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Abstract A particularly successful role for Inductive Logic Programming (ILP) is as a
tool for discovering useful relational features for subsequent use in a predictive model.
Conceptually, the case for using ILP to construct relational features rests on treating these
features as functions, the automated discovery of which necessarily requires some form of
first-order learning. Practically, there are now several reports in the literature that suggest
that augmenting any existing feature with ILP-discovered relational features can substantially
improve the predictive power of a model. While the approach is straightforward enough, much
still needs to be done to scale it up to explore more fully the space of possible features that
can be constructed by an ILP system. This is in principle, infinite and in practice, extremely
large. Applications have been confined to heuristic or random selections from this space.
In this paper, we address this computational difficulty by allowing features and models to
be constructed in a distributed manner. That is, there is a network of computational units,
each of which employs an ILP engine to construct some small number of features and then
builds a (local) model. We then employ an asynchronous consensus-based algorithm, in which
neighboring nodes share information and update local models. This gossip-based information
exchange results in the formation of non-stationary Markov chains. For a category of models
(those with convex loss functions), it can be shown (using the Supermartingale Convergence
Theorem) that the algorithm will result in all nodes converging to a consensus model. In
practice, it may be slow to achieve this convergence. Nevertheless, our results on synthetic
and real datasets suggest that in relatively short time the “best” node in the network reaches
a model whose predictive accuracy is comparable to that obtained using more computational
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effort in a non-distributed setting (the best node is identified as the one whose weights
converge first).

Keywords Inductive logic programming - Consensus based learning - Stochastic gradient
descent - Feature selection

1 Introduction

The field of Inductive Logic Programming (ILP) has made steady progress over the past two
decades, in advancing the theory, implementation and application of logic-based relational
learning. A characteristic of this form of machine-learning is that data, prior knowledge and
hypotheses are usually—but not always—expressed in a subset of first-order logic, namely
logic programs. Side-stepping for the moment the question “why logic programs?”, it is
evident that settling on some variant of first-order logic allows the construction of tools that
enable the automatic construction of descriptions that use relations (used here in the formal
sense of a truth value assignment to n-tuples).

There is at least one kind of task where some form of relational learning would appear
to be necessary. This is to do with the identification of functions (again used formally, in
the sense of being a uniquely defined relation) whose domain is the set of instances in the
data. An example is the construction of new “features” for data analysis based on existing
relations (“F (m) = 1 if a molecule m has 3 or more benzene rings fused together otherwise
F(m) = 07). Such features are not intended to constitute a stand-alone description of a
system’s structure. Instead, their purpose is to enable different kinds of data analysis to be
performed better. These may be constructing models for discrimination, joint probability
distributions, forecasting, clustering, and so on. If a logic-based relational learner like an
ILP engine is used to construct these relational features, then each feature is formulated as
a logical formula. A measure of comprehensibility will be retained in the resulting models
that use these features (see Fig. 1).

The approach usually, but not always, separates relational learning (to discover features)
and modeling (to build models using these features). There will of course be problems that
require the joint identification of relational features and models—the emerging area of statis-
tical relational learning (SRL), for example, deals with the conceptual and implementation
issues that arise in the joint estimation of statistical parameters and relational models. It would
appear that separate construction of features and statistical models would represent no more
than a poor man’s SRL. Nevertheless, there is now a growing body of research that suggests
that augmenting any existing features with ILP-constructed relational ones can substantially
improve the predictive power of a statistical model (see, for example: Joshi 2008; Saha et al.
2012; Specia et al. 2009; Ramakrishnan et al. 2007; Specia et al. 2006). There are thus very
good practical reasons to persist with this variant of statistical and logical learning for data
analysis.

There are known shortcomings with the approach which can limit its applicability. First,
the set of possible relational features is usually not finite. This has led to an emphasis on
syntactic and semantic restrictions constraining the features to some finite set. In practice,
this set is still very large, and it is intractable to identify an optimal subset of features. ILP
engines for feature-construction therefore employ some form of heuristic search. Second,
much needs to be done to scale ILP-based feature discovery up to meet modern “big” data
requirements. This includes the abilities to discover features using very large datasets not all

@ Springer



Mach Learn (2018) 107:825-858 827

olecule Properties “Yes” if the
MollD | Activity Fi <+«——— | molecule contains a
1 active yes benzene ring with
2 active yes two substituentsin
3. | onicecive no meta position, one
4 non-active no Of Wthh iS a
methyl
Rule:
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Fig. 1 Feature discovery with relational learning. If we knew feature F1, it is easy to construct a model for
active molecules using any machine learning program (rule at the bottom). What we are talking about here

is discovering the definition of F1 (box on the right), given relational descriptions of the molecules m1-m4.
Once done, we may be able to construct better models for the data

stored in one place, and perhaps only in secondary memory; from relational data arriving in
a streaming manner; and from data which do not conform to expected patterns (the concept
changes, or the background knowledge becomes inappropriate). Third, even with “small”
data, it is well-known that obtaining the value of a feature function for a data instance can
be computationally hard. This means that obtaining the feature-vector representation using
ILP-discovered features can take large amounts of time. This paper is concerned only with
the first of these problems, namely how to construct models when feature-spaces are very
large. The data is partitioned and placed on different processors (or nodes).

We develop a simple general-purpose consensus-based modeling technique consisting of
a network of computing nodes. Each node in the network:

(a) Works with a local model that uses a small set of features;

(b) Communicates with neighboring nodes to exchange information about its model; and

(c) Eventually arrives at a consensus model and (usually bigger) set of features that repre-
sents the consensus with its neighbors.

We note straightaway that while the consensus-based approach does not provide an optimal
solution to the feature-selection problem, we show that it does provide a way of distributing
the computational task of feature-construction, and for a class of models, converge to a
consensus solution.

Organization: Section 2 is a short introduction to ILP and its use in constructing features.
The approach we intend to follow of distributed feature-construction followed by consensus-
based modeling is introduced in Sect. 2.2.1. We view our approach as an instance of a more
general technique that performs consensus-based model construction in a distributed setting.
Section 3 presents a general iterative procedure for constructing models in a network of nodes
capable of exchanging information about their local models and features. Experimental results
are in Sect. 4. Section 5 presents related work; Sect. 6 discusses open issues and concludes
the paper.
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2 ILP
2.1 Specification

Since its formulation in the early 1990’s in the form of a partial specification (Muggleton
1994), the field of Inductive Logic Programming (ILP) has grown to mean various forms
of relational learning, with first-order logic as the recurring theme for the representation
of inputs (domain-knowledge and data) and outputs (models or hypotheses). The original
specifications in Muggleton (1994) though remain a useful way to describe the function of
a class of programs that construct theories for either discriminating accurately amongst two
sets of examples (“positive” and “negative”), or for describing a set of examples, without
any specific goal of discrimination. In what is now known as the “learning from entailment”
formulation, an ILP algorithm is taken to be one that conforms to at least the following (we
refer the reader to Nienhuys-Cheng and De Wolf (1997) for definitions in logic programming).

B is background knowledge consisting of a set of definite clauses = {C, C3, ...}
L is a language describing constraints on acceptable hypotheses
E is a finite set of examples = ET U E~ where:

— Positive Examples. ET = {e1, e, ...} is a set of definite clauses denoting instances
entailed by some unknown target concept 7 in conjunction with the background
knowledge;

— Negative Examples. E~ = {fi{, f>...} is a (possibly empty) set of Horn clauses
denoting instances consistent with B A T'; and

— Prior Necessity. B = E™

e H = {Dj, Dy, ...}, the output of the algorithm given B, £ and E, is a hypothesis about
the unknown target 7 s.t. each D; is consistent with £. A hypothesis H is acceptable if
the following conditions are met:

— Weak Sufficiency. Each D; in H is a definite clause that has the property
BU{D;} =Eei Ve V... where{e,er,...} C E*

Strong Sufficiency. BUH |= E™;

— Weak Consistency. B U H = [J; and

Strong Consistency. BU H U E~ [~ [,

Strong Consistency ensures that H is consistent with all of the negative examples. Often,
implementations do not require hypotheses to meet this requirement, as some members of
E~ are taken to be “noisy”. This specification is then refined to include a parameter whose
value sets a lower bound on the accuracy required of each clause D; in the theory. If the noise
model extends to the positive examples, then in practice, implementations may also also not
meet the Strong Sufficiency requirement.

2.2 Implementation

Given that the specifications impose fairly minimal constraints, it is not surprising that a
variety of conforming (or nearly conforming) implementations have been developed. Of
these, we first describe an implementation that identifies a discriminatory model (specifically,
a set of classification rules), using a randomized version of a traditional greedy set-covering
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approach. Individual rules in the set are identified using a general-to-specific, heuristic search
guided by most-specific (“bottom”) clauses:

ConstructModel(B, L, E) :
1. Let H be ¢
2. Left=E*t
3. while Left # () do
(a) Randomly chose an example e € Left
(b) Let L (B, e) be the most specific rule in some language £ that logically entails e, given background
knowledge B (see Muggleton 1995)
(c) Search for the “best” rule £ in the lattice ordered by the subsumption relation (Plotkin 1971) and
bounded by the empty clause T and L (B, e).
(d) PosCover ={e:ec Et and BUh = ¢}
(e) Left:= Left — PosCover
(f) Addhto B
(g) Addhto H

4. done
Here, “best” refers to the rule with the highest value for some evaluation function. This
procedure is sufficiently similar to the one followed by the classic ILP algorithm Progol, which
uses a mode-based language for specifying £, and a simple compression-based heuristic to
score clauses (see Muggleton 1995 for details).

2.2.1 Feature construction

Of more direct interest here is a derivative of ConstructModel that is used to identify
Boolean features:

ConstructFeatures(B, L, E, finax) :
1. Let Fbe?
2. Left=E*t
3. while the feature constructed is less than some maximum f;,qx do
(a) Select e from Left
(b) Let L, (B, e) be the most specific rule in some language £ that logically entails e, given background
knowledge B
(c) Search for “good” rules in the lattice ordered by the subsumption relation and bounded by the empty
clause T and L £ (B, e).
(d) For each good rule i
i. Convert & into a Boolean feature f
ii. PosCover(h)={e:e€ ETand BUh k= ¢}
iii. Left = Left - PosCover(h)
iv. F=FUf
5. done
6. return F
Now a “good” rule is taken to be one that satisfies some syntactic and semantic constraints
(for example, precision and recall). The reader will recognize that Strong Sufficiency is only
relevant to the Construct Model procedure (that is, Construct Features is not attempting
to obtain a hypothesis that explains all the positive examples).
The conversion of an ILP rule to a Boolean feature is straightforward. Let us assume that
we are constructing rules only for some class ¢ (usually ¢ would be the class of positive
examples) and that a data instance is denoted nominally by x drawn from some space X.

Then a good rule will be of the form 72 : Class(x, ¢) < Cp;(x) .1 We adopt the terminology

1 We note that in general, for ILP, x need not be restricted to a single object and can consist of arbi-
trary tuples of objects and rules constructed by the ILP engine for a class ¢ would more generally be
hj: Class({X1,X2, ..., Xp), ¢) < Cpj({X1, X2, ..., Xn)).
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from Ratnaparkhi (1999) and Cp; : X > {0, 1} denotes a “context predicate”. A context
predicate corresponds to a conjunction of literals that evaluates to TRUE (1) or FALSE
(0) for any element of X'. For meaningful features we will usually require that a Cp ; contain
at least one literal; in logical terms, we therefore require the corresponding / ; to be definite
clauses with at least two literals. Arule 1 : Class(x,c) < Cp i), is converted to a feature
fj using a one-to-one mapping as follows: f;(x) = L iff Cp & =1 (and O otherwise).
We will denote this function as Feature. Thus Feature(hj) = fj, Feature_l(fj) =h;j.
We will also sometimes refer to Features(H) = {f : h € H and f = Feature(h)} and
Rules(F)={h: f € F and h = Features™ ' (f)}.

The idea of constructing propositional representations from first-order ones goes back at
least to 1990, with the LINUS system (and perhaps even earlier to work in the mid 1980s
done by R.S. Michalski and co-workers). This specific use of rules constructed by ILP system
as Boolean features appears to have been demonstrated first in Srinivasan and King (1996).

There is now a growing body of research that suggests that ILP-constructed relational
features obtained in this manner can substantially improve the predictive power of statistical
models (see the section on “Related Work™ later in the paper). The principal difficulty is,
of course, to determine how many, and which features are worth constructing for any par-
ticular kind of statistical model. In general, the number of possible relational features can
be extremely large (even when confined to the world of Boolean propositional symbols, the
number of rules and hence features, is exponential in the number of symbols).

To alleviate some of the difficulties just listed with feature-construction, we consider the
possibility of arriving at a consensus model, using a distributed construction of small sets
of features. The idea is shown diagrammatically in Fig. 2. Each ILP engine in the figure
implements.

Construct Features(B, L, E, fynay) for some (small) value of f;,,,. That is, each ILP
engine has access to all the background knowledge and examples (we will return to this
requirement later). The set of features returned by the ILP engines at a pair of nodes may
or may not overlap,? and each node constructs a local model using the features from its ILP
engine.

In this paper, we are interested in the following question: is it possible to arrive at a
consensus model, starting from multiple models using different feature-sets (which may
have common elements). As we shall see, when each node constructs a local linear model,
the iterations of a consensus-based algorithm (described next), result in all nodes in the
network exchanging feature weights and moving to different states, but finally converging on
the optimal weights for all the features.> On the face of it, this would appear to contradict the
Fischer, Lynch, Paterson (FLP) result (Fischer et al. 1985) that asserts the impossibility of
reaching consensus in a distributed system. The consensus problem described in FLP involves
an asynchronous system of processes, some of which may be unreliable. The question then
is: how can the reliable processes have a consistent view of the system? Our setting is similar,
in that we are concerned with an asynchronous system of processes (nodes) which must have
a consistent view of data stored on them (weights of the features). The process of local model
construction assigns a set of weights to the features - these can get updated by the process
of communication (gossip) with other nodes in the network. The work differs from the FLP
setting, however, in that we assume that there are no failures in the distributed system ensuring
that the FLP result is not violated.

2 If redundant features are produced at a node, we rely on the model constructor to be able to identify this
(for example, the weights of one would be zero, in the ideal case).

3 In practice, we need not wait for such a convergence by all nodes, of course.
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Fig. 2 An illustrative example of the consensus-based approach using Michalski’s “Trains” problem (Larson
and Michalski 1977). Each node has local features (for e.g., f1(T) = 1, if has _car (T, C), short(C); 0
otherwise) generated from an ILP engine. In this figure, we use the notation, f1; indicates the first feature
for Node 1, f3 the first feature of Node 2 and so on. It then builds local models, estimates loss and shares
information with its neighbors. Eventually we would like all nodes to converge to the same model

3 An algorithm for consensus-based modeling

We use a general setting for consensus-based modeling, without any reference to ILP.

Let M denote an n x m matrix with real-valued entries. This matrix represents a dataset
of n tuples of the form X; € R™, 1 <i < n. Assume, without loss of generality, this dataset
has been vertically distributed over k sites Sy, S», - - -, Sk i.e. site S7 has m features, S> has
my features and so on, such that |m | + |ma| + - - - + |mg| = |m|, where |m;| represents the
number of features at site S;.* Let M| denote the n x m| matrix representing the dataset held
by S1, M> denote the n x m, matrix representing the dataset held by S, and so on. Thus,
M = M : M, : ---: My denotes the concatenation of the local datasets.

We will restrict ourselves to learning a linear discriminative function over the data set M.
The global function to be estimated is represented by J, = M WI where W, is assumed to be a
1 xm weight vector. If only the local data is used, at site S, the local function estimated would
be J1 = M, WlT . At site S», the local function estimated would be J, = M W2T . The goal
is to describe a de-centralized algorithm for computing the weight vectors at sites Sy, - - - Sk
such that on termination Wy &= W,[1 : m], Wo = W,[1 : my], - -- Wi & W,[1 : my]| where

4 In the more general setting, Site S; has a random subset of features m; C m.
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Input: n x m; matrix at each site S;, G(V, E) which encapsulates the underlying communication
framework, T : no of iterations
Output: Each site S; has W; =~ Wg[1 : m;]
fort=11tTdo
(a) Site S; computes M; WI.T locally and estimates the loss function;
(b) Site S; gossips with its neighbors S; € {N;} and obtains M ; WjT for each neighbor;
(c) Site S; locally updates its function estimate as Jl.’ = o (M; WiT) +aji(M; W].T) ;
(d) Update the local weight vectors using stochastic gradient descent as follows:
aL
W = —Xpp = JL W (p)):
(e) If there is no significant change in the local weight vectors of one of the sites then stop
end

Algorithm 1: Distributed Feature Estimation (DFE) by Consensus-Based Modeling

W[l : m;] represents the part of the global weight vector for the attributes stored at that site
S;. Clearly, if all the datasets are transferred to a central location, the global weight vector
can be estimated. Our objective is to learn the function in the decentralized setting assuming
that transfer of actual data tuples is expensive and may not be allowed (say for example due
to privacy concerns). The weights obtained at each site on termination of the algorithm will
be used for ranking the features.

3.1 Algorithm

Algorithm 1 makes the following assumptions:

1. Model of Distributed Computation. The distributed algorithm can be seen as evolving
over discrete time with respect to a “global” clock. However, the existence of this clock is
of interest only for theoretical analysis. Each site has access to a local clock. Furthermore,
each site has its own memory and can perform local computation (such as computing the
gradient on its local features). It stores J;, which is the estimated local function. Besides
its own computation, sites may receive messages from their neighbors which will help
in the evaluation of the next estimate for the local function.

2. Communication Protocols. Sites S; are connected to one another via an underly-
ing communication framework represented by a graph G(V, E), such that each site
Si € {81, S2,---, Sk} is a vertex and an edge ¢;; € E connects sites S; and S;. Commu-
nication delays on the edges in the graph are assumed to be finite. It must be noted that
the communication framework is usually expected to be application dependent. In cases
where no intuitive framework exists, it may be possible to simply rely on the physical
connectivity of the machines, for example, if the sites S; are part of a large cluster.

Algorithm 1 describes how the weights for features will be estimated using a consensus-
based protocol. There are two main sub-parts of the algorithm: (1) Exchange of local function
estimate and (2) Local update based on stochastic gradient descent. Each of these sub-parts
are discussed in further detail below. Furthermore, assume that J : R™ — [0, 00] is a
continuously differentiable nonnegative cost function with a Lipschitz continuous derivative.
Exchange of local function estimate: Each site locally computes the loss based on its features
and then gossips with its neighbors to get information on other attributes. On receiving
an update from a neighbor, the site re-evaluates J; by forming a component-wise convex
combination of its old vector and the values in the messages received from its neighbors
ie. J;H = o;; (X; WiT) +aji(X; WJ-T). It is interesting to note that @;;,0 < o;; < l,is a
non-negative weight that captures the fraction of information site i is willing to share with
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site j. The choice of «;; may be deterministic or randomized and may or may not depend on
the time ¢ (Kempe et al. 2003). The k x k matrix A comprisingof o, 1 <i <k,1 <j <k
is a “stochastic”’ matrix such that it has non-negative entries and each row sums to one. More
generally, this reflects the state transition probabilities between sites. Figure 3 illustrates the
state transition between two sites S; and S;.

Another interpretation of the diffusion of J; amongst the neighbors of i involves drawing

analogies from Markov chains — the diffusion is mathematically identical to the evolution
of state occupation probabilities. Furthermore, a simple vector equation can be written for
updating Ji’ to J;H ie. J;H = A(i)(Jit)N; where A(i) corresponds to the row i of the
matrix A and (Ji’) ~; 18 a matrix that has |N;| rows (each row corresponding to a neighbor
of Site S;) and n columns (each column corresponding to all the instances). More generally,
JH = AJ" where 7! is a k x n matrix storing the local function estimates of each of
the n instances at site k and A is the k x k transition probability matrix corresponding to all
the sites. It follows that [im,_, ., A’ exists and this controls the rate of convergence of the
algorithm.
. 2 which
allocates equal weight to all the local function estimates and serves as a baseline against
which individual sites S;’s can compare their performance. Philosophically, this also implies
that each local site should at least try to attain as much information as required to converge
to the average function estimate. Since Zi a;j = 1, this estimate is invariant.

The A matrix has interesting properties which allow us to show that convergence to
J} occurs. One such property is the Perron-Frobenius theory of irreducible non-negative
matrices. We state the theorem here for continuity.

We introduce the notion of average function estimate in the network Jit =>.

Theorem 1 (Perron—Frobenius (Varga 1962)) Let A be a positive, irreducible matrix such
that the rows sum to 1. Then the following are true:

1. The eigenvalues of A of unit magnitude are the k-th roots of unity for some k and are all
simple.

2. The eigenvalues of A of unit magnitude are the k-th roots of unity if and only if A is
similar under a permutation to a k cyclic matrix.

3. All eigenvalues of A are bounded by 1.
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Since the eigenvalues of A are bounded by 1, it can be shown that J! converges to

the average function estimate Jit if and only if -1 is not an eigen value (Varga 1962). Let
A < Ap—1 < --- < Ay < A1 = 1 be the eigenvalues of A with ; = 1. Also assume that
¥ (A) = max;-1|%;]. It can be shown that | J/™" — Jt |2< y2 | J = J! | If y = 1, then
system fails to converge (Varga 1962; Cybenko 1989).
Local stochastic gradient update is done as follows: W/ o= W! — nls! where s =
aJ!
W
learning rate at node i at time t.

It is evident that there are no restrictions on the features used by the DFE algorithm. The
proofs of correctness and termination are in “Appendix”, and we will henceforth refer to
the procedure as the DFE algorithm. We now investigate empirically the performance of the
algorithm when the nodes in the network use features constructed locally by an ILP engine.

(X, W), X, € R™ is the estimated gradient, W/ is the weight vector and 7! is the

4 Empirical evaluation
4.1 Aims

Our objective is to investigate empirically the utility of the consensus-based algorithm we
have described. We use Model(k, f) to denote the model returned by the consensus-based
algorithm in Sect. 3 using k nodes in a network, each of which can call on an ILP engine to
construct at most f features. In this section, we compare the performance of: Model(N, F)
(N > 1) with Model(1, N x F). The latter effectively represents the model constructed in a
non-distributed manner, with all features present at a single centralized node. For simplicity,
we will call the former the Distributed model and the latter the Centralized model.

We intend to examine if there is empirical support for the conjecture that the performance
of the Distributed model is better than that of the Centralized model. We are assuming
that the performance of a model construction method is given by the pair (A, 7) where A is an
unbiased estimate of the predictive accuracy of the classifier, and 7 is an unbiased estimate
of the time taken to construct a model. In all cases, the time taken to construct a model
also includes the time taken to identify the set of features by the ILP engine and the time to
compute their values. When k > 1, the time will also include time for exchanging information.
Comparisons of pairs (A, 71) and (A3, T») will simply be lexicographic comparisons.

4.2 Materials
4.2.1 Data

Data for experiments are in two categories:

1. Synthetic We use the “Trains” problem posed by R. Michalski for controlled experiments.
Datasets of 1000 examples are obtained for randomly drawn target concepts (see “Meth-
ods” below).> For this we use S.H. Muggleton’s random train generator® that defines a
random process for generating examples. We will use this data for controlled experiments
to test the principal conjecture about the comparative performances of Distributed and
Centralized models.

5 We note here that we are not concerned with large numbers of examples here, since the main investigation
is concerned with subsets of the feature-space, and not of the data instances.

6 http://www.doc.ic.ac.uk/~shm/Software/GenerateTrains/.
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Table 1 Dataset sizes and class distributions

Problem Examples % Positives
Mutr188 188 ~ 66
Canc330 337 ~ 54
DssTox 576 ~ 38
Amine 686 50
Choline 1326 50

Scop 450 50

Toxic 886 50

The last four datasets have a 50:50 class distribution by design, since the data instances are pairwise compar-
isons of chemical activity. Thus, for every positive instance of the form better(m1, m2), there is a negative
instance of the form —better(m2, m1)

2. Real We report results from experiments conducted using 7 well-studied real world prob-
lems from the ILP literature. These are: Mutagenesis (King et al. 1996); Carcinogenesis
(King and Srinivasan 1996); DssTox (Muggleton et al. 2008); and 4 datasets arising from
the comparison of Alzheimer’s drugs denoted here as Amine, Choline, Scop and T oxic
(Srinivasan et al. 1996). The dataset characteristics are reported in Table 1. Our purpose
in examining performance on the real-data is twofold. First, we intend to see if the use
of linear models is too restrictive for real problems. Second, we would like to see if the
results obtained on synthetic data are reflected on real-world problems. We note that for
these problems predictive accuracy is the primary concern.

Language constraints We have mainly relied on the use of mode declarations to incorporate
language restrictions (see Muggleton 1995 for a description of modes and their usage by a
class of ILP systems). For the synthetic dataset of trains, here are some examples of mode
declarations (we use the syntax introduced in Muggleton (1995):

:— modeh (1, train(+train)) .

:— modeb (1, short (+car)) .

:— modeb(1l,closed(+car)) .

:— modeb(1l,long(+car)) .

:— modeb(l,open_car (+car)).

:— modeb(1,double (+car)) .

:— modeb (1, jagged (+car)) .

:— modeb (1, shape (+car, #shape) ) .
:— modeb (1, load(+car, #shape, #int)) .
:— modeb (1,wheels (+car, #int)) .

:- modeb(*,has_car (+train, -car)) .

We follow the Aleph manual (Srinivasan 1999) for the meaning of restrictions. All decla-
rations are of the form mode(RecallNumber,PredicateMode).” Here RecallNumber bounds
the non-determinacy of a form of predicate call, and PredicateMode specifies a legal form
for calling a predicate. RecallNumber can be either (a) a number specifying the number of

7 ILP engines are often used to hypothesize clauses of the form Head < Body, where Head is a literal,
and Body a conjunction of literals. modeh specifies the form of the H ead literal, and modeb specify forms for
literals that can appear in Body.
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successful calls to the predicate; or (b) a *, specifying that the predicate has bounded non-
determinacy. PredicateMode is a template of the form: p(ModeType, ModeType,...) where
ModeType is either (a) simple; or (b) structured. A simple ModeType is one of: +T , which
means that when a literal with predicate symbol p appears in a hypothesized clause, the
corresponding argument should be an “input” variable of type T'; - T, which means that that
the corresponding argument is an “output” variable of type T; or #T, which means that the
corresponding argument should have a constant of type T'. A structured ModeType is of the
form: £(...) where f is a function symbol, each argument of which is either a simple or
structured ModeType.
Some examples of mode declarations for the Muz188, Canc330 and DssT ox datasets:

:— modeh(1,active (+drug)) .

:— modeb (*,bond (+drug, +atomid, +atomid, #bondtype) ) .
:— modeb (*,bond (+drug, +atomid, ~atomid, #bondtype) ) .

:— modeb (*,atm(+drug, —~atomid, #element, #atmtype, -~-charge) ) .

:— modeb(1,gteqg(+charge, #charge)) .
:— modeb (1, lteqg(+charge, #charge)) .

:- modeb (*,benzene (+drug, -ring)) .

:— modeb (*,carbon_5_aromatic_ring (+drug, -ring)) .
:— modeb (*,carbon_6_ring (+drug, -ring)) .

:— modeb (*,hetero_aromatic_6_ring (+drug, -ring)) .

:— modeb (*,anthracene (+drug, -ringlist)) .
:— modeb (*, phenanthrene (+drug, -ringlist)) .
:— modeb (*,ball3 (+drug, -ringlist)).

:— modeb (1, member (+ring, +ringlist)) .
:— modeb (1, connected(+ring, +ring)) .

(and so on)

For reasons of space, we do not show the mode declarations for the other datasets.
4.2.2 Algorithms and machines

The DFE algorithm has been implemented on a Peer-to-Peer simulator, PeerSim (Montresor
et al. 2009). This software sets up the network by initializing the nodes and the protocols
to be used by them. The newscast protocol, an epidemic content distribution and topology
management protocol is used. Nodes can perform actions on local data as well as communicate
with each other by selecting a neighbor to communicate with (using an underlying overlay
network). In each communication step, they mutually update their approximations of the
value to be calculated, based on their previous approximations. The emergent topology from
a newscast protocol has a very low diameter and is very close to a random graph (Jelasity
et al. 2004, 2005).

The ILP system used in all experiments is Srinivasan (1999). The latest version of this
program (Aleph 6) is available from the second author. We use Aleph to construct features
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[specifically, the induce_features command in that program: the precise description
of how this is done is in Srinivasan (1999)]. To a good approximation, the procedure is
as described in Sect. 2.2.1 (some small difference arises from the Aleph implementation
using a class-based upper-bound on the number of features). The Prolog compiler used is
Yap?® (version 6.2.0). The programs are executed on a dual Quad-Core AMD Opteron 2384
processors equipped with 2.7 GHz processors, 32 GB RAM, and local storage of 4 x 146
GB 15K RPM Serial attached SCSI (SAS) hard disks.

4.3 Method

For the synthetic data, classification tasks are randomly constructed for the DFE algorithm
based on disjunctive concepts. “Simple” concepts have 1-4 disjuncts, and “complex” ones
between 8—12 disjuncts.” For any one classification task a data instance x is defined as
“positive” is some underlying concept is true for x. If the underlying concept is a simple
concept, then the classification task is said to have a simple target; otherwise it has a complex
target. Classification tasks are constructed randomly as follows:

1. A concept (“Target”) is generated by:

(a) Randomly obtaining the number of disjuncts k;
(b) Drawing k features from a population of features; and
(c) Defining the concept as the disjunction of the k features.

2. A binary classification task is then defined using the concept constructed, and positive
and negative instance are generated randomly as training data for this classification task.

Figure 4 shows an example of the relationship between features, concepts and targets. We
will refer to the Steps (a)—(c) as “randomly drawing a target concept.” Of course, when given
the training data, the DFE algorithm does not know the features used in the target concept.
Instead, nodes in the network use the data, background knowledge, and their ILP engines to
construct local features and a consensus model is obtained to discriminate between positive
and negative examples. We note that it may not be sufficient simply to identify one of the
k disjuncts in a Target. With sufficient data, there will be instances where each one of the
disjuncts is FALSE. Thus, a node in the distributed setting that correctly identifies one of
the features can still have a poor accuracy on the training data.
Our method for experiments is straightforward:

1. For each kind of concept (“simple” or “complex”)

(a) Randomly draw a target concept
(b) Classify each data instance as + or — using the target concept
(c) Randomly generate a network with N nodes
(d) For each node in the network:
i. Set the number of iterations T and initialize the learning parameter n; for the
node. It is assumed that all nodes agree on the initial choice of T and n; = n.
ii. Execute the algorithm described in Sect. 1 for T iterations and the ILP engine
restricted to constructing F features
iii. Record the predictive accuracy A of the (local) model along with the time
T taken to construct the model (this includes the feature construction time,

8 http://www.dcc.fc.up.pt/~vsc/Yap/.

9 This distinction between simple and complex is based on results from cognitive psychology which suggest
that people find it difficult to remember concepts with larger than 7 disjuncts (Michie et al. 1990).
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Fi () TRUE if (HasCar(z,y) A Closed(y))
) =
! FALSE otherwise

Fa(z) TRUE if (HasCar(z,y) N HasTriangleLoad(y,2) N HasW heels(y, 1))
xr) =
2 FALSE otherwise

Fa(a) TRUE if (...)
) =
3 FALSE otherwise

(and so on)

TRUE if (Fi(x)V Fa(x))

FALSFE otherwise

TRUE if (Fl(a:) Vv Fg(m) \Y F5(LE) \Y FG(.T) \Y Fll(m) .. )
FALSFE otherwise

TRUE if (Simple1(z) = TRUE)

FALSE otherwise

Simple, (z) = {
Complex,(x) = {

Positive(z) = {

Fig. 4 Classification problems using simple and complex concepts. The features F, F5, ...are functions
whose values are 7 RU E, depending on the conditions in their definitions. Simple concepts have 1—4 disjuncts,
and complex ones between 8-12 disjuncts. Binary classification tasks for the DFE algorithm are based on
simple or complex concepts: a data instance x is defined as “positive” is some underlying concept is true for
x (shown here for Simpley). If the underlying concept is a simple concept, then the classification task is said
to have a simple target; otherwise it has a complex target. For each classification task positive and negative
instances are generated randomly and provided as training data to the DFE algorithm

and the feature computation time). The pair (A, T') is the performance of the
Distributed model for the concept.
(e) Using a network with a single node:

i. Execute the algorithm described in Sect. 1 for 7 iterations, learning parameter
n, and the ILP engine restricted to constructing N x F features

ii. Record the predictive accuracy A’ of the model along with the time taken
to construct the model T’ (again, this includes the feature construction time
and feature computation time). The pair (A", T’) is the performance of the
Centralized model for the concept.

2. Compare the performances of the Distributed and the Centralized models for the con-
cepts.

The following additional details are relevant:

1. Two sources of sampling variation result with this method. First, variations are pos-
sible with the target drawn in Step la. Second, to ensure that both the Distributed
and Centralized approaches are constructing features from the same feature-space, we
employ the facility within Aleph of drawing features from an explicitly defined feature
space (this is specified using a large tabulation of features allowed by the language con-
straints). In effect, we are performing a randomized search for good features within a
pre-defined feature space. Although only “good” features are retained (see below), even
after controlling for feature-spaces, sampling variations can nevertheless result for both
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the Distributed and Centralized models from the step of drawing features. We report
averages for 5 repetitions of draws for the target, and 5 repetitions of the randomized
search for a given target.

2. A target is generated as follows. For simple targets, the number of features is chosen
randomly from the range 1-4. For complex concepts, the number of features is randomly
chosen from the range 8—12. Features are then randomly constructed using the ILP engine,
and their disjunction constitutes the target concept.

3. As noted previously, data instances for controlled experiments are drawn from the
“Trains” problem. The data generator uses S.H. Muggleton’s random train generator.
This implements a random process in which each data instance generated contains the
complete description of a data object (nominally, a “train”).

4. Aninitial set of parameters needs to be set for the ILP engine to describe “good” features.
These include C, the maximum number of literals in any acceptable clause constructed
by the ILP system; Nodes, the maximum number of nodes explored in any single search
conducted by the ILP system; Minacc, the minimum accuracy required of any acceptable
clause; and Minpos, the minimum number of positive examples to be entailed by any
acceptable clause. C and Nodes are directly concerned with the search space explored
by the ILP system. Minacc and Minpos are concerned with the quality of results returned
(they are equivalent to “precision” and “support” used in the data mining literature). We
set C = 4, Nodes=5000, Minacc=0.75 and Minpos=2 for our experiments here. There
is no principled reason for these choices, other than that they have been shown to work
well in the literature (Srinivasan and Ramakrishnan 2011).

5. The parameters for the PeerSim simulator include the size of the network, degree dis-
tribution of the nodes and the protocol to be executed at each node. We report here on
experiments with a distributed network with N = 10 nodes. Each of these nodes can
construct up to F' = 500 features (per class) and the centralized approach can construct
up to N x F = 5000 features (per class).

6. The experiments here use the Hinge loss function. The results reported are for values of
T that the stochastic gradient descent method starts to diverge.

7. The learning rate n; remains a difficult parameter in any SGD-based method. There is
no clear picture on how this should be set. We have adopted the following domain-
driven approach. In general, lower values of the learning rate imply a longer search.
We use three different learning rates corresponding to domains requiring high, moder-
ate and low amounts of search (corresponding to complex, moderate or simple target
concepts). The corresponding learning rates are 0.01, 0.1 and 1. We reiterate that there
is no prescribed method for deciding these values, and better results may be possible
with other values. The maximum number of iterations 7 is set to a high value (1000).
The algorithm may terminate earlier, if there are no significant changes to its weight
vector.

8. Since the tasks considered here are binary classification tasks, the performance of
the ILP system in all experiments will be taken to be the classification accuracy of
the model produced by the system. By this we mean the usual measure computed
from a 2 x 2 cross-tabulation of actual and predicted classes of instances. We would
like the final performance measure to be as unbiased as possible by the experimen-
tal estimates obtained during optimization, and estimates are reported on a holdout
set.

9. With results from multiple repetitions (as we have here), it is possible to perform a
Wilcoxon signed-rank test for both differences in accuracy and differences in time. This
allows a quantitative assessment of difference in performance between the Distributed
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Table 2 Results on synthetic data comparing Centralized and Distributed models

Model Simple Complex
Acc. (%) Time (s) Acc. (%) Time (s)

(@)

Centr. 83.3 (14.4) 0.12 (0.07) 92.0 (7.1) 0.18 (0.03)
Distr. 93.4 (10.5) 0.06 (0.07) 98.7 (1.2) 0.04 (0.03)
(b)

Centr. 83.6 (20.1) 0.14 (0.07) 95.3 (0.6) 0.21 (0.02)
Distr. 79.9 (10.4) 0.15 (0.07) 96.6 (0.6) 0.06 (0.02)

The results in (a) are averages from repetitions across concepts; and in (b) are averages from repetitions of
the feature-construction process for a randomly drawn concept. In all cases, Distributed denotes the model
obtained with a 10 node network, each of which employs a randomized search for up to 500 good features.
Centralized denotes the model obtained with a single node employing a randomized search for up to 5000
good features. All randomized searches draw features from the same feature-space

and the Centralized models. However, results with 5 repetitions are unreliable, and we
prefer to report on a qualitative assessment, in terms of the average of accuracy and time
taken.

A data instance in each of the real datasets is a molecule, and contains the complete
description of the molecule. This includes: (a) bulk properties, like molecular weight, logP
values etc.; and (b) the atomic structure of the molecule, along with the bonds between the
atoms. For these datasets, clearly there are no concepts to be drawn, and sampling variation
results solely from the feature-construction process. We therefore only report on experimental
results obtained from repeating the randomized search for features. Again, estimates of
predictive accuracy are obtained from a holdout set. For mutagenesis and carcinogenesis,
each of the 10 computational nodes in the distributed network constructs up to 500 features,
and the centralized approach constructs up to 5000 features (per class). For DssTox, we
found there were fewer high precision features than the other two datasets. So the nodes
in the distributed network constructs up to 50 features and the centralized node up to 500
features (per class).

4.4 Results

We present first, the main results from the experiments on synthetic data (shown in Table 2).
The primary observations in these experiments are as follows: (1) On average, as concepts
vary, the distributed algorithm appears to achieve higher accuracies than the centralized
approach, although the differences may not be significant for a randomly chosen concept;
(2) On average, as concepts vary, the time taken for model construction by the distributed
approach can be substantially lower'%; and (3) The variation in both accuracies and time
with the distributed approach due to both changes in the concept, or due to repetitions of
feature-construction appear to be less than the centralized approach.

10 Although not apparent in the tabulation, the time is dominated by the time for constructing features (we
present empirical results in support of this later in this section). As a result, we note that the ratio of times for
the centralized and distributed approaches need not be (linearly) proportional to the number of nodes in the
network. For example, the search for a large subset of good features conducted by the centralized approach
may take much longer than the search for several small subsets conducted by the distributed approach.

@ Springer



Mach Learn (2018) 107:825-858 841

Taken together, these results suggest that good, stable models can be obtained from the
distributed approach fairly quickly, and that the approach might present an efficient alternative
to a centralized approach in which all features are constructed by a single computational unit.

At this point a question could be raised on the value of the synthetic data. There are at
least 3 issues here:

e First, why bother with synthetic data at all? The answer to this is that it gives us the
opportunity to perform controlled experiments, of the kind that would be impossible
with real-world datasets.

e Secondly, why use the “trains” problems? The trains problems are a well-known bench-
mark in the ILP literature, and there is an easily available simulator that is capable of
generating new data instances by random draws from a known distribution (each instance
is a random train with the number of carriages in the train following a multinomial dis-
tribution). There is precedence in the ILP literature of using this to test algorithms: for
example, Cardoso & Zaverucha used a synthetic trains dataset of 1.25 million examples
to evaluate their methods, all of which achieved 100% accuracy on the synthetic dataset.

e Thirdly, why are we getting theories with high accuracies? The targets are randomly
generated k-disjuncts with different values of k (1-4 for “simple” targets and 8—12 for
“complex” targets). Further, each feature is a rule restricted to Datalog without recursion,
a bound on the maximum number of literals, each of which is a predicate with a fixed
maximum arity, the hypothesis space is clearly bounded and therefore learnable (in the
PAC-sense) with arbitrarily high accuracy and confidence, given sufficient examples.
It is also known theoretically that Winnow can identify a linear threshold function for
k-disjuncts making a small number of mistakes. So, with sufficiently large amounts of
data (recall we use 1000 training instances here), it is not surprising that high accuracies
are obtainable. What is surprising is that the accuracy on simple concepts is lower than
on complex concepts. This suggests that there must be more simple concepts that are
consistent with the target on the training data than complex ones.

What can we expect from the consensus-based learner on the real datasets? Results are
in Table 3, and we observe the following: (1) There is a significant difference in accura-
cies between the distributed and centralized models on two of the datasets (Canc330 and
DssTox). On balance, we cannot conclude from this that either one of the models is better;

Table 3 Results on real data comparing Centralized and Distributed models

Problem Acc (%) Time (s)
Centr. Distr. Base. Centr. Distr. Base.

Mut188 84.3 (2.6) 76.8 (0.0) 84.6 (2.6) 1.93 (0.53) 0.42 (0.02) -
Canc330 67.6 (0.5) 56.8 (0.5) 50.4 (2.8) 3.56 (0.58) 0.82(0.18) -
DssTox 53.8 (0.0) 61.6 (1.0) 64.7 (2.0) 1.94 (0.91) 0.76 (0.48) -
Amine 75.5(0.4) 76.6 (0.8) 71.4 (1.7) 7.02 (0.24) 0.87 (0.11) -
Choline 72.9(1.3) 71.2.(0.7) 52.7(1.4) 13.00 (3.06) 1.64 (0.5) -
Scop 67.2 (1.5) 69.9 (0.3) 55.1(2.0) 11.9 (0.64) 1.20 (0.03) -
Toxic 76.3 (1.3) 81.4(0.2) 79.2 (1.4) 7.44 (3.51) 0.89 (0.49) -

The Baseline models are the ones reported in Srinivasan and Ramakrishnan (2011) (these are cross-validation
estimates, whereas the estimates for Centralized and Distributed models are from holdout sets). No esti-
mates of time are reported in that paper
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(2) As with the synthetic data, the time for the distributed models is substantially lower.
As before, the time is dominated by the feature-construction effort. For the real data sets,
it appears that it is substantially easier to get smaller subsets of good features than larger
ones (as observed from the differences in the times between the distributed and centralized
models); and (3) Comparisons against the baseline suggest that the use of linear models is not
overly restrictive, since the models obtained are not substantially worse (predictively speak-
ing) than the ones obtained by ILP literature in the past. The Distributed approach does
better than Baseline on 5 of 7 datasets: this presents some evidence supporting the case for
the former, although numbers are not large enough to claim statistical significance. Quanti-
tatively, the differences in predictive accuracies between Distributed and Centralized are
not statistically significant, although there is evidence that differences in time is statistically
significant (Distributed is faster).

Again, taken together, these results provide support to the trends observed with the con-
trolled experiments and suggest that the distributed approach would continue to perform at
least as well as the centralized approach on real data.

4.5 Supplementary results

We turn now to some issues that have been brought out by the experimental results. We
present immediate practical issues first, and then examine some more abstract questions.

4.5.1 The learning rate .

As with all methods based on stochastic gradient descent, the central parameter remains the
learning rate A. Many strategies have been suggested in literature to automatically adjust the
learning rates. (see for example Bottou 2010; Bottou and Bousquet 2011; Darken and Moody
1990; Sutton 1992). In general, the learning rate on an iteration n; of the algorithm here is
of the form n; = %; B = ¢ *T;0 < « < 1. Table 4 shows the effect of varying A for
the synthetic datasets used here. These results show that the determination of A is a tricky
business, that can depend on the nature of the target theory being approximated (correctly,
it is really to do with the amount of search needed). For the experiments reported above, we
have used fixed values of A based on our assessment of the search required (see the additional
details in the “Methods” section). That A is dataset dependent and needs to assigned in some
domain-dependent manner appears to be an unavoidable aspect of any SGD-based method.

Table 4 Effect of the learning 3 Acc (%) Time (s)
rate A

(a) Simple

0.01 92.4 0.05

0.1 92.4 0.05

1 93.4 0.06

(b) Complex

0.01 98.7 0.04

0.1 95.6 0.05

1 77.8 0.37
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Fig. 5 Feature and model construction times for randomly drawn concepts. The plots are averages over 5
repetitions. a Simple, b Complex

4.5.2 Disaggregated time

The time estimates reported in the tabulations consist of four separate components. These are:
(a) feature-construction; (b) feature-evaluation; (c¢) model-construction; and (d) inter-node
communication. Components (a)—(c) are part of both centralized and distributed learners,
and it is of some interest to examine their separate contributions. Feature evaluation is very
small for both simple and complex trains (< 0.01%). Feature-construction is roughly 99%
of the time spent in feature engineering.

‘We note that all experiments reported here use the PeerSim simulator, which does have pro-
visions for modeling the transport layer via a special protocol that provides a message sending
service. There are also options for modeling latency among geographically distributed nodes
in addition to churn models for nodes. None of these aspects have been explored here, and
the tabulation reported here use default settings of the simulator that are designed to model
a network as a random graph. It is nevertheless evident that distributed model construction
is only worthwhile provided communication costs are low—there will be real networks (and
corresponding simulator settings) for which distributed model-construction can be a good or
a bad approach.

Figure 5 depicts the variation in the feature and model construction time repetitions
of randomly drawn concepts. For model construction, the number of iterations 7 is var-
ied between 1, 5 and 10. In all the cases, a single iteration of the stochastic gradient
descent algorithm is good enough to obtain reasonably good accuracy in the distributed
settings. Also, for small values of T, the feature construction time dominates communication
costs.

4.5.3 Consensus by union of features

A natural question that emerges at this point is this: “How does the algorithm proposed here
compare against one that achieves a trivial consensus simply by a union of all the features
found by nodes in the network?”” Such a consensus would be arrived as follows. Let us assume
without loss of generality, that each node gets their own sample of features and sends it to
one centralized site that is responsible for the “Union” operation. Both the test and train data
will, of course, be concatenated vertically, but there are several ways to arrive at the union
of features:
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Table 5 Results on synthetic data for a consensus-classifier using the union of feature-sets identified at each
node in a distributed network

Model Simple Complex

Acc. (%) Time (s) Acc. (%) Time (s)
Union — Ib. 93.42 (4.71) 0.02 (0.01) 95.66 (5.93) 0.02 (0.01)
Union — ub. 0.14 (0.05) 0.17 (0.04)

The results correspond to averages from repetitions across concepts. In all cases, “Union” denotes the model
obtained by vertically concatenating data from all the nodes in network
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Fig. 6 Feature and model construction time for randomly drawn simple and complex targets. Lower- and
upper-bounds for a consensus-classifier that uses the union of features constructed by nodes in a distributed
network (Union-1b and Union-ub respectively) are compared against the centralized and distributed models.
a Simple, b complex

=
=
=

(a) Features are generated and sent sequentially, with some predefined notion of ordering
amongst nodes (node 1 goes first then node 2 and so on). This helps to provide an
empirical upper-bound for the time required to compute the union of features. We assume
that the upper bound is the sum of feature construction times at each distributed node.
and hence referred to as Union-ub;

(b) Features are generated in parallel synchronously. That is, all nodes generate a set of
features, starting at the same time. We refer to this as Union-Ib corresponding to the
lower bound; and

(c) Features are generated in parallel, but asynchronously. That is, nodes generate sets of
features, not necessarily starting at the same time. In this case, there is no straightforward
way to compute a bound on the time to compute features, since nodes can elect to
commence feature-construction at any point in time.

The results presented in Table 5 provide the accuracy and time for building the model
under the union operation. In general, the model(s) built on the “Union” of features does
appear to have comparable performance to the distributed algorithm presented here, but this
may come at a price if a sequential operation is done to obtain the union of features. Figure 6
further analyzes the time by dividing it into feature and model construction time(s).
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4.5.4 Network topology

Experiments have been designed to test the effect of the network topology on the convergence
rate of the algorithm using synthetic data. Assuming K to be the number of outgoing edges
from a node, three different strategies of node addition are explored: (a) Random: K nodes
are added at random; (b) Star: K nodes are added in a star topology; and (c) Scale Free
Network: A scale-free network is grown using the Barabasi-Albert (BA) model ensuring
that nodes have power law degree distributions. Two values of K = 2,8 were used in
empirical analysis. Our results indicate that there were no statistically significant difference
in performance for the 10 node network(s) studied in this paper.

4.5.5 Convergence accuracy

In experiments here (both with synthetic and real data), we have observed that the predictive
accuracy of the model from the distributed setting is comparable to the predictive accuracy
from the non-distributed setting. Unlike gains in time which can be expected from a distributed
setting, it is not evident beforehand what can be expected on the accuracy front. This is
because the models constructed in the two settings can, and usually do, sample different
sets of features. The results here suggest a conjecture that the consensus-based approach
will always converge to a model that is within some small error bound of the model from
a centralized approach with the same number of features. We have some reason to believe
that this conjecture may hold in some circumstances, based on the use of Sanov’s theorem
(Sanov 1957) and related techniques.

5 Related work

We review related work from several areas: large scale feature selection, decentralized opti-
mization and consensus-based learning, and discovery of feature subsets by ILP engines.

Large scale feature selection Techniques for selecting from a (large) but finite set of fea-
tures of known size d'! have been well-studied within the machine learning community,
usually under the umbrella-terms of filter-based or wrapper-based methods (see for exam-
ple, John et al. 1994; Liu and Motoda 1998). While most of the early work was intended
for implementation on a single machine, several algorithms have been proposed to enable
feature-selection from massive datasets (Garcia et al. 2006; Lopez et al. 2006; Sun 2014).
Singh et al. (2009) propose a framework for handling feature selection for logistic regression
by developing a new forward feature selection heuristic that ranks features by their estimated
effect on the resulting model’s performance. Zhao et al. (2012) describe an algorithm that
selects features based on their ability to explain data variance. Zhou et al. (2014) present
a framework for Parallelizable Feature Selection (PFS) which is inspired by the theory of
group testing. Group testing is a combinatorial search paradigm where the goal is to identify
a small subset of relevant items from a large pool of possible items. The feature selection
problem in the group testing framework applies a “test” to a set of features which produces
a score designed to measure the quality of the features. From the collection of test scores the
relevant features are supposed to be identified. PFS has several similarities to the algorithm
proposed in this paper - notably, the set of features at each node can be viewed as a collection

N large feature set increases the size of the search space, making it more difficult for the learning algorithm
to find a near optimal solution.
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of relevant features for group testing; the process of local function evaluation can be mapped
to the “test” required in group testing. The end product, however, in the two algorithms is
fundamentally different—in PFS, all feature sets are identified in advance without knowing
the scores of other tests and a final subset of features is discovered; nodes executing the
DFE algorithm have updated scores of the local features after gossiping with neighbors. The
updated scores help learn approximations of the global objective and nodes independently
reach a consensus.

Furthermore, distributed computation is utilized to solve optimization problems that arise
when exploring huge, nonlinear and multidimensional search spaces. Distributed feature
selection algorithms often solve decentralized optimization problems in the constrained and
unconstrained settings (seminal work of Tsitsiklis et al. 1986; Tsitsiklis 1984; Bertsekas and
Tsitsiklis 1997). The convergence properties of these decentralized optimization problems
naturally affect the performance of the distributed feature selection algorithms. In recent
work, it has been shown that convergence properties of distributed optimization algorithms
of unconstrained optimization algorithms (such as gradient descent and its stochastic variants)
can be related to the network topology of the underlying distributed infrastructure by using
its spectral properties (Boyd et al. 2006; Shah January 2009; Dimakis et al. 2006; Benezit
et al. 2010).

Distributed optimization Learning feature subsets in distributed environments using decen-
tralized optimization has become an active area of research (Duchi et al. 2012; Agarwal et al.
2014; Christoudias et al. 2008) in recent years. Agarwal et al. (2014) present a system and a
set of techniques for learning linear predictors with convex losses on terabyte sized datasets.
Their goal is to learn problems of the form min ¢ ga Z?:l HwTx;: vi) + AR(w) where
x; is the feature vector of the i'” example, w is the weight vector and R is a regularizer.
The data are split horizontally and examples are partitioned on different nodes of a cluster.
Duchi et al. (2012) present a dual averaging sub-gradient method which maintains and forms
weighted averages of sub-gradients in the network. An interesting contribution of this work
is the association of convergence of the algorithm with the underlying spectral properties
of the network. Similar techniques for learning linear predictors have been presented else-
where (Mangasarian 1995; Ryan et al. 2010; Zinkevich et al. 2010; Niu et al. 2011; Boyd
et al. 2011). The algorithm presented in this paper differs from this body of literature in that
the data are split vertically amongst nodes in the cluster thereby necessitating a different
algorithm design strategy. In addition, this is a batch algorithm and hence quite different
from distributed online learning counterparts (Dekel et al. 2012; Langford t al. 2009; Bottou
and Bousquet 2011). Das et al. (2010) show that three popular feature selection criteria—
misclassification gain, gini index and entropy can be learnt in a large peer-to-peer network.
This is then combined with protocols for asynchronous distributed averaging and the secure
sum protocols to present a privacy preserving asynchronous feature selection algorithm.
Discovery of feature subsets by ILP engines Existing literature on discovering a subset of
interesting features from large, complex search spaces such as those by ILP engines adapt
one of the following strategies:

1. Optimally (Han and Wang 2009; Nowozin et al. 2007; Kudo et al. 2004) or heuristi-
cally (Joshi 2008; Saha et al. 2012; Specia et al. 2009; Ramakrishnan et al. 2007; Specia
et al. 2006; Nagesh et al. 2012; Chalamalla et al. 2008) solve a discrete optimization
problem.

2. Optimally (Jawanpuria et al. 2011; Nair et al. 2012) solve a convex optimization problem
with sparsity inducing regularizers;
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3. Compute all relational features that satisfy some quality criterion by systematically and
efficiently exploring a prescribed search space (Pei 2004; Ji et al. 2006; Aseervatham
et al. 2006; Antunes and Oliveira 2003; Pei et al. 2005; Agrawal and Srikant 1995; Pei
et al. 2004; Ayres et al. 2002; Garofalakis et al. 1999; Davis et al. 2005a,b; Landwehr
et al. 2007; Davis et al. 2007; DZeroski 1993; Lavrac and Dzeroski 1993).

Again, much of this has been of a non-distributed nature, and usually assumes a bound on
the size of the feature-space. The latter is not the case for a technique like the one proposed
in Joshi (2008). This describes a randomized local search based technique which repeatedly
constructs features and then performs a greedy local search starting from this subset. Since
enumeration of all local moves can be prohibitively large, the selection of moves is guided by
errors made by the model constructed using the current set of features. Nothing is assumed
about the size of the feature-space, making it a form of vertical partitioning of the kind we are
interested in. Multiple random searches can clearly be conducted in parallel (although this is
not done in the paper) (Zelezny et al. 2006; Fonseca et al. 2005; Dehaspe and De Raedt 1995).
As with most randomized techniques of this kind, not much can be said about the final model.
Perhaps of most interest to the work here is the Sparse Network Of Winnow (SNoW)
classifiers described in Roth (1998), Carlson et al. (1999). As it stands, this horizontally par-
titions the data into subsets, constructs multiple linear models using Winnow’s multiplicative
update process, and finally uses a majority vote to arrive at a consensus classification. This
would appear, on the surface to be quite different to what we propose here. Nevertheless,
there are reasons to believe that this approach can be usefully extended to the setting we
propose. It has been shown elsewhere that the Winnow-based approach can be extended to
an infinite-attribute setting (Blum 1992). The work in this paper shows that consensus linear
models are possible when convex cost functions are used. Finally, from the ILP-viewpoint,
(Srinivasan and Bain 2014) shows how it is possible to construct Winnow-based models in
an infinite-attribute setting using an ILP engine with a stream-based model of the data. Taken
together, this suggests that a combination of the techniques we propose, and those in Carlson
etal. (1999) can be used to develop linear models that can handle both horizontal partitioning
of the data and vertical partitioning of the feature-space.
Learning k-disjuncts Although the technique we have described here is not specifically
aimed at learning k-disjuncts, the synthetic Simple and Complex datasets are both of this
nature. It is instructive, therefore, to note some theoretical results that have been presented
in the literature on identifying such concepts. First, note that a k-term DNF formula is a
disjunction of k terms, where each term is a conjunction of literals. The k-term DNF learning
problem can be described as follows: Given (a) a set of Boolean variables Var; (b) a set
Pos of truth value assignments p; : Var — {0, 1} (c) a set Neg of truth value assignments
n; : Var — {0, 1} and (d) a natural number k—the goal is to find a k-term DNF formula
that is consistent with Pos and Neg. In general, this is an NP-hard problem and exhaustive
algorithms are impractical from a computational standpoint. Several stochastic local search
based algorithms (Riickert and Kramer 2003; Riickert et al. 2002) have been proposed for
DNF learning by reducing the k-term DNF problem to the well-known SAT problems. Among
the more popular algorithms are Winnow like classifiers, which are known to make O (k log n)
mistakes before converging on a monotone k-disjunct formula (Littlestone 1988).

6 Conclusion

A particularly effective form of Inductive Logic Programming has been its use to construct
new features that can be used to augment existing descriptors of a dataset. Experimental stud-
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ies reported in the literature have repeatedly shown that the relational features constructed
by an ILP engine can substantially assist in the analysis of data. Models constructed in this
way have looked at both classification and regression, and improvements have resulted in
each case. Practical difficulties have remained to be addressed though. The rich language of
first-order logic used by ILP systems engenders a very large space of possible new features.
The resulting computational difficulties of finding interesting features is not easily overcome
by the usual ILP-based methods of language bias or constraints. In this paper, we have intro-
duced what appears to be the first attempt at the use of a distributed algorithm for feature
selection in ILP which also has some provable guarantees of convergence. The experimen-
tal results we have presented suggest that the algorithm is able to identify good models,
using significantly lesser computational resources than that needed by a non-distributed
approach.

There are a number of ways in which the work here could be extended further. Con-
ceptually, we have outlined a conjecture in the previous section that we believe is worth
investigating further. If it is proven to hold, then this would be a first-of-its-kind result for
consensus-based methods. In implementation terms, we are able to extend the approach we
have proposed to other kinds of models that use convex loss functions, and to consider a
consensus-based version of the SNoW architecture. This latter will give us the ability to
partition very large datasets, and to deal with very large feature-spaces at once. It is also
not required within the approach that all computational nodes draw from the same feature
space (this was a constraint imposed here to evaluate the centralized and distributed models
in a controlled manner). It may be both interesting and desirable for nodes to sample from
different feature-spaces, or with different support and precision constraints. We note also
that the new version of Apache Cassandra uses a peer-to-peer setup and it would be useful
to investigate the implementation of the algorithm we have proposed on a real, distributed
system with commodity components. This will allow us to validate results obtained in sim-
ulation on gains in time when using the distributed approach. Experimentally, we recognize
that results on more real-world datasets are always desirable: we hope the results here will
provide the impetus to explore distributed feature construction by ILP on many more real
datasets.

Acknowledgements H.D. is also an adjunct assistant professor at the Department of Computer Science at
T, Delhi and an Affiliated Member of the Institute of Data Sciences, Columbia University, NY. A.S. also
holds visiting positions at the School of CSE, University of New South Wales, Sydney; and at the Department
of Computer Science, Oxford University, Oxford.

Appendix
Convergence of the DFE algorithm

The proof of convergence of the algorithm makes use of the following concept-in the dis-
tributed setting, the process of information exchange between k sites can be modeled as a
non-stationary Markov chain. A non-stationary Markov chain is weakly ergodic if the depen-
dence on the state distribution vanishes as time tends to infinity (Tsitsiklis et al. 1986). A
detailed discussion regarding convergence of the algorithm is presented here.

First, we make the following assumptions about the cost function J.

Assumption1 e J(W') > 0, for every W' € R™.
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e Lipschitz Continuity of VJ: The function J is continuously differentiable and there
exists a constant K such that

| V(W) = VI(W?2) |< Ky | W — W2 ||,V Wi, W2 e R™, 1)

e Descent Lemma (Bertsekas and Tsitsiklis 1997) If J satisfies the Lipschitz condition
above, then

/ K
QW' W) < JW) (W) VI W) + S | W B,
for all W', W2 e R™.

The proof of the above Lemma is along the lines of the argument presented in Bertsekas and
Tsitsiklis (1997).

Proof Let t be a scalar parameter and let 7(t) = J(W" +t x W?). The chain rule for
derivatives yields, %0 — (W) VJ(W" +1 x W?).

JWI 4+ WB) — J(Wh) = T (1) = T(0)
1 1
=/ d(J)(0) =/ (W) VI (W 4+ W)
0 0

dt

1 1
5/ (W) W(W’l)dz+‘/ W2y V(W +tW2) — VJ (W)
0 0

1 1
< / (W) VI (W)dt + / | W VI 4 1w
0 0
— VJ(WZ') | dt

1
S (W) VIWh+ | w2 | / Kyt || W2 | dt
0

’ 1
= W) VW) + S Ky || Wo I

O
In our algorithm, the vector W' is split over sites Sy, Sy, - - - , S. The attributes at site S;, (1 <
i < k) are updated according to the following equation:
+1
Wi =W —nis @

where nf is the step size and si’ is the descent direction at site S;. Let T"Abe the set of times
when processor i makes an update. It is assumed that s = 0 when ¢ ¢ T'. For times t € T",
we assume that the update direction is such that the cost function decreases and s/ has the
opposite sign from V J; (Wit). The underlying deterministic gossip algorithm is described by:

Wi = 3" aaW Y Wl 3)

{i|teTi} {jlreT?}

where the coefficients «’s are non-negative scalars.
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Example 1 Let S; and S; be the only two sites communicating with each other. Then Eq. 3
reduces to

t+1 t t
W, =a; W +Ol,'jo
=1l =1 =1 -1
=a;i(W; " = s ) o (W, = si)

:(azzW +at]Wt )—(Olunt lsf 1+(¥zﬂ); IS;' 1)

= (@iW} + i W) = (i} i+ 07272 ls))

1 1

e s T s )

Hence, by induction it can be shown that:

Za,,W +ZZW;] 5t @)

=1 j=1

It is also assumed that there exist positive constants K4 and K5 such that step-sizes 1/ are
bounded as follows: % < nf < ? Furthermore, the following assumptions hold true:

Assumption2 1. Vi, jand0 <7 <1,0 <q;; < 1.

2. Forany i, j and T > 0, the limit of o;; as t tends to infinity exists and is the same for all
i and is denoted by «;

3. There exists some n > O such that; > nand Vj € {1, yk}andt >0

4. There exists constants A > 0 and p € (0, 1) such that |a,] —aj| < Ap' TVt >1>0

Assumption 3 Extensions of the descent Lemma (Bertsekas and Tsitsiklis 1997) at each
site:

(a) Foreveryi and t we have,
sIVI(W]) <0. (&)
(b) There exist positive constants K, and K3 such that
K| VI (W) < Is]] < K3V Ji (W) (6)

Let S(t) be the set of random variables defined by: S(t) = {s/ i € {1,---,k}, T < t}. The
variables in S(t) are the only sources of randomness upto the time 7 at site i. The set S() is
also a representation of the entire history of the algorithm upto the moment that the update
directions s/ are generated.

Assumption 4 Stochastic descent Lemma (Bertsekas and Tsitsiklis 1997) at each site: There
exist positive constants K¢, K7 and Kg such that:

(a)

VJ (W) ELs!1S(1)] < —Ke | VI(W!) |2, V1 € T'. (7
(b)

E[l sE 12 1SO1 < K7 || VI(W)) ||I> +Ks, Ve € T'. (®)
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Assumption 3 implies that the expected direction of the update given the past history is in
the descent direction. In Assumption 4, the presence of constant Kg in the inequality allows
the algorithm to make non-zero updates even when the minimum has been reached.

Assumption 5 Partial Asynchronism (Bertsekas and Tsitsiklis 1997)
There exists a positive integer B such that:

(a) Foreveryi and for every r > O at least one of the elements of the set {¢,7 4+ 1,--- ,1 +
B — 1} belongs to T".
(b) There holds max{0,t — B + 1} < ‘L’itj <t,foralli and jand t > 0.

Finally, for completeness, we introduce the notions of martingales and the martingale con-
vergence theorem(s) which are required for the proofs in the appendix.

A martingale is a model of a fair game where knowledge of past events never helps predict
the mean of the future winnings. In general, a martingale is a stochastic process for which, at
a particular time in the realized sequence, the expectation of the next value in the sequence
is equal to the present observed value even given knowledge of all prior observed values at
a current time.!2 A formal definition (using measure theory Tao 2011) is given below:

Let (o, F, P) be a probability space. A martingale sequence of length n, is a sequence
X1, X2, -+, X, of random variables and corresponding sub-o fields Fy, 7, - - - , F, that
satisfy the following relations:

e Each X; is an integrable random variable which is measurable with respect to the corre-
sponding o -field F;.

e The sigma fields are increasing F; C Fj4 for every i

e Foreveryi € [1,2,---,n — 1], we have the relation, X; = E[X;|F;] almost every-
where P.

Along the same lines,

o A submartingale is defined as: for every i, X; < E[X;41|F;] almost everywhere P and
o A supermartingale is defined as: for every i, X; > E[X;1|F;] almost everywhere P.

Martingale convergence theorem is a special type of theorem since the convergence follows
from the structural properties of the sequence of random variables. The Supermartingale
Convergence theorem and a variant used in proofs is presented next.

Supermartingale Convergence Theorem (Bertsekas and Tsitsiklis 1997): Let {Y;} be a
sequence of random variables and let {F;} be a sequence of finite sets of random variables
such that F; C Fj for each i. Suppose that:

e Each Y; is non-negative
e Foreach i, we have E[Y;] < o0
e Foreach i, we have E[Y;11|F;] < Y; with probability 1.

Then there exists a non-negative random variable Y such that the sequence of {Y;} converges
to Y with probability 1.

An extension of the above theorem, can be stated as follows: Let {Y;} and {Z;} be two
sequence of random variables. Let {F;} be a sequence of finite sets of random variables such
that F; C Fj4 for each i. Suppose that:

12 http://en.wikipedia.org/wiki/Martingale_(probability_theory).
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e The random variables Y; and Z; are non-negative.
e There holds E[Y;y1|F;] < Y; + Z;, Vi with probability 1.
e There holds Y 72, E[Z;] < o©.

Then there exists a nonnegative random variable Y such that the sequence {Y;} converges to
Y with probability 1.

Proposition 1 Convergence of the Distributed Feature Estimation (DFE) Algorithm
Under the Assumptions 1-3, there exists some n° > 0, such that if0 < nl’. < 1%, then:

limy o0 J(W}) exists and is the same for all i with probability 1.

limy 00 (W] — W} ) = 0 with probability I and in the mean square sense.

For every i, lim;_, o VJ(W;) =0.

Suppose that the set {W|J(W) < C} is bounded for every C € R; then there exists a
unique vector W* at which J is minimized and this is the unique vector at which VJ
vanishes. Then, Wi’ converges to W* for each i with probability 1.

Koo~

Proof of Proposition 1 Without loss of generality, assume that 171’. = %, Vi, t.

We note that the underlying gossip protocol illustrated by Eq. 3 has a simple structure but
is not easy to manipulate in algorithms primarily because we have one such equation for each
i and they are generally coupled. Thus we need to keep track of vectors W{, W3, ---, W/
simultaneously. Analysis would be simpler if we could associate one single vector W' that
summarizes the information contained in W/’s. Let W' be defined as follows:

k -1 k
W= Zoz,- Wi1 + ZZaini’sf 9)
i=1

t=1i=1

The interpretation of vector W' is quite interesting in the following sense — if the sites stopped
performing updates at time 7, but keep communicating and forming convex combinations of
their states using the gossip protocol, they will asymptotically agree and the vector they agree
upon is W', Finally, W1 = W' + Y% o ntst.

Define also the following:

k
b =3 s =1 (10)
i=1
k
G'==) VIW) as}, t = 1. (11)
i=1
Lemma 1.0 (a) Ift € T, then
E[G'|S()] = Keh Y || VIW)) [*= 0. (12)
{i|teT?}

where ajj > A, Vi € {1,--- ,k}and A > 0.
(b) Ift > 1, then

E[(b")?|S(1)] < ALE[G'S(1)] + Az (13)

where A = % and Ay = k*Kg.
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Proof Using Assumption 2.0b, Eq. 7 and the fact that s’ = 0, ¢ ¢ T?, we have:

EIG' IS =~ Y VI(WHaEls!|S(®)]

ilteTi
> Y Kol VIOW) P «i
ilteT!
>1Ks Y | VIW) |?
ilteT!

This proves part (a) of the Lemma. Applying Eq. 8 we obtain,

E[(b")*IS(1)] = (Z I'sf ||) NG

< kZE[n st 17 18]
i=1
k

<k (K7 | VW) II* +Ks)
i=1

kK7
< —E[G'IS()] + kK
= 3Ks [GISH]+ 8
where the last inequality uses the proof in part (a). O

Lemma 2.0 Foreveryt > 1, we have

t—1
1,
W =W i< Ay —p' b (14)

=1

where A > 0, p € (0, 1)

Proof Subtracting Eq. 9 from Eq. 4 we have

t—1 k 1
= ZZ;[% — ajls’ (15)

=1 j=I1
Furthermore, using Assumption 1.1(a) and Definition 10 we obtain,

t—1

W —wii=3— ZAp’ STl
Tl

E:Al =Tyt

[}
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Using the fact that W/t = W' + Zl L aint S: and Assumption 1.0 (3) we obtain:
k

Jovh = J(wf+Za,n’s’)<J(w’)+2amfs’w(w’“) += ||Za,n I3
i=1

k
1 .1 ) /
=JOV) + ;Zaisitvf(WitH) + ;Zaisi’(VJ(W“rl) —VJ(WT)
i=l i=1
K
+ 5 st 13
1 1< K
! o 41yt "2
SJ(W)_?G(I)“F?;O!,SI-IQ 4% Wi ||-|?(b)
-1 .
<JWZ‘—*G[ . A t‘rbT 7bt2
( ) ( )+ ZO[ZS Z + 2[2( )
i=1 T= 1
-1

1 KA 1
<JW) - -G b' ThT —b’z
STV =G+ =~ ;Tp + 0"
t—1 1
<JOW') — fG(t) +K1AZ 0 TThTh + —(b’)
=1
o= . ) )
< JW —fGt KiAY p'77( b
% *) + K Zl St )+ 2t2<)
1 d (b")?
s -7
<JOV) =G +A3;p = (16)
where A3 = K“g + 12{
Lemma 3.0 There holds
1
Z ;E[G’] <00 A7)
=1

We take expectations of both sides of the above inequality and use Eq. 13 to bound E[(b")?].
This yeilds:

t
E[JOV'h] < ELJOV)] - %E[G’] + 43 Zp"’tiz(AlE[Gf +Aal). (18)

=1

Lett = 1,2, -+, and add the resulting inequalities from Eq. 18. Then,

T It it
- 1

E t+1 Iy _ - t t—1 t—1

TOVED =TV =37 EIG' 1+ 42433 3 o +A1A3Z p TE[G]
=1 =11t=I t=11t=I
7 1 1 r ot

=JWH =S ZE[G(1 — A A3- T+ ArA -t
Wh =3 EIGN( = AAs- 3 0" ™) + 243y Y p 12

=1 t=1 t=1t=1
iy 1

<JWh =37 SEIGN( ~
t=1

Ar
( >)+ 3220 ”
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The term AzA3 Z —17 ] is bounded since the infinite sum oo | r2(1 > is bounded.

Iy 7E[G ] = o0, then the right hand side would equal —oo. However, the left hand
side is non-negative. This proves the lemma.

Lemma 4.0 The sequence {J (W'} converges with probability 1.

Proof Taking conditional expectation of inequality (16), conditioned on S(¢) and using
Lemma 1.0 we have,

t
E[JOVTHISOI < JOV) + A3 ) p’*’%E[(bf)%S(r)] (19)
=1 T

Let Z(1) = Y, _; p' " L E[b7?|S(1)]. Using Lemmas 1.0(b) and 3.0 we have:

oo
— T
Y EZ0l=1— Zoo E[(b")*]
=1
1 1
<L S ot (AEIG + o)
IL—p
=1
< 00. (20)
Using inequalities (19) and (20), a variant of the Supermartingale theorem applies and hence
{J (W'} converges with probability 1. |
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