, which dramatically reduces the complexity of the algorithm. Methods of
moments in the literature other than SVTD all exploit the specific structure of Eqs. (3), (4)
and (5) to efficiently find an optimal solution. In the rest of this sectionwe briefly present their
characteristics—providing additional details with respect to what was already mentioned in
the introduction—and compare them with SVTD.

The tensor power method (TPM) is described by Anandkumar et al. (2014). In that algo-
rithm, the idea is to find a matrixW (for example, the pseudoinverse of the whitening matrix
E) such that W�M2W = I , and use it to whiten the tensor M3, getting a k × k × k tensor
T , from whose robust eigenvectors it is possible to retrieve the model parameters. To get the
set of the robust eigenvectors, TPM uses a three-dimensional extension of the well-known
matrix power method.While very robust, the implementation of this methodmay be complex
for someone who is not familiar with tensors. In addition, it is an iterative method, and so
it requires a tuning of the hyperconvergence parameters, which might require many trial-
and-error tests. These practical considerations, together with its higher time and memory
complexity outlined in Remark 8, are drawbacks compared to matrix methods.

Matrix methods (Anandkumar et al. 2012a, b), are technically more similar to the method
presented here, and they are two variations of the same approach, one (Anandkumar et al.
2012b) using eigenvectors, and the other (Anandkumar et al. 2012a) using singular vectors.
These methods take a random vector η ∈ R

n , and observe that the matrix M3(η), defined as

(M3(η))i, j :=
n∑

l=1

((M3)i, j,lηl)

can be decomposed as follows:

M3(η) = MΩ1/2diag
((

ημ�
1 , . . . , ημ�

k

))
Ω1/2M�.

Then, they compute the whitening matrix E and get the matrix

Hη = E†M3(η)(E†)�

from whose left singular vectors O they retrieve M (up to rescaling and columns reordering)
solving the following system of equations:{

MΩ1/2 = EO

Mω = M1

using essentially Eq. (8). The introduction of the random vector η has the scope of guarantee-
ing that the elements of (ημ�

1 , . . . , ημ�
k ) are almost surely distinct, and so O is unique. So,

we can see that there are essentially two main differences: the first is the fact that instead of
using a randomized matrix, we fix a specific feature r , choosing the one with the maximum
minimum variation between the feature components; in particular, this is the same as saying
that we fix η to be the r th coordinate vector, providing a recipe for finding r in Remark 7. In
this way, we provide the choice that maximizes stability. The second difference is the fact that
we do not retrieve the matrix M from Eq. (8), but observing that, if ηi is the i th coordinate
vector, then

M3(ηi ) = MΩ1/2diag(mi )Ω
1/2M�
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and so, for each i = 1, . . . , n, we can find the row mi of M as the singular values of the
various Hi = E†M3(ηi )(E†)�. In this sense, our method relies on the singular values of a
SVDdecomposition andnot on the singular vectors. Thismay explainwhy, in our experiments
(Sect. 4), we find this approach to be much more stable than other matrix methods.

4 Experiments

In this section we test the algorithms presented in this paper on synthetic and real-world data.

Experimental setting All the experiments in this section have been run on a MacBook Pro
with a 2.7 GHz Intel Core i5 processor and 8 GB of RAM memory. All the algorithms have
been implemented in Python 2.7 (interpreted, not compiled), using the numpy (Walt et al.
2011) library for all linear algebra operations, including Singular Value Decomposition, for
which we used numpy’s non-randomized SVD.2 SVTD and the methods from Anandkumar
et al. (2012a), Anandkumar et al. (2012b) and Anandkumar et al. (2014), used in Sect. 4.2,
have been implemented by the authors. For ALS, which is used in Sect. 4.2 as well, we have
used the implementation provided by scikit-tensor.3 The implementation of LDA based on
MCMC that we use in Sect. 4.3 is based on the open-source LDA python package.4 All the
implementations written by the authors, as well as the code of the implementations of the
competing methods, have been publicly disclosed and are freely accessible.5

4.1 Recovering M2 and M3

In Sect. 2.1 we described a new estimator to recover the matrix M2 and tensor M3 from a
sample, comparing it with the methods presented in the state of the art literature from Zou
et al. (2013), outlined in Remark 3. In this section we compare, using synthetically generated
data, how well the two different methods recover M2 and M3 as a function of the sample
size. To perform this experiment, we generated a set of 1000 synthetic corpora according to
the single-topic model described in Sect. 2.1, with different sizes (the number of texts for
each corpus); the smallest corpus contained 100 texts, the largest 10000; each text contained
a random number of words, from a minimum of 3 to a maximum of 100. For each corpus,
the values of the unknowns (M, ω) have been randomly generated by sampling a uniform
distribution and normalizing both the columns of M and the vector ω to have sum 1. From
them we have been able to obtain the theoretical values of M2 and M3 using Eqs. (4) and
(5) and to compare those values with the one empirically estimated from data using the
equations in Theorem 1 for the presented method and the method from Zou et al. (2013)
for the competing one. Results appear in Fig. 1, where we show how the estimated M2 and
M3, namely M̃2 and M̃3, approach the theoretical values; in particular, the chart presents the
errors

Err2 = ‖M̃2 − M2‖F and Err3 = ‖M̃3 − M3‖F
as a function of the sample size N used to find M̃2 and M̃3. We can see that the method in
Theorem 1 outperforms the state-of-the-art technique; this is because it gives more weight

2 https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html.
3 https://github.com/mnick/scikit-tensor.
4 https://github.com/lda-project/lda.
5 https://github.com/mruffini/SpectralMethod.git.
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Fig. 1 The x-axis of the figures represents the sizes of the synthetic text corpora, while the y-axis is Err2 for
the left chart and Err3 for the right chart. Green lines represent the errors obtained with the method presented
in Theorem 1, while blue lines represent the errors obtained with the method by Zou et al. (2013) on the same
corpora (Color figure online)

to longer documents, where the signal is stronger, and less to shorter ones, where the signal
is noisier.

4.2 Recovering the parameters from a random sample

We now test SVTD on the task of decomposing a tensor of moments obtained from a random
sample, comparing its performance with that of existing methods. We fix a dictionary of
n = 100 words with k = 5, and, for several sample sizes comprised between N = 50
and N = 1000, we generate a random sample X distributed as a single-topic model with
parameters6 (M, ω). For each synthetic sample, we proceed as follows:

– We estimate the values of M̃1, M̃2 and M̃3 using Theorem 1.
– We retrieve from the estimated M̃1, M̃2 and M̃3 the pair of unknowns (M̃, ω̃) using SVTD

as in Algorithm 1. We also generate alternative solutions using the decomposition algo-
rithms from Anandkumar et al. (2014) (“Tensor power method”, with 25 random restarts
and 20 iterations per restart), from Anandkumar et al. (2012b) (“Eigendecomposition
method”), from Anandkumar et al. (2012a) (“SVDmethod”), and with ALS as described
by Kolda and Bader (2009)—where ALS is used to directly find the CP decomposition
of M̃3, with a random initialization and stopping after 250 iterations.

– Each time we generate a solution, we register the time in seconds employed by the
various algorithms. For each method, we represent the average time used to recover the
parameters over the various runs in Fig. 2a.

– For each set of retrieved parameters (M̃, ω̃) we calculate the learning error as: Err =
‖M̃ − M‖F , where M is the matrix used in the simulations. For each sample size, we
repeat the experiment 10 times (each time with newly generated parameters), and we plot
in Fig. 2b the results in function of N .

– For each run of the experiment and for each of the methods, we use the retrieved parame-
ters to cluster the various documents of the considered corpus, using theMAP assignment
described in Remark 1.We compare the clustering accuracy of the various methods using
the Adjusted Rand Index (Hubert and Arabie 1985) of the partition of the data obtained
with MAP assignment w.r.t. the one obtained using the true topics. For each sample size,
we repeat the experiment 10 times, and we plot in Fig. 2c the results of the analysis as a
function of N .

In Fig. 2a, the average running times of the various methods are presented. On average,
SVTD is 100 times faster than ALS, 30 times faster than TPM—as a consequence of the

6 For each sample size, the parameters (M, ω) are randomly generated following the same procedure of the
previous experiment.
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Fig. 2 In a the average running times are represented. b, c contain the analysis of the learning accuracy; in
both cases the x-axis represents the size of the synthetic text corpora. In b the y-axis is Err , the reconstruction
error for the various tested methods, while in c the y-axis is the clustering accuracy. The shaded areas represent
the variance of the output of the experiments over 10 runs with same sample size

better dependence on the number of latent states—and it is slightly slower than other matrix
based methods, due to the feature selection process outlined in Remark 7. With respect to
accuracy, Fig. 2b, c show that SVTD and TPM are quite comparable among themselves,
being the top performers in terms of learning and clustering accuracy.

We conclude that SVTDprovides learning accuracy similar toTPMwhile having a running
time on the order of the more inaccurate matrix-based methods. Also, it is deterministic
and requires little hyperparameter tuning. ALS has slightly worse performance in terms of
learning accuracy and is far slower than the other methods tested.

4.3 Real data

We now test SVTD on two real-world text corpora: Dante’s “Divina Commedia” and the
State of the Union addresses from 1945 to 2005. In both cases, we use SVTD to learn a
single-topic model and an LDA, and compare quantitatively and qualitatively their behavior.
Additionally, we compare these approaches with a standard method to learn LDA based on
Markov chain Monte Carlo (MCMC) approach, described by Griffiths and Steyvers (2004).

4.3.1 Dante’s Divina Commedia

Dante’s “Divina Commedia” (Alighieri 1979) is an Italian epic poem written in the first half
of the 14th century.7 It narrates the imaginary trip of the main character, Dante himself, in the
afterlife, guided by Virgilio, the famous Latin poet, and Beatrice, a Florentine woman that
inspired most of Dante’s works. The storyline represents an allegorical description of death
soul’s journey towardsGod according to themedievalworld view. It beginswithDante’s travel
trough the “Inferno” (Hell), where damned souls are deemed to eternal punishment according
to their sins; the journey then moves to “Purgatorio”, a seven-level mountain, where, at each
level, a capital sin (sins less serious than those punished in Hell) is allegorically described;
here souls are discounting their punishment, before finally moving to “Paradiso”, Heaven,
which is visited by Dante in the last third of the book. The book is divided into 100 chapters:
34 for Hell, 33 for Purgatory and 33 for Heaven.

We analyze the performance of SVTD on this dataset, using both the single-topic model
and LDA (setting α0 = 0.2) and fixing the vocabulary size to n = 1820 words, which

7 The full text can be found here: http://www.gutenberg.org/files/1012/1012-0.txt.
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(a)

(b) (c)

Fig. 3 a Contains the topic coherence (left) of a single-topic model learned by SVTD (ST SVTD), of an LDA
learned by SVTD (LDA SVTD) and an LDA learned with MCMC (LDA MC), in function of the number
of topics k; top-right figure contains an analysis of the running times. b Contains the most relevant words
(together with their English translation) of each topic learned by SVTD setting k = 3, both for the single-topic
model and for LDA, while c, contains the topic assignment for the same two models

corresponds to the 70% most frequent ones.8 Also, we experimentally compare the results
of SVTD with a classic approach to learn LDA described by Griffiths and Steyvers (2004)
based on MCMC—setting as a stopping criterion 2000 iterations of the sampler (which is
the default value provided by the Python package we used). As a first step, we study how
the quality of the results depends on the number of topics k requested to the algorithm. To
do this, we use the various competing methods to learn a set of model parameters (M, ω),
for all the values of k between 2 and 32. For each returned pair of parameters, we evaluate
the running time of the algorithm and the average topic coherence across the various topics,
displaying the results in Fig. 3a (“ST SVTD” and “LDA SVTD” represents the results of the
single-topic model and LDA learned with SVTD and “LDA MC” represents the results of
LDA learned with MCMC). The coherence (Mimno et al. 2011) of a topic in a corpus is a
quantitative indicator of the quality of a topic, and evaluates how much pairs of words that
are highly probable in a topic tend to co-occur in the texts of the corpus; a good model is
expected to generate topics with high coherence scores. Formally, the coherence of a topic
μ in a corpus is defined as

8 We tested the same experiment with different vocabulary sizes—like 80 and 90% of the most frequent
words—obtaining with SVTD nearly identical topics.
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Coherence(μ) =
L∑
j=2

j−1∑
i=1

log
D(wi , w j ) + 1

D(wi )

where (w1, . . . , wL) is the list of the L = 20 most frequent words in topic μ, D(wi ) (resp.
D(wi , w j )) is the count of documents containing the word wi (resp. wi and w j ). In Fig. 3a,
we can see that SVTD outperforms MCMC in terms of speed and coherence. Furthermore,
while the performance of SVTD remains good as model grows, the coherence of MCMC
degrades strongly.9 For SVTD, the single-topic model and LDA have similar performance
in terms of coherence (left chart), while the running times of LDA are larger (right chart).
From the coherence chart, we can see that k ∈ {2, 3, 4} are all good numbers of topics for
SVTD; so, we keep k = 3 and perform two additional analysis, focusing only on the models
learned with SVTD. First, we plot in Fig. 3c the topic assignment for the various texts of the
corpus, with the single-topic model (top figure) using Eq. (1) for the assignment, and for LDA
(bottom figure), using the approach described in Remark 4. The x-axis represents the chapter
of the book: The first 34 are Hell, 35 to 67 are Purgatory, and the last 33 are Heaven, while
the areas represent how much each chapter belongs to each of the topics. It is interesting to
observe that, both with the LDA and single-topic models, each of the three topics is clearly
dominant in one of the three areas of the corpus (Hell, Purgatory and Heaven): topic 1, is
clearly dominant in Purgatory’s chapters, topic 2 in Hell, while topic 3 dominates Heaven.
To see that this makes sense, we print in Fig. 3b the most relevant words for each topic, for
the two models, where the relevance (Sievert and Shirley 2014) is an indicator of how much
a word characterizes a topic. Formally, the relevance of a word w with respect to a topic μ

and is defined as

r(w,μ) = λ logP(w|μ) + (1 − λ) log
P(w|μ)

P(w)
,

where P(w|μ) (resp. P(w)) is the probability of samplingw with topic μ (resp. in the overall
corpus) and the weight parameter was set to λ = 0.7. Again, the topics are similar between
the LDA and single-topic models, and are coherent with the topic assignment results. For
example, the most relevant words for topic 3 areCristo, luce, lume, meaning Christ and light.
The similarity of the topics between the LDA and single-topic models is expected from the
analysis of the coherence, where the LDA and single-topic models gave very similar scores.
An interpretation of this is the fact that Divina Commedia is close to following a single-topic
model, with each chapter dealing with a single topic.

4.3.2 State of the Union addresses

Every year, the president of United States of America presents a speech to a joint session of
the United States Congress, where he outlines his governative agenda, the national priorities
and legislative projects. We considered the set of N = 65 state of the union addresses
presented between 1945 and 2005, and we perform the same analysis performed for the
Divina Commedia corpus. Again, we keep the 70% most frequent words, obtaining a total
vocabulary of n = 1184 words, and analyze topic coherence and running times in Fig. 4a for
SVTD—using LDA (“LDA SVTD”) and single-topic model (“ST SVTD”)—and MCMC—
only for LDA (“LDA MC”). Again, the performance of MCMC degrades as the model

9 We tried to improve the quality of the topics obtained with MCMC by allowing for further iterations, but
the increased running time yielded no improvements in the coherence results.
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Fig. 4 a Contains the topic coherence (left) of a single-topic model learned by SVTD (ST SVTD), of an LDA
learned by SVTD (LDA SVTD) and an LDA learned by MCMC (LDA MC), in function of the number of
topics k; top-right figure contains an analysis of the running times. b Contains the topic assignment for the
two models learned by SVTD setting k = 18

increases, while SVTD, both when learning LDA and single-topic models, keeps providing
meaningful results, always using smaller running times. From now on we will only focus on
the methods leaned by SVTD.

Overall, the single-topic model presents a better coherence and smaller running times
than LDA. The coherence score for the single-topic model is maximized when we set k =
18, which is also good for LDA. We thus fix k = 18 and present in Fig. 4b the topic
assignment for the two models, where the areas represent how much each document deals
with each topic. Also, Table 1 presents the most relevant words for each topic according to
the LDA and single-topic models. The topics make sense and look similar across the two
models. However, unlike the Divina Commedia case, they are not identical. For example,
topic 8 for the single-topic model looks like a mixture of topic 7 and 8 in LDA. Looking
at the topic assignments in Fig. 4b, we can see that speeches from the same president share
similar topic assignments: for example, topic 15 is dominant for G.W. Bush, and mainly
deals with terrorism and Iraq. Cold-war presidents have a strong predominance of topics
involving the Soviet Union, space missions and the Vietnam war. The two models are often
coherent, with some notable exceptions, like president Kennedy: LDA assigns him to a
mixture of topics that properly describe the challenges of cold war (LDA topics: 12, 13, 17,
18), while the single-topic model provides a simpler characterization with speeches assigned
to topics 18 (again a cold war topic) and 14 (cold war, with a focus on Europe and foreign
politics).
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Table 1 The most relevant words for each topic learned by SVTD setting k = 18, both for the single-topic
model and for LDA

Single-topic model (SVTD)

Topic 1: dollars, 1947, 1945, estimated, reconversion

Topic 2: 21st, century, affordable, children, Medicare

Topic 3: class, work, cold, people, worked, working

Topic 4: years, people, energy, elected, congress, peace

Topic 5: 21st, challenge, children, century, parents

Topic 6: challenge, children, working, challenges, work

Topic 7: produced, care, health, kids, people

Topic 8: Vietnam, plan, recommend, deficit, numbers

Topic 9: highway, Vietnam, recommend, program, federal

Topic 10: Hussein, Saddam, intelligence, aids, weapons

Topic 11: applause, program, government, federal, people

Topic 12: benefits, democratic, economic, great, life

Topic 13: federal, government, programs, Hussein, intelligence

Topic 14: alliance, Atlantic, people, free, Europe

Topic 15: applause, terrorists, Iraq, Iraqi, terror

Topic 16: strikes, bargaining, collective, labor, management

Topic 17: space, soviet, disarmament, military, defense

Topic 18: disarmament, space, defense, soviets, military

LDA (SVTD)

Topic 1: dollars, 1947, 1945, estimated, reconversion

Topic 2: 21st, college, affordable, children, child

Topic 3: class, cold, worked, cuts, talk

Topic 4: regulations, plan, government, reducing, inflation

Topic 5: Vietnam, south, 21st, tonight, principle

Topic 6: challenge, children, working, work, challenges

Topic 7: Vietnam, south, tonight, north, conflict

Topic 8: companies, plan, deficit, invest, care

Topic 9: highway, maintenance, postal, planning, program

Topic 10: Hussein, Saddam, seniors, aids, intelligence

Topic 11: applause, Medicare, Hussein, seniors, Saddam

Topic 12: controls, demands, labor, study, initiative

Topic 13: percent, family, people, America, tonight

Topic 14: produced, care, kids, health, renew

Topic 15: applause, Iraq, terrorists, terrorist, seniors

Topic 16: collective, strikes, bargaining, management, labor

Topic 17: soviet, soviets, military, peace, disarmament

Topic 18: space, disarmament, civil, defense, Latin
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5 Conclusion and future work

We described a simple algorithm to learn latent variable models in polynomial time, together
with novel estimators of the moments for the single-topic model and LDA. The proposed
estimators are unbiased and outperform those coming from previous literature. The proposed
tensor decomposition technique proved to be a top performer in terms of speed and accuracy
of the obtained results. Overall, themethods proposed in this paper provide a robust technique
to learn high-dimensional latent variable models with very high efficiency.

The main limitation of our approach—which in fact is a limitation of all methods of
moments—is that Theorems 1 and 3 only hold when data is exactly generated by the con-
sidered LVM (respectively a single-topic model and LDA); however, real-world datasets are
likely to violate model assumptions, as they never exactly follow a specific latent variable
model. When data presents outliers, or violates model assumptions, it is not clear what a
method of moments will yield. A reasonable theoretical continuation of this work consists in
investigating the behavior of our method in this challenging setting, analyzing its robustness
to outliers and model misspecification. Experimental evidences confirm that SVTD is able
to provide competitive performance on real data, which may indicate its ability to deal with
data that violate model hypotheses; however a deeper theoretical study is required to better
explore this possibility.

We also aim at providing a perturbation theorem—for which we already have preliminary
results—studying the sensitiveness of SVTD to random perturbations.

On the applications side, we are interested in applying this algorithm to learn LVM in the
healthcare analytics field, for instance to learn mixture models to perform patient clustering
(Ruffini et al. 2017) and construct disease progression models.
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Appendix: Proofs for Sect. 2

A.1 Proof of Theorem 1

Proof We will prove the statements only for

E

(∑N
i=1(X

(i))h(X (i))l∑N
i=1(ci − 1)ci

)
=

k∑
j=1

ω jμh, jμl, j .

Similar arguments hold for the other equations. It is easy to see, by conditional independence,
that

E((X (i))h(X
(i))l) =

k∑
j=1

ω j E((X (i))h(X
(i))l |Y = j)

but the conditioned (X (i))h and (X (i))l are components of a multinomial distribution and so

k∑
j=1

ω j E((X (i))h(X
(i))l |Y = j) =

k∑
j=1

ω j (c
2
i − ci )μh, jμl, j ,
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which implies the thesis. ��
A.2 Proof of Theorem 2

Proof We want to express the elements of the matrix M̃2 − M2 in an appropriate way and
then express a bound using McDiarmid’s inequality (McDiarmid 1989 and Lemma 1). We
know by construction that, for any i ∈ {1, . . . , N } it holds that

X (i) =
ci∑
j=1

x (i)
j ,

where each x (i)
j is the j th word of the document. We thus consider the set of all the words

from all the documents:

X =
(
x (1)
1 , . . . , x (1)

c1 , . . . , x (N )
1 , . . . , x (N )

cN

)
.

It is easy to see that M̃2 can be expressed as a function of X , for all pairs u, v ∈ {1, . . . , n}
we have

(M̃2)u,v(X ) =
∑

i �= j (x
(1)
i )u(x

(1)
j )v + · · · + ∑

i �= j (x
(N )
i )u(x

(N )
j )v

C2
,

where C2 = ∑N
i=1 ci (ci − 1). We now define the following function:

Φ(X ) = ‖M̃2(X ) − M2‖F
and observe that, given two samples differing only by one element

X =
(
x (1)
1 , . . . , x (1)

c1 , . . . , x (l)
i , . . . , x (N )

1 , . . . , x (N )
cN

)
X ′ =

(
x (1)
1 , . . . , x (1)

c1 , . . . , x (l)
i

′
, . . . , x (N )

1 , . . . , x (N )
cN

)
we obtain the following inequality:

|Φ(X ) − Φ(X ′)| ≤ ‖M̃2(X ) − M̃2(X ′)‖F

=

√√√√√ n∑
u,v=1

⎛
⎝∑

i �= j (x
(l)
j )u((x

(l)
i )v − (x (l)

i

′
)v)

C2

⎞
⎠

2

≤
√
2max j (c j )

C2
.

The inequality above enables us to apply McDiarmid’s inequality, stating that

P(‖M̃2 − M2‖F > E(‖M̃2 − M2‖F ) + ε) ≤ e
− ε2C2

2
(max j (c j ))

2C1 = e−t2 ,

where we defined

t = εC2

max j (c j )
√
C1

.

Wenowprovide a bound forE(‖M̃2−M2‖F ).We begin observing that M̃2 = ∑N
i=1 wi M̃2

(i)
,

where wi = ci (ci−1)
C2

and M̃2
(i)

are independent matrices defined as follows:

(M̃2
(i)

)(u,v) =
∑

l �= j (x
(i)
l )u(x

(i)
j )v

ci (ci − 1)
.
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Notice that, for any i , E(M̃2
(i)

) = M2. Using Jensen’s inequality we have

E(‖M̃2 − M2‖F ) ≤
√
E(‖M̃2 − M2‖2F ).

This last term is equal to

√
E(‖M̃2‖2F ) − ‖M2‖2F =

√√√√√∑
u,v

E

⎛
⎝

(
N∑
i=1

wi

(
M̃2

(i)
)

(u,v)

)2⎞⎠ − ‖M2‖2F

=

√√√√√∑
u,v

E

(
N∑
i=1

w2
i

(
M̃2

(i)
)2

(u,v)

)
+

∑
u,v

E

⎛
⎝∑

i �= j

w jwi

(
M̃2

(i)
)

(u,v)

(
M̃2

( j)
)

(u,v)

⎞
⎠ − ‖M2‖2F

and using the fact that E(M̃2
(i)
(u,v)M̃2

( j)
(u,v)) = (M2)

2
(u,v), this equals√√√√ N∑

i=1

w2
i E

(
‖M̃2

(i)‖2F
)

+
∑
i �= j

w jwi‖M2‖2F − ‖M2‖2F .

Now using that ‖M̃2
(i)‖F ≤ 1, we can bound this from above by√√√√√ N∑

i=1

w2
i + ‖M2‖2F

⎛
⎝∑

i �= j

w jwi − 1

⎞
⎠ =

√√√√ N∑
i=1

w2
i

(
1 − ‖M2‖2F

)
.

where in the last equality we used the fact that
∑

i �= j w jwi = 1 − ∑N
i=1 w2

i . So, if we

call W (N )
2 = ∑N

i=1 w2
i , we have E(‖M̃2 − M2‖F ) ≤

√
W (N )

2 (1 − ‖M2‖2F ), from which we
obtain

P

(
‖M̃2 − M2‖F >

√
W (N )

2

(
1 − ‖M2‖2F

) + t
max j (c j )

√
C1

C2

)
≤ e−t2 .

In conclusion, we can state that if e−t2 = δ we get, for any δ ∈ (0, 1]
P(‖M̃2 − M2‖F > ε) ≤ δ

where

ε =
√
W (N )

2 (1 − ‖M2‖2F ) +
√
log

(
1

δ

)
max j (c j )

√
C1

C2
.

A similar argument works for M3. ��
Lemma 1 (McDiarmid’s inequality McDiarmid 1989) Let X1, . . . , Xm be independent ran-
dom variables all taking values in the set C. Furthermore, let f : Cm → R be a function of
X1, . . . , Xm satisfying for all i and for all x1, . . . , xm, x ′

i ∈ C ,

| f (x1, . . . , xi , . . . , xm) − f (x1, . . . , x
′
i , . . . , xm)| ≤ ci .

Then for all ε > 0,

P( f − E[ f ] ≥ ε) ≤ exp

(
− 2ε2∑m

i=1 c
2
i

)
.
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