
Mach Learn (2018) 107:749–766
https://doi.org/10.1007/s10994-017-5677-x

Crowdsourcing with unsure option

Yao-Xiang Ding1 · Zhi-Hua Zhou1

Received: 29 April 2017 / Accepted: 16 September 2017 / Published online: 26 October 2017
© The Author(s) 2017

Abstract One of the fundamental issues in crowdsourcing is the trade-off between the num-
ber of workers needed for high-accuracy aggregation and the budget to pay. To save cost, it
is important to ensure high quality of the crowd-sourced labels, hence the total cost on label
collection will be reduced. Since the confidence of the workers often has a close relationship
with their abilities, a possible way for quality control is to request the workers to return the
labels only when they feel confident, by means of providing them with an ‘unsure’ option.
On the other hand, allowing workers to choose the unsure option can potentially waste part
of the budget. In this work, we conduct an analysis towards understanding when providing
the unsure option indeed leads to significant cost reduction, as well as how the confidence
threshold might be set. We also propose an online mechanism, which is an alternative for
threshold selection when the estimation of the crowd ability distribution is difficult.

Keywords Crowdsourcing · Mechanism design · Unsure option · Cost reduction

1 Introduction

Labeled data play a crucial role in machine learning. In recent years, crowdsourcing has been
a popular cost-saving way for label collection. The power of crowdsourcing relies on two
conditions. One is the possibility to obtain highly accurate estimation of true labels by aggre-
gating the collected noisy labels. Another is that the cost paid to the workers during the label
collection process is not large, hence crowdsourcing is much more economical than to recruit
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domain experts. Particularly, in practice the budget to pay is usually limited. So it is important
to study the approaches for balancing between cost reduction and estimation performance.

Unfortunately, there is a trade-off between aggregation accuracy and cost. As more labels
are collected, typically, the aggregated accuracy increases, while the cost also increases.
One way to deal with this problem is to design better label aggregation methods, without
controlling the data collection process (Raykar et al. 2010; Dalvi et al. 2013; Zhang et al.
2014). Anothermore activeway is to design effective task assignmentmechanisms, for saving
budget meanwhile maintaining the aggregation quality (Karger et al. 2011; Ho et al. 2013).
However, all these methods do not utilize the subjective behavior of the workers. Though
seldom studied previously, it is interesting to consider an alternative kind of mechanisms
utilizing the subjective uncertainty of the crowd, by allowingworkers to choose unsure option
instead of actually labeling the data. The advantage is that since the confidence of the workers
often has a close relationship with their potential abilities, the quality of the returned labels
may be improved. In Zhong et al. (2015), the setting of providing unsure option was studied
under the active learning with crowd scenario, and the effect of label quality improvement
was empirically justified from experiments. On the other hand, for ensuring the honesty of
the workers, choosing unsure option should also be paid. Otherwise the workers would prefer
to make guesses when their confidence is low. As a result, providing unsure option also leads
to the potential danger of budget waste, since under the same budget, the number of returned
labels is decreased. It is important to theoretically answer when providing unsure option can
lead to significant cost reduction.

In this work, we take the first step towards the analysis of the cost-saving effect for the
crowdsourcing with unsure option setting. Firstly, we provide the sufficient conditions for
employing unsure option to be indeed effective on cost reduction. Secondly, we show how
confidence threshold can be set properly. Thirdly, motivated by the theoretical results, we
propose an alternative online mechanism. It is suitable to use for threshold selection when
the statistics about the crowd are difficult to estimate due to the lack of golden standard tasks
with known labels.

The rest of the paper is organized as follows. In Sect. 2, the related work is discussed.
In Sect. 3, we describe the basic formulations and assumptions. Sections 4 and 5 give the
theoretical analysis on the quality ensured and the unsure mechanisms. They include the
main results of this paper. Section 6 discusses the possible extensions of the incentive com-
patible payment schemes. Section 7 introduces the online algorithm. Section 8 shows the
experimental results. Section 9 concludes the paper.

2 Related work

Crowdsourcing, typically crowd-sourced data labeling, has been a fruitful topic in machine
learning. One of the central tasks is to achieve desirable learning performance using the
noisy labels returned by the crowd. This can be done by learning good classifiers utilising
the noisy labels directly (Dekel and Shamir 2009a, b; Urner et al. 2012). Meanwhile, in many
researches the label estimation problem has been thouroughly studied (Raykar et al. 2010;
Zhou et al. 2012, 2015; Dalvi et al. 2013; Li and Yu 2014; Zhang et al. 2014). The focus of
these two kinds of researches is on improving learning performance, while the label collection
cost is not directly considered.

Wang and Zhou (2016) pointed out the importance of the cost-saving effect in crowdsourc-
ing, showing that cost reduction is one of the central tasks involved. Meanwhile, Wang and
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Zhou (2015) theoretically showed that it is indeed possible to achieve desired accuracy with
reasonable cost. From the algorithmic perspective, there have been many researches about
task assignment and budget allocation, which try to balance between aggregation accuracy
and data collection cost. Both non-adaptive task assignment mechanisms (Karger et al. 2011;
Tran-Thanh et al. 2013), which assign the tasks off-line before the worker comes, and the
adaptive mechanisms which assign the tasks on-line during the labeling process (Ho et al.
2013; Chen et al. 2013; Abbasi-Yadkori et al. 2015), have been studied thoroughly. The
accuracy-cost trade-off is also the major issue discussed in this paper. The difference is that
the task assignment and budget allocation mechanisms focus on improving the behavior of
the task requesters, while for designing the unsure mechanisms, the target is to improve the
behavior of the workers, by utilizing their own uncertainty about the tasks. There have also
been several studies on employing the bandit model into crowdsourcing. In Abraham et al.
(2013), a special crowdsourcing problem called the bandit survey problem was considered.
In Jain et al. (2014), the bandit model was employed to deal with the task assignment prob-
lem. In Zhou et al. (2014), the bandit arm identification problem was employed for worker
selection. All these works have different settings to our work.

There have not been many works studying the unsure mechanisms in crowdsourcing.
Zhong et al. (2015) considered providing unsure option under the active learning from crowd
scenario. In their work, the purpose of allowing unsure option was to improve worker reli-
ability. This is similar to the purpose of employing unsure mechanism in our work. The
difference is that in their work, they empirically justified that providing unsure option to the
crowd could make labeling quality improved in active learning by experiments. While in
our work, instead of considering the active learning scenario, we consider the more general
crowdsoured labeling task. Furthermore, our focus is on the theoretical analysis of the cost-
saving effect of employing unsure option. In Shah and Zhou (2015), a double or nothing
incentive compatible mechanism was proposed, to make workers behave honestly based on
their confidence. Their proposed mechanism is provable to avoid spammers from the crowd,
under the assumption that every worker wants to maximize the expected payment. In their
setting, employing unsure option is a way for ensuring high quality of the returned labels.
The potential accuracy-cost trade-off is not considered. While in our work, the main focus
is on the accuracy-cost trade-off, other than designing incentive compatible mechanisms.

3 Problem formulation

We consider the tasks of collecting binary labels of {−1, 1}. The well-known Dawid–Skene
model (Dawid and Skene 1979; Zhou et al. 2012; Zhang et al. 2014; Karger et al. 2011; Zhou
et al. 2015; Li and Yu 2014) under the binary classification case is adopted. Under the D-S
model, the tasks are assumed to be homogeneous. The homogeneity means that the potential
costs for different tasks are the same. As a result, in the rest of the paper, we focus on dealing
with the cost for one single task.

We adopt the anonymous worker assumption introduced in Karger et al. (2011) for mod-
eling the crowd. Let θi be the ability of the i th worker, i.e. the probability that the returned
label is correct. The process of choosing a number of anonymous workers is modeled as inde-
pendent random draws θ1, θ2, θ3 · · · ∈ [0, 1] over the crowd ability distribution θi ∼ A.
Once drawn, the worker is asked to return the label or to choose unsure option based on
the crowdsourcing mechanism applied, such as the quality ensured mechanism and unsure
mechanism introduced below, or return the label directly if no mechanism is applied. The
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accuracy of the returned label is decided by the ability of the worker. We assume that after
label collection, labels are aggregated by majority voting, i.e. to estimate the label based on
the choices of the majority. In this paper, we assume that the mean μ of A should be larger
than 1/2, i.e.

μ > 1/2.

The assumption is based on the well known result such that for majority voting, the estimated
label does not converge to the true label whenμ ≤ 1/2. From this result, ifμ ≤ 1/2 then any
crowdsourcingmechanism that makes the estimated label asymptotically correct can trivially
leads to cost reduction. So we only consider the non-trivial case such that μ > 1/2. We also
adopt the following assumption:

Pr (θ < μ − 1/2) = 0. (1)

It states that we do not allow the workers with very low abilties which are far from the mean
to exist. This assumption tightens our analysis. Indeed, these workers may correspond to the
malicious workers who aim at attacking the crowdsourcing system, and should be excluded
by any effective crodsourcing mechanism. Since malicious attacks prevention beyonds the
scope of this paper, we just leave this as a preset assumption. Besides the above assumptions,
we do not assume the crowd ability distribution A to be any specific distributions.

We define the confidence of the workers to be the subjective accuracy they believe to have,
which is denoted by c1, c2, c3 · · · ∈ [1/2, 1]. The minimum value is 1/2 since the weakest
choice in one honest worker’s mind is to make random guess. Similar to the crowd ability
distribution A, we assume that the confidence for workers is independently drawn from the
crowd confidence distribution ci ∼ C . Obviously, there is a close relationship between
one’s ability and confidence. Thus modeling this relationship is necessary. In this paper we
adopt a two-step analysis. At first, we can consider the mechanism, which simply filters out
low quality labels based on the ability without using the information of the confidence. By
this subroutine, we can further consider the setting of providing unsure option, by introducing
reasonable assumptions on the relationship between workers’ confidence and abilities.

As a consequence, we define a quality ensured mechanism as the following process:
given an ability threshold T , when one worker is drawn for labeling, the label is accepted
only when the ability is above T . This mechanism is ideal since it assumes that once a
worker is drawn, the ability can be also obtained. An unsure mechanism is a surrogate for
the idealized mechanism. When an unsure mechanism is employed, a confidence threshold
T is adopted. One worker is asked to do labeling only when the confidence c ≥ T , otherwise
she/he is asked to use the unsure option, for example, to return the label “0” which represents
the unsureness.

Thebudget is defined as the total cost on the label collection. For simplicity of the analysis,
we assume that returning one label and choosing unsure option once are both paid for 1, i.e.
the total cost equals to the total number of workers involved in the task. We also assume
that workers behave honestly according to their true abilities and confidence. Under the
assumption that each worker aims at maximizing their payments, the honesty can be satisfied
by adopting the incentive compatible payment mechanisms, which is discussed in Sect. 6.

The goal of our analysis is to answer the question that, on which kind of crowd ability dis-
tributions, an quality ensured mechanism or an unsure mechanism is provable to be effective:

Definition 1 For label aggregation being correct with high probability, denote m as the
provable cost needed for the simple aggregation without any mechanisms, and m′ as the
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provable cost needed when utilizing a quality ensured or an unsure mechanism. Then the
utilized mechanism is effective if

m′ � m.

Note that this is just a qualitative definition, and will be further quantified in definition 2 and
3. The effectiveness is defined for verifying the significance of cost reduction.

In crowdsourcing, it is usually not possible to estimate the ability or the confidence of any
individual worker, since the potential number of the tasks for an individual to accomplish is
usually very limited.On the opposite, the statistical properties of the crowd ability distribution
A and the crowd confidence distribution C , are more practical to estimate. As a result, our
analysis focuses on utilizing some simple statistics of A and C , which are also much easier
to estimate than to exactly model the distributions. Our target is to derive:

(1) How to properly set the ability and the confidence threshold.
(2) On what kind of A andC , the quality ensured and the unsure mechanism can be effective.

The following two inequalities are important for the analysis (Shalev-Shwartz and Ben-
David (2014, lemma B.6)):

Lemma 1 For independent random variables X1, X2, . . . , Xm bounded in [a, b] with
E [Xi ] = μi , i = {1, 2, . . . ,m}, the following inequality holds holds (Shalev-Shwartz and
Ben-David (2014, lemma B.9)):

Pr

(
1

m

m∑
i=1

μi − 1

m

m∑
i=1

Xi > ε

)
< exp(−2mε2/(b − a)2). (2)

Lemma 2 For independent random variables X1, X2, . . . , Xm bounded in [−M, M] with
E [Xi ] = 0, i = {1, 2, . . . ,m} and variance σ 2

1 , σ 2
2 , . . . , σ 2

m, for all ε > 0, the following
inequality holds:

Pr

(
m∑
i=1

Xi > ε

)
< exp

⎛
⎜⎜⎝− ε2/2

m∑
i=1

σ 2
i + Mε/3

⎞
⎟⎟⎠ . (3)

4 Analysis on the quality ensured mechanisms

In this section, we focus on studying the quality ensured mechanisms. The analysis in this
section forms the foundation to the analysis of the unsure mechanism in Sect. 5.

To show that a quality ensured mechanism is effective, it is necessary to compare between
the cost bounds with and without the mechanism. The first result is on the cost needed for
using simple aggregation without any mechanisms:

Lemma 3 Let μ denote the mean of crowd ability distribution A, for simple majority voting
aggregation under the settings introduced in Sect. 3, the aggregated label is correct with
probability at least 1 − δ if the total cost m satisfies

m ≥ 2[1 + 2
3 (2μ − 1)] log 1

δ

(2μ − 1)2
. (4)
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Proof Given labels a1, a2, . . . , am, ai ∈ {−1, 1} from workers, the majority voting rule is:

ŷ = 1 ↔
m∑
i=1

ai >= 0, ŷ = −1 ↔
m∑
i=1

ai < 0.

The target is to bound Pr
(
y ŷ < 0

) = Pr
(
y
∑m

i=1 ai < 0
)
. By assumption, E [ai ] =

θi , E [θi ] = μ, then

Pr

(
y

m∑
i=1

ai < 0

)
= Pr

(
m∑
i=1

(2μ − 1 − yai ) > m(2μ − 1)

)
.

2μ − 1 − yai is a zero mean random variable bounded in [−2, 2], thus we use a lemma to
bound the variance:

Lemma 4 (Boucheron et al. 2013, Corollary 3.2) If
∑m

i=1 Xi has the bounded difference
property with constant c, then

Var

(
m∑
i=1

Xi

)
≤ 1

4

m∑
i=1

c2.

From this we obtain that Var(
∑m

i=1(2μ − 1 − yai )) ≤ m since the bounded difference
property with constant 2 holds. By Eq. 3,

Pr
(
y ŷ < 0

)
< exp

⎛
⎜⎜⎝− m2(2μ − 1)2/2

m∑
i=1

Var(2μ − 1 − yai ) + 2m(2μ − 1)/3

⎞
⎟⎟⎠

= exp

⎛
⎜⎜⎝− m2(2μ − 1)2/2

Var(
m∑
i=1

(2μ − 1 − yai )) + 2m(2μ − 1)/3

⎞
⎟⎟⎠

≤ exp

(
− m(2μ − 1)2/2

1 + 2(2μ − 1)/3

)
.

Let δ = exp(− m(2μ−1)2/2
1+2(2μ−1)/3 ), solving for m gives the desired result. 	


The main order term in Eq. 4 is 1
(2μ−1)2

. Then we show another lemma, which gives the
cost bound for a quality ensured mechanism.

Lemma 5 Let T > 1/2 be the ability threshold, and η = Pr (θ ≥ T ) be the upper tail prob-
ability of the crowd ability distribution A. When the quality ensured mechanism is employed,
for majority voting aggregation under the settings introduced in Sect. 3, the aggregated label
is correct with probability at least 1 − δ, if the total cost m′ satisfies

m′ ≥ 2(1 − η) log 2
δ

η
+ 4 log 2

δ

(2T − 1)2η
+ 2 log 2

δ

3η
. (5)

Proof The first step: For those workers whose confidence is larger than T , we bound the
number of workers needed when the aggregated estimation is incorrect with probability at
most δ/2, which is denoted as m′

0.
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The target is to bound Pr
(
y ŷ < 0

) = Pr
(
y
∑m′

0
i=1 ai < 0

)
. Note that for ∀i , E [yai ] =

Pr (yai = 1) − Pr (yai = −1) = 2θi − 1 ≥ 2T − 1. Then E

[∑m′
0

i=1 yai
]

≥ m′
0(2T − 1).

Then

Pr

⎛
⎝y

m′
0∑

i=1

ai < 0

⎞
⎠ = Pr

⎛
⎝E

⎡
⎣y m′

0∑
i=1

ai

⎤
⎦− y

m′
0∑

i=1

ai > E

⎡
⎣y m′

0∑
i=1

ai

⎤
⎦
⎞
⎠

≤ Pr

⎛
⎝E

⎡
⎣y m′

0∑
i=1

ai

⎤
⎦− y

m′
0∑

i=1

ai > m′
0(2T − 1)

⎞
⎠ .

yai is an independent random variable in {−1, 1}, by Eq. 2,

Pr
(
y ŷ < 0

)
< exp(−m(2T − 1)2/2).

Let δ/2 = exp(−m′
0(2T − 1)2/2), solving for m′

0 gives

m′
0 = 2 log(2/δ)

(2T − 1)2
. (6)

The second step: we bound the cost when sufficient number of workers have confidence
larger than T .

Consider the randomvariables I(θi > T ), the target is to boundPr
(∑m′

i=1 I(θi > T ) < m′
0

)
.

We have

Pr

⎛
⎝ m′∑

i=1

I(θi > T ) < m′
0

⎞
⎠

= Pr

⎛
⎝E

⎡
⎣ m′∑

i=1

I(θi > T )

⎤
⎦−

m′∑
i=1

I(θi > T ) > E

⎡
⎣ m′∑

i=1

I(θi > T )

⎤
⎦− m′

0

⎞
⎠ .

Since E [I(θi > T )] = Pr (θi > T ) = η,E [I(θi > T ) − E [I (θi > T )]]2 = η(1 − η), by
Eq. 3,

Pr

⎛
⎝ m′∑

i=1

I(θi > T ) < m′
0

⎞
⎠ < exp

(
− (m′η − m′

0)
2/2

m′η(1 − η) + (m′η − m′
0)/3

)
.

Let exp(− (m′η−m′
0)

2/2
m′η(1−η)+(m′η−m′

0)/3
) = δ/2, we have

1

2
η2m′2 −

[
(4/3 − η) log

2

δ
+ m′

0

]
ηm′ + 1

2
m′

0
2 + 1

3
m′

0 log
2

δ
= 0,

then

m′ = (4/3 − η) log 2
δ

+ m′
0 +

√[
(4/3 − η) log 2

δ
+ m′

0

]2 − m′
0
2 − 2

3m
′
0 log

2
δ

η
.
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It is easy to see that m′ = 2((4/3−η) log 2
δ
+m′

0)

η
also satisfies the condition. Together with

Eq. 6, the desired result can be shown by union bound. 	

The main order term in Eq. 5 is 1

(2T−1)2η
. Given the above two cost bounds, we propose

a more concrete definition on the effectiveness, based on how much reduction on the main
order of the cost:

Definition 2 Let μ be the mean of the crowd ability distribution, T be the ability threshold
for a quality ensured mechanism and η = Pr (θ ≥ T ) be the probability for a worker to have
the ability above T , then a quality ensured mechanism is at least α-effective if

1

(2T − 1)2η
≤ 1

(2μ − 1)α
. (7)

When Eq. 7 is satisfied, by Lemmas 3 and 5, the main order term of the bound improves in the
order of 1

2μ−1 , from 2 to α. α is a measure of significance, as α decreases, the improvement
on the cost becomes more significant. We can also see that the ability threshold T should be
larger than the mean ability μ, i.e.

T > μ.

The reason is that from Eq. 7, it is not possible for a quality ensured mechanism with T ≤ μ

to be α-effective with α < 2, which means that the mechanism can not lead to cost reduction.
Now we are ready to show the main result of this section, a general sufficient condition for
a quality ensured mechanism to be at least α-effective.

Theorem 1 For crowd ability distribution with mean μ > 1/2 and variance σ 2 under the
condition in Eq. 1, when

(1 + γ )
(1 + √

1 − 4σ 2)2√
3σ 2[2σ 2 + (2μ − 1)]2 ≤ 1

(2μ − 1)α
, (8)

in which

γ =
Pr
(
θ ≤ μ − 1

2

√
1 − √

1 − 4σ 2
)

Pr
(
θ ≥ μ + 1

2

√
1 − √

1 − 4σ 2
) , (9)

then the quality ensured mechanism with ability threshold

T = μ + 1

2

√
1 −

√
1 − 4σ 2 (10)

is at least α-effective.

Proof First we show a lemmawhich gives a lower bound on the tail probability for the crowd
ability distribution. The intuition is that when the variance of a random variable is high, the
tail probability should not be too small.

Lemma 6 Given a random variable x ∼ A, x ∈ [0, 1] with mean μ and variance σ 2, under
the condition in Eq. 1, for 0 < r < σ , we have

Pr (|x − μ| ≥ r) ≥ 2
√
3(σ 2 − r2)

1 − 4r2
.
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Proof Suppose that
Pr (|x − μ| > r) = A.

We can derive an upper bound of the variance σ 2. Denote Y = |x − μ|, by μ > 1/2 and Eq.
1, we have Y ∈ [0, 1/2]. Then

σ 2 = E
[
(x − μ)2

] =
∫ 1

2

0
y2dP(Y ≤ y) =

∫ 1
2

0
2y Pr (Y > y) dy

=
∫ r

0
2y Pr (Y > y) dy +

∫ 1
2

r
2y Pr (Y > y) dy

≤
∫ r

0
2ydy +

√∫ 1
2

r
4y2dy

∫ 1
2

r
(Pr (Y > y))2dy

≤
∫ r

0
2ydy +

√∫ 1
2

r
4y2dy

∫ 1
2

r
A2dy

≤ r2 +
√(

1

6
− 4

3
r3
)(

1

2
− r

)
A2.

The first inequality is due to Pr (Y > y) ≤ 1 and Cauchy-Schwarz inequality. The second
inequality is due to Pr (Y > y) ≤ A when y > r . We then have

A ≥ 2
√
3(σ 2 − r2)√

(1 − 8r3)(1 − 2r)
.

and

Pr (|x − μ| ≥ r) ≥ Pr (|x − μ| > r) = A ≥ 2
√
3(σ 2 − r2)√

(1 − 8r3)(1 − 2r)
.

Observe that

(1 − 8r3)(1 − 2r) = 1 − ((2r)3 + 2r) + (2r)4 ≤ 1 − 2(2r)2 + (2r)4 = (1 − (2r)2)2.

Then

Pr (|x − μ| ≥ r) ≥ 2
√
3(σ 2 − r2)

1 − 4r2
.

	

Denote the ability threshold as T = μ + r > μ, and assume that

Pr (θ ≤ μ − r) = γ Pr (θ ≥ μ + r) ,

then

Pr (θ ≥ T ) = Pr (θ ≥ μ + r) ≥ 1

1 + γ

√
3(σ 2 − r2)

1 − 4r2
. (11)

Now we turn to the task of finding the minimum of 1
(2T−1)2η

, which is equivalent to maxi-

mizing (2T − 1)2η. Relaxation can be made to make use of the lower bound given by Eq.
11. Then we turn to the maximization of

1

1 + γ

(
√
3)(σ 2 − r2)

1 − 4r2
(2μ + 2r − 1)2.
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We have a constraint 0 < r < σ , and this constraint is enough to ensure T = μ + r ≤ 1. To
see this, for random variable x in [0, 1] with mean μx > 1/2 and variance σ 2

x , the maximum
of the variance is attained on the distribution such that we have probabilities of 1/2 only at
x = 1 and 2μx −1. Then we can verify that under this distribution, we have σ 2

x = (1−μx )
2

and μx + σx = 1.
By 0 < r < σ , we have (

2σ+(2μ−1)
2σ )2r ≤ 2r + 2μ − 1. We turn to the maximization of

(4
√
3)

(
1

1 + γ

)(
2σ + (2μ − 1)

2σ

)2
(σ 2 − r2)

1 − 4r2
r2.

Let s = r2 and drop the constants for the moment. We consider

max
0<s<σ 2

f (s) = σ 2s − s2

1 − 4s
.

We then have

f ′(s) = (σ 2 − 2s)(1 − 4s) + 4(σ 2s − s2)

(1 − 4s)2
= 4s2 − 2s + σ 2

(1 − 4s)2
.

Without consideration of constraints on s, the optimum is attained when s = (1 −√
1 − 4σ 2)/4. The solution satisfies the constraints since

1 − 4σ 2 ≤
√
1 − 4σ 2 ⇐⇒ σ 2 ≥ (1 −

√
1 − 4σ 2)/4.

So we have

T = μ + 1

2

√
1 −

√
1 − 4σ 2

and

m′ = (1 + γ )
(1 + √

1 − 4σ 2)2√
3σ 2[2σ 2 + (2μ − 1)]2 .

	

From the theorem, it can be seen that as σ 2 increases, the left hand side of Eq. 8 decreases

such that smaller α can be achieved. In Eq. 9, the smaller the γ is, the larger the upper tail
probability at T can be ensured. It is reasonable to assume that for an effective quality ensured
mechanism, γ can not be large, since Pr (θ ≥ T ) can not be small.

In Eq. 10, T increases as the variance gets larger. The intuition behind is that when the
variance of the crowd ability distribution increases, then we have more workers with high
ability, and we can safely increase T to make higher demand on the quality of the returned
labels.

5 Analysis on the unsure mechanisms

In this section, we consider the unsure mechanisms. In the previous analysis, the quality
ensured mechanisms guarantee that the abilities of the workers who return their labels are
above the threshold T . However, due to the potential mismatch between one’s confidence
and ability, an unsure mechanism does not guarantee this property, since the workers behave
based on their confidence, not their true abilities. The only reasonable assumption we can
make is that there can be a positive correlation between the confidence and ability for an
individual worker. This makes it difficult to estimate the mean ability of the crowd directly,
which is essential for deriving the cost bound. In spite of this difficulty, one of the major
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theoretical findings in this section is: If we can filter out a bit more workers with low abilities
besides the assumption in Eq. 1, then we can lower bound the mean ability. As a result, we
introduce the followingworker testing stage conducted before the actual labeling tasks start:

1. Keep a small pool of golden standard tasks with known labels.
2. For each worker in the crowd, k golden standard tasks are drawn for testing the ability.
3. We only send tasks to workers who correctly labels all k golden standard tasks.

Note that we do not assume to have a sufficient number of golden standard tasks to accurately
estimate each workers’ abilities, or to make k large so that the mean ability of workers can
be boosted. On the opposite, we assume that k is very small since by this it is enough to filter
out a bit more low quality workers. The experimental results in Sect. 8 show that introducing
the worker testing stage is effective even when k = 1. We assume that no rewards are paid
during the test stage, since the workers tend to have the motivation for passing the test. It is
also essential to ensure that the workers behave the same among the test and the real tasks.
As we assume workers’ honesty in this paper, this is not a problem.While in applications it is
necessary to utilize incentive compatible payment mechanism to ensure honesty, as discussed
in Sect. 6.

The next task is to model the relationship between one’s ability and confidence. First we
introduce some notations, as listed in Table 1.

To follow the analysis process in Sect. 4, we assume that{
T > μθ,0, ηc,1 ≥ ηθ,1,

T > μc,1, ηc,1 < ηθ,1.
(12)

Furthermore, we introduce the following assumptions:
When ηc,1 ≥ ηθ,1, there exists k0 > 0, for all T > μθ,0,

Pr (c ≥ T |θ ≥ T, passed)

ηc,1
≥
(
Eθ,0[θk]

)k0 ( 1

ηθ,0

)
, (13)

(μθ,0)
k+1

(Eθ,0[θk])1−k0
≥ 1/2. (14)

Table 1 Some notations used in further analysis

Notation Meaning

passed The event that a worker passes the worker testing stage

A0 Crowd ability distribution before the worker testing stage

A1 Crowd ability distribution after the worker testing stage

C1 Crowd confidence distribution after the worker testing stage

Prθ,0(·), Prθ,1(·) Probability over A0, A1
Prc,1(·) Probability over C1

Eθ,0(·),Ec,1(·) Expectation over A0,C1

μθ,0, σ
2
θ,0 Mean and variance of A0

μc,1, σ
2
c,1 Mean and variance of C1

ηθ,0, ηθ,1 ηθ,0 = Prθ,0(θ ≥ T ), ηθ,1 = Prθ,1(θ ≥ T )

ηc,1 ηc,1 = Prc,1(c ≥ T )
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When ηc,1 < ηθ,1, then there exsits k1 ≥ 0, for all T > μc,1,

Pr (c ≥ T |θ ≥ T, passed)

ηc,1
≥ (μc,1)

k1

(
1

ηc,1

)
, (15)

(μc,1)
k1+1 ≥ 1/2. (16)

Ignoring the exponential terms, Eqs. 13 and 15 imply that

Pr (c ≥ T |θ ≥ T, passed) ≥ ηc,1 = Pr (c ≥ T |passed) .

This is a reasonable assumption, since for an unsure mechanism to be useful, the positive
correlation between confidence and ability is necessary. The task dependent constants k0
and k1 control the magnitude of this positive correlation. Since we have Eθ,0[θk] < 1 and
μc,1 < 1, the larger k0 and k1 are, the weaker the positive correlation becomes. While
these two constants are usually small since it is common for the confidence and the ability
to be correlated. Equations 14 and 16 are adopted for cost bound derivation, ensuring the
transformed threshold T ′ to be above 1/2 (see Eqs. 18, 19). Under the above assumptions,
we can get the following cost bound for an unsure mechanism:

Lemma 7 Assume the conditions in Eqs. (12–16) to hold. Employ the unsure mechanism
with confidence threshold T and the worker testing stage with k golden standard tasks. For
majority voting aggregation under the settings introduced in Sect. 3, the aggregated label is
correct with probability at least 1 − δ if the cost satisfies

m′ ≥ 2(1 − η) log 2
δ

η
+ 8 log 2

δ

(2T ′ − 1)2η
+ 2 log 2δ

3η
. (17)

When ηc,1 ≥ ηθ,1,

η =
(

T k

Eθ,0[θk]
)

ηθ,0, T ′ =
(

T k

(Eθ,0[θk])1−k0

)
T . (18)

When ηc,1 < ηθ,1,
η = ηc,1, T ′ = (μc,1)

k1T . (19)

Proof The key idea is to estimate two quantities for the crowd after the worker testing
stage. One is the proportion of the workers who have confidence above T , i.e. ηc,1. When
ηc,1 < ηθ,1, we directly use ηc,1. Otherwise when ηc,1 ≥ ηθ,1, we should lower bound ηθ,1.

ηθ,1 = ηθ,0 Pr (passed|θ ≥ T )

Prθ,0(passed)
.

It is easy to see that Pr (passed|θ ≥ T ) ≥ T k , and

Prθ,0(passed) = Eθ,0[passed|θ ] = Eθ,0[θk].
So we have

ηθ,1 ≥
(

T k

Eθ,0[θk]
)

ηθ,0.
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The other quantity to lower bound is the mean ability of workers who have confidence
above T , i.e. E [θ |c ≥ T, passed]. We have

E [θ |c ≥ T, passed] ≥ T Pr (θ ≥ T |c ≥ T, passed)

and

Pr (θ ≥ T |c ≥ T, passed) = ηθ,1 Pr (c ≥ T |θ ≥ T, passed)

ηc,1
.

Then by Eqs. 13 and 15, we have the desired result. The remaining part of the proof is similar
to Lemma 5. 	


Denote B1 = T k

(Eθ,0[θk ])1−k0
, B2 = T k

Eθ,0[θk ] , the main order term of cost under an unsure

mechanism is 1
(2B1T−1)2B2ηθ,0

when ηc,1 ≥ ηθ,1 and 1
(2(μc,1)

k1T−1)2ηc,1
when ηc,1 < ηθ,1. As

previously discussed, k is usually a small number. Then B1, B2 scale like constant factors.

Thus we can let B1 = (μθ,0)
k

(Eθ,0[θk ])1−k0
to consider the worst case, and ignore B2. Similar to

definition 2, we define the α-effectiveness for the unsure mechanisms:

Definition 3 Theunsuremechanismwith confidence thresholdT , utilizing theworker testing
stage with k golden standard tasks, is at least α-effective if

⎧⎪⎨
⎪⎩

1(
2

(μθ,0)k

(Eθ,0[θk ])1−k0
T−1

)2

ηθ,0

≤ 1
(2μθ,1−1)α , ηc,1 ≥ ηθ,1,

1
(2(μc,1)

k1T−1)2ηc,1
≤ 1

(2μθ,1−1)α , ηc,1 < ηθ,1.

(20)

The α-effectiveness again measures the significance of the improvement on the cost bound,
with respect to doing simple aggregation from the crowd after the worker testing stage.
Then we can show the condition when an unsure mechanism can be α-effective, which
is similar to Theorem 1. The process of the proof is also similar to Theorem 1, thus is
omitted.

Theorem 2 Assume the conditions in Eqs. (1, 12–16) to hold.

(1) When ηc,1 ≥ ηθ,1, let

m′ = (1 + γ )
(1 +

√
1 − 4σ 2

θ,0)
2

√
3σ 2

θ,0

[
2B1σ

2
θ,0 + (2B1μθ,0 − 1)

]2 , B1 = (μθ,0)
k

(Eθ,0[θk])1−k0
, (21)

γ =
Prθ,0

(
θ ≤ μθ,0 − 1

2

√
1 −

√
1 − 4σ 2

θ,0

)

Prθ,0

(
θ ≥ μθ,0 + 1

2

√
1 −

√
1 − 4σ 2

θ,0

) , (22)

123



762 Mach Learn (2018) 107:749–766

and

T = μθ,0 + 1

2

√
1 −

√
1 − 4σ 2

θ,0. (23)

(2) When ηc,1 < ηθ,1, let

m′ = (1 + γ )
(1 +

√
1 − 4σ 2

c,1)
2

√
3σ 2

c,1

[
2μk1

c,1σ
2
c,1 + (2μk1+1

c,1 − 1)
]2 , (24)

γ =
Prc,1

(
c ≤ μc,1 − 1

2

√
1 −

√
1 − 4σ 2

c,1

)

Prc,1

(
c ≥ μc,1 + 1

2

√
1 −

√
1 − 4σ 2

c,1

) , (25)

and

T = μc,1 + 1

2

√
1 −

√
1 − 4σ 2

c,1. (26)

Then if

m′ ≤ 1

(2μθ,1 − 1)α
, (27)

the unsure mechanism with confidence threshold T , utilizing the working testing stage
with k golden standard tasks, is at least α-effective.

6 Discussion on the payment strategy

In the above analysis, we assume that returning labels and choosing unsure option are
equally paid. In many crowdsourcing applications, this payment strategy may lead to the
potential danger for causing workers to always choose the unsure option without returning
any labels. This phenomenon violates the assumption that the workers are honest. Using
alternative incentive compatible payment method (Shah and Zhou 2015) can be helpful
to deal with this problem. As an example, the following payment method incentivizes the
workers to behave honestly, under the assumption that the workers aim to maximize their
payments:

(1) Choosing unsure option is paid for T , the value of the confidence threshold.
(2) Among the returned labels, the ones that accord with the aggregated label are paid for 1,

otherwise are paid for 0.

It is easy to show that this payment strategy is incentive compatible. If the worker has
confidence c > T , then the expected payment for returning the label is also c, while the
payment for choosing unsure option is T . Thus the worker is desirable to return the label.
If c < T the reason is similar for the worker to choose unsure option. The analysis in
previous sections is a good approximation for this payment method. The reason is that,
since T > 1/2, and for an effective unsure mechanism, most of the returned labels should
agree with the aggregated label, thus assuming returning labels and choosing unsure option
are both paid for 1 does not sacrifice much tightness for the cost bounds. Overall, it is
interesting to study how the optimal incentive compatible payment method and the unsure
mechanism can be integrated for different application scenarios. We leave this as future
work.
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7 Online algorithm with unsure option

The central task for applying an unsure mechanism is to determine the confidence threshold
T . According to the previous analysis, setting T can be transfered to the problemof estimating
the mean and variance of the crowd ability distribution or the crowd confidence distribution.
For the case that we need to consider the crowd ability distribution, doing accurate estimation
requires a sufficient number of golden standard tasks with known labels. However, this
condition is difficult to be satisfied in practice. For solving this problem, we propose an
alternative online bandit based algorithm for setting the confidence threshold T . Note that
we still allow to use a small number of golden standard tasks to perform the worker testing
stage.

The task is to properly choose the confidence threshold T , which can be treated as bandit
arms. We can model the crowdsourcing process as the following bandit game: To collect
a new label, a random worker is drawn from the crowd, and a confidence threshold T is
provided. T is updated online by the bandit algorithm. We consider only discrete candidate
set of t j , j ∈ {1, 2, . . . , K }, which segments the interval [0.5, 1] into finite number of parts.
Motivated by the previous analysis, we define the reward as

ri = (2Ti − 1)2I(ci ≥ Ti ), (28)

in which i denotes the i th round, Ti denotes the chosen confidence threshold, and I(ci ≥ T )

denotes the indicator function of the event that the worker does not choose the unsure option.
Under this definition, for each arm tk , let Nk denote the number of times the arm is chosen.
The average reward r̂k = 1

Nk

∑Nk
n=1(2tk − 1)2I(ci ≥ tk) is the empirical estimation of

(2tk − 1)2 Pr (ci ≥ tk), i.e. the inverse of main order term of cost for accurate estimation,
which should be maximized. ri are i.i.d. random variables bounded in [0, 1]. The above
problem can be solved by many bandit optimization methods, such as the UCB-1 algorithm
(Auer et al. 2002), which is illustrated in Algorithm 1. Note that more sophisticated bandit
algorithm can be designed in this task, since the sample collected on one arm may provide
additional information on other arms. As the major topic in this paper is theoretical analsys
other than algorithm design, we leave this as future work.

Algorithm 1 OLU (OnLine algorithm with Unsure option)
Input: crowd A, number of rounds N , confidence thresholds tk , k ∈ {1, 2, . . . , K }.
Random initialize T1 ∈ {t1, t2, . . . , tK };
Initialize N j = 0, j ∈ {1, 2, . . . , K };
for i = 1 to N do
Draw one worker and provide unsure option with Ti ;
ri = (2Ti − 1)2I(ci ≥ Ti );
for k = 1 to K do
if tk == Ti then
Nk = Nk + 1;
r̂k = 1

Nk

(
(Nk − 1)r̂k + ri

)
;

end if
end for
n = argmaxk∈{1,2,...,K }(r̂k +

√
2 ln i
Nk

);

Ti+1 = tn ;
end for
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8 Experiments

We used synthetic data to test the theoretical results and the online algorithm. In the exper-
iments, a set of binary labeling tasks were generated, and the ground-truth labels were
uniformly sampled from {−1, 1}. To simulate on different types of crowd ability distribu-
tions, the abilities of the workers were sampled from different Beta distributions. The choices
of distribution parameters {α, β} were {0.55, 0.5}, {1.1, 1} and {2.2, 2}. The corresponding
meanwas 0.52 and corresponding varianceswere 0.1217, 0.0805 and 0.0480. Since themean
is close to 1/2, the left hand side of the distributions were not cut according to Eq. 1. The
returned labels were sampled from the Bernoulli distributions according to the abilities. To
simulate the situation that the confidence can be largely deviated from the ability, we assumed
that the unsure option was used when the sampled ability is above T or below 1 − T .

For each task, we collected the same number of returned labels for majority voting aggre-
gation. The baseline method was simple aggregation without using the unsure mechanism.
For examining theory, we adopted the unsure mechanism, on which the confidence threshold
is set according to Eq. 23. To implement the online algorithm, we employed the candidate
threshold set {0.55, 0.60, . . . , 1}. For the fairness of the comparison, we adopted the worker
testing stage with k = 1 for all methods.
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Fig. 1 Experimental results. In the legend, “Theory” denotes the result from setting the confidence threshold as
Eq. 25. “OLU” denotes the results from online unsure mechanism algorithm. “SA” denotes simple aggregation
without unsure mechanism
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The results are illustrated in Fig. 1. In all kinds of crowd ability distributions, employing
unsure mechanism outperformed simple aggregation. As the variance got larger, the number
of workers needed for high accuracy aggregation was significantly reduced. Furthermore,
when the number of tasks got larger, the performance of the online algorithm got better. This
phenomenon indicates that the online algorithm is capable to be employed when the number
of tasks to be done is large.

9 Conclusions

In this work, we theoretically study the cost-saving effect of the crowdsourcing with unsure
option setting. We give the sufficient condition for an unsure mechnanism can lead to signif-
icant cost reduction, show how confidence threshhold can be properly set. Motivated by the
theoretical analysis, we also propose an alternative online algorithm for setting the confidence
threshold.We also hope our work to be amotivation for further studies on how crowdsourcing
can benefit by utilizing subjective uncertainty of workers.
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