Mach Learn (2017) 106:1523-1545 @ CrossMark
DOI 10.1007/510994-017-5644-6

An expressive dissimilarity measure for relational
clustering using neighbourhood trees

Sebastijan Duman¢ié!@® - Hendrik Blockeel!

Received: 22 October 2016 / Accepted: 14 May 2017 / Published online: 5 June 2017
© The Author(s) 2017

Abstract Clustering is an underspecified task: there are no universal criteria for what makes
a good clustering. This is especially true for relational data, where similarity can be based
on the features of individuals, the relationships between them, or a mix of both. Existing
methods for relational clustering have strong and often implicit biases in this respect. In this
paper, we introduce a novel dissimilarity measure for relational data. It is the first approach to
incorporate a wide variety of types of similarity, including similarity of attributes, similarity
of relational context, and proximity in a hypergraph. We experimentally evaluate the pro-
posed dissimilarity measure on both clustering and classification tasks using data sets of very
different types. Considering the quality of the obtained clustering, the experiments demon-
strate that (a) using this dissimilarity in standard clustering methods consistently gives good
results, whereas other measures work well only on data sets that match their bias; and (b) on
most data sets, the novel dissimilarity outperforms even the best among the existing ones. On
the classification tasks, the proposed method outperforms the competitors on the majority of
data sets, often by a large margin. Moreover, we show that learning the appropriate bias in an
unsupervised way is a very challenging task, and that the existing methods offer a marginal
gain compared to the proposed similarity method, and can even hurt performance. Finally,
we show that the asymptotic complexity of the proposed dissimilarity measure is similar to
the existing state-of-the-art approaches. The results confirm that the proposed dissimilarity
measure is indeed versatile enough to capture relevant information, regardless of whether
that comes from the attributes of vertices, their proximity, or connectedness of vertices, even
without parameter tuning.

Keywords Relational learning - Clustering - Similarity of structured objects

Editors: Kurt Driessens, Dragi Kocev, Marko Robnik-Sikonja, and Myra Spiliopoulou.

B Sebastijan Dumancic¢
sebastijan.dumancic @cs.kuleuven.be

Hendrik Blockeel
hendrik.blockeel @cs.kuleuven.be

Department of Computer Science, KU Leuven, Celestijnenlaan 200A, Heverlee, Belgium

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-017-5644-6&domain=pdf
http://orcid.org/0000-0003-0915-8034

1524 Mach Learn (2017) 106:1523-1545

1 Introduction

In relational learning, the data set contains instances with relationships between them. Stan-
dard learning methods typically assume data are i.i.d. (drawn independently from the same
population) and ignore the information in these relationships. Relational learning methods
do exploit that information, and this often results in better performance. Complex data, such
as relational data, is ubiquitous to the modern world. Among the most notable examples
are social networks, which typically consist of a network of people interacting with each
other. Another example includes rich biological and chemical data that often contains many
interaction between atoms, molecules or proteins. Finally, any data stored in the form of rela-
tional databases is essentially relational data. Much research in relational learning focuses on
supervised learning (De Raedt 2008) or probabilistic graphical models (Getoor and Taskar
2007). Clustering, however, has received less attention in the relational context.

Clustering is an underspecified learning task: there is no universal criterion for what makes
a good clustering, it is inherently subjective. This is known for i.i.d. data (Estivill-Castro
2002), and even more true for relational data. Different methods for relational clustering have
very different biases, which are often left implicit; for instance, some methods represent the
relational information as a graph (which means they assume a single binary relation) and
assume that similarity refers to proximity in the graph, whereas other methods that take the
relational database stance assume the similarity comes from relationships objects participate
in. Such strong implicit biases make use of a clustering algorithm difficult for a problem at
hand, without a deep understanding of both the clustering method and the problem at hand.

In this paper, we propose a very versatile framework for clustering relational data that
makes the underlying biases transparent to a user. It views a relational data set as a graph with
typed vertices, typed edges, and attributes associated to the vertices. This view is very similar
to the viewpoint of relational databases or predicate logic. The task we consider is clustering
the vertices of one particular type. What distinguishes our approach from other approaches
is that the concept of (dis)similarity used here is very broad. It can take into account attribute
dissimilarity, dissimilarity of the relations an object participates in (including roles and mul-
tiplicity), dissimilarity of the neighbourhoods (in terms of attributes, relationships, or vertex
identity), and interconnectivity or graph proximity of the objects being compared.

Consider for example Fig. 1. This relational dataset describes people and organizations,
and relationships between them (friendship, a persons’ role in the organization, ...). Persons
and organizations are vertices in the graph shown there (shown as white/gray ellipses), the
relationships between them are shown as edges, and their attributes are shown in dashed
boxes. Now, vertices can be clustered in very different ways:

1. Google and Microsoft are similar because of their attributes, and could be clustered
together for that reason

2. John, Rose and Han form a densely interconnected cluster

3. Bob, Joe and Rose share the property that they fulfill the role of supervisor

Non-relational clustering systems will yield clusters such as the first one; they only look at
the attributes of individuals. Graph partitioning systems yield clusters of the second type.
Some relational clustering systems yield clusters of the third type, which are defined by local
structural properties. Most existing clustering systems have a very strong bias towards “their”
type of clusters; a graph partitioning system, for instance, cannot possibly come up with the
{Google, Microsoft} cluster, since this is not a connected component in the graph. The new
clustering approach we propose is able to find all types of clusters, and even clusters that can
only be found by mixing the biases.

@ Springer



Mach Learn (2017) 106:1523-1545 1525

—_———
| age=27 | orgTyp¢=private|
] gender=f ] area=industry |
—-r—— J —_——————

/ ) —

\
\

______ b} —_———— Hh -
[:rgType=private age=31 | B T \
| area=academic | | gender=mj 8 L \
w————l___J _—_——< a . \
N \

kuleuven

\
SN ———— \\‘ ;
age=53 -
d [
] gender—mj I
e i
i
i
[
i
i
i
i
—_———— i
\ /1 age=51_| I
r\_____. \ f|gender=f /,/
age=36 | Ve .‘/_ p— [
] gender=m ) i P I,' ’,'
————— 7"\ [EAN /o
p2 [N —_——— —
= N o6 | Iy
e N
| gender | gender: - . | gender=n /
- r:::: S~ Nmm— )
., N /
age=33 - N /o
gegder=m I e \\/ i
| genderTm) { /s
\’/ \\

[:r Type=private|=—
| ageggingustry J -

Fig. 1 An illustration of a relational data set containing people and organizations, and different clusters one
might find in it. Instances—people and organizations, are represented by vertices, while relationships among
them are represented with edges. The rectangles list an associated set of attributes for the corresponding vertex

The clustering approach and the corresponding dissimilarity measure that we propose are
introduced in Sect. 2. Section 3 compares our approach to related work. Section 4 evaluates
the approach, both from the point of view of clustering (the main goal of this work) as from
the point of view of the dissimilarity measure introduced here (which can be useful also for,
e.g., nearest neighbor classification). Section 5 presents conclusions.

2 Relational clustering over neighbourhood trees

2.1 Hypergraph representation

Within relational learning, at least three different paradigms exist: inductive logic program-
ming (Muggleton and Raedt 1994), which uses first-order logic representations; relational
data mining (Dzeroski and Blockeel 2004), which is set in the context of relational databases;
and graph mining (Cook and Holder 2006), where relational data are represented as
graphs. We illustrate the different types of representation in Fig. 2. This example repre-
sents a set of people and organizations, and relationships between them. The relational
database format (b) is perhaps the most familiar to most people. It has a table for each

@ Springer



1526 Mach Learn (2017) 106:1523-1545

(a) (b) person
PName Age Gender |Education
bob 25 m msc
person(bob,25,m,msc) emily 21 f msc
person emJ__iy,é7 f,msc) | i
organization kgieuven private,academic)
organization mq.crosof{:,prlvate,J_ndustry) organization
friends(bob,emil
friends(emil ,bo OName OorgType Area

works for(bo kuleuven,grofes$or,2000&0)

works—for (emily,microsott,engineer,23 kuleuven | private |academic

microsoft|private |industry

works_for

PName OName Position Salary
____________ bob kuleuven |professor| 2000
(C) | age=25 1 | age=27 1 emily |microsoft| engineer | 2300

gender=m | gender=£f |

| education=msc | education=msc

T\ _\\ | ________ | friends
osition=engineer
\ |p salary=2300 | ENanel Plane2
—_——— bob emil
//_ emily boby
/
FVO-Z"jrs /

~ foi‘

position=prof0eossor |

salary=20 ——
_________ J r : 1
—— J ——— orgType=pr1vate|
r 1 | afrea=industry
orgType=private| ——— e —— J
| area=academic
——————— J

Fig. 2 Representation paradigms of relational data. a Represents the relational data set as a set of logical
facts; the upper part represents the definition of each predicate, while the bottom part lists all facts. b Illustrates
a database view of the relational data set, where each logical predicate is associated with a single database
table. ¢ Illustrates a graph view of the relational data set. Each circle represents an instance, each rectangle
represents attributes associated with the corresponding instance, while relations are represented by the edges

entity type (Person, Organization) and for each relationship type between entities
(Works_for, Friends). Each table contains multiple attributes, each of which can be
an identifier for a particular entity (a key attribute, e.g., PName), or a property of that entity
(Age, Gender,..). The logic-based format (a) is very similar; it consists of logical facts,
where the predicate name corresponds to the tables name and the arguments to the attribute
values. There is a one-to-one mapping between rows in a table and logical facts. The logic
based view allows for easy integration of background knowledge (in the form of first-order
logic rules) with the data. Finally, there is the attributed graph representation (c), where
entities are nodes in the graph, binary relationships between them are edges, and nods and
edges can have attributes. This representation has the advantage that it makes the entities
and their connectivity more explicit, and it naturally separates identifiers from real attributes
(e.g., the PName attribute from the Person table is not listed as an attribute of Person
nodes, because it only serves to uniquely identify a person, and in the graph representation
the node itself performs that function). A disadvantage is that edges in a graph can represent
only binary relationships.

Though the different representations are largely equivalent, they provide different views
on the data, which affects the clustering methods used. For instance, a notion such as shortest
path distance is much more natural in the graph view than in the logic based view, while the
fact that there are different types of entities is more explicit in the database view (one table

@ Springer



Mach Learn (2017) 106:1523-1545 1527

per type). The distinction between entities and attribute values is explicit in the graph, but
more implicit in the database view (key vs. non-key attributes) and absent in the logic view.

In this paper, we will use a hypergraph view that combines elements of all the above. An
oriented hypergraph is a structure H = (V, E) where V is a set of vertices and E a set of
hyperedges; a hyperedge is an ordered multiset whose elements are in V. Directed graphs
are a special case of oriented hypergraphs where all hyperedges have cardinality two.

A set of relational data is represented by a typed, labeled, oriented hypergraph (V, E, t, A)
with V a set of vertices, E a set of hyperedges, and t : (V U E) — Ty U Tg a type function
that assigns a type to each vertex and hyperedge (T is the set of vertex types, Tr the set of
hyperedge types). With each type t € Ty a set of attributes A(z) is associated, and A maps
each vertex v to a vector of values, one value for each attribute in A(t (v)). If a € A(z(v)),
we write a(v) for the value of a in v.

A relational database can be converted into the hypergraph representation as follows. !
For each table with only one key attribute (describing the entities identified by that key),
a vertex type is introduced, whose attributes are the non-key attributes of the table. Each
row becomes one vertex, whose identifier is the key value and whose attribute values are
the non-key attribute values in the row. For each table with more than one key attribute
(describing non-unary relationships among entities), a hyperedge is introduced that contains
the vertices corresponding to these entities in the order they occur in the table. Our hypergraph
representation does not associate attributes with hyperedges, only with vertices; hence, for
non-unary relationships contain non-key attributes, a new vertex type corresponding to that
hyperedge type is introduced.

The clustering task we consider is the following: given a vertex type t € Ty, partition the
vertices of this type into clusters such that vertices in the same cluster tend to be similar, and
vertices in different clusters dissimilar, for some subjective notion of similarity. In practice,
it is of course not possible to use a subjective notion; one uses a well-defined similarity
function, which hopefully on average approximates well the subjective notion that the user
has in mind. The following section introduces neighbourhood trees, a structure we use to
compactly represent and describe a neighbourhood of a vertex.

2.2 Neighbourhood tree

A neighbourhood tree is a directed graph rooted in a vertex of interest, i.e. the vertex whose
neighbourhood one wants to describe. It is constructed simply by following the hyperedges
from the root vertex, as outlined in Algorithm 1. The construction of the neighbourhood tree
is parametrized with the pre-specified depth, a vertex of interest and the original hypergraph.
Consider a vertex v. For every hyperedge E in which v participates (lines 7-13), add a
directed edge from v to each vertex v’ € E (line 9). Label each vertex with its type, and
attach to it the corresponding attribute vector (line 10). Label the edge with the hyperedge
type and the position of v in the hyperedge (recall that hyperedges are ordered sets; line 11).
The vertices thus added are said to be at depth 1. If there are multiple hyperedges connecting
vertices v and v’, v’ is added each time it is encountered. Repeat this procedure for each v on
depth 1 (stored in variable toVisit). The vertices thus added are at depth 2. Continue this
procedure up to some predefined depth d. The root element is never added to the subsequent
levels. An example of a neighbourhood tree is given in Fig. 3.
The following section introduces a dissimilarity measure for vertices of the hypergraph.

! For the logic-based representation, the conversion is analogous.

@ Springer



1528 Mach Learn (2017) 106:1523-1545

Algorithm 1: Neighbourhood tree construction
Data: a hypergraph H = (V, E, 7, A)
a vertex of interest v
adepth d
Result: a neighbourhood tree NT
/* initialize neighbourhood tree */
1 NT = new neighbourhood tree;

2 NT.addRoot(v);

3 NT.labelVertex(v); /* add type and attributes */

4 toVisit = {v} ; /* vertices to process */

sd =1; /* depth indicator */
/* repeat until the pre-specified depth */

6 while d’ < d do

7 foreach v’ € toVisit do

8 foreach outgoing edge e of vertex v’ do

9 foreach vertex v’ in hyperedge e do

10 NT.addvertex(v”);

11 NT.addEdge(v’ ,v");

12 NT.labelvertex(v”); /* add type and attributes */

13 NT.labelEdge(V’, v"); /* add edge type and position */

14 toVisit = toVisit U {v”};

15 end

16 end

17 toVisit = toVisit \ {v’,v}

18 end

19 | d4+=1;

20 end

2.3 Dissimilarity measure

The main idea behind the proposed dissimilarity measure is to express a wide range of
similarity biases that can emerge in relational data, as discussed and exemplified in Sect. 1.
The proposed dissimilarity measure compares two vertices by comparing their neighbourhood
trees. It does this by comparing, for each level of the tree, the distribution of vertices, attribute
values, and outgoing edge labels observed on that level. Earlier work in relational learning
has shown that distributions are a good way of summarizing neighbourhoods (Perlich and
Provost 2006).

The method for comparing distributions distinguishes between discrete and continuous
domains. For discrete domains (vertices, edge types, and discrete attributes), the distribution
simply maps each value to its relative frequency in the observed multiset of values, and
the x2-measure for comparing distributions (Zhao et al. 2011) is used. That is, given two
multisets A and B, their dissimilarity is defined as

B (fax) = fa(x))*
WD = D ST s M

where fs(x) is the relative frequency of element x in multiset S (e.g., for A = {a, b, b, c},
fa(a) =0.25and f4(b) = 0.5).

In the continuous case, we compare distributions by applying aggregate functions to the
multiset of values, and comparing these aggregates. Given a set ./ of aggregate functions,
the dissimilarity is defined as

@ Springer



Mach Learn (2017) 106:1523-1545 1529

@) R (b) lateri=x|
I attr2=1 |
Object |Elementl|Element2 L.7-____J
7
A D c | emm——_— A :
B D E (ateri=v1 -
| Attr2=2 ~<R
; Ty~ ! T~<
Attributes \ / @
Object | Attrl | Attr2 K ,I
A X 1 R _@
B Y 2 |
|
F I
Objectl | Object2 |
K ®

(c) Level 0

(Attri-x |
A) (Attr2=l

N G
< 20

.

Level 1

mh I 4
o \® = v
:_l X - Y, /%\?V)
Level 2
Y
®© ®

Fig. 3 An illustration of the neighbourhood tree. The domain contains two types of vertices—objects (A
and B) and elements (C, D and E), and two fictitious relations: R and F. The vertices of type object have
an associated set of attributes. a Contains the database view of the domain. b Contains the corresponding
hypergraph view. Here, edges are represented with full lines, while hyperegdges are represented with dashed
lines. Finally, ¢ Contains the corresponding neighbourhood tree for the vertex A

d(A,B) =

f(A) — f(B)
Y @

fed

with r a normalization constant (r = maxy; f(M) — minys f(M), with M ranging over
all multisets for this attribute observed in the entire set of neighbourhood trees). In our
implementation, we use the mean and standard deviation as aggregate functions.

The above methods for comparing distributions have been chosen for their simplicity and
ease of implementation. More sophisticated methods could be used. The main point of this
section, however, is which distributions are compared, not how they are compared.

We use the following notation. For any neighbourhood tree g,

V!(g) is the multiset of vertices at depth [ (the root having depth 0)

V,l (g) is the multiset of vertices of type ¢ at depth /

Bf,a (g) is the multiset of values of attribute @ observed among the nodes of type ¢ at
depth /

E!(g) is the multiset of edge types between depth [ and  + 1

@ Springer



1530 Mach Learn (2017) 106:1523-1545

E.g., for the neighbourhood tree in Fig. 3, we have

vie)=(B, ¢, D)
® Volbjecl(g) ={B}
. El(g) ={(F,1), (R, 1), (R, 1)}

Bohject,Attrl (g) :{Y}
Let .4 be the set of all neighbourhood trees corresponding to the vertices of interest in a
hypergraph. Let norm(-) be a normalization operator, defined as

f(g1,82)

max L)’

g’g/eﬁf (8.8

norm(f (g1, g2)) =

i.e., the normalization operator divides the value of the function f (g, g2) of two neighbour-
hood trees g; and g» by the highest value of the function f obtained amongst all pairs of
neighbourhood trees.

Intuitively, the proposed method starts by comparing two vertices according to their
attributes. It then proceeds by comparing the properties of their neighbourhoods: which
vertices are in there, which attributes they have and how are they interacting. Finally, it looks
at the proximity of vertices in a given hypergraph. Formally, the dissimilarity of two vertices
v and v’ is defined as the dissimilarity of their neighbourhood trees g and g’, which is:

s(g, g) = wy -ad(g, g) + wy - nad(g, g) + w3 - cd(g, g)

3)
+ wy - nd(g, g) + ws - ed(g, g)
where ) ; w; = 1 and
— attribute-wise dissimilarity
ad(g.g") =norm | Y d(B},(2). B),(g") @)

acA(t(v))

measures the dissimilarity of the root elements v and v” according to their attribute-value
pairs.
— neighbourhood attribute dissimilarity

d
nad(g, g) =norm [ Y ">~ " d(B] ,(2). B ,(g)) Q)

I=1teTy acA(r)

measures the dissimilarity of attribute-value pairs associated with the neighbouring ver-
tices of the root elements, per level and vertex type.
— connection dissimilarity

cd(g, g) =1 —norm (l{v e Vo(g)|v e V'(gH}) (©6)

reflects the number of edges of different type that exist between the two root elements.
— neighbourhood dissimilarity

#levels

nd(g, ) =norm [ > Y d(V/ (), V/(g)) @)

=1 t€Ty

measures the dissimilarity of two root elements according to the vertex identities in their
neighbourhoods, per level and vertex type.

@ Springer



Mach Learn (2017) 106:1523-1545 1531

— edge distribution dissimilarity:

#levels
ed(g, g) = norm ( > dE), E’(g))) ®)

=1
measures the dissimilarity over edge types present in the neighbourhood trees, per level.

Each component is normalized to the scale of 0-1 by the highest value obtained amongst
all pair of vertices, ensuring that the influence of each factor is proportional to its weight.
The weights wi_5 in Eq. 3 allow one to formulate a bias through the similarity measure. For
the remainder of the text, we will term our approach as ReCeNT (for Relational Clustering
using Neighbourhood Trees). The benefits and downsides of this formulation are discussed
and contrasted to the existing approaches in Sects. 3.3 and 4.3.

This formulation is somewhat similar to the multi-view clustering (Bickel and Scheffer
2004), with each of the components forming a different view on data. However, there is one
important fundamental difference: multi-view clustering methods want to find clusters that
are good in each view separately, whereas our components do not represent different views
on the data, but different potential biases, which jointly contribute to the similarity measure.

3 Related work
3.1 Hypergraph representation

Two interpretations of the hypergraph view of relational data exist in literature. The one
we incorporate here, where domain objects form vertices in a hypergraph with associated
attributes, and their relationships form hyperedges, was first introduced by Richards and
Mooney (1992). An alternative view, where logical facts form vertices, is presented by Ong
et al. (2005). Such representations were later used to learn the formulas of relational models
by relational path-finding (Kok and Domingos 2010; Richards and Mooney 1992; Ong et al.
2005; Lovasz 1996).

The neighbourhood tree introduced in Sect. 2.2 can be seen as summary of all paths in a
hypergraph originating at a certain vertex. Though neighbourhood trees and relational path-
finding rely on a hypergraph view, the tasks they solve are conceptually different. Whereas
the goal of the neighbourhood tree is to compactly represent a neighbourhood of a vertex
by summarizing all the paths originating at the vertex, the goal of relational path-finding is
to identify a small set of important paths that appear often in a hypergraph. Additionally, a
practical difference is the distinction between hyperedges and attributes - a neighbourhood
tree is constructed by following only the hyperedges, while the mentioned work either treats
attributes as unary hyperedges or requires a declarative bias from the user.

3.2 Related tasks

Two problems related to the one we consider here are graph and tree partitioning (Bader et al.
2013). Graph partitioning focuses on partitioning the original graph into a set of smaller graphs
such that certain properties are satisfied. Though such partitions can be seen as clusters of
vertices, the clusters are limited to vertices that are connected to each other. Thus, the problem
we consider here is strictly more general, and does not put any restriction of that kind on the
cluster memberships; the (dis)similarity of vertices can originate in any of the (dis)similarity
sources we consider, most of which cannot be expressed within a graph partitioning problem.

@ Springer



1532 Mach Learn (2017) 106:1523-1545

A number of tree comparison techniques (Bille 2005) exists in the literature. These
approaches consider only the identity of vertices as a source of similarity, while ignoring
the attributes and types of both vertices and hyperedges. Thus, they are not well suited for
the comparison of neighbourhood trees.

3.3 Relational clustering

The relational learning community, as well as the graph kernel community have previously
shown interest in clustering relational (or structured) data. Existing similarity measures within
the relational learning community can be coarsely divided into two groups.

The first group consists of similarity measures defined over an attributed graph model
(Pfeiffer et al. 2014), with examples in Hybrid similarity (HS) (Neville et al. 2003) and Hybrid
similarity on Annotated Graphs (HSAG) (Witsenburg and Blockeel 2011). Both approaches
focus on attribute-based similarity of vertices where HS compares the attributes of all con-
nected vertices, and HSAG’s similariy measure compares attributes of the vertices themselves
and attributes of their neighbouring vertices. The main limitations of these approaches are
that they ignore the existence of vertex and edge types, and impose a very strict bias towards
attributes of vertices. In comparison to the presented approach, HS defines dissimilarity as
the ad component if there is an edge between two vertices, and oo otherwise. HSAG defines
the dissimilarity as a linear combination of the ad and nad components for each pair of
vertices.

In contrast to the first group which employs a graph view, the second group of meth-
ods employs a predicate logic view, The two most prominent approaches are Conceptual
clustering of Multi-relational Data (CC) (Fonseca et al. 2012) and Relational instance-
based learning (RIBL) (Emde and Wettschereck 1996; Kirsten and Wrobel 1998). CC firstly
describes each example (corresponding to a vertex in our problem) with a set of logical
clauses that can be generated by a bottom clause saturation (Camacho et al. 2007). The
obtained clauses are considered as features, and their similarity is measured by the Tanimoto
similarity - a measure of overlap between sets. In that sense, it is similar to using the ad and
ed components for generating clauses. Note that this approach does not differentiate between
relations (or interactions) and attributes, does not consider distributions of any kind, and does
not have a sense of depth of a neighbourhood. Finally, RIBL follows an intuition that the
similarity of two objects depends on the similarity of their attributes’ values and the similarity
of the objects related to them. To that extent, it first constructs a context descriptor—a set
of objects related to the object of interest, similarly to the neighbourhood trees. Comparing
two object now involves comparing their features and computing the similarity of the set of
objects they are linked to. That requires matching each object of one set to the most similar
object in the other set, which is an expensive operation (proportional to the product of the set
sizes). In contrast, the X2 distance is linear in the size of the multiset. Further, the X2 distance
takes the multiplicity of elements into account (it essentially compares distributions), which
the RIBL approach does not.

Within the graph kernel community, two prominent groups exist: Weisfeiler—Lehman
graph kernels (WL) (Shervashidze et al. 2011; Shervashidze and Borgwardt 2009; Frasconi
et al. 2014; Haussler 1999; Bai et al. 2014) and random walk based kernels (Wachman and
Khardon 2007; Lovész 1996). A common feature of these approaches is that they measure a
similarity of graph by comparing their structural properties. The Weisfeiler-Lehman Graph
Kernels is a family of graph kernels developed upon the Weisfeiler—Lehman isomorphism
test. The key idea of the WL isomorphism test is to extend the set of vertex attributes by the
attributes of the set of neighbouring vertices, and compress the augmented attribute set into

@ Springer



Mach Learn (2017) 106:1523-1545 1533

Table 1 Aspects of similarity considered by different approaches

Similarity Attributes Neighbourhood Neighbourhood Proximity Structural
attributes identities properties

ReCeNT v v v v v

HS v X X X X

HSAG v v X X X

RIBL v v v X X

CcC o) S X X S

RKOH X S X X v

WLST X o) X X v

v denotes full consideration, > partial and x no consideration at all

new set of attributes. There each new attribute of a vertex corresponds to a subtree rooted from
the vertex, similarly to the neighbourhood trees. Shervashidze and Borgwardt have introduced
a fast WL subtree kernel (WLST) (Shervashidze and Borgwardt 2009) for undirected graphs
by performing the WL isomorphism test to update the vertex labels, followed by counting
the number of matched vertex labels. The difference between our approach and WL kernel
family is subtle but important: WL graph kernels extend the set of attributes by identifying
isomorphic subtrees present in (sub)graphs. This is reflected in the bias they impose, that is,
the similarity comes from the structure of a graph (in our case, a neighbourhood tree).

A Rooted Kernel for Ordered Hypergraph (RKOH) (Wachman and Khardon 2007) is an
instance of random walk kernels successfully applied in relational learning tasks. These
approaches estimate the similarity of two (hyper)graphs by comparing the walks one can
obtain by traversing the hypergraph. RKOH defines a similarity measure that compares two
hypergraphs by comparing the paths originating at every edge of both hypergraphs, instead
of the paths originating at the root of the hypergraph. RKOH does not differentiate between
attributes and hyperedges, but treats everything as an hyperedge instead (an attribute can be
seen as an unary edge).

Table 1 summarizes different aspects of similarity considered by the above mentioned
approaches. The interpretations of similarity are divided into five sources of similarity.
The first two categories concern attributes: attributes of the vertices themselves and their
neighbouring vertices. The following two categories concern identities of vertices in the
neighbourhood of a vertex of interest. They concern subgraphs (identity of vertices in the
neighbourhood) centered at a vertex, and proximity of two vertices. The final category con-
cerns the structural properties of subgraphs in the neighbourhood of a vertex defined by the
neighbourhood tree.

3.3.1 Complexity analysis

Though scalability is not the focus of this work, here we show that the proposed approach
is as scalable as the state-of-the-art kernel approaches, and substantially less complex than
the majority of the above-mentioned approaches that use both attribute and link structure.
For the sake of clarity of comparison, assume a homogeneous graph with only one vertex
type and one edge type. Let N be the number of vertices in a hyper-graph, L be the total
number of hyperedges, and d be the depth of a neighbourhood representation structure, where
applicable. Let, as well, A be the number of attributes in a data set. Additionally, assume that

@ Springer



1534 Mach Learn (2017) 106:1523-1545

Table 2 Complexities of

different approaches Approach Complexity
HS 0 (LA)
HSAG 0 ( N2E A)
ReCeNT ( o (N2 Ed)
WLST 0 ( N2E )
CcC 0 ( N2 E+A )
RIBL ) (N _(E+ A)zk)
RKOH 0 ( (E + A)2d+21)

all vertices participate in the same number of hyperedges, which we will refer to as £. We
will refer to the length of clause in CC and path in RKOH as /.

To compare any two vertices, ReCeNT requires one to compute the dissimilarity of the mul-
tisets representing the vertices, proportional to O (d x A + ZZ:l Ef =0 (N ’E d). Table 2
summarizes the complexities of the discussed approaches. In summary, the approaches can
be grouped into three categories. The first category contains HS and HSAG; these are sub-
stantially less complex than the rest, but focus only on the attribute similarities. The second
category contains RIBL and RKOH, which are substantially more complex than the rest. Both
of these approaches use both attribute and edge information, but in a computationally very
expensive way. The last category contains ReCeNT, WLST and CC; these lie in between.
They use both attribute and edge information, but in a way that is much more efficient than
RIBL and RKOH.

The complexity of ReCeNT benefits mostly from two design choices: differentiation of
attributes and hyperedges, and decomposition of neighbourhood elements into multisets. By
distinguishing hyperedges from attributes, ReCeNT focuses on identifying sparse neigh-
bourhoods. Decomposition of neighbourhoods into multisets allows ReCeNT to compute
the similarity linearly in the size of a multiset. The parameter that ReCeNT is the most sen-
sitive to is the depth of the neighbourhood tree, which is the case with the state-of-the-art
kernel approaches as well. However, the main underlying assumption behind ReCeNT is that
important information is contained in small local neighbourhoods, and ReCeNT is designed
to use such information.

4 Evaluation
4.1 Data sets

We evaluate our approach on five data sets for relational clustering with different character-
istics and domains. The chosen data sets are commonly used within the (statistical) relational
learning community, and they expose different biases. The characterization of data sets,
summarized in Table 3, include the total number of vertices in a hypergraph, the number of
vertices of interest, the total number of attributes, the number of attributes associated with
vertices of interest, the number of hyperedges as well as the number of different hyperedge
types. The data sets range from having a small number of vertices, attributes and hyperedges

@ Springer



Mach Learn (2017) 106:1523-1545 1535

Table 3 Characteristics of the data sets used in experiments

Data set IMDB UW-CSE Muta WebKB Terror
#vertices 298 734 6124 3880 1293
#target vertices 268 272 230 920 1293
#vertex types 3 4 2 2 1
#attributes 3 7 7 1207 106
#target attributes 3 3 4 763 106
#hyperedges 715 1834 30804 5779 3743
#hyperedge types 3 6 7 4 2

The characteristics include the total number of vertices, the number of vertices of interest, the total number of
attributes, the number of attributes associated with vertices of interest, the number of hyperedges as well as
the number of different hyperedge types

(UW-CSE, IMDB), to a considerably large number of vertices, attributes or hyperedges
(Mutagenesis, WebKB, TerroristAttack). All the chosen data sets are originally classification
data sets, which allows us to evaluate our approach with respect to how well it extracts the
classes present in the data set.

The IMDB? data set is a small snapshot of the Internet Movie Database. It describes a set
of movies with people acting in or directing them. The goal is to differentiate people into two
groups: actors and directors. The UW-CSE? data set describes the interactions of employees
at the University of Washington and their roles, publications and the courses they teach. The
task is to identify two clusters of people: students and professors. The Mutagenesis* data set
describes chemical compounds and atoms they consist of. Both compounds and atoms are
described with a set of attributes describing their chemical properties. The task is to identify
two clusters of compounds: mutagenic and not mutagenic. The WebKB? data set consists of
pages and links collected from the Cornell University’s webpage. Both pages and links are
associated with a set of words appearing on a page or in the anchor text of a link. The pages are
classified into seven groups according to their role, such as personal, departmental or project
page. The final data set, termed Terrorists® (Sen et al. 2008), describes terrorist attacks each
assigned one of 6 labels indicating the type of the attack. Each attack is described by a total
of 106 distinct features, and two relations indicating whether two attacks were performed by
the same organization or at the same location.

4.2 Experiment setup

In the remainder of this section, we evaluate our approach. We focus on answering the
following questions:

(Q1) Howwelldoes ReCeNT perform on the relational clustering tasks compared to existing
similarity measures?

(Q2) How relevant is each of the components? We perform clustering using our similarity
measure and setting the parameters as w; = 1, wj j«; = 0.

2 Available at http://alchemy.cs.washington.edu/data/imdb.

3 Available at http://alchemy.cs.washington.edu/data/uw-cse/.

4 Available at http://www.cs.ox.ac.uk/activities/machlearn/mutagenesis.html.
5 Available at http://alchemy.cs.washington.edu/data/webkb/.

6 Available at http://lings.umiacs.umd.edu/projects//projects/Ibc/.

@ Springer


http://alchemy.cs.washington.edu/data/imdb
http://alchemy.cs.washington.edu/data/uw-cse/
http://www.cs.ox.ac.uk/activities/machlearn/mutagenesis.html
http://alchemy.cs.washington.edu/data/webkb/
http://linqs.umiacs.umd.edu/projects//projects/lbc/

1536 Mach Learn (2017) 106:1523-1545

(Q3) To which extent can the parameters of the proposed similarity measure be learnt from
data in an unsupervised manner?

(Q4) How well does ReCeNT perform compared to existing similarity measures in a super-
vised setting?

(Q5) How do the runtimes for ReCeNT compare to the competitors?

In each experiment, we have used the aforementioned (dis)similarity measures in con-
junction with spectral (Ng et al. 2001) and hierarchical (Ward 1963) clustering algorithms,
as implemented in scikit-learn (Pedregosa et al. 2011).” We have intentionally chosen
two clustering approaches which assume different biases, to be able to see how each simi-
larity measure is affected by assumptions clustering algorithms make. We have altered the
depth on neighbourhood trees between 1 and 2 wherever it was possible, and report both
results.

We evaluate each approach using the following validation method: we set the number of
clusters to be equal to the true number of clusters in each data set, and evaluate the obtained
clustering with regards to how well it matches the known clustering given by the labels. Each
obtained clustering is then evaluated using the adjusted Rand index (ARI) (Rand 1971; Morey
and Agresti 1984). The ARI measures the similarity between two clusterings, in this case
between the obtained clustering and the provided labels. The ARI score ranges between —1
and 1, where a score closer to 1 corresponds to higher similarity between two clusterings, and
hence better performance, while O is the chance level. For each data set, and each similarity
measure, we report the ARI score they achieve. Additionally, we have set a timeout to 24 h
and do not report results for an approach that takes more time to compute.

To achieve a fair time comparison, we implemented all similarity measures (HS, HSAG,
RIBL, CC, as well as RKOH) in Scala and optimized them in the same way, by caching all
the intermediate results that can be re-used. The hierarchy obtained by hierarchical clustering
was cut when it has reached the pre-specified number of clusters. In the first experiment, the
weights wi_5 were not tuned, and were set to 0.2. We have used mean as an aggregate for
continuous attributes.

4.3 Results
4.3.1 (Q1) Comparison to the existing methods

Using exactly the same clustering algorithms, we compare ReCeNT to a variety of
(dis)similarity measures: a baseline approach using the Euclidean distance between attributes
of vertices and no relationships, HS (Neville et al. 2003), HSAG (Witsenburg and Blockeel
2011), CC (Fonseca et al. 2012), RIBL (Emde and Wettschereck 1996); as well as Weisfeiler—
Lehman subtree kernel (WLST) (Shervashidze and Borgwardt 2009), Linear kernel between
vertex histograms (V), Linear kernel between vertex-edge histograms (VE) provided with
(Sugiyama and Borgwardt 2015), and RKOH (Wachman and Khardon 2007). The subscript
in ReCeNT, HSAG, RIBL and kernel approaches denotes the depth of the neighbourhood
tree (or other supporting structure). The subscript in CC denotes the length of the clauses.
The second subscript in WLST and RKOH indicates their parameters: with WLST it is the
h parameter indicating the number of iterations, whereas with RKOH it indicates the length
of the walk.

The results of the first experiment are summarized in Table 4. The table contains ARI
values obtained by the similarity measures for each data set and clustering algorithm used.

7 more precisely, sklearn.cluster.SpectralClustering and sklearn.cluster.AgglomerativeClustering.

@ Springer



Mach Learn (2017) 106:1523-1545 1537

Table 4 Performance of all approaches on three data sets

Similarity Muta UWCSE WebKB Terror IMDB w
H S H S H S H S H S
Baseline —-0.02 —-0.03 025 0.2 0.00 025 0.00 0.17 0.05 0.05 0
HS N/A N/A 0.01 0.06 0.0 0.10 0.01 —0.01 0.00 0.00 0
CCy 0.00 0.01 0.1 0.82 0.00 0.04 0.01 001 0.1 0.1 0
CCy 0.00 0.01 0.00 092 0.00 0.04 0.01 001 0.1 0.1 0
ReCeNT) 0.32 0.35 0.97 098 0.04 057 0.00 0.26 0.62 1.0 8
RIBL; 0.22 0.26 0.89 0.68 0.0 0.1 N/A  N/A 0.35 0.38 0
HSAG; —0.01  0.06 0.1 0.0 0.01 005 0.00 0.24 0.04 —-005 0
WLST 5 0.00 0.02 —-0.01 033 0.00 033 027 0.07 —0.01  0.66 1
WLST{ 190 0.00 0.02 —-0.01 033 0.00 032 027 0.11 —-0.01 031 1
Vi 0.00 0.03 —-0.01 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0
VE| 0.00 0.03 0.01 036  0.00 0.00 0.00 0.00 1.0 1.0 2
RKOH;, 0.1 0.1 0.2 0.2 N/A N/A NA N/A 0.83 0.83 0
RKOH; 4 N/A N/A N/A N/A  N/A NA NA NA N/A N/A 0
ReCeNT,  0.08 0.3 0.1 0.16 0.02 04 0.01 0.16 0.13 1.0 1
RIBL; N/A N/A 0.0 068 N/A NA NA NA 0.63 0.78 0
HSAG, —-0.01  0.06 0.1 0.0 0.0 0.04 0.00 0.23 0.04 0.09 0
WLST, 5 0.00 0.01 0.02 0.02 0.00 052 027 O0.11 —-0.04 031 1
WLST, 19 0.00 0.01 0.02 0.02 0.00 052 0.05 0.12 —0.04 036 0
%) 0.00 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
VE; 0.00 0.00 0.01 038 0.00 056 0.00 0.00 0.00 0.53 1
RKOH;,  N/A N/A N/A N/A  N/A NA NA NA N/A N/A 0
RKOH; 4 N/A N/A N/A N/A  N/A NA NA NA N/A N/A 0

For each similarity measure, the ARI achieved when the true number of clusters was used. The results are
shown for both hierarchical and spectral clustering, while the depth of the approaches is indicated by the
subscript. The last column counts the number of wins per algorithm, where “win” means achieving the highest
ARI on a data set

Bold values indicate the best-obtained performance for each dataset

The last column of the table states the number of wins per approach. The number of wins is
calculated by simply counting the number of cases where the approach obtained the highest
ARI value, a ”case” being a combination of a data set and a clustering algorithm. ReCeNT}
wins 8 out of 10 times, and thus outperforms all other methods. The best results are achieved
in combination with spectral clustering, with exception being the TerroristAttack data set
where WLST , and WLST> 5 combined with hierarchical clustering achieved the highest
ARI of 0.27, in contrast to 0.26 obtained by ReCeNT. In all cases of the Mutagenesis and
UWCSE data sets, ReCeNT; wins with a larger margin. However, it is important to note that
in the remaining cases, the closest competitor is not always the same. In the case of IMDB
data set in combination with spectral clustering, the closest competitor is VE; (together with
RKOH; ), as well as in the case of WebKB in combination with spectral clustering. In the
cases of the TerroristAttack data set combined with the spectral clustering, the closest com-
petitors are HSAG| and HSAG,, while in the case with hierarchical clustering our approach
is outperformed by WLST; .. and WLST> 5. These results show that the proposed similar-
ity measure performs better over wide range of different tasks and biases, compared to the

@ Springer



1538 Mach Learn (2017) 106:1523-1545

remaining approaches. Moreover, when combined with the spectral clustering, ReCeNT}
consistently performs well on all data sets, achieving the second-best result only on the
TerroristAttack data set.

Each of the data sets exposes different bias, which influences the performance of the meth-
ods. In order to successfully identify mutagenic compounds, one has to consider both attribute
and link information, including the attributes of the neighbours. Chemical compounds that
have similar structure tend to have similar properties. This data set is more suitable for RIBL,
ReCeNT and kernel approaches. ReCeNT; and RIBL; achieve the best results here,® while
kernels approaches surprisingly do not perform better than the chance level. The UW-CSE
is a social-network-like data set where the task is to find two interacting communities with
different attribute-values—students and professors. The distinction between two classes is
made on a single attribute—professors have positions, while students do not, and the relation
stating that professors advise students. This task is suitable for HS and HSAG. However, both
approaches are substantially outperformed by ReCeNT and CC,. Similarly, the IMDB data
set consists of a network of people and their roles in movies, which can be seen as a social
network. Here, directors can be differentiated from actors by a single edge type—actors work
under directors which is explicitly encoded in the data set. The type of interactions between
entities matters the most, as it is not an attribute-rich data set, and is thus more suitable for
methods that account for structural measures. Accordingly, ReCeNT, RIBL, WLST; , and
VE kernels achieve the best results.

The remaining data sets, WebKB and TerroristAttack, are entirely different in nature from
the aforementioned ones. These data set have a substantially larger number of attributes, but
those are not sufficient to identify relevant clusters supported by labels, that is, interactions
contain important information. Such bias is implicitly present in HS, and partially assumed
by kernel approaches. The results show that ReCeNT; and WSLT; . and VE; kernels achieve
almost identical performance on the WebKB data set, while the remaining approaches are
outperformed even by the baseline approach. On the TerroristAttack data set, WLST] . kernel
achieves the best performance, outperforming ReCeNT; and HSAG;. Similarly to WebKB,
other approaches are outperformed by the baseline approach.

The results summarized in Table 4 point to several conclusions. Firstly, given that the
proposed approach achieves the best results in 8 out of 10 test cases, the results suggest
that it is indeed versatile enough to capture relevant information, regardless of whether
that comes from the attributes of vertices, their proximity, or connectedness of vertices,
even without parameter tuning. Moreover, when combined with the spectral clustering, our
approach consistently obtains good results on all data sets, while the competitor approaches
achieve good results if the problem fits their bias. Secondly, the results show that one has to
consider not only the bias of the similarity measure, but the bias of the clustering algorithm as
well, which is evident on most data sets where spectral clustering achieves substantially better
performance than hierarchical clustering. Finally, ReCeNT and most of the approaches tend to
be sensitive to the depth parameter, which is evident in the drastic difference in performance
when different depths are used. This suggests that increasing depth of a neighbourhood
tree consequently introduces more noise. Interestingly, while the results suggest that with
ReCeNT the depth of 1 performs the best, the performance of kernel methods tend to increase
with the depth parameter. These results justify the basic assumption of this approach that
important information is contained in small local neighbourhoods.

8 We were not able to make HS work on this data set as it assumes edges between compound vertices which
are non-existing in this data set.

@ Springer



Mach Learn (2017) 106:1523-1545 1539

Table 5 Performance of ReCeNT with different parameter settings

Parameters Muta UWCSE WebKB Terror IMDB
Hier. Spec  Hier.  Spec Hier. Spec  Hier. Spec Hier.  Spec

1,0,0,0,0 0.00 0.00 025 0.2 0.00 0.25 0.01 0.17  0.05 0.05
0,1,0,0,0 0.00 0.00 052 0.12  0.00 0.00 0.00 —-0.01 0.0 0.00
0,0,1,0,0 0.00 0.00 0.05 0.1 0.00 0.1 0.00 0.00 0.14 0.13
0,0,0,1,0 030 030 002 -0.03 0.00 02 0.00 -0.01 0.17 0.17
0,0,0,0,1 024 025 0.17 0.07 0.00 0.02 -0.01 0.00 1.0 1.0
0.2,0.2,0.2,0.2,02 032 035 096 0.86 0.04 0.56 0.00 0.26  0.62 1.0
1,0,0,0,0 0.00 0.00 0.00 0.2 0.00 0.27 0.00 0.17 005 —0.05
0,1,0,0,0 0.00 0.00 0.03 0.16 0.00 0.00 0.00 —-0.01 0.0 0.00
0,0,1,0,0 0.00 0.00 0.00 0.08 0.00 0.01 0.01 0.00 0.15 0.13
0,0,0,1,0 029 029 001 =003 0.02 02 -0.01 -0.01 0.00 0.00
0,0,0,0,1 0.00 027 003 -0.04 0.00 0.02 0.00 0.00 1.0 1.0
0.2,0.2,0.2,0.2,02 008 03 0.1 0.07 0.02 04 0.01 0.16 0.13 1.0

The upper part of the table presents results with the neighbourhood trees with depth of 1, whereas the bottom
part contains the results with depth set to 2. The parameters in italic indicate the best performance achieved

4.3.2 (Q2) Relevance of components

In the second experiment, we evaluate how relevant each of the five components in Eq. 3 is.
Table 5 summarizes the results. There are only two cases (Mutagenesis and IMDB) where
using a single component (if it is the right one!) suffices to get results comparable to using
all components (Table 5). This confirms that clustering relational data is difficult not only
because one needs to choose the right source of similarity, but also because the similarity of
relational objects may come from multiple sources, and one has to take all these into account
in order to discover interesting clusters.

These results may explain why ReCeNT almost consistently outperforms all other methods
in the first experiment. First, ReCeNT considers different sources of relational similarity; and
second, it ensures that each source has a comparable impact (by normalizing the impact of
each source and giving each an equal weight in the linear combination). This guarantees that
if a component contains useful information, it is taken into account. If a component has no
useful information, it adds some noise to the similarity measure, but the clustering process
seems quite resilient to this. If most of the components are irrelevant, the noise can dominate
the pattern. This is likely what happens in experiment 1 when depth 2 neighbourhood trees
are used: too much irrelevant information is introduced at level two, dominating the signal
at level one.

4.3.3 (Q3) Learning weights in an unsupervised manner

The first experiment shows that ReCeNT outperforms the competitor methods even without
parameters being tuned. The second experiment shows that one typically has to consider
multiple interpretations of similarity in order to obtain a useful clustering. A natural question
to ask is whether the parameters could be learned from data in an unsupervised way. The
possibility of tuning offers an additional flexibility to the user. If the knowledge about the
right bias is available in advance, one can specify it through adjusting the parameters of the

@ Springer



1540 Mach Learn (2017) 106:1523-1545

Table 6 Results obtained by AASC

Approach IMDB UWCSE Mutagenesis WebKB Terror
ReCeNT; 1.0 0.98 0.35 0.56 0.26
AASC 0.78 0.65 0.35 0.57 0.28
ReCeNT; 1.0 0.07 0.3 0.4 0.16
AASCy 0.67 0.23 0.3 0.4 0.23

The subscript indicates the depth of the neighbourhood tree

similarity measure, potentially achieving even better results than those presented in Table 4.
However, tuning the weights in an automated and systematic way is a difficult task as there
is no clear objective function to optimize in a purely unsupervised settings. Many clustering
evaluation criteria, such as ARI, require a reference clustering which is not available during
clustering itself. Other clustering quality measures do not require a reference clustering, but
each of those has its own bias (Van Craenendonck and Blockeel 2015).

An approach that might help in this direction is the Affinity Aggregation for Spectral Clus-
tering (AASC) (Huang et al. 2012). This work extends spectral clustering to a multiple affinity
case. The authors start from the position that similarity of objects often can be measured in
multiple ways, and it is often difficult to know in advance how different similarities should
be combined in order to achieve the best results. Thus, the authors introduce an approach
that learns the weights that would, when clustered into the desired number of clusters, yield
the highest intra-cluster similarity. That is achieved by iteratively optimizing: (1) the cluster
assignment given the fixed weights, and (2) weights given a fixed cluster assignment. Thus,
by treating each component in Eq. 3 as a separate affinity matrix, this approach tries to learn
their optimal combination.

‘We have tried AASC in ReCeNT, and the results are summarized in Table 6. These results
lead to several conclusions. Firstly, in most cases AASC yields no substantial benefit or even
hurts performance. This confirms that learning the appropriate bias (and the corresponding
parameters) in an entirely unsupervised way is a difficult problem. The main exceptions are
found for depth 2: here, a substantial improvement is found for UWCSE and TerroristAttack.
This seems to indicate that the bad performance on depth 2 is indeed due to an overload of
irrelevant information, and that AASC is able to weed out some of that. Still, the obtained
results for depth 2 are not comparable to the ones obtained for depth 1. We conclude that
tuning the weights in an unsupervised manner will require more sophisticated methods than
the current state of the art.

4.3.4 (Q4) Performance in a supervised setting

The previous experiments point out that the proposed dissimilarity measure performs well
compared to the existing approaches, but finding the appropriate weights is difficult. Though
our focus is on clustering tasks, we can use our dissimilarity measure for classification tasks
as well. The availability of labels offers a clear objective to optimize when learning the
weights, and thus allows us to evaluate the appropriateness of ReCeNT for classification.
We have set up an experiment where we use a k nearest neighbours (kNN) classifier with
each of the (dis)similarity measures. It consists of a 10-fold cross-validation, where within
each training fold, an internal 10-fold cross-validation is used to tune the parameters of the

@ Springer



Mach Learn (2017) 106:1523-1545 1541

Table 7 Performance of the kNN classifier with different (dis)similarity measure and weight learning

Approach IMDB UWCSE Mutagenesis WebKB Terrorists
HS 88.08 76.66 0.00 12.78 27.51

cc 88.08 99.85 60.08 61.07 38.28
HSAG 88.08 95.88 77.40 12.82 75.62
ReCeNT 100 100 85.54 100 85.60
RIBL 100 77.22 76.37 84.11 N/A
WLST 93.60 44.94 76.37 47.35 45.56
VE 100 98.26 70.60 49.33 30.00

v 93.80 43.61 70.42 47.35 44.39
RKOH 95.07 67.26 60.78 N/A N/A

The performance is expressed in terms of accuracy over the 10-fold cross validation
Bold values indicate the best-obtained performance for each dataset

similarity measure, and kNN with the tuned similarity measure is next used to classify the
examples in the corresponding test fold.

The results of this experiment are summarized in Table 7. ReCeNT achieves the best
performance on all data sets. On the IMDB data set, ReCeNT achieves perfect performance,
as do RIBL and VE. On UWCSE, ReCeNT is 100% accurate; its closest competitor, CC,
achieves 99.85%. From the classification viewpoint, these two data sets are easy: the classes
are differentiable by one particular attribute or relation. On Mutagenesis and Terrorists, the
difference is more outspoken: ReCeNT achieves around 85% accuracy, with its closest com-
petitor (HSAG) achieving 76 or 77%. On WebKB, finally, ReCeNT and RIBL substantially
outperform all the other approaches, with ReCeNT achieving 100% and RIBL 84.11%.

The remarkable performance of ReCeNT on WebKB is explained by inspecting the tuned
weights. These reveal that ReCeNT’s ability to jointly consider vertex identity, edge type
distribution, and vertex attributes (in this case, words on webpages) are the reason why it
performs so well. None of the other approaches take all three components into account, which
is why they achieve substantially worse results.

These results clearly show that accounting for several views of similarity is beneficial for
relational learning. Moreover, the availability of labelled information is clearly helpful and
ReCeNT is capable of successfully adapting its bias towards the needs of the data set.

4.3.5 (Q5) Runtime comparison

Table 8 presents a comparison of runtimes for each approach. All the experiments were run
on a computer with 3.20 GHz of CPU power and 32 GB RAM. The runtimes include the
construction of supporting structures (neighbourhood trees and context descriptors), calcu-
lation of similarity between all pairs of vertices, and clustering. The measured runtimes are
consistent with the previously discussed complexities of the approaches. HS, HSAG, CC,
ReCeNT and kernel approaches (excluding RKOH) are substantially more efficient than the
remaining approaches. This is not surprising, as HS, HSAG and CC use very limited infor-
mation. It is, however, interesting to see that ReCeNT and WLST, which use substantially
more information, take only slightly more time to compute, while achieving substantially
better performance on most data sets. These approaches are also orders of magnitude more
efficient than RIBL and RKOH, which did not complete on most data sets with depth set to

@ Springer



1542 Mach Learn (2017) 106:1523-1545

Table 8 Runtime comparison in minutes (rounded up to the closest integer)

Approach IMDB UWCSE Mutagenesis WebKB Terror
HS 1 1 N/A 1 1
CCy 1 1 1 5 1
CCy 1 1 1 8 8
HSAG 1 1 1 2 2
HSAG,; 1 1 1 5 2
ReCeNT 1 1 1 2 2
ReCeNT, 1 1 3 10 5
RIBL; 1 2 540 1320 N/A
RIBL; 2 5 N/A N/A N/A
WLST 5 1 1 1 1 1
WLST 10 1 1 1 1 1
WLST, 5 1 1 1 4 5
WLST, 10 1 1 1 4 5
VE; 1 1 1 1 2
RKOH; » 1 2 10 N/A N/A
RKOHj 4 N/A N/A N/A N/A N/A
RKOH; » N/A N/A N/A N/A N/A
RKOH; 4 N/A N/A N/A N/A N/A

The runtimes include the construction of supporting structures and time needed to calculate a similarity between
each pair of vertices in a given hypergraph. Note that graph kernel measures (in italic) are obtained using the
external software provided with Sugiyama and Borgwardt (2015)

N/A indicates that the calculation took more than 24 h

2. That is particularly the case for RKOH which did not complete in 24 h even with the depth
of 1, when the walk length was set to 4.

5 Conclusion

In this work we propose a novel dissimilarity measure for clustering relational objects,
based on a hypergraph interpretation of a relational data set. In contrast with the previous
approaches, our approach takes multiple aspects of relational similarity into account, and
allows one to focus on a specific vertex type of interest, while at the same time leveraging
the information contained in other vertices. We develop the dissimilarity measure to be ver-
satile enough to capture relevant information, regardless whether it comes from attributes,
proximity or connectedness in a hyper-graph. To make our approach efficient, we intro-
duce neighbourhood trees, a structure to compactly represent the distribution of attributes
and hyperedges in the neighbourhood of a vertex. Finally, we experimentally evaluate our
approach on several data sets on both clustering and classification tasks. The experiments
show that the proposed method often achieves better results than the competitor methods
with regards to the quality of clustering and classification, showing that it indeed is versatile
enough to adapt to each data set individually. Moreover, we show that the proposed approach,
though more expressive, is as efficient as the state-of-the-art approaches. One open challenge
is to which extent the parameters of the proposed similarity measure can be learnt from data

@ Springer



Mach Learn (2017) 106:1523-1545 1543

in an unsupervised (or a semi-supervised) way. We conducted experiments with the affinity
aggregation approaches that demonstrated the difficulty of this problem. The proposed simi-
larity measure is sensitive to the depth of a neighbourhood tree, which poses a problem when
large neighbourhoods have to be compared. However, the experiments demonstrated that the
depth of 1 often suffices.

Future work This work can be extended in several directions. First, there is a number of
options concerning the choice of the weights of the proposed similarity measure. Learning
the weights works well when class labels are available, but is difficult in an unsupervised
setting. In semi-supervised classification or constraint-based clustering (Wagstaff et al. 2001),
limited information is available that may help tune the weights. A small number of labels or
pairwise constraints (must-link / cannot-link) may suffice to tune the weights in ReCeNT.

The second direction comes from the field of multiple kernel learning (Gonen and
Alpaydin 2011). The field of multiple kernel learning is concerned with finding an opti-
mal combination of fixed kernel sets, and might be inspirational in learning the weights
directly from data. In contrast to many relational clustering techniques, our approach with
neighbourhood trees allows us to construct a prototype - a representative example of a clus-
ter, which many of the clustering algorithms require. Moreover, constructing a prototype
of a cluster might be of great help analysing the properties of objects clustered together.
Integrating our measure into very scalable clustering methods such as BIRCH (Zhang et al.
1996), would allow one to cluster very large hypergraphs. An interesting extension would be
to modify the summations over levels of neighbourhood trees into weighted sums over the
same levels, following the intuition that the vertices further from the vertex of interest are
less relevant, but at the same time giving them a chance to make a difference.

Acknowledgements This research is supported by Research Fund KU Leuven (GOA/13/010). The authors
thank the anonymous reviewers for their helpful feedback.

References

Bader, D. A., Meyerhenke, H., Sanders, P., & Wagner, D. (Eds) (2013). Graph partitioning and graph clustering.
In 10th DIMACS implementation challenge workshop, Georgia Institute of Technology, Atlanta, GA,
USA, February 13-14,2012. Proceedings, contemporary mathematics, Vol. 588, American Mathematical
Society. doi:10.1090/conm/588

Bai, L., Ren, P., & Hancock, E. R. (2014). A hypergraph kernel from isomorphism tests. In Proceedings of
the 2014 international conference on pattern recognition, ICPR ’14 (pp. 3880-3885), IEEE Computer
Society, Washington, DC, USA

Bickel, S., & Scheffer, T. (2004) Multi-view clustering. In Proceedings of the fourth IEEE international
conference on data mining, ICDM '04 (pp. 19-26), IEEE Computer Society, Washington, DC, USA.

Bille, P. (2005). A survey on tree edit distance and related problems (Vol. 337). Essex, UK: Elsevier Science
Publishers Ltd.

Camacho, R., Fonseca, N. A., Rocha, R., & Costa, V. S. (2007). ILP:-just trie it. In / 7th international conference
on inductive logic programming, ILP (pp. 78-87), Corvallis, OR, USA.

Cook, D. J., & Holder, L. B. (2006). Mining graph data. Hoboken: John Wiley & Sons.

De Raedt, L. (2008). Logical and relational learning. Cognitive technologies. Berlin: Springer.

Dzeroski, S., & Blockeel, H. (2004). Multi-relational data mining 2004: Workshop report. SIGKDD Explo-
rations, 6(2), 140-141. doi:10.1145/1046456.1046481.

Emde, W., & Wettschereck, D. (1996). Relational instance based learning. In L. Saitta (Ed.), Proceedings 13th
international conference on machine learning (ICML 1996) (pp. 122-130), July 3-6, 1996. USA: Bari,
Italy, Morgan-Kaufman Publishers, San Francisco, CA.

Estivill-Castro, V. (2002). Why so many clustering algorithms: A position paper. SIGKDD Explorations
Newsletter, 4(1), 65-75.

@ Springer


http://dx.doi.org/10.1090/conm/588
http://dx.doi.org/10.1145/1046456.1046481

1544 Mach Learn (2017) 106:1523-1545

Fonseca, N. A., Santos Costa, V., & Camacho, R. (2012). Conceptual clustering of multi-relational data. In S. H.
Muggleton, A. Tamaddoni-Nezhad, & F. A. Lisi (Eds.), Inductive logic programming: 21st international
conference, ILP 2011 (pp. 145-159), Windsor Great Park, UK, July 31-August 3,2011. Revised Selected
Papers. Berlin: Springer.

Frasconi, P., Costa, F., De Raedt, L., & De Grave, K. (2014). klog: A language for logical and relational
learning with kernels. Artificial Intelligence, 217, 117-143.

Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning (adaptive computation and
machine learning). Cambridge: The MIT Press.

Gonen, M., & Alpaydin, E. (2011). Multiple kernel learning algorithms. Journal of Machine Learning
Research, 12,2211-2268.

Haussler, D. (1999). Convolution kernels on discrete structures. Technical Report UCS-CRL-99-10, University
of California at Santa Cruz, Santa Cruz, CA, USA

Huang, H. C., Chuang, Y. Y., & Chen, C. S. (2012) Affinity aggregation for spectral clustering. In International
conference on computer vision and pattern recognition (pp. 773-780), IEEE Computer Society.

Kirsten, M., & Wrobel, S. (1998). Relational distance-based clustering. In Lecture notes in computer science
(Vol. 1446, pp. 261-270). Springer-Verlag.

Kok, S., & Domingos, P. (2010). Learning markov logic networks using structural motifs. In Proceedings of
the 27th international conference on machine learning (ICML-10) (pp. 551-558).

Lovdsz, L. (1996). Random walks on graphs: A survey. In D. Miklés, V. T. S6s, & T. Sz6nyi (Eds.), Combi-
natorics, Paul Erdos is eighty (Vol. 2, pp. 353-398). Budapest: Janos Bolyai Mathematical Society.

Morey, L. C., & Agresti, A. (1984). The measurement of classification agreement: An adjustment to the rand
statistic for chance agreement. Educational and Psychological Measurement, 44(1), 33-37.

Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods. The Journal of
Logic Programming, 19(20), 629-679. doi:10.1016/0743-1066(94)90035-3.

Neville, J., Adler, M., & Jensen, D. (2003). Clustering relational data using attribute and link information.
In Proceedings of the text mining and link analysis workshop, 18th international joint conference on
artificial intelligence (pp. 9-15).

Ng, A. Y., Jordan, M. L., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. In Advances
in neural information processing systems (pp. 849-856). MIT Press.

Ong, I. M., Castro Dutra, 1., Page, D., & Costa, V. S. (2005). Mode directed path finding. In /6th European
conference on machine learning (pp. 673—-681). Berlin: Springer.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.

Perlich, C., & Provost, F. (2006). Distribution-based aggregation for relational learning with identifier
attributes. Machine Learning, 62(1-2), 65-105. doi:10.1007/s10994-006-6064- 1.

Pfeiffer, J. J. III., Moreno, S., La Fond, T., Neville, J., & Gallagher, B. (2014). Attributed graph models:
Modeling network structure with correlated attributes. In Proceedings of the 23rd international conference
on world wide web, WWW ’14 (pp. 831-842), ACM, New York, NY, USA.

Rand, W. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical
Association, 66(336), 846-850.

Richards, B. L., & Mooney, R. J. (1992). Learning relations by pathfinding. In Proceedings of of AAAI-92 (pp
50-55), San Jose, CA.

Sen, P, Namata, G. M., Bilgic, M., Getoor, L., Gallagher, B., & Eliassi-Rad, T. (2008). Collective classification
in network data. AI Magazine, 29(3), 93-106.

Shervashidze, N., & Borgwardt, K. (2009). Fast subtree kernels on graphs. In Proceedings of the neural
information processing systems conference NIPS 2009 (pp. 1660—1668), Neural Information Processing
Systems Foundation.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K., & Borgwardt, K. M. (2011). Weisfeiler—
Lehman graph kernels. Journal of Machine Learning Research, 12, 2539-2561.

Sugiyama, M., & Borgwardt, K. (2015). Halting in random walk kernels. In Advances in neural information
processing systems 28 (pp 1639-1647). Curran Associates, Inc.

Van Craenendonck, T., & Blockeel, H. (2015). Using internal validity measures to compare clustering algo-
rithms. In AutoML Workshop at 32nd international conference on machine learning, Lille, July 11, 2015,
(pp 1-8) https://lirias.kuleuven.be/handle/123456789/504712

Wachman, G., & Khardon, R. (2007). Learning from interpretations: a rooted kernel for ordered hypergraphs.
In Proceedings of the twenty-fourth international conference on machine learning (ICML 2007) (pp.
943-950), Corvallis, Oregon, USA, June 20-24, 2007.

Wagstaff, K., Cardie, C., Rogers, S., & Schrodl, S. (2001) Constrained k-means clustering with background
knowledge. In Proceedings of the eighteenth international conference on machine learning, ICML "01
(pp- 577-584). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

@ Springer


http://dx.doi.org/10.1016/0743-1066(94)90035-3
http://dx.doi.org/10.1007/s10994-006-6064-1
https://lirias.kuleuven.be/handle/123456789/504712

Mach Learn (2017) 106:1523-1545 1545

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical
Association, 58(301), 236-244.

Witsenburg, T., & Blockeel, H. (2011). Improving the accuracy of similarity measures by using link informa-
tion. In Foundations of intelligent systems—Proceedings of 19th international symposium, ISMIS 2011
(pp- 501-512), Warsaw, Poland, June 28-30, 2011.

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). Birch: An efficient data clustering method for very large
databases. In Proceedings of the 1996 ACM SIGMOD international conference on management of data,
SIGMOD 96 (pp. 103-114), ACM, New York, NY, USA

Zhao, H., Robles-Kelly, A., & Zhou, J. (2011) On the use of the chi-squared distance for the structured learning
of graph embeddings. In Proceedings of the 2011 international conference on digital image computing:
techniques and applications, DICTA ’11 (pp. 422-428), IEEE Computer Society, Washington, DC, USA.

@ Springer



	An expressive dissimilarity measure for relational clustering using neighbourhood trees
	Abstract
	1 Introduction
	2 Relational clustering over neighbourhood trees
	2.1 Hypergraph representation
	2.2 Neighbourhood tree
	2.3 Dissimilarity measure

	3 Related work
	3.1 Hypergraph representation
	3.2 Related tasks
	3.3 Relational clustering
	3.3.1 Complexity analysis


	4 Evaluation
	4.1 Data sets
	4.2 Experiment setup
	4.3 Results
	4.3.1 (Q1) Comparison to the existing methods
	4.3.2 (Q2) Relevance of components
	4.3.3 (Q3) Learning weights in an unsupervised manner
	4.3.4 (Q4) Performance in a supervised setting
	4.3.5 (Q5) Runtime comparison


	5 Conclusion
	Acknowledgements
	References




