
Mach Learn (2017) 106:419–457
DOI 10.1007/s10994-017-5628-6

Online optimization for max-norm regularization

Jie Shen1 · Huan Xu2 · Ping Li1,3

Received: 8 November 2015 / Accepted: 19 January 2017 / Published online: 7 February 2017
© The Author(s) 2017

Abstract The max-norm regularizer has been extensively studied in the last decade as it
promotes an effective low-rank estimation for the underlying data. However, such max-norm
regularized problems are typically formulated and solved in a batch manner, which prevents
it from processing big data due to possible memory bottleneck. In this paper, hence, we
propose an online algorithm that is scalable to large problems. In particular, we consider the
matrix decomposition problem as an example, although a simple variant of the algorithm and
analysis can be adapted to other important problems such as matrix completion. The crucial
technique in our implementation is to reformulate the max-norm to an equivalent matrix
factorization form, where the factors consist of a (possibly overcomplete) basis component
and a coefficients one. In this way, we may maintain the basis component in the memory and
optimize over it and the coefficients for each sample alternatively. Since the size of the basis
component is independent of the sample size, our algorithm is appealing when manipulating
a large collection of samples. We prove that the sequence of the solutions (i.e., the basis
component) produced by our algorithm converges to a stationary point of the expected loss
function asymptotically.Numerical study demonstrates encouraging results for the robustness
of our algorithm compared to the widely used nuclear norm solvers.

Editor: Ulf Brefeld.

B Jie Shen
js2007@rutgers.edu

Huan Xu
huan.xu@isye.gatech.edu

Ping Li
pingli@stat.rutgers.edu

1 Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA

2 H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA 30332, USA

3 Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-017-5628-6&domain=pdf

420 Mach Learn (2017) 106:419–457

Keywords Low-rank matrix · Max-norm · Stochastic optimization · Matrix factorization

1 Introduction

In the last decade, estimating low-rank matrices has attracted increasing attention in the
machine learning community owing to its successful applications in a wide range of fields
including subspace clustering (Liu et al. 2010), collaborative filtering (Foygel et al. 2012)
and robust dimensionality reduction (Candès et al. 2011), to name a few. Suppose that we
are given an observed data matrix Z in R

p×n , i.e., n observations in p ambient dimensions,
we aim to learn a prediction matrix X with a low-rank structure so as to approximate the
observation. This problem, together with its many variants, typically involves minimizing a
weighted combination of the residual error and a penalty for the matrix rank.

Generally speaking, it is intractable to optimize a matrix rank (Recht et al. 2010). To
tackle this challenge, researchers suggested alternative convex relaxations to the matrix rank.
The two most widely used convex surrogates are the nuclear norm1 (Recht et al. 2010) and
the max-norm (a.k.a. γ2-norm) (Srebro et al. 2004). The nuclear norm is defined as the sum
of the matrix singular values. Like the �1 norm in the vector case that induces sparsity, the
nuclear norm was proposed as a rank minimization heuristic and was able to be formulated
as a semi-definite programming (SDP) problem (Fazel et al. 2001). By combining the SDP
formulation and the matrix factorization technique, Srebro et al. (2004) showed that the
collaborative filtering problem can be effectively solved by optimizing a soft-margin based
program. Another interesting work on the nuclear norm comes from the data compression
community. In real-world applications, due to possible sensor failure and background clutter,
the underlying data can easily be corrupted. In this case, estimates produced by Principal
Component Analysis (PCA) may be deviated far from the true subspace (Jolliffe 2005). To
handle the (gross) corruption, in the seminal work, Candès et al. (2011) proposed a new
formulation termed Robust PCA (RPCA), and proved that under mild conditions, solving a
convex optimization problem consisting of a nuclear norm regularization and a weighted �1
norm penalty can exactly recover the low-rank component of the underlying data even if a
constant fraction of the entries are arbitrarily corrupted.

The max-norm variant was developed as another convex relaxation to the rank func-
tion (Srebro et al. 2004), where Srebro et al. formulated the max-norm regularized problem
as an SDP and empirically showed the superiority to the nuclear norm. The main theoret-
ical study on the max-norm comes from Srebro and Shraibman (2005), where Srebro and
Shraibman considered collaborative filtering as an example and proved that the max-norm
scheme enjoys a lower generalization error than the nuclear norm. Following these theoretical
foundations, Jalali and Srebro (2012) improved the error bound for the clustering problem.
Another important contribution from Jalali and Srebro (2012) is that they partially charac-
terized the subgradient of the max-norm, which is a hard mathematical entity and cannot
be fully understood to date. However, since SDP solver is not scalable, there is a large gap
between the theoretical progress and the practical applicability of the max-norm. To bridge
the gap, a number of follow-up works attempted to design efficient algorithms to solve max-
norm regularized or constrained problems. For example, Rennie and Srebro (2005) devised
a gradient-based optimization method and empirically showed promising results on large
collaborative filtering datasets. Lee et al. (2010) presented large-scale optimization methods

1 Also known as the trace norm, the Ky-Fan n-norm and the Schatten 1-norm.

123

Mach Learn (2017) 106:419–457 421

for max-norm constrained and max-norm regularized problems and showed a convergence
to stationary point.

Nevertheless, algorithms presented in prior works (Srebro et al. 2004; Rennie and Srebro
2005; Lee et al. 2010; Orabona et al. 2012) require to access all the data when the objective
function involves a max-norm regularization. In the large-scale setting, the applicability of
such batch optimization methods will be hindered by the memory bottleneck. In this paper,
henceforth, we propose an online algorithm to solve max-norm regularized problems. The
main advantage of online algorithms is that the memory cost is independent of the sample
size, which makes it a good fit for the big data era.

To be more detailed, we are interested in a general max-norm regularized matrix decom-
position (MRMD) problem. Suppose that the observed data matrix Z can be decomposed
into a low-rank component X and some structured noise E , we aim to simultaneously and
accurately estimate the two components, by solving the following convex program:

(MRMD) min
X,E

1

2
‖Z − X − E‖2F + λ1

2
‖X‖2max + λ2h(E). (1.1)

Here, ‖·‖F denotes the Frobenius norm which is a commonly used metric for evaluating the
residual, ‖·‖max is the max-norm (which promotes low-rankness), and λ1 and λ2 are two non-
negative parameters. h(E) is some (convex) regularizer that can be adapted to various kinds
of noise. We require that it can be represented as a summation of column norms. Formally,
there exists some regularizer h̃(·), such that

h(E) =
n∑

i=1

h̃(ei), (1.2)

where ei is the i th column of E . Classical examples include:

– ‖E‖1. That is, the �1 norm of the matrix E seen as a long vector, which is used to handle
sparse corruption. In this case, h̃(·) is the �1 vector norm. Note that when equipped with
this norm, the above problem reduces to the well-known RPCA formulation (Candès
et al. 2011), but with the nuclear norm being replaced by the max-norm.

– ‖E‖2,1. This is defined as the summation of the �2 column norms, which is effective
when a small fraction of the samples are contaminated (recall that each column of Z is a
sample). The matrix �2,1 norm is typically used to handle outliers and interestingly, the
above program becomes Outlier PCA (Xu et al. 2013) in this case.

– ‖E‖2F or E = 0. The formulation of (1.1) works as a large-margin based program, with
the hinge loss replaced by the squared loss (Srebro et al. 2004).

Hence, (MRMD) (1.1) is general enough and our algorithmic and theoretical results hold for
such a general form, covering important problems including max-norm regularized RPCA,
max-norm regularized Outlier PCA andmaximummargin matrix factorization. Furthermore,
with a careful design, the above formulation (1.1) can be extended to address the matrix
completion problem (Candès and Recht 2009), as we will show in Sect. 5.

Considering the connection betweenmax-norm and nuclear norm, onemight be interested
in an alternative formulation as follows:

min
X,E

1

2
‖Z − X − E‖2F + λ′

1

2
‖X‖max + λ2h(E). (1.3)

First, we would like to point out that the above formulation is equivalent to (1.1), in
the sense that if we choose proper parameter λ′

1 for (1.3) and some parameter λ1 for (1.1),

123

422 Mach Learn (2017) 106:419–457

they produce same solutions. To see this, we note that (1.3) is equivalent to the following
constrained program:

min
X,E

1

2
‖Z − X − E‖2F + λ2h(E), s. t. ‖X‖max ≤ κ,

for some parameter κ . Taking the square on both sides of the inequality constraint gives

min
X,E

1

2
‖Z − X − E‖2F + λ2h(E), s. t. ‖X‖2max ≤ κ2.

Again, we know that for some proper choice of λ1, the above program is equivalent to (1.1).
The reason we choose (1.1) is for a convenient computation of the solution. We defer a more
detailed discussion to Sect. 3.

1.1 Contributions

In summary, our main contributions is two-folds: (1) We are the first to develop an online
algorithm to solve a family of max-norm regularized problems (1.1), which admits a wide
range of applications in machine learning. We also show that our approach can be used to
solve other popular max-norm regularized problems such as matrix completion. (2)We prove
that the sequence of solutions produced by our algorithm converges to a stationary point of
the expected loss function asymptotically (see Sect. 4).

Compared to our earlier work (Shen et al. 2014), the formulation (1.1) considered here is
more general and a complete proof is provided. In addition, we illustrate by an extensive study
on the subspace recovery task that the max-norm always performs better than the nuclear
norm in terms of convergence rate and robustness.

1.2 Related works

Here we discuss some relevant works in the literature. Most previous works on max-norm
focused on showing that it is empirically superior to the nuclear norm in real-world problems,
such as collaborative filtering (Srebro et al. 2004), clustering (Jalali and Srebro 2012) and
hamming embedding (Neyshabur et al. 2014). Other works, for instance, Salakhutdinov and
Srebro (2010) studied the influence of data distribution with the max-norm regularization and
observed good performance even when the data are sampled non-uniformly. There are also
interesting works which investigated the connection between the max-norm and the nuclear
norm. A comprehensive study on this problem, in the context of collaborative filtering, can be
found in Srebro and Shraibman (2005), which established and compared the generalization
bound for the nuclear norm regularization and the max-norm, showing that the latter one
results in a tighter bound. More recently, Foygel et al. (2012) attempted to unify them to gain
insightful perspective.

Also in line with this work is matrix decomposition. As we mentioned, when we penalize
the noise E with �1 matrix norm, it reverts to the well known RPCA formulation (Candès
et al. 2011). The only difference is that Candès et al. (2011) analyzed the RPCA problem
with the nuclear norm, while (1.1) employs the max-norm. Owing to the explicit form of
the subgradient of the nuclear norm, Candès et al. (2011) established a dual certificate for
the success of their formulation, which facilitates their theoretical analysis. In contrast, the
max-norm is a much harder mathematical entity (even its subgradient has not been fully
characterized). Henceforth, it still remains challenging to understand the behavior of the

123

Mach Learn (2017) 106:419–457 423

max-norm regularizer in the general setting (1.1). Studying the conditions for the exact
recovery of MRMD is out of the scope of this paper. We leave this as a future work.

From a high level, the goal of this paper is similar to that of Feng et al. (2013).Motivated by
the celebrated RPCA problem (Candès et al. 2011; Xu et al. 2013, 2012), Feng et al. (2013)
developed an online implementation for the nuclear-norm regularized matrix decomposition.
Yet, since the max-norm is a more complicated mathematical entity, new techniques and
insights are needed in order to develop online methods for the max-norm regularization.
For example, after converting the max-norm to its matrix factorization form, the data are
still coupled and we propose to transform the problem to a constrained one for stochastic
optimization.

The main technical contribution of this paper is converting max-norm regularization to an
appropriate matrix factorization problem that is amenable to online implementation. Com-
pared to Mairal et al. (2010) which also studies online matrix factorization, our formulation
contains an additional structured noise that brings the benefit of robustness to contamination.
Some of our proof techniques are also different. For example, to prove the convergence of
the dictionary and to well define their problem, Mairal et al. (2010) assumed that the magni-
tude of the learned dictionary is constrained. In contrast, we prove that the optimal basis is
uniformly bounded, and hence our problem is naturally well-defined.

Our algorithm can be viewed as a majorization-minimization scheme, for which Mairal
(2013) derived a general analysis on the convergence behavior. However, we find that Algo-
rithm1 inMairal (2013) requires the knowledge of the Lipschitz constant to obtain a surrogate
function. In our work, we use a suboptimal solution to derive the surrogate function (see Step
3 and Step 5 in our Algorithm 1 to be introduced). Due to such a different mechanism, it
remains an open question whether one can apply their algorithm and theoretical analysis
to the problem considered here. It is also worth mentioning that in order to establish their
theoretical results, Mairal (2013) assumed that the iterates and the empirical loss function
are uniformly bounded (see Assumption (C) and Assumption (D) therein). For our problem,
we can virtually prove this property (see Proposition 3 and Corollary 1 to follow). Finally,
we note that our algorithm is different from block coordinate descent, see, e.g., Wang and
Banerjee (2014). In fact, block coordinate descent randomly and independently picks a mini-
batch of samples and updates a block variable, whereas we in each iteration update only
the variables associated with the revealed sample. Another key difference is that Wang and
Banerjee (2014) considered a strongly convex objective function, while we are working with
a non-convex case.

1.3 Roadmap

The rest of the paper is organized as follows. Section2 begins with the problem setting,
followed by a reformulation of theMRMD problem that is amenable for online optimization.
Section3 then elaborates the online implementation of MRMD and Sect. 4 establishes the
convergence guarantee under somemild assumptions. In Sect. 5, we show that our framework
can easily be extended to other max-norm regularized problems, such as matrix completion.
Numerical performance of the proposed algorithm is presented inSect. 6. Finally,we conclude
this paper in Sect. 7. All the proofs are deferred to the “Appendix”.

1.4 Notation

Before delivering the algorithm and the analysis, let us first instate several pieces of notation
that are involved throughout the paper. We use bold lowercase letters, e.g., v, to denote

123

424 Mach Learn (2017) 106:419–457

a column vector. The �1 norm and �2 norm of a vector v are denoted by ‖v‖1 and ‖v‖2,
respectively. Capital letters, such as M , are used to denote matrices. In particular, the letter
In is reserved for the n-by-n identity matrix. For a matrix M , the i th row and j th column are
written as m(i) and m j , respectively, and the (i, j)th entry is denoted by mi j . There are four
matrix norms that will be heavily used in the paper: ‖M‖F for the Frobenius norm, ‖M‖1 for
the �1 matrix norm seen as a long vector, ‖M‖max for the max-norm induced by the product
of �2,∞ norm on the factors of M . Here, the �2,∞ norm is defined as the maximum �2 row
norm. The trace of a square matrix M is denoted as Tr(M). Finally, for a positive integer n,
we use [n] to denote the integer set {1, 2, . . . , n}.

2 Problem setup

We are interested in developing an online algorithm for the MRMD problem (1.1) so as
to mitigate the memory issue. To this end, we utilize the following definition of the max-
norm (Srebro et al. 2004):

‖X‖max
def= min

L ,R

{
‖L‖2,∞ · ‖R‖2,∞ : X = LR�, L ∈ R

p×d , R ∈ R
n×d

}
, (2.1)

where d is an upper bound on the intrinsic dimension of the underlying data. Plugging the
above back to (1.1), we obtain an equivalent form:

min
L ,R,E

1

2

∥∥∥Z − LR� − E
∥∥∥
2

F
+ λ1

2
‖L‖22,∞ ‖R‖22,∞ + λ2h(E). (2.2)

In this paper, if not specified, “equivalent” means we do not change the optimal value of the
objective function. Intuitively, the variable L serves as a (possibly overcomplete) basis for
the clean data while correspondingly, the variable R works as a coefficients matrix with each
row being the coefficients for each sample (recall that we organize the observed samples in a
column-wisemanner). In order tomake the new formulation (2.2) equivalent toMRMD (1.1),
the quantity of d should be sufficiently large due to (2.1).

At a first sight, the problem can only be optimized in a batchmanner for which thememory
cost is prohibitive. To see this, note that we are considering the regime of d < p � n and
the size of the coefficients R is proportional to n. In order to optimize the above program
over the variable R, we have to compute the gradient with respect to it. Recall that the �2,∞
norm counts the largest �2 row norm of R, hence coupling all the samples (each row of R
associates with a sample).

Fortunately, we have the following proposition that alleviates the inter-dependency among
the rows of R, hence facilitating an online algorithm where the rows of R can be optimized
sequentially.

Proposition 1 Problem (2.2) is equivalent to the following constrained program:

min
L ,R,E

1

2

∥∥∥Z − LR� − E
∥∥∥
F

+ λ1

2
‖L‖22,∞ + λ2h(E), s. t. ‖R‖22,∞ ≤ 1. (2.3)

Moreover, there exists an optimal solution (L∗, R∗, E∗) attained at the boundary of the
feasible set, i.e., ‖R∗‖22,∞ is equal to the unit.

Remark 1 Proposition 1 is crucial for the online implementation. It states that our primal
MRMD problem (1.1) can be transformed to an equivalent constrained program (2.3) where

123

Mach Learn (2017) 106:419–457 425

the coefficients of each individual sample (i.e., a row of the matrix R) is uniformly and
separately constrained.

Consequently, we can, equipped with Proposition 1, rewrite the original problem in an
online fashion, with each sample being separately processed:

min
L ,R,E

1

2

n∑

i=1

‖zi − L r i − ei‖22 + λ1

2
‖L‖22,∞ + λ2

n∑

i=1

h̃(ei), s. t. ‖r i‖22 ≤ 1, ∀ i ∈ [n],
(2.4)

where zi is the i th observation, r i is the coefficients and ei is some structured error penalized
by the (convex) regularizer h̃(·) (recall that we require h(E) can be decomposed column-
wisely). Merging the first and third term above gives a compact form:

min
L

min
R,E

n∑

i=1

�̃(zi , L , r i , ei) + λ1

2
‖L‖22,∞ , s. t. ‖r i‖22 ≤ 1, ∀i ∈ [n], (2.5)

where

�̃(z, L , r, e)
def= 1

2
‖z − L r − e‖22 + λ2h̃(e). (2.6)

This is indeed equivalent to optimizing (i.e., minimizing) the empirical loss function:

min
L

fn(L), (2.7)

where

fn(L)
def= 1

n

n∑

i=1

�(zi , L) + λ1

2n
‖L‖22,∞ , (2.8)

and
�(z, L) = min

r,e,‖r‖22≤1
�̃(z, L , r, e). (2.9)

Note that by Proposition 1, as long as the quantity of d is sufficiently large, the program (2.7)
is equivalent to the primal formulation (1.1), in the sense that both of them could attain the
same minimum. Compared to MRMD (1.1), which is solved in a batch manner by prior
works, the formulation (2.7) paves a way for stochastic optimization procedure since all the
samples are decoupled.

3 Algorithm

Based on the derivation in the preceding section, we are now ready to present our online
algorithm to solve theMRMDproblem (1.1). The implementation is outlined in Algorithm 1.
Herewe briefly explain the underlying intuition.We optimize the coefficients r , the structured
noise e and the basis L in an alternating manner, with only the basis L and two accumulation
matrices being kept in memory. At the t th iteration, given the basis Lt−1 produced by the
previous iteration, we can optimize (2.9) by examining the Karush–Kuhn–Tucker (KKT)
conditions. To obtain a new iterate Lt , we then minimize the following objective function:

123

426 Mach Learn (2017) 106:419–457

Algorithm 1 Online Max-Norm Regularized Matrix Decomposition

Require: Z ∈ R
p×n (observed samples), parameters λ1 and λ2, L0 ∈ R

p×d (initial basis), zero matrices
A0 ∈ R

d×d and B0 ∈ R
p×d .

Ensure: Optimal basis Ln .
1: for t = 1 to n do
2: Access the t th sample zt .
3: Compute the coefficient and noise:

{r t , et } = argmin
r,e,‖r‖22≤1

�̃(zt , Lt−1, r, e).

4: Compute the accumulation matrices At and Bt :

At ←− At−1 + r t r
�
t ,

Bt ←− Bt−1 + (
zt − et

)
r�t .

5: Compute the basis Lt by optimizing the surrogate function (3.1):

Lt = argmin
L

1

t

t∑

i=1

�̃(zi , L , r i , ei) + λ1

2t
‖L‖22,∞

= argmin
L

1

t

(
1

2
Tr
(
L�L At

)
− Tr

(
L�Bt

))
+ λ1

2t
‖L‖22,∞ .

6: end for

gt (L)
def= 1

t

t∑

i=1

�̃(zi , L , r i , ei) + λ1

2t
‖L‖22,∞ , (3.1)

where {r i }ti=1 and {ei }ti=1 are already on hand. It can be verified that (3.1) is a surrogate
function of the empirical loss ft (L) (2.8), since the obtained r i ’s and ei ’s are suboptimal.
Interestingly, instead of recording all the past r i ’s and ei ’s, we only need to store two accu-
mulation matrices whose sizes are independent of n, as shown in Algorithm 1. In the sequel,
we elaborate each step.

3.1 Update the coefficients and noise

Given a sample z and a basis L , we are able to estimate the optimal coefficients r and the
noise e by minimizing �̃(z, L , r, e). That is, we are to solve the following program:

min
r,e

1

2
‖z − L r − e‖22 + λ2h̃(e), s. t. ‖r‖2 ≤ 1. (3.2)

We notice that the constraint only involves the variable r , and in order to optimize r , we
only need to consider the residual term in the objective function. This motivates us to employ
a block coordinate descent algorithm. Namely, we alternatively optimize one variable with
the other fixed, until some stopping criteria is fulfilled. In our implementation, when the
difference between the current and the previous iterate is smaller than 10−6, or the number
of iterations exceeds 100, our algorithm will terminate and return the optimum.

123

Mach Learn (2017) 106:419–457 427

3.1.1 Optimize the coefficients r

Now it remains to show how to compute a new iterate for one variable when the other
one is fixed. According to Bertsekas (1999), when the objective function is strongly convex
with respect to (w.r.t.) each block variable, we are guaranteed that the block coordinate
minimization algorithm converges. In our case, we observe that such a condition holds for
e but not necessary for r . In fact, the strong convexity w.r.t. r holds if and only if the basis
L is with full rank. When L is not full rank, we may compute the Moore Penrose pseudo
inverse to solve r . However, for computational efficiency, we append a small jitter ε

2 ‖r‖22 to
the objective if necessary, so as to guarantee the convergence (ε = 0.01 in our experiments).
In this way, we obtain a potentially admissible iterate for r as follows:

r0 = (L�L + ε Id)
−1L�(z − e). (3.3)

Here, ε is set to be zero if and only if L is full rank.
Next, we examine if r0 violates the inequality constraint in (3.2). If it happens to be a

feasible solution, i.e.,
∥∥r0

∥∥
2 ≤ 1,we have found the new iterate for r . Otherwise,we conclude

that the optimum of r must be attained on the boundary of the feasible set, i.e., ‖r‖2 = 1,
for which the minimizer can be computed by the method of Lagrangian multipliers:

max
η

min
r

1

2
‖z − L r − e‖22 + η

2

(‖r‖22 − 1
)
, s. t. η > 0, ‖r‖2 = 1. (3.4)

By differentiating the objective function with respect to r , we have

r =
(
L�L + ηId

)−1
L�(z − e). (3.5)

The following argument helps us to efficiently search the optimal solution.

Proposition 2 Let r be given by (3.5), where L, z and e are assumed to be fixed. Then, the
�2 norm of r is strictly monotonically decreasing with respect to the quantity of η.

Proof For simplicity, let us denote

r(η) =
(
L�L + ηId

)−1
b,

where b = L�(z − e) is a fixed vector. Suppose we have a full singular value decompo-
sition (SVD) on L = USV�, where the singular values {s1, s2, . . . , sp} (i.e., the diagonal
elements in S) are arranged in a decreasing order and at most d number of them are non-zero.
Substituting L with its SVD, we obtain the squared �2 norm for r(η):

‖r(η)‖22 = b� (V S2V� + ηId
)−2

b = b�V SηV
�b,

where Sη is a diagonal matrix whose i th diagonal element equals (s2i + η)−2.
For any two entities η1 > η2, it is easy to see that the matrix Sη1 − Sη2 is negative definite.

Hence, it always holds that

‖r(η1)‖22 − ‖r(η2)‖22 = b�V (Sη1 − Sη2)V
�b < 0,

which concludes the proof.

The above proposition offers an efficient computation scheme, i.e., bisection method, for
searching the optimal r as well as the dual variable η. To be more detailed, we can maintain a

123

428 Mach Learn (2017) 106:419–457

Algorithm 2 Bisection Method for Problem (3.4)

Require: L ∈ R
p×d , z ∈ R

p , e ∈ R
p .

Ensure: Optimal primal and dual pair (r, η).
1: Initialize the lower bound η1 = 0 and the upper bound η2 large enough such that ‖r(η2)‖2 ≤ 1.
2: repeat
3: Compute the middle point:

η ← 1

2
(η1 + η2).

4: if ‖r(η)‖2 < 1 then
5: Update η2:

η2 ← η.

6: else
7: Update η1:

η1 ← η.

8: end if
9: until ‖r‖2 = 1

lower bound η1 and an upper bound η2, such that ‖r(η1)‖2 ≥ 1 and ‖r(η2)‖2 ≤ 1. According
to the monotonic property shown in Proposition 2, the optimal η must fall into the interval
[η1, η2]. By evaluating the value of ‖r‖2 at the middle point (η1+η2)/2, we can sequentially
shrink the interval until ‖r‖2 is close or equal to one. Note that we can initialize η1 with zero
(since

∥∥r0
∥∥
2 > 1 implies the optimal η∗ > ε ≥ 0). The bisection routine is summarized in

Algorithm 2.

3.1.2 Optimize the noise e

We have clarified the technique used for solving r in Problem (3.2) when e is fixed. Now
let us turn to the phase where r is fixed and we want to find the optimal e. Since e is an
unconstrained variable, generally speaking, it is much easier to solve, although one may
employ different strategies for various regularizers h̃(·). Here, we discuss the solutions for
popular choices of the regularizer.

1. h̃(e) = ‖e‖1. The �1 regularizer results in a closed form solution for e as follows:

e = Sλ2 [z − L r], (3.6)

where Sλ2 [·] is the soft-thresholding operator (Donoho 1995).
2. h̃(e) = ‖e‖2. The solution in this case can be characterized as follows (see, for exam-

ple, Liu et al. 2010):

e =
{ ‖z−L r‖2‖z−L r‖2−λ2

(z − L r), if λ2 < ‖z − L r‖2 ,

0, otherwise.
(3.7)

Finally, for completeness, we summarize the routine for updating the coefficients and the
noise in Algorithm 3. The readers may refer to the preceding paragraphs for details.

123

Mach Learn (2017) 106:419–457 429

Algorithm 3 The Coefficients and Noise Update (Problem (3.2))

Require: L ∈ R
p×d , z ∈ R

p , parameter λ2 and a small jitter ε.
Ensure: Optimal r and e.
1: Initialize e = 0.
2: repeat
3: Compute the potential solution r0 given in (3.3).
4: if

∥∥r0
∥∥
2 ≤ 1 then

5: Update r with

r = r0,

6: else
7: Update r by Algorithm 2.
8: end if
9: Update the noise e.
10: until convergence

3.2 Update the basis

With all the past filtration Ft = {zi , r i , ei }ti=1 on hand, we are able to compute a new basis
Lt byminimizing the surrogate function (3.1). That is, we are to solve the following program:

min
L

1

t

t∑

i=1

�̃(zi , L , r i , ei) + λ1

2t
‖L‖22,∞ . (3.8)

By a simple expansion, for any i ∈ [t], we have

�̃(zi , L , r i , ei) = 1

2
Tr
(
L�L r i r�

i

)
− Tr

(
L�(zi − ei)r�

i

)
+ 1

2
‖zi − ei‖22 + λ2h̃(ei).

(3.9)

Substituting back into (3.8), putting At = ∑t
i=1 r i r

�
i , Bt = ∑t

i=1(zi − ei)r�
i and removing

constant terms, we obtain

Lt = argmin
L

1

t

(
1

2
Tr
(
L�L At

)
− Tr

(
L�Bt

))
+ λ1

2t
‖L‖22,∞ . (3.10)

In order to derive the optimal solution, firstly, we need to characterize the subgradient of
the squared �2,∞ norm. In fact, let Q be a positive semi-definite diagonal matrix, such that
Tr(Q) = 1. Denote the set of row index which attains the maximum �2 row norm of L by I.
In this way, the subgradient of 1

2 ‖L‖22,∞ is given by

∂

(
1

2
‖L‖22,∞

)
= QL , Qii = 0 if and only if i ∈ I, Qi j = 0 for i = j. (3.11)

Equipped with the subgradient, we may apply block coordinate descent to update each
column of L sequentially. We assume that the objective function (3.10) is strongly convex
w.r.t. L , implying that the block coordinate descent scheme can always converge to the global
optimum (Bertsekas 1999).

We summarize the update procedure inAlgorithm4. In practice,wefind that after revealing
a large number of samples, performing one-pass update for each column of L is sufficient to
guarantee a desirable accuracy, which matches the observation in Mairal et al. (2010).

123

430 Mach Learn (2017) 106:419–457

Algorithm 4 The Basis Update

Require: L ∈ R
p×d in the previous iteration, accumulation matrix A and B, parameter λ1.

Ensure: Optimal basis L (updated).
1: repeat
2: Compute the subgradient of 1

2 ‖L‖22,∞:

U = ∂

(
1

2
‖L‖22,∞

)
.

3: for j = 1 to d do
4: Update the j th column:

l j ← l j − 1

a j j

(
La j − b j + λ1u j

)
.

5: end for
6: until convergence

As we discussed in Sect. 1, one may prefer the formulation (1.3)–(1.1), although in some
sense they are equivalent. It is worth mentioning that our algorithm can easily be tailored to
solve (1.3) by modifying Step 5 of Algorithm 1 as follows:

Lt = argmin
L

1

t

(
1

2
Tr
(
L�L At

)
− Tr

(
L�Bt

))
+ λ1

2t
‖L‖2,∞. (3.12)

Again, we are required to derive the optimal solution by examining the subgradient of the
last term, which is given by

∂ ‖L‖2,∞ = QW, qii = 0 if and only if i ∈ I, qi j = 0 for i = j, (3.13)

where each row of W is as follows:

w(i) = 1

‖l(i)‖2 l(i), ∀ 1 ≤ i ≤ p. (3.14)

3.3 Memory and computational cost

As one of the main contributions of this paper, our OMRMD algorithm (i.e., Algorithm 1)
is appealing for large-scale problems (the regime d < p � n) since the memory cost is
independent of n. To see this, note that when computing the optimal coefficients and noise,
only zt and Lt−1 are accessed, which costs O(pd)memory. To store the accumulationmatrix
At , we need O(d2) memory while that for Bt is O(pd). Finally, we find that only At and
Bt are needed for the computation of the new iterate Lt . Therefore, the total memory cost
of OMRMD is O(pd), i.e., independent of n. In contrast, the SDP formulation introduced
by Srebro et al. (2004) requires O((p + n)2) memory usage, the local-search heuristic
algorithm (Rennie and Srebro 2005) needs O(d(p + n)) and no convergence guarantee was
derived. Even for a recently proposed algorithm (Lee et al. 2010), they require to store the
entire data matrix and thus the memory cost is O(pn).

In terms of computational efficiency, our algorithm can be fast. One may have noticed
that the computation is dominated by solving Problem (3.2). The computational complexity
of (3.5) involves an inverse of a d×d matrix followed by amatrix-matrix and amatrix-vector
multiplication, totally O(pd2). For the basis update, obtaining a subgradient of the squared
�2,∞ norm is O(pd) since we need to calculate the �2 norm for all rows of L followed by a

123

Mach Learn (2017) 106:419–457 431

multiplication with a diagonal matrix (see (3.11)). A one-pass update for the columns of L , as
shown in Algorithm 4 costs O(pd2). Note that the quadratic dependency on d is acceptable
in the low-rank setting.

4 Theoretical analysis and proof sketch

In this section we present our main theoretical result regarding the validity of the proposed
algorithm. We first discuss some necessary assumptions.

4.1 Assumptions

(A1) The observed samples are independent and identically distributed (i.i.d.) with a com-
pact support Z. This is a very common scenario in real-world applications.

(A2) The surrogate functions gt (L) in (3.1) are strongly convex. In particular, we assume
that the smallest singular value of the positive semi-definite matrix 1

t At defined in
Algorithm 1 is not smaller than some positive constant β1.

(A3) The minimizer for (2.9) is unique. Notice that �̃(z, L , r, e) is strongly convex w.r.t. e
and convex w.r.t. r . We can enforce this assumption by adding a jitter ε

2‖r‖22 to the
objective function, where ε is a small positive constant.

4.2 Main results

It is easy to see that Algorithm 1 is devised to optimize the empirical loss function (2.8).
In stochastic optimization, we are mainly interested in the expected loss function, which is
defined as the averaged loss incurred when the number of samples goes to infinity. If we
assume that each sample is independently and identically distributed (i.i.d.), we have

f (L)
def= lim

n→∞ fn(L) = Ez[�(z, L)]. (4.1)

The main theoretical result of this work is stated as follows.

Theorem 1 (Convergence to a stationary point of the expected loss function) Let {Lt }∞t=1
be the sequence of solutions produced by Algorithm 1. Then, the sequence converges to a
stationary point of the expected loss function (4.1) when t tends to infinity.

Remark 2 The theorem establishes the validity of our algorithm. Note that on one hand,
the transformation (2.1) facilitates an amenable way for the online implementation of the
max-norm. On the other hand, due to the non-convexity of our new formulation (2.3), it is
generally hard to desire a local, or a global minimizer (Bertsekas 1999). Although Burer and
Monteiro (2005) showed that any local minimum of an SDP is also the global optimum under
some conditions (note that themax-norm problem can be transformed to an SDP (Srebro et al.
2004), it is not clear how to determine that a solution is a local optimum or a stationary point.
Very recently, Bhojanapalli et al. (2016) showed that global convergence is possible for a
family of batch methods. Yet, it is not clear how to apply their results in the stochastic setting.
From the empirical study in Sect. 6, we find that the solutions produced by our algorithm
always converge to the global optimum when the samples are drawn from a i.i.d. Gaussian
distribution.

123

432 Mach Learn (2017) 106:419–457

4.3 Proof outline

The essential tools for our analysis are from stochastic approximation (Bottou 1998) and
asymptotic statistics (Vaart 2000). There are four key stages in our proof and one may find
the full proof in “Appendix”.

Stage I We first show that all the stochastic variables {Lt , r t , et }∞t=1 are uniformly bounded.
The property is crucial because it justifies that the problem we are solving is well-defined.
Also, the uniformboundednesswill be heavily used for deriving subsequent important results,
e.g., the Lipschitz property of the surrogate function.

Proposition 3 (Uniformbound of all stochastic variables)Let {r t , et , Lt }∞t=1 be the sequence
of the solutions produced by Algorithm 1. Then,

1. For any t > 0, the optimal solutions r t and et are uniformly bounded.
2. For any t > 0, the accumulation matrices 1

t At and
1
t Bt are uniformly bounded.

3. There exists a compact set L, such that for any t > 0, we have Lt ∈ L.

Proof (Sketch) The uniform bound of et follows by constructing a trivial solution (0, 0) for
(2.6), which results in an upper bound for the optimum of the objective function. Notably,
the upper bound here only involves a quantity on ‖zt‖2, which is assumed to be uniformly
bounded. Since r t is always upper bounded by the unit, the first claim follows. The second
claim follows immediately by combining the first claim and Assumption (A1). In order to
show that Lt is uniformly bounded, we utilize the first order optimality condition of the
surrogate (3.1). Since 1

t At is positive definite, we can represent Lt in terms of 1
t Bt , Ut and

the inverse of 1
t At , where Ut is the subgradient, whose Frobenius norm is in turn bounded

by that of Lt . Hence, it follows that Lt can be uniformly bounded.

Remark 3 Note that Mairal et al. (2010) and Feng et al. (2013) assumed that the dictionary
(or basis) is uniformly bounded. Here, we prove that such a condition naturally holds in our
case.

Corollary 1 (Uniform bound and Lipschitz of the surrogate) Following the notation in
Proposition 3, we have for all t > 0,

1. �̃ (zt , Lt , r t , et) (2.6) and � (zt , Lt) (2.9) are both uniformly bounded.
2. The surrogate function, i.e., gt (L) defined in (3.1) is uniformly bounded over L.
3. Moreover, gt (L) is uniformly Lipschitz over the compact set L.

Stage II We next show that the positive stochastic process {gt (Lt)}∞t=1 converges almost
surely. To establish the convergence, we verify that {gt (Lt)}∞t=1 is a quasi-martingale (Bottou
1998) that converges almost surely. To this end, we illustrate that the expectation of the
discrepancy of gt+1(Lt+1) and gt (Lt) can be upper bounded by a family of functions �(·, L)

indexed by L ∈ L. Then we show that the family of the functions is P-Donsker (Vaart 2000),
the summands of which concentrate around its expectation within an O(1/

√
n) ball almost

surely. Therefore, we conclude that {gt (Lt)}∞t=1 is a quasi-martingale and converges almost
surely.

Proposition 4 Let L ∈ L and denote the minimizer of �̃(z, L , r, e) as:

{r∗, e∗} = argmin
r,e,‖r‖2≤1

1

2
‖z − L r − e‖22 + λ2h̃(e).

123

Mach Learn (2017) 106:419–457 433

Then, the function �(z, L) defined in Problem (2.9) is continuously differentiable and

∇L�(z, L) = (L r∗ + e∗ − z)r∗�.

Furthermore, �(z, ·) is uniformly Lipschitz over the compact set L.
Proof The gradient of �(z, ·) follows from Lemma 2. Since each term of ∇L�(z, L) is uni-
formly bounded, we conclude the uniform Lipschitz property of �(z, L) w.r.t. L .

Corollary 2 (Uniform bound and Lipschitz of the empirical loss) Let ft (L) be the empirical
loss function defined in (2.8). Then ft (L) is uniformly bounded andLipschitz over the compact
set L.

Corollary 3 (P-Donsker of �(z, L)) The set of measurable functions {�(z, L), L ∈ L} is
P-Donsker (see definition in Lemma 1).

Proposition 5 (Concentration of the empirical loss) Let ft (L) and f (L) be the empirical
and expected loss functions we defined in (2.8) and (4.1). Then we have

E[√t ‖ ft − f ‖∞] = O(1).

Proof Since �(z, L) is uniformly upper bounded (Corollary 1) and is always non-negative,
its square is uniformly upper bounded, hence its expectation. Together with Corollary 3,
Lemma 1 applies.

Theorem 2 (Convergence of the surrogate) The sequence {gt (Lt)}∞t=1 we defined in (3.1)
converges almost surely, where {Lt }∞t=1 is the solution produced by Algorithm 1. Moreover,
the infinite summation

∑∞
t=1 |E[gt+1(Lt+1) − gt (Lt) | Ft]| is bounded almost surely.

Proof The theorem follows by showing that the sequence of {gt (Lt)}∞t=1 is a quasi-
martingale, and hence converges almost surely. To see this, we note that for any t > 0,
the expectation of the difference gt+1(Lt+1) − gt (Lt) conditioned on the past information
Ft is bounded by supL(f (L) − ft (L))/(t + 1), which is of order O(1/(

√
t(t + 1))) due to

Proposition 5. Hence, Lemma 3 applies.

Stage III Nowwe prove that the sequence of the empirical loss function, { ft (Lt)}∞t=1 defined
in (2.8) converges almost surely to the same limit of its surrogate {gt (Lt)}∞t=1. According to
the central limit theorem, we assert that ft (Lt) also converges almost surely to the expected
loss f (Lt) defined in (4.1), implying that gt (Lt) and f (Lt) converge to the same limit almost
surely.

We first establish the numerical convergence of the basis sequence {Lt }∞t=1, based on
which we show the convergence of { ft (Lt)}∞t=1 by applying Lemma 4.

Proposition 6 (Numerical convergence of the basis component) Let {Lt }∞t=1 be the basis
sequence produced by the Algorithm 1. Then, for any t > 0, we have

‖Lt+1 − Lt‖F = O

(
1

t

)
. (4.2)

Theorem 3 (Convergence of the empirical and expected loss) Let { f (Lt)}∞t=1 be the
sequence of the expected loss where {Lt }∞t=1 is the sequence of the solutions produced by the
Algorithm 1. Then, we have

123

434 Mach Learn (2017) 106:419–457

1. The sequence of the empirical loss { ft (Lt)}∞t=1 converges almost surely to the same limit
of the surrogate.

2. The sequence of the expected loss { f (Lt)}∞t=1 converges almost surely to the same limit
of the surrogate.

Proof Let bt = gt (Lt) − ft (Lt). We show that infinite series
∑∞

t=1 bt/(t + 1) is bounded
by applying the central limit theorem to f (Lt) − ft (Lt) and the result of Theorem 2. We
further prove that |bt+1 − bt | can be bounded by O(1/t), due to the uniform boundedness
and Lipschitz of gt (Lt), ft (Lt) and �(zt , Lt). According to Lemma 4, we conclude the
convergence of {bt }∞t=1 to zero. Hence the first claim. The second claim follows immediately
owing to the central limit theorem.

Final stage According to Claim 2 of Theorem 3 and the fact that 0 belongs to the subgradient
of gt (L) evaluated at L = Lt , we are to show the gradient of f (L) taking at Lt vanishes
as t tends to infinity, which establishes Theorem 1. To this end, we note that since {Lt }∞t=1
is uniformly bounded, the non-differentiable term 1

2t ‖L‖22,∞ vanishes as t goes to infinity,
implying the differentiability of g∞(L∞), i.e. ∇g∞(L∞) = 0. On the other hand, we show
that the gradient of f (L) and that of gt (L) are always Lipschitz on the compact set L,
implying the existence of their second order derivative even when t → ∞. Thus, by taking
a first order Taylor expansion and let t go to infinity, we establish the main theorem.

5 Connection to matrix completion

While we mainly focus on the matrix decomposition problem, our method can be extended
to the matrix completion (MC) problem (Cai et al. 2010; Candès and Recht 2009) with max-
norm regularization (Cai and Zhou 2013, 2016)—another popular topic in machine learning
and signal processing. We focus on the max-norm regularized MC problem with squared
Frobenius loss widely considered in the literature, which can be described as follows:

min
X

1

2
‖PΩ (Z − X)‖2F + λ

2
‖X‖2max ,

whereΩ is the set of indices of observed entries in Z andPΩ(M) is the orthogonal projection
onto the span ofmatrices vanishing outside ofΩ so that the (i, j)th entry ofPΩ(M) is equal to
Mi j if (i, j) ∈ Ω and zero otherwise. Interestingly, the max-norm regularized MC problem
can be cast into our framework. To see this, let us introduce an auxiliary matrix M , with
Mi j = c > 0 if (i, j) ∈ Ω and Mi j = 1/c otherwise. The reformulated MC problem,

min
X,E

1

2
‖Z − X − E‖2F + λ

2
‖X‖2max + ‖M ◦ E‖1 , (5.1)

where “◦” denotes the entry-wise product, is similar to our MRMD formulation (1.1). And
it is easy to show that when c tends to infinity, the reformulated problem converges to the
original MC problem.

Online implementation We now derive a stochastic implementation for the max-norm
regularized MC problem. Note that the only difference between the Problem (5.1) and Prob-
lem (1.1) is the �1 regularization on E , which results a new penalty on e for �̃(z, L , r, e)
(which is originally defined in (2.6)):

123

Mach Learn (2017) 106:419–457 435

�̃(z, L , r, e) = 1

2
‖z − L r − e‖22 + ‖m ◦ e‖1 . (5.2)

Here, m is a column of the matrix M in (5.1). According to the definition of M , m is a vector
with element value being either c or 1/c. Let us define two support sets as follows:

Ω1
def= {i | mi = c, 1 ≤ i ≤ p} ,

Ω2
def= {i | mi = 1/c, 1 ≤ i ≤ p} ,

where mi is the i th element of vector m. In this way, the newly defined �̃(z, L , r, e) can be
written as

�̃(z, L , r, e) =
(
1

2

∥∥zΩ1
− (L r)Ω1

− eΩ1

∥∥2
2
+ c

∥∥eΩ1

∥∥
1

)

+
(
1

2

∥∥zΩ2
− (L r)Ω2

− eΩ2

∥∥2
2
+ 1

c

∥∥eΩ2

∥∥
1

)
. (5.3)

Notably, as Ω1 and Ω2 are disjoint, given z, L and r , the variable e in (5.3) can be optimized
by soft-thresholding in a separate manner:

eΩ1
= Sc

[
zΩ1

− (L r)Ω1

]
, eΩ2

= S1/c
[
zΩ2

− (L r)Ω2

]
. (5.4)

Hence, we obtain Algorithm 5 for the online max-norm regularized matrix completion
(OMRMC) problem. The update principle for r is the same as we described in Algorithm 3
and that for e is given by (5.4). Note that we can use Algorithm 4 to update L as usual.
�∞-norm constrained variant In some matrix completion applications, one may have to take
another �∞-norm constraint into account, i.e.,

‖X‖∞ ≤ τ, for some τ > 0. (5.5)

For example, the rating value of the Netflix dataset is not greater than 5. In the 1-bit setting,
the entries of a matrix can either be 1 or −1 (Davenport et al. 2014). Other examples can be
found in, e.g., Klopp (2014). Interestingly, Algorithm 5 can be adjusted to such a constraint.

To see this, we observe that the constraint ‖X‖∞ ≤ τ amounts to restricting
∣∣xi j

∣∣ ≤ τ

for all entries xi j of X . Due to the matrix factorization X = LR�, we know that it requires
∣∣∣l(i)r(j)�

∣∣∣ ≤ τ, ∀ i ∈ [p], ∀ j ∈ [n], (5.6)

where we recall that l(i) and r(j) are the i th row of L and the j th row of R, respectively.
Proposition 1 already ensures

‖r(j)‖2 ≤ 1, ∀ j ∈ [n].
Since

∣∣l(i)r(j)�
∣∣ ≤ ‖l(i)‖2 · ‖r(j)‖2, we obtain a sufficient condition for (5.6):

‖l(i)‖2 ≤ τ, ∀ i ∈ [n].
That is,

‖L‖2,∞ ≤ τ,

which can easily be fulfilled by an orthogonal projection onto the �2 ball with radius τ , i.e.,
if ‖Lt‖2,∞ > τ , we set Lt ← τ

‖Lt‖2,∞ Lt .

123

436 Mach Learn (2017) 106:419–457

Algorithm 5 Online Max-Norm Regularized Matrix Completion

Require: Z ∈ R
p×n (observed samples), parameters λ1 and λ2, L0 ∈ R

p×d (initial basis), zero matrices
A0 ∈ R

d×d and B0 ∈ R
p×d

Ensure: optimal basis Lt
1: for t = 1 to n do
2: Access the t th sample zt .
3: Compute the coefficient and noise:

{r t , et } = argmin
r,e,‖r‖22≤1

�̃(zt , Lt−1, r, e)

= argmin
r,e,‖r‖22≤1

(
1

2
‖zt − Lt−1r − e‖22 + ‖mt ◦ e‖1

)
.

4: Compute the accumulation matrices At and Bt :

At ← At−1 + r t r�t ,

Bt ← Bt−1 + (zt − et) r�t .

5: Compute the basis Lt by optimizing the surrogate function (3.1):

Lt = argmin
L

1

t

t∑

i=1

�̃(zi , L , r i , ei) + λ1

2t
‖L‖22,∞

= argmin
L

1

t

t∑

i=1

(
1

2
‖zi − L r i − ei‖22 + ‖mi ◦ ei‖1

)
+ λ1

2t
‖L‖22,∞

= argmin
L

1

t

t∑

i=1

(
1

2
‖zi − L r i − ei‖22

)
+ λ1

2t
‖L‖22,∞

= argmin
L

1

t

(
1

2
Tr
(
L�L At

)
− Tr

(
L�Bt

))
+ λ1

2t
‖L‖22,∞ .

6: end for

Other types of loss functions We in this paper emphasize on the squared Frobenius loss
for the max-norm regularized problems. There is also solid theoretical analysis for other
formulations, e.g., logistic regression and probit regression (Cai and Zhou 2013). Unfor-
tunately, it seems that one cannot trivially extend the proposed online algorithms to a
general loss function. To be more precise, for Frobenius (or �2) loss, we are guaranteed
with a nice property that minimizing the surrogate (3.8) is equivalent to solving (3.10),
for which only O(pd) memory is needed. For general models, such a property does
not hold and we conjecture that more technique is needed to find a good approximation
to (3.8).

6 Experiments

In this section, we report numerical results on synthetic data to demonstrate the effective-
ness and robustness of our online max-norm regularized matrix decomposition (OMRMD)
algorithm. Some experimental settings are used throughout this section, as elaborated
below.

123

Mach Learn (2017) 106:419–457 437

Data generation The simulation data are generated by following a similar procedure in Can-
dès et al. (2011). The clean data matrix X is produced by X = UV�, where U ∈ R

p×d

and V ∈ R
n×d . The entries of U and V are i.i.d. sampled from the normal distribution

N (0, 1). We choose sparse corruption in the experiments, and introduce a parameter ρ to
control the sparsity of the corruption matrix E , i.e., a ρ-fraction of the entries are non-zero
whose locations are uniformly sampled and the magnitude follows a uniform distribution
over [−1000, 1000]. Finally, the observation matrix Z is produced by Z = X + E .

Baselines We mainly compare with two methods: Principal Component Pursuit (PCP) and
online robust PCA (OR-PCA). PCP is the state-of-the-art batchmethod for subspace recovery,
which was presented as a robust formulation of PCA in Candès et al. (2011). OR-PCA is
an online implementation of PCP,2 which also achieves state-of-the-art performance over
the online subspace recovery algorithms. Sometimes, to show the robustness, we will also
report the results of online PCA (Artač et al. 2002), which incrementally learns the principal
components without taking the noise into account.

Evaluation metric Our goal is to estimate the correct subspace for the underlying data. Here,
we evaluate the fitness of our estimated subspace basis L and the ground truth basis U by
the Expressed Variance (EV) (Xu et al. 2010):

EV(U, L)
def= Tr(L�UU�L)

Tr(UU�)
. (6.1)

The values of EV range in [0, 1] and a higher value indicates a more accurate recovery.

Other settings Throughout the experiments, we set the ambient dimension p = 400, the
total number of samples n = 5000 and pick the value of d as the true rank unless otherwise
specified. We fix the tunable parameter λ1 = λ2 = 1/

√
p, and use default parameters for all

baselines we compare with. Each experiment is repeated 10 times and we report the averaged
EV as the result.

6.1 Robustness

We first study the robustness of OMRMD, measured by the EV value of its output after
accessing the last sample, and compare it to the nuclear norm based OR-PCA and the batch
algorithm PCP. In order to make a detailed examination, we vary the true rank from 0.02p
to 0.5p, with a step size 0.04p, and the corruption fraction ρ from 0.02 to 0.5, with a step
size 0.04.

The general results are illustrated in Fig. 1 where a brighter color means a higher EV
(hence better performance). We observe that for easy tasks (i.e., few corruption and low rank
case), both OMRMD and OR-PCA perform comparably. However, for more difficult cases,
OMRMD outperforms OR-PCA. In order to further investigate this phenomenon, we plot the
EV curve against the fraction of corruption under a given matrix rank. In particular, we group
the results into two parts, one with relatively low rank (Fig. 2) and the other with middle
level of rank (Fig. 3). Figure2 indicates that when manipulating a low-rank matrix, OR-PCA
works as well as OMRMD under a low level of noise. For instance, the EV produced by
OR-PCA is as close as that of OMRMD for rank less than 40 and ρ no more than 0.26.
However, when the rank becomes larger, OR-PCA degrades quickly compared to OMRMD.

2 Strictly speaking, OR-PCA is an online version of stable PCP (Zhou et al. 2010).

123

438 Mach Learn (2017) 106:419–457

rank / ambient dimension

fra
ct

io
n

of
 c

or
ru

pt
io

n

0.02 0.14 0.26 0.38 0.5

0.5

0.38

0.26

0.14

0.02

(a) OMRMD
rank / ambient dimension

fra
ct

io
n

of
 c

or
ru

pt
io

n

0.02 0.14 0.26 0.38 0.5

0.5

0.38

0.26

0.14

0.02

(b) OR-PCA
rank / ambient dimension

fra
ct

io
n

of
 c

or
ru

pt
io

n

0.02 0.14 0.26 0.38 0.5

0.5

0.38

0.26

0.14

0.02

(c) PCP

Fig. 1 Performance of subspace recovery under different rank and corruption fraction. Brighter color means
better performance. As we observed, the max-norm based algorithm OMRMD always performs comparably
or better than OR-PCA which is based on nuclear norm formulation. Since PCP is a batch method, it always
achieves the best recovery performance

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 8

OMRMD
OR−PCA
PCP

(a)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 24

OMRMD
OR−PCA
PCP

(b)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption
E

V

rank = 40

OMRMD
OR−PCA
PCP

(c)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 56

OMRMD
OR−PCA
PCP

(d)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 72

OMRMD
OR−PCA
PCP

(e)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 88

OMRMD
OR−PCA
PCP

(f)

Fig. 2 EV value against corruption fractions when the matrix has a relatively low rank (note that the ambient
dimension p is 400). The EV value is computed for the obtained basis after accessing the last sample. When
the rank is extremely low (rank = 8), OMRMD and OR-PCA works comparably. In other cases, OMRMD is
always better than OR-PCA addressing a large fraction of corruption

This is possibly because the max-norm is a tighter approximation to the matrix rank. Since
PCP is a batch formulation and accesses all the data in each iteration, it always achieves the
best recovery performance.

6.2 Convergence rate

We next study the convergence of OMRMD by plotting the EV curve against the number
of samples. Besides OR-PCA and PCP, we also add online PCA (Artač et al. 2002) as a
baseline algorithm. The results are illustrated in Fig. 4 where we set p = 400 and the true
rank as 80. As expected, PCP achieves the best performance since it is a batch method and
needs to access all the data during optimization. Online PCA degrades significantly even
with low corruption (Fig. 4a). OMRMD is comparable to OR-PCA when the corruption is

123

Mach Learn (2017) 106:419–457 439

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 104

OMRMD
OR−PCA
PCP

(a)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 120

OMRMD
OR−PCA
PCP

(b)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 136

OMRMD
OR−PCA
PCP

(c)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 168

OMRMD
OR−PCA
PCP

(d)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 184

OMRMD
OR−PCA
PCP

(e)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 200

OMRMD
OR−PCA
PCP

(f)

Fig. 3 EV value against corruption fractions when the matrix has a middle level of rank (note that the ambient
dimension p is 400). The EV value is computed for the basis after accessing the last sample. In these cases,
OR-PCA degrades as soon as the corruption is tuned to be higher than 0.02

1 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V OMRMD

OR−PCA
PCP
Online PCA

(a) ρ = 0.01

1 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V OMRMD

OR−PCA
PCP
Online PCA

(b) ρ = 0.1

1 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V OMRMD

OR−PCA
PCP
Online PCA

(c) ρ = 0.3

1 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V

OMRMD
OR−PCA
PCP
Online PCA

(d) ρ = 0.5

Fig. 4 EV value against number of samples under different corruption fractions. PCP outperforms all the
online algorithms before they converge since PCP accesses all the data to estimate the basis. The performance
of Online PCA is significantly degraded even when there is little corruption. For hard tasks (ρ equal to 0.3 or
higher), we again observe the superiority of the max-norm over the nuclear norm

123

440 Mach Learn (2017) 106:419–457

2 4 6 8 10

x 104

0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V

OMRMD
OR−PCA
PCP

(a) p = 400

2 4 6 8 10

x 104

0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V

OMRMD
OR−PCA
PCP

(b) p = 1000

2 4 6 8 10

x 104

0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V

OMRMD
OR−PCA
PCP

(c) p = 3000

Fig. 5 EV value against number of samples under different ambient dimensions. The intrinsic dimension
d = 0.1p and the corruption fraction ρ = 0.3

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Time (minutes)

E
V

OMRMD
OR−PCA

(a) p = 400

0 200 400 600
0

0.2

0.4

0.6

0.8

1

Time (minutes)

E
V

OMRMD
OR−PCA

(b) p = 1000

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time (minutes)
E

V

OMRMD
OR−PCA

(c) p = 3000

Fig. 6 EV value against time under different ambient dimensions. The intrinsic dimension d is set as 0.1p
and the corruption fraction ρ equals 0.3

low (Fig. 4a), and converges significantly faster when the data is grossly corrupted (Fig. 4c
and 4d). This observation agrees with Fig. 1, and again suggests that in the noisy scenario,
max-norm may be a better fit than the nuclear norm.

Indeed, OMRMD converges much faster even in large scale problems. In Fig. 5, we com-
pare the convergence rate of OMRMD and OR-PCA under different ambient dimensions.
The rand of the data are set with 0.1p, indicating a low-rank structure of the underlying
data. Again, we assume the rank is known so d = 0.1p. The error corruption ρ is fixed to
0.3 – a difficult task for recovery. We observe that for high dimensional cases (p = 1000
and p = 3000), OMRMD significantly outperforms OR-PCA. For example, in Fig. 5b,
OMRMD achieves the EV value of 0.8 only with accessing about 2000 samples, whereas
OR-PCA needs to reveal 60, 000 samples to obtain the same accuracy!

6.3 Computational complexity

We note that OMRMD is a little bit inferior to OR-PCA in terms of computation per iteration,
as our algorithm may solve a dual problem to optimize r (see Algorithm 3) if the initial
solution r0 violates the constraint. We plot the EV curve with respect to the running time in
Fig. 6. It shows that, OR-PCA is about 3 times faster than OMRMD when processing a data
point. However, we point out here that we emphasize on the convergence rate. That is, given
an EV value, how much time the algorithm will take to achieve it. In Fig. 6c, for example,
OMRMD takes 50 minutes to achieve the EV value of 0.6, while OR-PCA uses nearly 900
minutes. From Figs. 5 and 6, it is safe to conclude that OMRMD is superior to OR-PCA in
terms of convergence rate in the price of a little more computation per sample.

123

Mach Learn (2017) 106:419–457 441

1 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V d = 5

d = 10
d = 20
d = 40
d = 60
d = 80

(a) ρ = 0.01

1 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V d = 5

d = 10
d = 20
d = 40
d = 60
d = 80

(b) ρ = 0.1

1 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V d = 5

d = 10
d = 20
d = 40
d = 60
d = 80

(c) ρ = 0.3

Fig. 7 Influence of the choice of d. The true matrix rank is 40. We observe that as long as d is no smaller
than the true rank, the algorithm always recovers the subspace

6.4 Influence of d

Finally, we remark that it is important to pick a sufficiently large value for d . As Burer
and Monteiro (2005) suggested, d should be chosen no smaller than the true rank. In the
simulation studies, we always pick d as the rank of the underlying data. Here we examine
the influence of d in Fig. 7, where we set the ambient dimension p = 400, the sample size
n = 5000 and the true rank is 40. As expected, if the value of d is smaller than the true rank,
we have no hope to recover the subspace.

7 Conclusion

In this paper, we have developed an online algorithm for the max-norm regularized matrix
decomposition problems. Using thematrix factorization form of themax-norm, we converted
the original problem to a constrained one which facilitates an online implementation for solv-
ing the batch problem. We have established theoretical guarantees that the sequence of the
solutions converges to a stationary point of the expected loss function asymptotically. More-
over, we empirically compared our proposed algorithm with OR-PCA, which is a recently
proposed online algorithm for nuclear-norm based matrix decomposition. The simulation
results have suggested that the proposed algorithm is more robust than OR-PCA, in particu-
lar for hard tasks (i.e.,when a large fraction of entries are corrupted).We also have investigated
the convergence rate for both OMRMD and OR-PCA, and have shown that OMRMD con-
verges much faster than OR-PCA even in large-scale problems. When acquiring sufficient
samples, we observed that our algorithm converges to the batch method PCP, which is a state-
of-the-art formulation for subspace recovery. Our experiments, to an extent, suggest that the
max-norm might be a tighter relaxation of the rank function compared to the nuclear norm.

Acknowledgements J. Shen and P. Li are partially supported by NSF-Bigdata-1419210, NSF-III-1360971,
ONR-N00014-13-1-0764 and AFOSR-FA9550-13-1-0137.

8 Appendix: Proof details

8.1 Proof for Proposition 1

Proof Let us denote k = ‖R‖2,∞. We presume that k is positive. Otherwise, the low-rank
component X we aim to recover is a zero matrix, which is of little interest. Now we construct

123

442 Mach Learn (2017) 106:419–457

two auxiliary variables L̄ = kL ∈ R
p×d and R̄ = 1

k R ∈ R
n×d . Replacing L and R with 1

k L̄
and k R̄ in (2.2) respectively, we have:

min
L̄,R̄,E

1

2

∥∥∥∥Z −
(
1

k
L̄

) (
k R̄

)� − E

∥∥∥∥
2

F
+ λ1

2

∥∥∥∥
1

k
L̄

∥∥∥∥
2

2,∞

∥∥k R̄
∥∥2
2,∞ + λ2h(E).

That is, we are to solve

min
L̄,R̄,E

1

2

∥∥∥Z − L̄ R̄� − E
∥∥∥
2

F
+ λ1

2

∥∥L̄
∥∥2
2,∞

∥∥R̄
∥∥2
2,∞ + λ2h(E).

The fact that R̄ = 1
k R and k is the maximum of the �2 row norm of R implies

∥∥R̄
∥∥
2,∞ = 1.

Therefore, we can reformulate our MRMD problem as a constrained program:

min
L̄,R̄,E

1

2

∥∥∥Z − L̄ R̄� − E
∥∥∥
2

F
+ λ1

2

∥∥L̄
∥∥2
2,∞ + λ2h(E), s. t.

∥∥R̄
∥∥2
2,∞ = 1.

To see why the above program is equivalent to (2.3), we only need to show that each optimal
solutions (L∗, R∗, E∗) of (2.3) must satisfy ‖R∗‖22,∞ = 1. Suppose that k = ‖R∗‖2,∞ < 1.
Let L ′ = kL∗ and R′ = 1

k R
∗. Obviously, (L ′, R′, E∗) are still feasible. However, the

objective value becomes

1

2

∥∥∥Z − L ′R ′� − E∗
∥∥∥
2

F
+ λ1

2

∥∥L ′∥∥2
2,∞ + λ2h(E∗)

= 1

2

∥∥∥Z − L∗R∗� − E∗
∥∥∥
2

F
+ λ1

2
· k2 ∥∥L∗∥∥2

2,∞ + λ2h(E∗)

<
1

2

∥∥∥Z − L∗R∗� − E∗
∥∥∥
2

F
+ λ1

2

∥∥L∗∥∥2
2,∞ + λ2h(E∗),

which contradicts the assumption that (L∗, R∗, E∗) is the optimal solution. Thuswe complete
the proof.

8.2 Proof for Stage I

First we prove that all the stochastic variables are uniformly bounded.

Proposition 7 Let r t , et and Lt be the optimal solutions produced by Algorithm 1. Then,

1. The optimal solutions r t and et are uniformly bounded.
2. The matrices 1

t At and
1
t Bt are uniformly bounded.

3. There exists a compact set L, such that for all Lt produced by Algorithm 1, Lt ∈ L.
Namely, there exists a positive constant Lmax that is uniform over t, such that for all
t > 0,

‖Lt‖F ≤ Lmax.

Proof Note that for each t > 0, ‖r t‖2 ≤ 1. Thus r t is uniformly bounded. Let us consider
the optimization problem (3.2). As the trivial solution r t = 0 and et = 0 are feasible, we
have

�̃(zt , Lt−1, 0, 0) = 1

2
‖zt‖22 .

Therefore, the optimal solution should satisfy:

1

2
‖zt − Lt−1r t − et‖22 + λ2 ‖et‖1 ≤ 1

2
‖zt‖22 ,

123

Mach Learn (2017) 106:419–457 443

which implies

‖et‖1 ≤ 1

2λ2
‖zt‖22 .

Since zt is uniformly bounded (Assumption (A1)), et is uniformly bounded.
To examine the uniform bound for 1

t At and 1
t Bt , note that

1

t
At = 1

t

t∑

i=1

r i r�
i ,

1

t
Bt = 1

t

t∑

i=1

(zi − ei) r�
i .

Since for each i , r i , ei and zi are uniformly bounded, 1
t At and 1

t Bt are uniformly bounded.
Based on Claim 1 and Claim 2, we prove that Lt can be uniformly bounded. First let us

denote 1
t At and 1

t Bt by Ãt and B̃t , respectively.

Step 1 According to Claim 2, there exist constants a1 and b that are uniform over t , such that
∥∥ Ãt

∥∥
F ≤ a1,

∥∥B̃t
∥∥
F ≤ b.

On the other hand, from Assumption (A2), the eigenvalues of Ãt is lower bounded by a
positive constant β1 that is uniform over t , implying the trace norm (sum of the singular
values) of Ãt is uniformly lower bounded by a positive constant. As all norms are equivalent,
we can show that

∥∥ Ãt
∥∥
F ≥ a0 > 0,

where a0 is a positive constant which is uniform over t .
Recall that Lt is the optimal basis for (3.10). Thus, the subgradient of the objective function

taken at Lt should contain zero, that is,

Lt Ãt − B̃t + λ1

t
Ut = 0,

where Ut is the subgradient of 1
2‖Lt‖22,∞ produced by (3.11). Note that, as all of the eigen-

values of Ãt are lower bounded by a positive constant, Ãt is invertible. Thus,

Lt =
(
B̃t − λ1

t
Ut

)
Ã−1
t ,

where Ã−1
t is the inverse of Ãt .

Now we derive the bound for Lt :

‖Lt‖F =
∥∥∥∥

(
B̃t − λ1

t
Ut

)
Ã−1
t

∥∥∥∥
F

≤
∥∥∥∥B̃t − λ1

t
Ut‖F · ‖ Ã−1

t

∥∥∥∥
F

≤
(∥∥B̃t

∥∥
F + λ1

t
‖Ut‖F

)∥∥ Ã−1
t

∥∥
F

= ∥∥ Ã−1
t

∥∥
F

∥∥B̃t
∥∥
F + λ1

t

∥∥ Ã−1
t

∥∥
F ‖Ut‖F

≤ ∥∥ Ã−1
t

∥∥
F

∥∥B̃t
∥∥
F + λ1

t

∥∥ Ã−1
t

∥∥
F ‖Lt‖F .

123

444 Mach Learn (2017) 106:419–457

It follows that
(
1 − λ1

t

∥∥ Ã−1
t

∥∥
F

)
‖Lt‖F ≤ ∥∥ Ã−1

t

∥∥
F

∥∥B̃t
∥∥
F .

As all of the eigenvalues of Ãt are uniformly lower bounded, those of Ã−1
t are uniformly

upper bounded. Thus the trace norm of Ã−1
t are uniformly upper bounded. As all norms are

equivalent, ‖ Ã−1
t ‖F is also uniformly upper bounded by a constant, say a2. Thus,

(
1 − λ1

t
a2

)
‖Lt‖F ≤

(
1 − λ1

t

∥∥ Ã−1
t

∥∥
F

)
‖Lt‖F ≤ ∥∥ Ã−1

t

∥∥
F

∥∥B̃t
∥∥
F ≤ a2b

Particularly, let

t0 = min
t

{t ≥ 2λ1a2, t is an integer} .

Then, for all t ≥ t0,
‖Lt‖F ≤ 2a2b. (8.1)

Step 2 Let us consider a uniform bound for Lt , with 0 < t < t0. Recall that Lt is the
minimizer for gt (L), that is

Lt = argmin
L

gt (L)

= argmin
L

1

t

t∑

i=1

(
1

2
‖zi − L r i − ei‖22 + λ2h̃(ei)

)
+ λ1

2t
‖L‖22,∞

= argmin
L

t∑

i=1

1

2
‖zi − L r i − ei‖22 + λ1

2
‖L‖22,∞

def= argmin
L

g̃t (L).

Consider a trivial but feasible solution with L = 0,

g̃t (0) =
t∑

i=1

1

2
‖zi − ei‖22 .

The inequality

g̃t (Lt) ≤ g̃t (0)

implies

‖Lt‖22,∞ ≤ 1

λ1

t∑

i=1

‖zi − ei‖22 .

Since

‖Lt‖2F ≤ p ‖Lt‖22,∞ ≤ p

λ1

t∑

i=1

‖zi − ei‖22 ,

we have

‖Lt‖F ≤
√√√√ p

λ1

t∑

i=1

‖zi − ei‖22.

123

Mach Learn (2017) 106:419–457 445

For all 0 < t < t0,

‖Lt‖F ≤
√√√√ p

λ1

t∑

i=1

‖zi − ei‖22 ≤
√√√√ p

λ1

t0∑

i=1

‖zi − ei‖22. (8.2)

Note that each term, particularly t0, can be uniformly upper bounded, thus√
p
λ1

∑t0
i=1 ‖zi − ei‖22 can also be uniformly upper bounded. Namely, for all 0 < t < t0, Lt

is also uniformly upper bounded.

Step 3 Now let us define

Lmax = max

⎧
⎨

⎩2a2b,

√√√√ p

λ1

t0∑

i=1

‖zi − ei‖22

⎫
⎬

⎭ .

Then, for all t > 0,

‖Lt‖F ≤ Lmax.

Remark 4 We remark some critical points in the third claim of Proposition 3. All the con-
stants, a0, a1, a2 and b are independent from t , making them uniformly bounded. Also, t0 is
a constant that is uniform over t . Thus, Lt can be uniformly bounded.

Corollary 4 Let r t , et and Lt be the optimal solutions produced by Algorithm 1. We show
some uniform boundedness property here.

1. �̃ (zt , Lt , r t , et) defined in (2.6) and � (zt , Lt) defined in (2.9) are both uniformly
bounded.

2. The surrogate function, i.e., gt (Lt) defined in (3.1) is uniformly bounded.
3. Moreover, gt (L) is uniformly Lipschitz over the compact set L.

Proof The uniform bound of r t , et and zt , combined with the uniform bound of Lt , implies
the uniform boundedness for �̃ (zt , Lt , r t , et) and � (zt , Lt). Thus, gt (Lt) and ft (Lt) are also
uniformly bounded.

To show that gt (L) is uniformly Lipschitz, we compute its subgradient at any L ∈ L:
∥∥∇Lgt (L)

∥∥
F =

∥∥∥∥
1

t
(L At − Bt) + λ1

t
U

∥∥∥∥
F

≤
∥∥∥∥
1

t
(L At − Bt)

∥∥∥∥
F

+ λ1

t
‖L‖F

≤
∥∥∥∥
1

t
(L At − Bt)

∥∥∥∥
F

+ λ1 ‖L‖F

where U ∈ ∂ 1
2 ‖L‖2,∞. Since L , 1

t At and 1
t Bt are all uniformly bounded, the subgradient

of gt (L) is uniformly bounded. This implies that gt (L) is uniformly Lipschitz.

8.3 Proof for Stage II

Lemma 1 (A corollary of Donsker theorem (Vaart 2000)) Let F = { fθ : X → R, θ ∈ Θ}
be a set of measurable functions indexed by a bounded subset Θ of Rd . Suppose that there
exists a constant K such that

∣∣ fθ1(x) − fθ2(x)
∣∣ ≤ K ‖θ1 − θ2‖2 ,

123

446 Mach Learn (2017) 106:419–457

for every θ1 and θ2 in Θ and x in X . Then, F is P-Donsker. For any f in F, let us define
Pn f , P f and Gn f as

Pn f = 1

n

n∑

i=1

f (Xi), P f = E[f (X)], Gn f = √
n(Pn f − P f).

Let us also suppose that for all f , P f 2 < δ2 and ‖ f ‖∞ < M and that the random elements
X1, X2, . . . are Borel-measurable. Then, we have

E ‖G‖F = O(1),

where ‖G‖F = sup f ∈F |Gn f |.
Now let us verify that the set of functions {�(z, L), L ∈ L} indexed by L fulfills the

hypotheses in the corollary of Donsker Theorem. In particular, we have verified that:

– The index set L is uniformly bounded (see Proposition 3).
– Each �(z, L) can be uniformly bounded (see Corollary 1).
– Any of the functions �(z, L) in the family is uniformly Lipschitz (see Proposition 4).

Next, we show that the family of functions �(z, L) is uniformly Lipschitz w.r.t. L . We
introduce the following lemma as it will be useful for our discussion.

Lemma 2 (Corollary of Theorem4.1 fromBonnans and Shapiro (1998))Let f : Rp×R
q →

R. Suppose that for all x ∈ R
p the function f (x, ·) is differentiable, and that f and∇u f (x, u)

are continuous on Rp ×R
q . Let v(u) be the optimal value function v(u) = minx∈C f (x, u),

where C is a compact subset of Rp. Then v(u) is directionally differentiable. Furthermore,
if for u0 ∈ R

q , f (·, u0) has unique minimizer x0 then v(u) is differentiable in u0 and
∇uv(u0) = ∇u f (x0, u0).

Proposition 8 Let L ∈ L and denote the minimizer of �̃(z, L , r, e) defined in (2.9) as:

{r∗, e∗} = argmin
r,e,‖r‖2≤1

1

2
‖z − L r − e‖22 + λ2h̃(e).

Then, the function �(z, L) defined in Problem (2.9) is continuously differentiable and

∇L�(z, L) = (L r∗ + e∗ − z)r∗�.

Furthermore, �(z, ·) is uniformly Lipschitz.
Proof By fixing the variable z, the function �̃ can be seen as a mapping:

R
d+p × L → R

([r; e], L) �→ �̃(z, L , r, e).

It is easy to show that ∀[r; e] ∈ R
d+p , �̃(z, ·, r, e) is differentiable. Also �̃(z, ·, ·, ·) is

continuous onRd+p×L.∇L �̃(z, L , r, e) = (L r+e−z)r� is continuous onRd+p×L. ∀L ∈
L, according to Assumption** (A3), �̃(z, L , ·, ·) has a unique minimizer. Thus Lemma 2
applies and we prove that �(z, L) is differentiable in L and

∇L�(z, L) = (L r∗ + e∗ − z)r∗�.

Since every term in ∇L�(z, L) is uniformly bounded (Assumption (A1) and Proposition 3),
we conclude that the gradient of �(z, ·) is uniformly bounded, implying that �(z, L) is uni-
formly Lipschitz w.r.t. L .

123

Mach Learn (2017) 106:419–457 447

Corollary 5 Let ft (L) be the empirical loss function defined in (2.8). Then ft (L) is uniformly
bounded and Lipschitz.

Proof As �(z, L) can be uniformly bounded (Corollary 1), we derive the uniform bounded-
ness of ft (L). Let U ∈ 1

2 ‖L‖2,∞. By computing the subgradient of ft (L) at L , we have

∥∥∇L ft (L)
∥∥
F =

∥∥∥∥∥
1

t

t∑

i=1

∇L�(zi , L) + λ1

t
U

∥∥∥∥∥
F

≤ 1

t

t∑

i=1

∥∥∥(L r i + ei − zi)r�
i

∥∥∥
F

+ λ1

t
‖L‖F

= 1

t

t∑

i=1

∥∥∥L r i r�
i + (ei − zi)r�

i

∥∥∥
F

+ λ1

t
‖L‖F

≤ 1

t

t∑

i=1

(
‖L‖F ·

∥∥∥r i r�
i

∥∥∥
F

+
∥∥∥(ei − zi)r�

i

∥∥∥
F

)
+ λ1

t
‖L‖F .

Note that all the terms (i.e. zi , L, r i , ei) in the right hand inequality are uniformly bounded.
Thus, we say that the subgradient of ft (L) is uniformly bounded and ft (L) is uniformly
Lipschitz.

Proposition 9 Let ft (L) and f (L) be the empirical and expected loss functions we defined
in (2.8) and (4.1). Then we have

E

[√
t ‖ ft − f ‖∞

]
= O(1).

Proof Based on Propositions 3 and 4, we argue that the set of measurable functions
{�(z, L), L ∈ L} is P-Donsker (defined in Lemma 1). From Corollary 1, we know that
�(z, L) can be uniformly bounded by a constant, say κc. Also note that from the definition
of �(z, L) (see (2.9)), it is always non-negative. Thus, we have

�2(z, L) ≤ κ2
c ,

implying the uniform boundedness of E[�2(z, L)]. Thus, Lemma 1 applies and we have

E

[
sup

�

|√t(ft − f)|
]

= O(1).

We are ready to prove the convergence of gt (Lt), which requires to justify that the stochas-
tic process {gt (Lt)}∞t=1 is a quasi-martingale, defined as follows:

Lemma 3 (Sufficient condition of convergence for a stochastic process (Bottou 1998)) Let
(Ω,F, P) be a measurable probability space, ut , for t ≥ 0, be the realization of a stochastic
process and Ft be the filtration by the past information at time t. Let

δt =
{
1 i f E

[
ut+1 − ut | Ft

]
> 0,

0 otherwise.

If for all t , ut ≥ 0 and
∑∞

t=1 E[δt (ut+1 − ut)] < ∞, then ut is a quasi-martingale and
converges almost surely. Moreover,

∞∑

t=1

∣∣E
[
ut+1 − ut | Ft

]∣∣ < +∞ a.s.

123

448 Mach Learn (2017) 106:419–457

Theorem 4 (Convergence of the surrogate function gt (Lt)) The surrogate function gt (Lt)

we defined in (3.1) converges almost surely, where Lt is the solution produced by Algorithm 1.

Proof For convenience, let us first define the stochastic positive process

ut = gt (Lt) ≥ 0.

We consider the difference between ut+1 and ut :

ut+1 − ut = gt+1(Lt+1) − gt (Lt)

= gt+1(Lt+1) − gt+1(Lt) + gt+1(Lt) − gt (Lt)

= gt+1(Lt+1) − gt+1(Lt) + 1

t + 1
�(zt+1, Lt) − 1

t + 1
gt (Lt)

= gt+1(Lt+1) − gt+1(Lt) + ft (Lt) − gt (Lt)

t + 1
+ �(zt+1, Lt) − ft (Lt)

t + 1
. (8.3)

As Lt+1 minimizes gt+1(L), we have

gt+1(Lt+1) − gt+1(Lt) ≤ 0.

As gt (Lt) is the surrogate function of ft (Lt), we have

ft (Lt) − gt (Lt) ≤ 0.

Thus,

ut+1 − ut ≤ �(zt+1, Lt) − ft (Lt)

t + 1
. (8.4)

Let us consider the filtration of the past information Ft and take the expectation of (8.4)
conditioned on Ft :

E[ut+1 − ut | Ft] ≤ E[�(zt+1, Lt) | Ft] − ft (Lt)

t + 1

≤ f (Lt) − ft (Lt)

t + 1

= f (Lt) − f ′
t (Lt) − λ1

2t ‖Lt‖22,∞
t + 1

≤ ‖ f − f ′
t ‖∞

t + 1
− λ1

2t (t + 1)
‖Lt‖22,∞

≤ ‖ f − f ′
t ‖∞

t + 1
, (8.5)

where

f ′
t (L) = 1

t

t∑

i=1

�(zi , L).

Note that

f ′(L) = lim
t→∞ f ′

t (L) = Ez[�(z, L)] = f (L).

From Proposition 5, we have

E

[∥∥∥
√
t(f ′

t − f ′)
∥∥∥∞

]
= O(1).

123

Mach Learn (2017) 106:419–457 449

Also note that according to Proposition 3, we have ‖Lt‖F ≤ Lmax. Thus, considering the
positive part of E[ut+1 − ut | Ft] in (8.5) and taking the expectation, we have

E

[
E
[
ut+1 − ut | Ft

]+] = E
[
max

{
E
[
ut+1 − ut | Ft

]
, 0
}] ≤ κ√

t(t + 1)
,

where κ is a constant.
Therefore, defining the set T = {t | E[ut+1 − ut | Ft] > 0} and

δt =
{
1 if t ∈ T ,

0 otherwise,

we have
∞∑

t=1

E
[
δt (ut+1 − ut)

] =
∑

t∈T
E
[
(ut+1 − ut)

]

=
∑

t∈T
E
[
E
[
ut+1 − ut | Ft

]]

=
∞∑

t=1

E

[
E
[
ut+1 − ut | Ft

]+]

< +∞.

According to Lemma 3, we conclude that gt (Lt) is a quasi-martingale and converges almost
surely. Moreover,

∞∑

t=1

∣∣E
[
ut+1 − ut | Ft

]∣∣ < +∞ a.s. (8.6)

8.4 Proof for Stage III

We now show that gt (Lt) and f (Lt) converge to the same limit almost surely. Consequently,

f (Lt) converges almost surely. First, we prove that bt
def= gt (Lt) − ft (Lt) converges to 0

almost surely. We utilize the lemma from Mairal et al. (2010) for the proof.

Lemma 4 (Lemma 8 fromMairal et al. (2010)) Let at , bt be two real sequences such that for
all t , at ≥ 0, bt ≥ 0,

∑∞
t=1 at = ∞,

∑∞
t=1 atbt < ∞, ∃K > 0, such that |bt+1 − bt | < Kat .

Then, limt→+∞ bt = 0.

We notice that another sequence {at }∞t=1 should be constructed in Lemma 4. Here, we take
the at = 1

t ≥ 0, which satisfies the condition
∑∞

t=1 at = ∞. Next, we need to show that
|bt+1 − bt | < Kat , where K is a constant. To do this, we alternatively show that |bt+1 − bt |
can be upper bounded by ‖Lt+1 − Lt‖F , which can be further bounded by Kat .

Proposition 10 Let {Lt } be the basis sequence produced by the Algorithm 1. Then,

‖Lt+1 − Lt‖F = O

(
1

t

)
.

Proof Let us define

ĝt (L) = 1

t

(
1

2
Tr
(
L�L At

)
− Tr

(
L�Bt

))
+ λ1

2t
‖L‖22,∞ . (8.7)

123

450 Mach Learn (2017) 106:419–457

According the strong convexity of At (Assumption (A2)), and the convexity of ‖L‖22,∞, we
can derive the strong convexity of ĝt (L). That is,

ĝt (Lt+1) − ĝt (Lt) ≥ 〈Ut , Lt+1 − Lt 〉 + β1

2
‖Lt+1 − Lt‖2F , (8.8)

where Ut ∈ ∂ ĝt (Lt). As Lt is the minimizer of ĝt , we have

0 ∈ ∂ ĝt (Lt).

Let Ut be the zero matrix. Then we have

ĝt (Lt+1) − ĝt (Lt) ≥ β1

2
‖Lt+1 − Lt‖2F . (8.9)

On the other hand,

ĝt (Lt+1) − ĝt (Lt) = ĝt (Lt+1) − ĝt+1(Lt+1) + ĝt+1(Lt+1)

− ĝt+1(Lt) + ĝt+1(Lt) − ĝt (Lt)

≤ ĝt (Lt+1) − ĝt+1(Lt+1) + ĝt+1(Lt) − ĝt (Lt). (8.10)

Note that the inequality is derived by the fact that ĝt+1(Lt+1)− ĝt+1(Lt) ≤ 0, as Lt+1 is the
minimizer of ĝt+1(L). Let us denote ĝt (L) − ĝt+1(L) by Gt (L). We have

Gt (L) = 1

t

(
1

2
Tr
(
L�L At

)
− Tr

(
L�Bt

))
− 1

t + 1

(
1

2
Tr
(
L�L At+1

)
− Tr

(
L�Bt+1

))

+ λ1

2t
‖L‖22,∞ − λ1

2(t + 1)
‖L‖22,∞ .

By a simple calculation, we have the gradient of Gt (L):

∇Gt (L) = 1

t
(L At − Bt) − 1

t + 1
(L At+1 − Bt+1) +

(
1

t
− 1

t + 1

)
λ1U

= 1

t

(
L(At − t

t + 1
At+1) + t

t + 1
Bt+1 − Bt + λ1

t + 1
U

)
,

where U ∈ ∂ ‖L‖22,∞. We then compute the Frobenius norm of the gradient of Gt (L):

‖∇Gt (L)‖F ≤ 1

t

(∥∥∥∥L(At − t

t + 1
At+1)

∥∥∥∥
F

+
∥∥∥∥

t

t + 1
Bt+1 − Bt

∥∥∥∥
F

+ λ1

t + 1
‖L‖F

)

≤ 1

t

(
‖L‖F ·

∥∥∥∥At − t

t + 1
At+1

∥∥∥∥
F

+
∥∥∥∥

t

t + 1
Bt+1 − Bt

∥∥∥∥
F

+ λ1

t + 1
‖L‖F

)

= 1

t

(
‖L‖F ·

∥∥∥∥
1

t + 1
At − t

t + 1
r t+1r�

t+1

∥∥∥∥
F

+
∥∥∥∥

1

t + 1
Bt − t

t + 1
(zt+1 − et+1) r�

t+1

∥∥∥∥
F

+ λ1

t + 1
‖L‖F

)
. (8.11)

According to the first order Taylor expansion,

Gt (Lt+1) − Gt (Lt) = Tr
(
(Lt+1 − Lt)

� ∇Gt (αLt + (1 − α) Lt+1)
)

≤ ‖Lt+1 − Lt‖F · ‖∇Gt (αLt + (1 − α) Lt+1)‖F ,

where α is a constant between 0 and 1. According to Proposition 3, Lt and Lt+1 are uniformly
bounded, so αLt + (1 − α) Lt+1 is uniformly bounded. According to Proposition 3, 1

t+1 At ,

123

Mach Learn (2017) 106:419–457 451

t
t+1 r t+1r�

t+1,
1

t+1 Bt and t
t+1 (zt+1 − et+1) r�

t+1 are all uniformly bounded. Thus, there exists
a constant c, such that

‖∇Gt (αLt + (1 − α) Lt+1)‖F ≤ c

t
,

resulting that

Gt (Lt+1) − Gt (Lt) ≤ c

t
‖Lt+1 − Lt‖F .

Applying this property in (8.10), we have

ĝt (Lt+1) − ĝt (Lt) ≤ Gt (Lt+1) − Gt (Lt) ≤ c

t
‖Lt+1 − Lt‖F . (8.12)

From (8.9) and (8.12), we conclude that

‖Lt+1 − Lt‖F ≤ 2c

β1
· 1
t
. (8.13)

Theorem 5 (Convergence of the empirical and expected loss) Let { f (Lt)}∞t=1 be the
sequence of the expected loss where {Lt }∞t=1 be the sequence of the solutions produced
by the Algorithm 1. Also for any t > 0, denote gt (Lt) − ft (Lt) by bt . Then,

1. The sequence {bt }∞t=1 converges almost surely to 0.
2. The sequence of the empirical loss { ft (Lt)}∞t=1 converges almost surely.
3. The sequence of the expected loss { f (Lt)}∞t=1 converges almost surely to the same limit

of the surrogate {gt (Lt)}∞t=1.

Proof We start our proof by deriving an upper bound for gt (Lt) − ft (Lt).

Step 1 According to (8.3),

bt
t + 1

= gt+1(Lt+1) − gt+1(Lt) + �(zt+1, Lt) − ft (Lt)

t + 1
+ ut − ut+1

≤ �(zt+1, Lt) − ft (Lt)

t + 1
+ ut − ut+1.

Taking the expectation conditioned on the past information Ft in the above equation, and
note that

E

[bt
t + 1

∣∣∣ Ft

]
= gt (Lt) − ft (Lt)

t + 1
,

E

[�(zt+1, Lt) − ft (Lt)

t + 1

∣∣∣ Ft

]
= f (Lt) − ft (Lt)

t + 1
,

we have

bt
t + 1

≤ f (Lt) − ft (Lt)

t + 1
+ E

[
ut − ut+1 | Ft

]
.

Thus,

∞∑

t=1

bt
t + 1

≤
∞∑

t=1

f (Lt) − ft (Lt)

t + 1
+

∞∑

t=1

E
[
ut − ut+1 | Ft

]
.

123

452 Mach Learn (2017) 106:419–457

According to the central limit theorem,
√
t(f (Lt) − ft (Lt)) is bounded almost surely. Also,

from (8.6),

∞∑

t=1

E
[
ut − ut+1 | Ft

] ≤
∞∑

t=1

∣∣E
[
ut − ut+1 | Ft

]∣∣ < +∞.

Thus,

∞∑

t=1

bt
t + 1

< +∞.

Step 2 We examine the difference between bt+1 and bt :

|bt+1 − bt | = |gt+1(Lt+1) − ft+1(Lt+1) − gt (Lt) + ft (Lt)|
≤ |gt+1(Lt+1) − gt (Lt)| + | ft+1(Lt+1) − ft (Lt)|

= |gt+1(Lt+1) − gt (Lt+1) + gt (Lt+1) − gt (Lt)|
+ | ft+1(Lt+1) − ft (Lt+1) + ft (Lt+1) − ft (Lt)|

≤ |gt+1(Lt+1) − gt (Lt+1)| + |gt (Lt+1) − gt (Lt)|
+ | ft+1(Lt+1) − ft (Lt+1)| + | ft (Lt+1) − ft (Lt)|

=
∣∣∣∣

1

t + 1
�(zt+1, Lt+1) − 1

t + 1
gt (Lt+1)

∣∣∣∣+ |gt (Lt+1) − gt (Lt)|

+
∣∣∣∣

1

t + 1
�(zt+1, Lt+1) − 1

t + 1
ft (Lt+1)

∣∣∣∣+ | ft (Lt+1) − ft (Lt)| .

According to Corollaries 1 and 2, we know that there exist constant κ1 and κ2 that are
uniformly over t , such that

|gt (Lt+1) − gt (Lt)| ≤ κ1 ‖Lt+1 − Lt‖F ,

| ft (Lt+1) − ft (Lt)| ≤ κ2 ‖Lt+1 − Lt‖F .

Combing with Proposition 6, there exists a constant κ3 that is uniformly over t , such that

|gt (Lt+1) − gt (Lt)| + | ft (Lt+1) − ft (Lt)| ≤ κ3

t
.

As we shown, �(zt+1, Lt+1), gt (Lt+1) and ft (Lt+1) are all uniformly bounded. Therefore,
there exists a constant κ4, such that

|�(zt+1, Lt+1) − gt (Lt+1)| + |�(zt+1, Lt+1) − ft (Lt + 1)| ≤ κ4.

Finally, we have

bt+1 − bt ≤ κ4

t + 1
+ κ3

t
≤ κ5

t
,

where κ5 is a constant that is uniformly over t .
Applying Lemma 4, we conclude that {bt } converges to zero. That is,

lim
t→+∞ gt (Lt) − ft (Lt) = 0. (8.14)

In Theorem2,we have shown that gt (Lt) converges almost surely. This implies that ft (Lt)

also converges almost surely to the same limit of gt (Lt).

123

Mach Learn (2017) 106:419–457 453

According to the central limit theorem,
√
t(f (Lt) − ft (Lt) is bounded, implying

lim
t→+∞ f (Lt) − ft (Lt) = 0, a.s.

Thus, we conclude that f (Lt) converges almost surely to the same limit of ft (Lt) (or, gt (Lt)).

8.5 Finalizing the Proof

According to Theorem 3, we can see that gt (Lt) and f (Lt) converge to the same limit
almost surely. Let t tends to infinity, as Lt is uniformly bounded (Proposition 3), the term
λ1
2t ‖Lt‖22,∞ in gt (Lt) vanishes. Thus gt (Lt) becomes differentiable. On the other hand, we
have the following proposition about the gradient of f (L).

Proposition 11 (Subgradient of f (L)) Let f (L) be the expected loss function defined
in (4.1). Then, f (L) is continuously differentiable and ∇ f (L) = Ez[∇L�(z, L)]. More-
over, ∇ f (L) is uniformly Lipschitz on L.

Proof Since �(z, L) is continuously differentiable (Proposition 4), f (L) is continuously
differentiable and ∇ f (L) = Ez[∇L�(z, L)].

Now we prove the second claim. Let us consider a matrix L and a sample z, and denote
r∗(z, L) and e∗(z, L) as the optimal solutions for (2.9).

Step 1 First, �̃(z, L , r, e) is continuous in z, L , r and e, and has a unique minimizer. This
implies that r∗(z, L) and e∗(z, L) is continuous in z and L .

Let us denote Λ as the set of the indices such that ∀ j ∈ Λ, e∗
j = 0. According to the first

order optimal condition for (3.2) w.r.t e, we have

z − L r − e ∈ λ2∂ ‖e‖1 ,

implying
∣∣(z − L r − e) j

∣∣ = λ2, ∀ j ∈ Λ.

Since z − L r − e is continuous in z and L , we consider a small perturbation of (z, L) in
one of their open neighborhood V , such that for all (z′, L ′) ∈ V , we have if j /∈ Λ, then∣∣(z′ − L ′r∗′ − e∗′) j

∣∣ < λ2 and e∗′
j = 0, where r∗′ = r∗(z′, L ′) and e∗′ = e∗(z′, L ′). That

is, the support set of e∗ does not change.
Let us denote D = [L I] and b = [r; e] and consider the function

�̃(z, LΛ, bΛ)
def= 1

2

∥∥z − DΛbΛ

∥∥2
2 + λ2

∥∥[0 I]bΛ

∥∥
1 .

According to Assumption (8.3), �̃(z, LΛ, ·) is strongly convex with a Hessian lower-bounded
by a positive constant κ1. Thus,

�̃(z, LΛ, b′∗
Λ) − �̃(z, LΛ, b∗

Λ) ≥ κ1
∥∥bΛ − b′

Λ

∥∥2
2 = κ1

(∥∥r∗ − r ′∗∥∥2
2 + ∥∥e∗

Λ − e′∗
Λ

∥∥2
2

)
.

(8.15)

Step 2 We shall prove that �̃(z, L , ·) − �̃(z′, L ′, ·) is Lipschitz w.r.t. b.
2
(
�̃(z, L , b) − �̃(z′, L ′, b)

)
− 2

(
�̃(z, L , b′) − �̃(z′, L ′, b′)

)

= ‖z − Db‖22 − ‖z − Db′‖22 + ‖z′ − D′b′‖22 − ‖z′ − D′b‖22

123

454 Mach Learn (2017) 106:419–457

= 2z�D(b′ − b) + b�D�Db − b′�D�Db′ − 2z′�D′(b′ − b)

− b�D′�D′b + b′�D′�D′b′

= 2
[
(z�D − z′�D′)(b′ − b)

]

+
[
b�D�Db − b�D′�D′b + b′�D′�D′b′ − b′�D�Db′] .

For the first term,

(z�D − z′�D′)(b′ − b) = (z�D − z�D′ + z�D′ − z′�D′�)(b′ − b)

=
(
z�(D − D′) + (z� − z′�)D′) (b′ − b).

As each sample is bounded, D is bounded (as L is bounded), so the �2 norm of the first term
can be bounded as follows:

∥∥∥(z�D − z′�D′)(b′ − b)
∥∥∥
2

=
∥∥∥
(
z�(D − D′) + (z� − z′�)D′) (b′ − b)

∥∥∥
2

≤ (∥∥z‖2‖D − D′‖F + ‖z − z′‖2‖D′‖F
) · ‖b′ − b

∥∥
2

≤ (
c1
∥∥D − D′‖F + c2‖z − z′‖2

) · ‖b′ − b
∥∥
2 . (8.16)

For the second term, we have

b�D�Db − b�D′�D′b + b′�D′�D′b′ − b′�D�Db′

= b� (D�D − D′�D′) b − b′� (D�D − D′�D′) b′

= b� (D�D − D′�D′) b − b� (D�D − D′�D′) b′ + b� (D�D − D′�D′) b′

− b′� (D�D − D′�D′) b′

= b� (D�D − D′�D′) (b − b′)+ (
b − b′)� (D�D − D′�D′) b′

= b� (D�D − D�D′ + D�D′ − D′�D′) (b − b′)

+ (
b − b′)� (D�D − D�D′ + D�D′ − D′�D′) b′

= b� (D� (D − D′)+
(
D� − D′) D′) (b − b′)

+ (
b − b′)� (D� (D − D′)+

(
D� − D′) D′) b′.

Since D is bounded and b is bounded, the second term can be bounded as follows:
∥∥∥b�D�Db − b�D′�D′b + b′�D′�D′b′ − b′�D�Db′

∥∥∥
2

=
∥∥∥b� (D� (D − D′)+

(
D� − D′�) D′) (b − b′)

+ (
b − b′)� (D� (D − D′)+

(
D� − D′�) D′) b′

∥∥∥

≤ c3
∥∥D − D′∥∥

F · ∥∥b − b′∥∥
2 . (8.17)

123

Mach Learn (2017) 106:419–457 455

Combining (8.16) and (8.17), we prove that the function �̃(z, L , ·)− �̃(z′, L ′, ·) is Lipschitz:
(
�̃(z, L , b) − �̃(z′, L ′, b)

)
−
(
�̃(z, L , b′) − �̃(z′, L ′, b′)

)

≤ (
(c1 + c3)

∥∥D − D′∥∥
F + c2

∥∥z − z′
∥∥
2

) ∥∥b − b′∥∥
2

= (
(c1 + c3)

∥∥D − D′∥∥
F + c2

∥∥z − z′
∥∥
2

)√‖r − r ′‖22 + ‖e − e′‖22. (8.18)

Step 3 According to (8.15) and (8.18), and the fact that b′∗ minimizes �̃(z′, L ′, ·), we have
κ1

(∥∥r∗ − r ′∗∥∥2
2 + ∥∥e∗

Λ − e′∗
Λ

∥∥2
2

)

≤ �̃(z, LΛ, b′∗
Λ) − �̃(z, LΛ, b∗

Λ)

= �̃(z, LΛ, b′∗
Λ) − �̃(z′, L ′

Λ, b∗
Λ) + �̃(z′, L ′

Λ, b∗
Λ) − �̃(z, LΛ, b∗

Λ)

≤ �̃(z, LΛ, b′∗
Λ) − �̃(z′, L ′

Λ, b′∗
Λ) + �̃(z′, L ′

Λ, b∗
Λ) − �̃(z, LΛ, b∗

Λ)

≤ (
(c1 + c3)

∥∥D − D′∥∥
F + c2

∥∥z − z′
∥∥
2

)√‖r∗ − r ′∗‖22 + ∥∥e∗
Λ − e′∗

Λ

∥∥2
2.

Therefore, r∗(z, L) and e∗(z, L) are Lipschitz, which concludes the proof.

Finally, taking a first order Taylor expansion for f (Lt) and gt (Lt), we can show that the
gradient of f (Lt) equals to that of gt (Lt)when t tends to infinity. Since Lt is theminimizer for
gt (L), we know that the gradient of f (Lt) vanishes. Therefore, we have proved Theorem 1.

Proof According to Proposition 3, the sequences { 1t At } and { 1t Bt } are uniformly bounded.
Then, there exist sub-sequences of { 1t At } and { 1t Bt } that converge to A∞ and B∞ respectively.
In that case, Lt converges to L∞. Let V be an arbitrary matrix inRp×d , and {hk} be a positive
sequence that converges to zero.

Since gt is the surrogate function of ft , for all t and k, we have

gt (Lt + hkV) ≥ ft (Lt + hkV).

Let t tend to infinity:

g∞(L∞ + hkV) ≥ f (L∞ + hkV).

Since Lt is uniformly bounded, when t tends to infinity, the term λ1
2t ‖Lt‖2∞ will vanish. In this

way, gt (·) becomes differentiable. Also, the Lipschitz of ∇ f (L) (proved in Proposition 11)
implies that the second derivative of f (Lt) can be uniformly bounded. And by a simple
calculation, this also holds for gt (Lt). Thus, we can take the first order Taylor expansion
even when t tends to infinity. Using a first order Taylor expansion, and note the fact that
g∞(L∞) = f (L∞), we have

Tr
(
hkV

�∇g∞(L∞)
)

+ o(hkV) ≥ Tr
(
hkV

�∇ f (L∞)
)

+ o(hkV).

Since {hk} is a positive sequence, by multiplying 1
hk‖V ‖F on both side, it follows that

Tr

(
1

‖V ‖F
V�∇g∞(L∞)

)
+ o(hkV)

hk‖V ‖F
≥ Tr

(
1

‖V ‖F
V�∇ f (L∞)

)
+ o(hkV)

hk‖V ‖F
.

Now let k tend to infinity:

Tr

(
1

‖V ‖F V�∇g∞(L∞)

)
≥ Tr

(
1

‖V ‖F V�∇ f (L∞)

)
.

123

456 Mach Learn (2017) 106:419–457

Since the inequality holds for all matrix V ∈ R
p×d , it can easily show that

∇g∞(L∞) = ∇ f (L∞).

Since Lt always minimizes gt (·), we have

∇ f (L∞) = ∇g∞(L∞) = 0,

which implies that when t tend to infinity, Lt is a stationary point of f (·).

References

Artač, M., Jogan, M., & Leonardis, A. (2002). Incremental PCA for on-line visual learning and recognition.
In Proceedings of the 16th international conference on pattern recognition (Vol. 3, pp. 781–784).

Bertsekas, D. P. (1999). Nonlinear programming. Massachusetts: Athena Scientific.
Bhojanapalli, S., Kyrillidis, A., & Sanghavi, S. (2016). Dropping convexity for faster semi-definite optimiza-

tion. In Proceedings of the 29th conference on learning theory (pp. 530–582).
Bonnans, J. F., & Shapiro, A. (1998). Optimization problems with perturbations: A guided tour. SIAM Review,

40(2), 228–264.
Bottou, L. (1998). Online learning and stochastic approximations. On-line Learning in Neural Networks,

17(9), 142.
Burer, S., &Monteiro, R. D. C. (2005). Local minima and convergence in low-rank semidefinite programming.

Mathematical Programming, 103(3), 427–444.
Cai, J., Candès, E. J., & Shen, Z. (2010). A singular value thresholding algorithm for matrix completion. SIAM

Journal on Optimization, 20(4), 1956–1982.
Cai, T. T., & Zhou, W. (2013). A max-norm constrained minimization approach to 1-bit matrix completion.

Journal of Machine Learning Research, 14(1), 3619–3647.
Cai, T. T., & Zhou, W. X. (2016). Matrix completion via max-norm constrained optimization. Electronic

Journal of Statistics, 10(1), 1493–1525.
Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of the ACM,

58(3), 11:1–11:37.
Candès, E. J., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Compu-

tational Mathematics, 9(6), 717–772.
Davenport, M. A., Plan, Y., van den Berg, E., & Wootters, M. (2014). 1-Bit matrix completion. Information

and Inference, 3(3), 189–223.
Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3),

613–627.
Fazel, M., Hindi, H., & Boyd, S. P. (2001). A rank minimization heuristic with application to minimum order

system approximation. In Proceedings of the American control conference (Vol. 6, pp. 4734–4739).
Feng, J., Xu, H., & Yan, S. (2013). Online robust PCA via stochastic optimization. In Proceedings of the 27th

annual conference on neural information processing systems (pp. 404–412).
Foygel, R., Srebro, N., & Salakhutdinov, R. (2012). Matrix reconstruction with the local max norm. In Pro-

ceedings of the 26th annual conference on neural information processing systems (pp. 944–952).
Jalali, A., & Srebro, N. (2012). Clustering using max-norm constrained optimization. In Proceedings of the

29th international conference on machine learning.
Jolliffe, I. (2005). Principal component analysis. Hoboken: Wiley Online Library.
Klopp, O. (2014). Noisy low-rank matrix completion with general sampling distribution. Bernoulli, 20(1),

282–303.
Lee, J. D., Recht, B., Salakhutdinov, R., Srebro, N.,&Tropp, J. A. (2010). Practical large-scale optimization for

max-norm regularization. InProceedings of the 24th annual conference on neural information processing
systems (pp. 1297–1305).

Liu, G., Lin, Z., & Yu, Y. (2010). Robust subspace segmentation by low-rank representation. In Proceedings
of the 27th international conference on machine learning (pp. 663–670).

Mairal, J. (2013). Stochastic majorization-minimization algorithms for large-scale optimization. In Proceed-
ings of the 27th annual conference on neural information processing systems (pp. 2283–2291).

Mairal, J., Bach, F. R., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse
coding. Journal of Machine Learning Research, 11, 19–60.

123

Mach Learn (2017) 106:419–457 457

Neyshabur, B., Makarychev, Y., & Srebro, N. (2014). Clustering, hamming embedding, generalized LSH and
the max norm. In Proceedings of the 25th international conference on algorithmic learning theory (pp.
306–320).

Orabona, F., Argyriou, A., & Srebro, N. (2012). PRISMA: PRoximal Iterative SMoothing Algorithm. CoRR
abs/1206.2372.

Recht, B., Fazel, M., & Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of linear matrix equations
via nuclear norm minimization. SIAM Review, 52(3), 471–501.

Rennie, J. D. M., & Srebro, N. (2005). Fast maximummargin matrix factorization for collaborative prediction.
In Proceedings of the 22nd international conference on machine learning (pp. 713–719).

Salakhutdinov, R., & Srebro, N. (2010). Collaborative filtering in a non-uniform world: Learning with the
weighted trace norm. In Proceedings of the 24th annual conference on neural information processing
systems (pp. 2056–2064).

Shen, J., Xu, H., & Li, P. (2014). Online optimization for max-norm regularization. In Proceedings of the 28th
annual conference on neural information processing systems (pp. 1718–1726).

Srebro, N., Rennie, J. D. M., & Jaakkola, T. S. (2004). Maximum-margin matrix factorization. In Proceedings
of the 18th annual conference on neural information processing systems (pp. 1329–1336).

Srebro, N., & Shraibman, A. (2005). Rank, trace-norm and max-norm. In Proceedings of the 18th annual
conference on learning theory (pp. 545–560).

Van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3). Cambridge: Cambridge University Press.
Wang,H.,&Banerjee, A. (2014). Randomized block coordinate descent for online and stochastic optimization.

CoRR abs/1407.0107.
Xu, H., Caramanis, C., & Mannor, S. (2010). Principal component analysis with contaminated data: The high

dimensional case. In Proceedings of the 23rd conference on learning theory (pp. 490–502).
Xu, H., Caramanis, C., & Mannor, S. (2013). Outlier-robust PCA: The high-dimensional case. IEEE Trans-

actions on Information Theory, 59(1), 546–572.
Xu, H., Caramanis, C., & Sanghavi, S. (2012). Robust PCA via outlier pursuit. IEEE Transactions on Infor-

mation Theory, 58(5), 3047–3064.
Zhou, Z., Li, X.,Wright, J., Candès, E. J., &Ma, Y. (2010). Stable principal component pursuit. InProceedings

of the 2010 IEEE international symposium on information theory (pp. 1518–1522).

123

	Online optimization for max-norm regularization
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related works
	1.3 Roadmap
	1.4 Notation

	2 Problem setup
	3 Algorithm
	3.1 Update the coefficients and noise
	3.1.1 Optimize the coefficients r
	3.1.2 Optimize the noise e

	3.2 Update the basis
	3.3 Memory and computational cost

	4 Theoretical analysis and proof sketch
	4.1 Assumptions
	4.2 Main results
	4.3 Proof outline

	5 Connection to matrix completion
	6 Experiments
	6.1 Robustness
	6.2 Convergence rate
	6.3 Computational complexity
	6.4 Influence of d

	7 Conclusion
	Acknowledgements
	8 Appendix: Proof details
	8.1 Proof for Proposition 1
	8.2 Proof for Stage I
	8.3 Proof for Stage II
	8.4 Proof for Stage III
	8.5 Finalizing the Proof

	References

