Mach Learn (2017) 106:771-798 @ CrossMark
DOI 10.1007/510994-016-5614-4

Stream-based semi-supervised learning for recommender
systems

Pawel Matuszyk! - Myra Spiliopoulou!

Received: 28 April 2016 / Accepted: 18 November 2016 / Published online: 2 February 2017
© The Author(s) 2017

Abstract To alleviate the problem of data sparsity inherent to recommender systems, we
propose a semi-supervised framework for stream-based recommendations. Our framework
uses abundant unlabelled information to improve the quality of recommendations. We extend
a state-of-the-art matrix factorization algorithm by the ability to add new dimensions to the
matrix at runtime and implement two approaches to semi-supervised learning: co-training and
self-learning. We introduce a new evaluation protocol including statistical testing and param-
eter optimization. We then evaluate our framework on five real-world datasets in a stream
setting. On all of the datasets our method achieves statistically significant improvements in
the quality of recommendations.

Keywords Recommender systems - Semi-supervised learning - Matrix factorization -
Collaborative filtering - Stream mining

1 Introduction

Recommender systems learn users’ preferences and recommend to them a small selection of
only relevant items. To train preference models recommender systems use users’ feedback on
relevance of items. A big class of recommender system algorithms, the collaborative filtering
algorithms, use ratings as users’ feedback (e.g. five stars for high relevance and one star for
irrelevant items). However, only a small set of items has ratings. Ratings are the counter-part
of labels in the context of machine learning. Consequently, a great majority of items is not
labelled by users. This results in an extreme data sparsity. Typically, sparsity of a user-item-

Editors: Nathalie Japkowicz and Stan Matwin.

B Pawel Matuszyk
pawel.matuszyk @iti.cs.uni-magdeburg.de

Myra Spiliopoulou
myra@iti.cs.uni-magdeburg.de

Otto-von-Guericke-University Magdeburg, Universititsplatz 2, 39106 Magdeburg, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-016-5614-4&domain=pdf

772 Mach Learn (2017) 106:771-798

rating matrix in recommender systems reaches 99% (only 1% is rated). Especially, new users
and new items suffer from the feedback sparsity.

Therefore, it is challenging to provide accurate recommendations, given that only around
1% of possible label information is available. To tackle this problem we propose a semi-
supervised recommender system that not only uses the labelled information to train preference
models, but also employs the abundant unlabelled information. This framework is relevant to
all existing stream-based collaborative filtering algorithms (including matrix factorization)
as a method of tackling the sparsity problem.

In our method we follow the co-training-approach. According to this approach, there are
multiple learners running in parallel. A reliable prediction of one of those learners is used as a
label by the remaining learners (for details cf. Sect. 3). To prove the improvements achieved by
semi-supervised learning (SSL) we compare our method to an analogous algorithm without
SSL. For a further comparison we also implemented another approach to semi-supervised
learning—the self-learning approach. In this approach a single learner provides reliable
predictions to itself and uses them as labels. However, we show on five real-world datasets
that the improvements achieved by self-learning are not as substantial as in the case of co-
training.

Our method works incrementally on a stream of ratings and incorporates new user feedback
into its preference models. This has an essential advantage of adaptivity to changes of prefer-
ences and to new information. Furthermore, because our framework works on stream of rat-
ings, a running recommender system can take advantage of SSL immediately, as a streaming-
based method learns continuously upon arrival of new information. However, the streaming-
based approach poses additional challenges for our method. Computation in real time is one
of them. Therefore, in our evaluation we also focus on measuring the computation time.

A further challenge is the incremental update of preference models as the stream goes on.
To tackle this challenge we use an incremental version of the BRISMF algorithm (Takécs
et al. 2009). We extend it so that is able to extend the dimensions of the user-item-matrix
incrementally as new users or items appear in the stream and call it hereafter extBRISMF. It is
a state-of-the-art matrix factorization (MF) algorithm. While there are numerous different MF
algorithms, most of them are based on the same core idea as the BRISMF algorithm. To make
our findings as generalizable as possible, we chose to extend BRISMF as a representative to
many other algorithms.

In an empirical study on five real-world datasets we show that our SSL framework signif-
icantly improves the quality of recommendations. To prove that the improvement is not due
to chance, we introduce a novel evaluation protocol for stream-based recommender systems
that includes statistical tests and a correction for multiple testing.

Contributions. To summarize, our contributions are as follows:

— anovel framework with semi-supervised learning (SSL) for stream-based recommender
systems with two approaches

— co-training
— self-learning

— anew evaluation protocol with significance testing for stream-based recommender sys-
tems

This work is an extended issue of our conference paper (Matuszyk and Spiliopoulou 2015).
Compared to the conference paper we added the self-learning approach, several components
of the framework and a new evaluation protocol. All experiments were re-run using the

@ Springer

Mach Learn (2017) 106:771-798 773

new evaluation that also includes statistical testing and analysis of impact of framework
components onto the predictive performance of a recommender system.

Organization. This paper is structured as follows. In the next section we discuss related work
and point out the differences from our approach to existing work. In Sect. 3 we present our
SSL framework. Instances of the framework components are presented in Sect. 4. In Sect. 5
we describe our evaluation protocol including statistical testing and parameter optimization.
Experimental results are presented in Sect. 6. Finally, we conclude our work in Sect. 7 and
discuss remaining open issues.

2 Related work

Recommender systems are an active research topic that started with first approaches to col-
laborative filtering with work by Goldberg et al. (1992). Already then, the authors recognized
the need for filtering the relevant information from a plethora of available information and
applied their method onto text documents in a collaborative filtering method called Tapestry.

Sarwar et al. (2001) introduced an item-based variant of collaborative filtering (CF). Since
then, the neighbourhood-based CF has been researched intensively in numerous publications
(Desrosiers and Karypis 2011; Matuszyk and Spiliopoulou 2014a; Su and Khoshgoftaar
2009; Deshpande and Karypis 2004; Linden et al. 2003). All those approaches exploit the
neighbourhood relations between items or users and are, therefore, called neighbourhood-
based CF. They are based on the assumption that users, who rated items similarly in the past,
will also rate future items similarly.

Nowadays, a different class of collaborative filtering algorithms is considered state-of-
the-art. Those are matrix factorization algorithms (MF). The first application of MF in
recommender systems goes back to year 2002 by Sarwar et al. (2002). However, only around
year 2009 MF algorithms became popular, after they proved their superior performance and
flexibility in the Netflix competition, for which, especially, work by Koren was relevant
(Koren 2008, 2009; Koren et al. 2009).

In our work we use the BRISMF algorithm (Biased Regularized Incremental Simultaneous
Matrix Factorization) by Takdcs et al. (2009). BRISMF and many other MF algorithms
decompose the original user-item-rating matrix R into two other matrices P and Q. The
decomposition is achieved using stochastic gradient descent (SGD). While R is typically
extremely sparse, the latent matrices P and Q are complete. Predicting missing values in the
matrix R is performed by applying the following formula R = P - Q. Since the matrix R
is a product of two complete matrices, Ris complete as well. While this is the core idea of
MF algorithms in recommender systems, the BRISMF algorithm uses a more sophisticated
decomposition that also includes regularization and biases (cf. Takdcs et al. 2009 for details
and more background information on matrix factorization).

The BRISMF algorithm has been proposed in two versions. One of them is batch-based i.e.
ituses a batch of training data at once and creates a static model. Second version (cf. Algorithm
2 in Takécs et al. 2009) is an incremental algorithm, i.e. it works on a stream of ratings and
updates its preference model as new ratings appear in the stream. This incremental version
of BRISMF, however, is not capable of handling new users and items i.e. new dimensions
in the matrix. Since recommender systems are applied in volatile domains, handling new
dimensions is an important feature. Thus, we extend BRISMF, so that it is capable to extend
dimensions of the matrix (cf. Sect. 4.1).

@ Springer

774 Mach Learn (2017) 106:771-798

Incremental setting for recommender systems poses new challenges for evaluation. Since
MF algorithms usually start with an initial training phase, splitting of a dataset into training
and test set is not trivial. For this purpose we use our splitting method from Matuszyk et al.
(2015) and Matuszyk and Spiliopoulou (2014b) (cf. Sect. 5.2). According to this method,
the main mode of an algorithm is the streaming mode. In our previous work we used the
prequential evaluation, as proposed by Gama et al. (2009). However, prequential evaluation
suffers from problems with statistical testing. Since, one data instance (rating) in a stream is
used for both, training and testing, applying a statistical test onto a evaluation measure is not
possible due to violation of independence of observations. Therefore, we introduce a novel
evaluation protocol that doesn’t use prequential evaluation and allows for hypothesis tests
(cf. Sect. 5.4).

Our main contribution is a framework for stream-based semi-supervised learning (SSL)
for recommender systems. SSL has been investigated thoroughly in conventional data mining
and machine learning (Zhou et al. 2007), also in the stream setting (Dyer et al. 2014; de Souza
etal. 2015). A comprehensive survey of those techniques can be found in Zhu (2005). Those
techniques encompass both co-training (Sindhwani et al. 2005) and self-learning techniques
(Rosenberg et al. 2005). Semi-supervised approaches for regression problems also have been
proposed (Zhou and Li 2007). However, the problem in recommender systems is inherently
different from the conventional classification or regression. In recommender systems an entire
matrix of real or binary values is predicted. This matrix is extremely sparse (typically, around
99% of missing values) and there are no further features for a conventional regressor to train
upon. Therefore, the methods from the conventional SSL are not applicable to recommender
systems.

Dedicated SSL methods for recommender systems have been researched far less. Chris-
takou et al. (2005) proposed a model-based recommender system using the k-means algorithm
with SSL. Nevertheless, this is not a dedicated recommender systems method, but clustering
applied to the recommendation problem.

To decide which predictions can be used as labels, semi-supervised methods use relia-
bility measures. A prediction with high estimated reliability can be then used for training.
Hernando et al. (2013) proposed such a reliability measure, however, they did not use it in
semi-supervised learning, but presented it to users to indicate certainty of the recommen-
dation algorithm. Rodrigues et al. (2008) and Bosni¢ et al. (2014) also proposed reliability
measures, however, not for recommender systems, but for classification problems on streams.
Nevertheless, we adopted their idea of reliability based on local sensitivity and adapted it to
recommender systems (cf. Sect. 4.5).

Zhang et al. proposed a SSL method for batch-based recommender systems. In their
approach they assess the reliability of a rating prediction based on frequency of occurrence
of items and users (Zhang et al. 2014). They assume that popular items and active users
are easier to predict, since there is more data about them. We implemented this reliability
measure, that we call hereafter “popularity-based reliability measure”, and we compare it
to results of other measures. The method by Zhang et al. is batch-based. Once the model
is trained, it cannot be changed incrementally. As a consequence, it is also not adaptive to
changes and not responsive to new users and items. With our stream-based framework we
lift those limitations.

Preisach et al. (2010) proposed a graph-based tag recommender system that employs
untagged items. In this method the authors used a semi-supervised relational classification to
find relevant tags. Therefore, this method is also not applicable to the typical rating prediction
task in recommender systems.

@ Springer

Mach Learn (2017) 106:771-798 775

Zhu et al. (2010) proposed a recommender system for web pages that uses conventional
classification with self-learning on natural language data. Also this method is not applicable
to the general collaborative filtering scenario in recommender systems.

To summarize, there is no semi-supervised approach for stream based recommender sys-
tems. Therefore, we propose anovel and flexible framework that implements such an approach
and is applicable to state-of-the-art matrix factorization methods. This paper extends our work
from Matuszyk and Spiliopoulou (2015). In comparison to our previous work, here, we add
several new instantiations for framework components, self-learning approach and a new
evaluation protocol, according to which we re-evaluated all presented methods. Since each
component in our framework has several possible implementations (e.g. different types of reli-
ability measures), we additionally analyse the impact of framework components onto the qual-
ity of recommendations to find out the best implementation of each component (cf. Sect. 6.3).

3 Semi-supervised framework for stream recommenders

In this section we present our semi-supervised framework together with its components. We
start with an incremental recommendation algorithm in Sect. 3.1 and then explain how it is
applied in two alternative approaches: co-training (cf. Sect. 3.2) and self-learning (cf. Sect.
3.3). In Table 1 we present a summary of notation and abbreviations used in this work. Figure
1 gives a simplified overview over the framework components and their interaction. Sections
3.1 and 3.2 come from our conference paper (Matuszyk and Spiliopoulou 2015).

3.1 Incremental recommendation algorithm

The core of our framework is a recommendation system algorithm. Figure 2 depicts two
modes of a stream-based recommendation algorithm. The entire rectangle in the figure rep-
resents a dataset consisting of ratings. The dataset is split between a batch mode (blue part)
and a stream mode (yellow part). The stream mode is the main mode of an algorithm, where
information about new ratings is incorporated incrementally into the model, so that it can be
used immediately in the next prediction. Semi-supervised learning takes place in this phase
(green bars stand for unsupervised learning—USL).

Before the stream mode can start, the algorithm performs an initial training in the batch
mode. The batch mode data is, therefore, split again into training and test set. On the training
dataset latent factors are initialized and trained. The corresponding prediction error is then
calculated on the test dataset (second blue rectangle) and the latent factors are readjusted iter-
atively. Once the initial training is finished, the algorithm switches into the streaming mode,
where learning and predicting take place simultaneously. Any incremental MF algorithm is
applicable. We use our extended version of the BRISMF (Biased Regularized Simultaneous
Matrix Factorization) algorithm, etxBRISMEF, as described in Sect. 4.1.

3.2 Stream co-training approach

In semi-supervised learning we use two approaches: self-learning and co-training. The latter
was proposed by Zhang et al. (2014) for batch recommender systems. In this section we focus
on the co-training approach. According to this approach we run in parallel multiple stream-
based recommendation algorithms that are specialized on different aspects of a dataset and
can teach each other. Due to this specialization an ensemble of co-trainers can outperform a
single model that uses all available information.

@ Springer

776 Mach Learn (2017) 106:771-798

Table 1 Summary of notation and abbreviations used in this paper

Notation Meaning

SSL Semi-supervised learning

SSL3 Semi-supervised learning with co-training using three parallel learners

USL Unsupervised learning

noSSL Algorithm without SSL (i.e. supervised learning only); it is used as a
comparison baseline

SL Self-learning

CF Collaborative filtering

MF Matrix factorization

BRISMF Biased regularized incremental simultaneous matrix factorization (cf.
Takécs et al. 2009)

IR@10 Incremental recall at 10 (cf. Cremonesi et al. 2010)

Co—Try The n-th co-trainer; one of incremental MF algorithms running in parallel

C A set of all co-trainers

Iy True value of rating x (ground truth)

Tx A prediction of value of rating x

TxCo—Try A prediction of value of rating x made by the Co-Trainer n

TxAgg An aggregate of all predictions of rating x made by all Co-Trainers from C

T A prediction of rating x, where no ground truth exists (“u” for unlabelled)

rel(?l?‘c()_Tra) Reliability of prediction 7¥ by Co — T'rq

SGD Stochastic gradient descent

k Number of latent dimensions in matrix factorization

A Regularization parameter for matrix factorization

n Learning rate for SGD

17{, Latent vector of user u

T Latent vector of item i

Batch Mode Initial
Training
%y Co-Tr,
Dataset Training Set Pl
Splitter
>
& Co-Tr,
/ Streaming Mode
Supervised Unsupervised
Learning Learning
. - Reliable Co-
=] Incremental Selecting Predictions il " .
Training Update of Co- Unlabelled by Co- Re!labll_lty Trainers Provide Incremental
Strcam Trainers Instances Trainers ESulaten Labels to Update
Unreliable Ones
Predictions r .
Test by all Co- Prediction Aggrggqted Evaluation
Qream Trainers Assembler Prediction Measure

Fig. 1 A simplified overview of the framework components

@ Springer

Mach Learn (2017) 106:771-798 771

Batch Mode Stream Mode
A I N

J

Initial Batch
Training Test

Fig. 2 Division of a dataset (entire rectangle) into batch (blue part) and stream mode (yellow part). The
stream mode is the main part of an algorithm with incremental learning. Batch mode is used for initial training
(Matuszyk and Spiliopoulou 2015) (Color figure online)

Batch Mode
D

—
(Co—Tr,

Training Set
Splitter

\ Co—Try

Y
Initial Batch
Training Test

Fig.3 Different co-trainers are trained on different parts of the initial training set. The component responsible
for splitting the training set is training set splitter (Matuszyk and Spiliopoulou 2015)

3.2.1 Initial training

The specialization of the algorithms takes place already in the initial training. In Fig. 3 we
present a close-up of the batch mode from Fig. 2. Here, the initial training set is divided
between N co-trainers from the set C = {Co — Try,...,Co — Try}, where N > 2.

The component that decides, how the initial training set is divided between the co-trainers
is called training set splitter (marked in red in Fig. 3; cf. Sect. 4.2 for instances of this
component). Formally, a training set splitter is a function that relates all co-trainers to subsets
of all ratings in the initial training set Rj,isiaiTrain:

F(C, RinitiaiTrain) : Vn{(Co — Try € C) — RO-TH A (1)

initialTrain
withn = 1,..., N and Ricn?t_mTfT”mm C RinitialTrain- This function is not a partitioning
. . . . Co—Try . .
function, since overlaPplng between dlfferer_lt R”.”.n. alTrain 18 allowed and often beneficial.
Implementations of this component are provided in Sect. 4.2.

3.2.2 Streaming mode: supervised and unsupervised learning

After the initial training is finished, all co-trainers switch into the streaming mode. In this
mode a stream of ratings r; is processed incrementally. Figure 4 is a close-up of the stream
mode from Fig. 2. It represents a stream of ratings r, 2, The yellow part of the figure
depicts the supervised learning, whereas the green part symbolizes the unsupervised learning
(cf. next section).

@ Springer

778 Mach Learn (2017) 106:771-798

Stream Mode
.-
J—
Co—Tr, T1Co-Tr1
; Fredletian— N usL
: Assembly* 1Agg
Co—Try T1Co—TrN
N
7
7‘1 ro e Tm Tm+1 t

Fig. 4 A close-up of the stream mode from Fig. 2. The yellow part represents the supervised learning and the
green one unsupervised learning. Predictions made by co-trainers are aggregated by a prediction assembler
(Matuszyk and Spiliopoulou 2015) (Color figure online)

In the supervised learning we distinguish between training and testing i.e. making rec-
ommendations. In the training all co-trainers calculate predictions for each rating ry in the
stream:

Vn: Co—Try(ry) =Txco-Tr, @

Please, note that co-trainers are instances of the extBRISMF algorithm (cf. Sect. 4.1).
Consequently, all extBRISMF instances calculate predictions for the rating in the stream.
Once the predictions are made, all co-trainers receive the true value of the predicted rating.
This value is then used to update the models of the co-trainers incrementally (cf. Algorithm 1).

For the evaluation and for making recommendations, one more step is necessary. Since
the co-trainers provide multiple predictions, they need to be aggregated into one common
prediction of the entire system. Because the co-trainers had a different view of the training data
in the batch mode, they can provide different predictions. In the stream mode all co-trainers
receive the same ground truth.

In order to aggregate all predictions made by co-trainers into one prediction 7 44, We use
a component called prediction assembler. The most simple implementation is arithmetical
average (further implementations in Sect. 4.3). The function of prediction assembler is as
follows:

predictionAssembler(ry, C) =Txagq 3)

In Fig. 4 this process is visualized only for the rating r; due to space constraints, however
in a real application, it is repeated for all ratings in the stream with known ground truth
(supervised learning). For instances with no ground truth the procedure is different.

3.2.3 Unsupervised learning

USL takes place periodically in the stream. After every m-th rating (m can be set to 1) our
framework executes the following procedure. First, a component called unlabelled instance
selector selects z unlabelled instances (cf. Fig. 5). Unlabelled instances in recommender
systems are user-item-pairs that have no ratings. We indicate those instances with r} (“u”
for unsupervised). The unlabelled instance selector is important, because the number of
unsupervised instances is much larger then the number of supervised ones. Processing all
unsupervised instances is not possible, therefore, with this component we propose several
strategies of instance selection (cf. Sect. 4.4).

Once the unlabelled instances r{, ..., r are selected, co-trainers are used again to make
predictions:
L u —u
Vn,i:Co—Try (ri) =TFiCo-Tr, “4)

@ Springer

Mach Learn (2017) 106:771-798 779

USL
A
- ™
Co—Tr, Pico-Tr1 —> Teﬁc:l;an AW
. Reliability A
: Measure el
Co— Try ﬁCofTrN —_— Telgo—TrN N
S
r u U u T
m Ty T2 2 mit b

Unlabelled Instance Selector

Fig. 5 The procedure of unsupervised learning. User-item-pair without ratings are selected using an unla-
belled instance selector. Predictions and their reliabilities are estimated. The most reliable predictions are
used as labels for the least reliable co-trainers (Matuszyk and Spiliopoulou 2015)

wherei = 1,...,zandn =1, ..., N. After this step we use a reliability measure to assess
in an unsupervised way, how reliable is a prediction made by each co-trainer. Formally, a
reliability measure is the following function:

reliability : (Co — Tr”’?iMCo—Tr,,) — [0; 1] %)

This function takes a co-trainer and its prediction as arguments and maps them into a
value range between O and 1, where 1 means the maximal and O the minimal reliability.
Subsequently, we calculate pairwise differences of all reliabilities of the predictions for /" :

A=

rel (Flco-1,,) = rel (o1, ©

foralla,b =1,..., N and a # b. All values of A are stored temporarily in a list, which
is then sorted. From this list we extract the top-q highest differences of reliability i.e. cases,
where one co-trainer was very reliable and the second one very unreliable. In such cases the
reliable co-trainer provides a label to the unreliable co-trainer, who then trains incrementally
using the provided label.

3.3 Stream-based self-learning

Our second approach to semi-supervised learning on streams is self-learning (SL). According
to this approach a single learner provides labels to itself. Those labels are its own predictions,
whose reliabilities were assessed the highest. Our co-training framework described in the
previous section is flexible, therefore it can be used for self-learning as well. In the following
we describe the few changes that are necessary to adapt it to self-learning.

The first of those changes is in the initial training. While the co-training approach uses
several learners and splits the initial training set among them, there is only one learner in the
self-learning approach. Therefore, the entire initial training dataset is used by this learner.
Consequently, there is no need for a co-training splitter.

Since there is only one learner, there is also no need for a prediction assembler that,
otherwise, is responsible for aggregating predictions from several learners.

As a consequence of those changes the procedure shown in Fig. 5 changes as shown in
Fig. 6. Unlabelled instances (user-item-pairs without a rating) are selected by the component
called “unlabelled instance selector”. Subsequently, the self-learner makes predictions for
each of the selected instances r{,ry, ..., r¥. The reliability of this predictions is assessed

/4
using areliability measure (cf. Sect. 4.5). Differently than in co-training, here the difference in

@ Springer

780 Mach Learn (2017) 106:771-798

USL
A
— B
Self — learner Wsezf—leumev- —_— Tel?‘;zf_zmnw
Reliability
Measure
N
>
r u U U T
m ry Ty T m+l ¢

Unlabelled Instance Selector

Fig.6 Adjusted procedure of unsupervised learning from Fig. 5 for the self-learning approach. In this approach
there is only one learner, whose predictions are assessed using a reliability measure (Matuszyk and Spiliopoulou
2015)

reliability of learners, A from Eq. 6, cannot be calculated. Therefore, the best label candidates
are the predictions with highest reliability.

A further change affects the unlabelled instance selector. Its function remains the same,
however, the possible implementations of this component are restricted to the ones work-
ing with a single learner. That criterion excludes, for example, implementations based on
disagreement among multiple trainers (cf. Sect. 4.4 for details).

4 Instantiation of framework components

In the previous section we provided definitions of the components of our framework and
explained their interplay. In this section we present several instances for each of the compo-
nent. The reliability measure, for example, has many possible implementations (cf. Sect. 4.5).
Except for Sects. 4.2.4-4.2.6,4.3.4,4.4.3,4.5.4, the Sects. 4.1-4.5 come from our conference
paper (Matuszyk and Spiliopoulou 2015).

4.1 Incremental recommendation algorithm: extBRISMF

The core of our framework is a matrix factorization algorithm. We extended the BRISMF
algorithm by Takécs et al. (2009) by the ability to deal with changing dimensions of the
matrix over time. We named this new variant of the algorithm extBRISMF for dimensionality
extending BRISMF. The original BRISMF keeps the dimensions of the matrix fixed and
does not update latent item factors. In our algorithm we lift those limitations. This ability is
important in SSL, because the algorithms often encounter items and users not seen before.

For decomposition of the rating matrix R into two latent matrices R ~ P (Q we use
stochastic gradient descent (SGD). P is a matrix of latent user factors with elements pyx,
where u is a user and k is a latent dimension. Similarly, Q is a matrix of latent item factors
with elements g, where i is an item. That results in the following update formulas for SGD
(formulas from Takacs et al. 2009):

Puk < Puk +n-(predictionError - qix — A - puk) o
qik < qik +1n- (predictionError - pyx — X - qik)

where 7 is a learning rate and A a regularization parameter that prevents overfitting. A rating
prediction can be obtained by multiplying the corresponding item and user vector from latent
matrices 7,;; X py - qi.

@ Springer

Mach Learn (2017) 106:771-798 781

Algorithm 1 extBRISMF - trainIncrementally(r,, ;)
Input: r, ;, P, Q,n,k, A

: ﬂ <« getLatentUserVector(P, u)

: E} <« getLatentItemVector(Q, i)

+if p;, = null then

Do« getAverage Vector(P) + random Vector

ﬁ <~ 1

P <« P.append(py)

: end if

2 if g = null then

E,-) <« getAverageVector(Q) + randomVector

100 g5 < 1

11: Q < Q.append(q;)

12: end if

13: 7,.i = pu - 4; //predict a rating for Fui

14: evaluatePrequentially(7, ;, r, ;) //update evaluation measures
15: epoch =0

16: for all epoch € {1, ..., optimal Number O f Epochs} do
17: [TZ <« getLatentUserVector(P, u)

18: Z <« getLatentItemVector(Q, i)

LR W

19: predictionError =ry, ; — P - E,)

20: for all latent dimensions & do

21: ifk # 1: pyx < puk +n-(predictionError - g — A py i)
22: itk #2:qg; k < qix+n-(predictionError - py i — A-qj)
23: end for

24: end for

In Algorithm 1 we present our extBRISMF. Apart from expanding dimensions of latent
matrices, we also introduced a different type of initialization for new user/item vectors. Next
to the initialization of the first column of P and second row of Q with a fixed constant
value, which is typical for BRISMF, we initialize the vectors as an average vector of the
corresponding matrix plus a small random component instead of just a random vector.

4.2 Training set splitter

Training set splitters are used in the co-training approach to divide the initial training set
among co-trainers. In the following we propose several types of training set splitters (cf. Fig.
2). All of them have one parameter p that controls the degree of overlapping between the
co-trainers.

4.2.1 User size splitter

This splitter discriminates between users of different sizes. Size of a user is defined as the
number of rating she/he has provided. Users are divided into segments based on their sizes
and assigned to co-trainers. In case of only two co-trainers, for instance, one of them will
be trained on so called “power users” and the other one on small users. This method is
based on a histogram of user sizes. It creates N segments (N = number of co-trainers) using
equal density binning (each segment has the same number of users). Analogously, we also
experiment with an item size splitter.

@ Springer

782 Mach Learn (2017) 106:771-798

4.2.2 Random splitter

Ratings are divided between co-trainers randomly. This method serves as a baseline for
comparisons.

4.2.3 Dimensions preserving random splitter

This splitter also assigns ratings randomly to co-trainers, however, in contrast to the previous
method, it guarantees that all co-trainers have a matrix with same dimensions. This means
that all co-trainers have at least one rating from all users and items from the initial training
set. This might be beneficial for methods not able to extend the dimensions of their matrices
over time.

4.2.4 User variance splitter

As the name suggests, this splitter assigns users to different co-trainers based on their rating
variance. For all users their rating variance is calculated. Using the histogram method and
equal density binning, as in the user size splitter, different types of users are divided among
co-trainers.

The rationale behind this splitter is that users with high variance tend give differentiated
ratings i.e. they rate both items they like and the ones they do not like. Users with low rating
variance tend to give a standard rating to all items. This splitter utilizes this difference in
users’ behaviour and allows different co-trainers to specialize on separate groups of users.

4.2.5 Item variance splitter

Similarly to the user variance splitter, this splitter is also based on rating variance. However,
here the variance is calculated for item ratings. Based on this variance, ratings of items are
divided among co-trainers.

The rationale behind this splitter is different than in the previous one. Items with a small
rating variance are the ones that users agree upon. i.e. all users rate those items with approx-
imately same value (e.g. 5 stars). Items with a high rating variance are not agreed upon by
users. It means that there is a group of users rating a given item highly and a different group
having an opposite opinion of it.

4.2.6 Average rating splitter

The division of ratings is performed by this splitter with respect to average rating of a user.
Users with a high average rating are assigned to a different co-trainer than the ones with a
low average rating. This splitter can be used analogously for items.

4.3 Prediction assembler

Prediction assembler aggregates rating predictions from all co-trainers into a single value.
We propose several ways of calculating this aggregation that have the form of the following
formula, but with different weights w (7, ;, Co — Tr;):

N o~ ~
> im0 Wui, Co—Trj) Tuico-Tr,

®)
Z?{:O Wi, Co—Trj)

Tu,iAgg =

@ Springer

Mach Learn (2017) 106:771-798 783

Each of the following components defines the weight w(7,;, Co — Tr;) in a different
way.

4.3.1 Recall-based prediction assembler

Recall-based prediction assembler aggregates predictions of N co-trainers using a weighted
average with weights depending on their past recall values. Accordingly:

w(ry,i, Co—Tr;) =recall(Co—Trj) 9)

In the above formula recall is measured globally for each co-trainer. Alternatively, recall
can be measured also on user or item level. In this case recall(Co — Tr;) can be substituted
with recall(Co — Trj, u) or recall(Co — Trj, i).

4.3.2 RMSE-based prediction assembler

Similarly to the previous method, this prediction assembler uses a weighted average, however,
here the RMSE measures (root mean square error) serve as weights. Also here, measuring
RMSE on user and item levels are possible.

Wi, Co—Trj) = RMSE(Co—Trj) (10)

4.3.3 Reliability-weighted prediction assembler

This prediction assembler uses a reliability measure to give more weight to more reliable
co-trainers. _
w(yi, Co—Trj) = rel’c“(;;m (11)

4.3.4 Maximum reliability prediction assembler

Differently than in the previous prediction assembler, here only the prediction of the most
reliable co-trainer is used. The aggregation is, therefore, performed using the following
formula:

e P Foi
1, ifrel! = max rel '
o~ ’ Co—Trj Co—Tr,
w(Fi, Co—Trj) = /o k=l.N ¢ (12)

0, otherwise
4.4 Selector of unlabelled instances
This component is used in unsupervised learning to select unlabelled instances as candidates
for training. Due to a large number of unlabelled instances a method for selecting them

is needed. We propose such methods that as parameter take the number of instances to be
selected.

4.4.1 Latent disagreement selector

For all users each co-trainer stores a latent vector. We denote this vector as p,,C"_T"". In this
method we search for users, where the disagreement of the latent user vectors among the

@ Springer

784 Mach Learn (2017) 106:771-798

co-trainers is the highest. We define the disagreement among two co-trainers upon a user u
as follows:

disagreement(Co — Try, Co — Trp,u) = puc"_Tr“ — puc‘)_Trb (13)

This measure can be computed for all known users and all co-trainer pairs. Users with highest
disagreement are then selected as candidates together with a random selection of items. The
motivation behind this method is that the instances with highest disagreement can contribute
the most to the learners. This method can be applied analogously onto latent item vectors.

4.4.2 Random selector

Random combinations of known users and items are generated. This method is used as a
baseline for comparisons.

4.4.3 User-specific incremental-recall-based selector

This selector chooses users with best incremental recall achieved by the framework. For
those users it selects random items to generate unlabelled instances (user-item pairs without
arating). The rationale behind this selector is that users, for whom the past predictions were
accurate, are good candidates for semi-supervised learning. Predictions for those users should
be reliable, assuming that the performance on the selected instances is consistent with the
performance observed so far.

To avoid selecting instances from the user with highest incremental recall only, we create
a list of best user candidates. From this list, the user on the first position is used for creating
twice as many unlabelled instances as the second user, etc. This procedure is repeated, until
the specified number of unlabelled instances is created.

Analogously to this selector, we experiment also with the Item-specific Incremental-
recall-based Selector. The incremental measure of recall can be substituted by, e.g. the
RMSE measure, creating User-specific and Item-specific RMSE-based Selector.

4.5 Reliability measure

Reliability measures are used in our framework to assess the reliability of a rating prediction
in an unsupervised way. Based on prediction reliability, decisions on which co-trainer teaches
which one are made.

4.5.1 Sensitivity-based reliability measure

This is a novel measure of reliability for recommender systems that is based on local sensi-
tivity of a matrix factorization model. As a user model in matrix factorization we understand
a latent user vector p,,. This vector changes over time as new rating information that occurs
in the stream is incorporated incrementally into the model. The changes of this vector can be
captured using the following formula:

k
2
— 1+1 t
APM - Z(pu,i _pu,i> (14)
i=0
where pffil and p! . are user vectors at different time points. If A, is high, then it means
that the user model is not stable and it changes considerably over time. Therefore, predictions

@ Springer

Mach Learn (2017) 106:771-798 785

made by this model can be trusted less. Similarly to the user sensitivity we can also measure
a global sensitivity of the entire model as a different variant of this measure. Since A, has
a value range [0, co) a normalization is needed (cf. last paragraph of this section).

4.5.2 Popularity-based reliability measure

Zhang et al. (2014) proposed a reliability measure based on popularity. This measure uses the
idea that the quality of recommendations increases as the recommender system accumulates
more ratings. They used the absolute popularity of users and items normalized by a fixed term.
We implemented this reliability measure in our framework for comparison, however, with a
different normalization method. Normalisation on streams is different and more challenging
(cf. last paragraph of this section).

4.5.3 Random reliability measure

A random number from the range [0, 1] is generated and used as reliability. This measure is
used as a baseline.

4.5.4 RMSE-based reliability measure

Another approach to assess the reliability of a prediction is to assume that the current perfor-
mance of a prediction model will be consistent with its past performance. For instance, if a
co-trainer performed better than others in the past, the reliability of the current prediction by
this co-trainer can also be assumed higher then the reliability of the remaining co-trainers.

The reliability measure presented here uses the RMSE measure to evaluate the past perfor-
mance of co-trainers. Other quality or error measures are also applicable. We also experiment
with the incremental-recall-based reliability measure.

Furthermore, the performance of co-trainers can be measured on a finer level. For instance,
on the level of single users or items. It could be that the past performance of a co-trainer
is better for a specific user, even though on a global level, it performs worse than other
co-trainers. In our experiments we use the reliability measures with different abstraction
levels, e.g. the RMSE-based reliability measure on a user level is called “user-RMSE-based
reliability measure”. In our results we followed this naming convention.

4.5.5 Normalization of reliability measures

As defined in Sect. 3.2, a reliability measure is a function with value range of [0; 1]. With
many aforementioned reliability measures this is not the case, therefore, a normalization is
necessary. Normalization on a stream, however, is not trivial. Division by a maximal value is
not sufficient, since this value can be exceeded in a stream and a retrospective re-normalization
is not possible. In our framework we use the following sigmoid function for normalization:

1

f(reliability) = T oo Celiabiliny

(15)

where « controls the slope of the function and p is the mean of the distribution. The parameters
can be set either manually, or automatically and adaptively in a self-tuning approach. While
the adaptive calculation of p in a stream is trivial, the calculation of « requires more effort.
For that purpose we store 1000 most recent arguments of this function and determine their

@ Springer

786 Mach Learn (2017) 106:771-798

fifth percentile. We define that the value of the sigmoid function for this percentile should be
equal to 0.9. From that, the optimal value of « can be derived. Note that « also controls if the
function is monotonically increasing or decreasing. Reliability measures using this adaptive
normalization can be recognized in our notation by the prefix “ST” (for self-tuning).

5 Evaluation protocol

We propose a novel evaluation protocol for stream-based recommender systems that encom-
passes the following components:

— parameter optimization on a separate dataset

— amethod for dataset splitting that allows for hypothesis testing
— an incremental recall measure by Cremonesi et al. (2010)

— significance testing

In the following subsections we describe each of the components.

5.1 Parameter optimization

Our semi-supervised method consists of multiple components, each of which has several
possible instantiations (e.g. a reliability measure can be instantiated as sensitivity-based, or
popularity-based reliability measure, etc.). Additionally, matrix factorization itself requires
setting of parameters, such as number of latent dimensions and the regularization constant
A. To find the optimal setting for the parameters and components, we perform an initial
optimization step.

For that we hold out a small subset of an original dataset and run a grid search in the
parameter space on it. The approximately optimal parameter settings from the grid search
are then used in the final evaluation.

To create the holdout subsets we sample randomly a small percentage of users from the
original dataset. Those percentages are listed in Table 3 for all datasets. Sampling users
instead of ratings has the advantage of not artificially increasing the sparsity of the data.

Optimization of the parameters on a separate subset prevents favorizing methods with
more parameters. Otherwise, such methods could be tuned more than methods with fewer
parameters to perform best on the test dataset. This procedure ensures that all methods, no
matter how many parameters they have, are run only once on the final evaluation set.

5.2 Dataset splitting

Splitting a dataset into a training and test set is not trivial in the streaming scenario. The
state-of-the art method for doing it is the prequential evaluation proposed by Gama et al.
(2009). According to this method, all instances (ratings) in a stream are first used for testing
the performance of a learner and then they are used for updating the model incrementally.
The separation between test and training set is temporal here (first testing, then training).
This method is efficient in terms of data usage because all instances in the stream are used
both for testing and training.

However, the prequential evaluation has a major disadvantage. Evaluation measures cal-
culated on a stream at time point ¢ and 7 4 1 are statistically not independent from each other,
even if the evaluation measure is not cumulative. This is due to the fact that the learner at the
time point ¢ + 1 already trained on an instance from time point 7.

@ Springer

Mach Learn (2017) 106:771-798 787

In consequence, due to the lack of statistical independence, running of hypothesis tests is
not possible on an instance level. For instance, let Q; be a quality measure at time point 7. We
consider Q;¢, Qs+1, - - ., Q4+, Observations for a hypothesis test. The most basic prerequisite
for a hypothesis test is the independence of those observations. In the prequential evaluation
this prerequisite is violated and, therefore, usage of hypothesis tests is prohibited.

To solve this problem, we propose to use two disjoint streams of ratings (one
stream for training and one for evaluation). Because of this separation the observations
O, OQt41, - -, Qr4n for a hypothesis test are independent for non-cumulative quality mea-
sures. In Sect. 5.4 we describe how to use a state-of-the-art evaluation measure in this setting.

A stream-based matrix factorization, the state-of-the-art in recommender systems, usu-
ally starts with a batch-based initialization phase. Before the algorithm switches into the
streaming-mode, a short batch-training is performed, where the initial latent matrices are
trained in a supervised way. While it is not strictly necessary to perform this initial phase, it
is realistic to assume that in nearly all applications there is some historical data that can be
used for this purpose. By using it, a bad initial performance at the beginning of the stream
can be avoided.

Therefore, this initial phase also has to be considered, when splitting a dataset. Therefore,
our method for splitting datasets incorporates all the following components:

— initial training and testing in batch mode
— atraining stream for incremental updates of a model
— adisjoint test stream for evaluation and significance testing

A schematic representation of dataset splitting is in Fig. 7. Part 1) in the figure is used for
batch training in the initialization phase. Since this is a supervised method, it also needs a
test set in the batch mode (part 2 in the figure). After the initialization phase the algorithm
switches to the streaming mode, which is the main mode of this method.

In the streaming mode (part 3 of the dataset) there are two disjoint streams, one stream
for training and one for testing. The results we present in the next section are calculated on
the test stream.

If we consider the parts of the dataset used for training, so far it was part 1) and a subset of
part 3). Part 2) would represent a temporal gap in the training data. Since many of methods in
recommender systems rely heavily on the time aspect present in the data, such a gap would be
problematic. Therefore, we include part 2) of the dataset into the training stream (represented
by the colour gradient in the figure). Since this part was used once for batch testing already,
we do not include it into the test stream.

The split ratios between the subsets of the dataset can be adjusted to the need of an
application scenario. For our experiments we use the following ratios: 30% of a dataset are
used for the batch training, 20% for batch testing. Those 20% are also included into the
training stream. The remaining part of the dataset is used in the streaming mode, 30% of
which is used as the test stream.

5.3 Evaluation measure

As an evaluation measure we use the incremental recall by Cremonesi et al. (2010) (no to be
confused with the conventional recall). Incremental recall measures how often arecommender
system is able to find a relevant item among random items. It is computed as follows: for
each relevant item in a stream (based on a relevance threshold) 1000 further items are drawn
randomly. Those 1000 random items are assumed to be irrelevant and put into one set together
with the one relevant item. The recommender systems is asked to rank the items according

@ Springer

788 Mach Learn (2017) 106:771-798

Batch Mode Stream Mode
A ~
- A
Test
Batch Testing Stream]
Batch Training v T
Training Training
Stream Stream
Part 1) Part 2) Part 3)

Fig.7 Splitting of the dataset between the batch and streaming mode. Separation of training and test datasets
in each of the modes (Matuszyk et al. 2015)

Table 2 Example input to McNemar’s test

Timepoint (rating)

Algorithm 10 (Fug,iy) 11 (ruyiy) 1 (Fug,iy) 13 (ryy.i.)
SSL 1 0 1 1
noSSL 1 0 0 1

Rows indicate performance of algorithms over time. 1 means a hit in the sense of incremental recall. Therefore,
an algorithm with significantly more hits is considered better

to their relevance. If the relevant item has a ranking position < N, then a hit is counted. The
value of incremental Recall @N 1is \relwﬁt%

Compared to the conventional measures used in similar scenarios (e.g. accuracy, recall,
RMSE, etc.), incremental recall brings several advantages. It considers the ranking of rec-
ommendations and counts only hits for relevant items. Error-based measures, such as RMSE
or MAE, estimate the quality based on predictions of all ratings. Considering that ca. 99% of
items is not relevant to a user, it is not desirable to incorporate the prediction error on items
that do not matter into the quality measure.

A further advantage is the ability of incremental recall to deal with extremely skewed
distributions. A negative example for this aspect is the accuracy measure. A classifier that
predicts all items to be irrelevant would yield more than 99% accuracy. A distinction between a
good and a bad classifier would be possible only with very high precision, where the numerical
error plays a big role. Because incremental recall considers only the relevant items, it is free
from this problem.

5.4 Significance testing

To show that the improvement due to the application of semi-supervised learning is statis-
tically significant, we incorporate hypothesis tests into our evaluation protocol. Hypothesis
testing on instance level is possible, since we use two separate streams (one for evaluation
and one for testing), which guarantees the independence of observations for non-cumulative
quality measures.

As a quality measure for the hypothesis testing we use a binary hit count from the incre-
mental recall at 10 (cf. 5.3). An example for observations of this quality measure is represented
in Table 2.

The columns of the table indicate a time point in the stream with the corresponding
rating (in the parenthesis). Rows represent the performance of algorithms over time. The
performance is the binary representation of a hit. For instance, at the time point #(the rating

@ Springer

Mach Learn (2017) 106:771-798 789

Tu,.i,, occurred in the stream. The SSL algorithm was able to rank the item i,, in top 10 (we
measure the incremental recall at 10) among 1000 additional random items. Therefore, for
this rating the SSL algorithm scores a hit (1 in binary notation). At time point #; none of the
algorithm was able to rank the relevant item in top 10, therefore they both score zero in the
table.

In this example table we see that the semi-supervised algorithm (SSL) scored more hits
than the algorithm without semi-supervised learning (noSSL). However, the evidence in
this example is not sufficient to consider any of them superior. To test if the improvement
of the SSL algorithm is statistically significant, we use the McNemar’s test (McNe-
mar 1947). This test is used for paired, nominal, dichotomous data, same as presented
here.

For this test, our example input from Table 2 is transformend into a contingency table
and odds ratio (OR) is calculated. The null hypothesis of the test is: Hy : OR = 1 and the
alternative hypothesis is H; : OR > 1. If the null hypothesis is rejected, we can say that
the tested algorithm is significantly better than a noSSL algorithm. All p values reported in
Sect. 6 result from this test (lower p values are better).

Gama et al. (2009) suggested to apply a sliding window or forgetting factors onto the test
statistic in the McNemar test. By doing so, information about the dynamics of the learning
process can be obtained. In this case, the test statistic reflects mostly the recent time interval
and, therefore, allows to test hypotheses specific to a selected time period.

In this work, however, we are interested in the global effect of SSL, i.e., we test if there
is a significant improvement due to SSL without restricting the time interval. Therefore, we
do not apply sliding windows or forgetting factors and use the entire test stream for out
significance testing.

Since we perform tests several times (e.g. SSL vs. noSSL and self-learning vs. noSSL,
etc.), there is a risk of alpha error inflation. To account for this fact we correct the reported
p values for multiple testing. For this purpose we use Hommel’s method (Shaffer 1995). All
p values in Sect. 6 have been corrected using this method.

6 Experiments

In this section we report the results of empirical evaluation on five real world datasets (cf.
next subsection). To show the improvements by our method we compare the semi-supervised
framework (SSL) to a single learner without semi-supervised learning (noSSL). In both cases
the algorithm used is the extBRISMF (cf. Sect. 4.1), so that the only difference between the
compared algorithms is the application of SSL.

Within the SSL framework we distinguish between three cases:

— self-learning (SL)
— co-training with two learners (SSL2)
— co-training with three learners (SSL3)

In Sect. 6.2 we present the results of the approximately best parameter setting from the
grid search. The grid search was performed on a cluster running the (Neuro)Debian operating
system (Halchenko and Hanke 2012). In total we conducted more than 700 experiments. In
Sect. 6.3 we analyse the impact of different instances of framework components (e.g. which
reliability measure performs the best).

@ Springer

790 Mach Learn (2017) 106:771-798

Table 3 Dataset statistics; “ratio of users for parameter optimization” indicates what percentage of users was
used for parameter optimization using a grid search. Extreme sparisty values show the abundance of unlabelled
information

Dataset Ratings ~ Users Items Sparsity (%) Ratio of users for parameter optimization
MLIM 1,000,209 6040 3706 95.53 0.05

ML100k 100,000 943 1682 93.7 0.1

Flixster (10k users) 569,623 10,000 18,108 99.69 0.01

Epinions (Sk users) 496,222 5000 250,488 99.96 0.03

Netflix(10k users) 2,143,622 10,000 17,249 98.76 0.01

6.1 Datasets

In Table 3 we present summary statistics of five real-world dataset that we used in our
evaluation. Those datasets are: MovieLens 1M and 100k! (Harper and Konstan 2016), a
sample of 5000 users from the extended Epinions (Massa and Avesani 2006) dataset, a
sample of 10,000 users from the Netflix dataset? and a sample of the same size from the
Flixster dataset.> From some of the big dataset we took a sample of users because of a huge
number of experiments we run in our grid search.

The last column in the table shows, what percentage of users has been held out for param-
eter optimization. Extreme sparsity values in the fifth column show the amount of unlabelled
information in a dataset. Our semi-supervised framework exploits this abundantly available
information.

6.2 Performance of SSL

In this section we present results of the evaluation of our semi-supervised framework. In the
evaluation we use the protocol described in Sect. 5. We compare four methods: co-training
with two and three learners (SSL2 and SSL3), self-learning (SL) and a non SSL algorithm
(noSSL). All compared methods use the same matrix factorization algorithm, so that changes
in the performance are due to the application of SSL. Our framework is also capable of using
more that 3 co-trainers in an analogous way. However, the computation time rises with every
additional co-trainer.

Results reported in this section are all calculated using the approximately optimal param-
eter and component settings from the grid search performed on hold-out datasets (cf. Sect.
5). Therefore, for each of the methods we have only one setting used in the final evaluation.

In Fig. 8 we present a comparison of those methods on the ML1M dataset. The figure
presents incremental recall@10 over time (higher results are better). The right part of the
figure shows a box plot with a simplified distribution of incremental recall. The middle bars
of the boxes represent the median of recall values and the hinges stand for the first and third
quartile of the distribution.

Figure 8 shows that SSL3, i.e. co-training with three learners, performed the best on the
Movielens 1M dataset, followed by the SSL2 method. Self-learning performed worse than
noSSL and converged towards the noSSL-level towards the end of the dataset.

! http://www.movielens.org
B https://www.netflix.com

3 https://www.flixster.com

@ Springer

http://www.movielens.org
https://www.netflix.com
https://www.flixster.com

Mach Learn (2017) 106:771-798 791

o 0.13-
s %
®0.12-
80 + Method
% — SSL 3
;E) 0.11- + — ';‘fL 2
£ — NoSSL
20.10- °
(&)
£

0e+00 1e+05 26+05 36405 40405

Timepoint (Data Instances)

Fig. 8 Incremental Recall@10 over time on the Movielens 1M dataset achieved by different SSL methods
as compared to noSSL (higher values are better). The box plot on the right visualizes a simplified distribution
of incremental recall

Table 4 shows the corresponding numerical values together with the parameter and com-
ponent settings used in this experiment. This table is grouped with respect to datasets and
methods. For instance, for the ML1M dataset and the SSL3 method the optimal number of
dimensions k was 30, the regularization A was 0.03 and the best reliability estimator was
the global sensitivity estimator. In the table we do not present the learning rate parameter
n, since its optimal value was 0.003 for all methods on all datasets. Also the periodicity of
unsupervised learning (USL) m was set to 50 (USL every 50 rating), where z = 100 unla-
belled instances were selected. SSL3 improved the incremental recall by ca. 8% compared
to noSSL on this dataset. However, the computation time was longer by ca. 18 milliseconds
on average for each data instance.

To show that this improvement is statistically significant and not due to a chance, we
performed the McNemar’s test, as described in Sect. 5.4. In Table 5 we show the resulting
p values corrected for multiple testing using the Hommel’s method. The columns in the
table represent different hypothesis. The second column, for instance, indicates the p values
from the comparison of SSL3 to noSSL. For the ML1M dataset this value is extremely low
indicating that the improvement due to SSL3 is highly significant (low p values are better).
Also SSL2 achieves a significant improvement compared to noSSL. Self-learning was not
significantly better on the ML1M dataset.

While the improvement on ML1M dataset was 8%, on the ML100k dataset it reached a
substantial improvement from 0.0872 (noSSL) to 0.2718 (SSL3). The comparison for this
dataset is presented in Fig. 9. Similarly to ML1M, SSL3 is the best performing method,
followed by SSL2. SL achieved no substantial improvement. Also here, the improvement
is at cost of computation time that increased by 11.5% for SSL3 (cf. Table 4). Statistical
significance was achieved by both SSL3 and SSL2 (cf. Table 5).

On the Flixster dataset (random sample of 10,000 users) the self-learning method showed
the best performance (cf. Fig. 10). SSL3 improved the results towards the end of the dataset
and SSL2 preformed lower than noSSL. Consequently, only SL and SSL3 achieved statistical
significance in the McNemar’s test.

On the Epinions dataset (random sample of 5000 users), which shows the highest sparsity
of all tested datasets, SSL2 performed the best (cf. Fig. 11). SSL3 achieved a similar perfor-
mance at the end of the data stream, but it was dominated by the noSSL baseline on parts
of the data stream. Self-learning preformed well initially, but did not achieve a significant
improvement over noSSL (cf. Table 5). Both SSL.2 and SSL3 yielded a significant improve-
ment. However, the computation time for a data instance rose from 18.3 ms with noSSL to
311.7 ms with SSL3.

@ Springer

792

Mach Learn (2017) 106:771-798

Table4 Results of our SSL framework in comparison to the noSSL method on five datasets together with the
corresponding parameter settings. Values of average incremental recall (Avg. IR@10) better than in noSSL
are marked in bold. On all datasets our SSL framework achieved an improvement, however, at cost of average
computation time for a data instance 7

Method k£ X Reliability Prediction Unlabelled Training Avg. T (ms)
estim. assembler instance selector set splitter IR @10
MLIM
noSSL 30 0.03 - - - - 0.1103 0.2
SL 30 0.03 Random Reliability- Item-RMSE- - 0.1082 1.2
weighted based
SSL3 30 0.03 Global Reliability- User-recall- Dim.-preserving 0.1190 18.1
sensitivity weighted based Random
SSL2 30 0.03 Global Global-recall- Latent user Dim.-preserving 0.1160 9.1
sensitivity based disagree- random
ment
ML100k
noSSL 50 0.03 - - - - 0.0872 0.2
SL 50 0.03 ST-user Max. reliability Item-RMSE- - 0.0884 0.5
popularity based
SSL3 30 0.01 ST-user Max. reliability Random Dim.-preserving 0.2718 2.3
popularity random
SSL2 30 0.01 ST-user Max. reliability Item-recall- User size splitter 0.2016 2.6
popularity based
Flixter 10k users
noSSL 50 0.03 - - - - 0.2147 0.3
SL 30 0.03 Global Global-recall- ~ Random - 0.2205 1.1
sensitivity based
SSL3 30 0.03 Global Global-recall- Item-recall- Dim.-preserving 0.2144 30.9
sensitivity based based random
SSL2 30 0.03 Global Global-recall- Item-recall- Item size splitter 0.2085 16.2
sensitivity based based
Epinions 5k users
noSSL 50 0.01 - - - - 0.0018 18.3
SL 30 0.03 Global Global-recall- Item-recall- - 0.0024 41.9
sensitivity based based
SSL3 30 0.01 Global Global-recall- Item-recall- User size splitter 0.0020 311.7
sensitivity based based
SSL2 30 0.01 Global Global-recall- Item-recall- User variance 0.0031 165.8
sensitivity based based splitter
Netflix 10k users
noSSL 50 0.01 - - - - 0.2337 0.4
SL 50 0.01 Global Global-recall- Item-recall- - 0.2412 3.1
sensitivity based based
SSL3 30 0.01 Global Global-recall- Item-recall- Dim.-preserving 0.2409 57.8
sensitivity based based random
SSL2 50 0.01 Global Global-recall- Item-recall- Item average 0.2388 342
sensitivity based based splitter

@ Springer

Mach Learn (2017) 106:771-798 793

Table S p values from the McNemar’s test, corrected for multiple testing according to the Hommel’s method

(cf. Sect. 5.4). p values lower than 0.05 are marked in bold face. They indicate a statistically significant
improvement over the noSSL algorithm (lower values are better)

p values

Dataset SSL3 versus noSSL SSL2 versus noSSL SL versus noSSL
MLIM 4.400e—16 4.400e—16 0.6058
ML100k 4.400e—16 4.400e—16 0.5722

Flixster (10k users) 0.006648 0.992 4.431e—10
Epinions (5k users) 1.9592¢—08 6.6e—16 1
Netflix(10k users) 4.400e—16 2.612¢—15 4.400e—16
S0:3 e,

@ Mﬂw/\fmjf ?

© i

8 Method
% 0.2- —SsL3
= — SSL2
QE) —SL

g 0.1- - — NoSSL
£

(I) 10600 30600 40(|)OO

20000
Timepoint (Data Instances)

Fig. 9 Incremental Recall@10 over time on the Movielens 100k dataset achieved by different SSL methods
as compared to noSSL (higher values are better)

©0.250-
®
S 0.225-
8 Method
o ~—8SL3
5 0.200-
2 —ssL2
[—SL

0.175-
5 — NoSSL
(&)
£0.150- . i .

0e+00 2e+05

1e+05
Timepoint (Data Instances)

Fig. 10 Incremental Recall@10 over time on the Flixster (10k users) dataset achieved by different SSL
methods as compared to noSSL (higher values are better)

o

Loy g

®0.006-

©

8 Method
0@ 0.004 - —SsL3
[}

£ —ssL2
20.002- —SL

9 - — NoSSL
[}

£0.000-]

0 50000] 100_'000 150000 200000 250000
Timepoint (Data Instances)

Fig. 11 Incremental Recall@10 over time on the Epinions (5k users) dataset achieved by different SSL
methods as compared to noSSL (higher values are better)

@ Springer

794 Mach Learn (2017) 106:771-798

o 0.26-
90,25-
8 Method
D©0.24-
o [] —sSL3
= .
£0.23- L —ssL2
“E’ o SL
©0-22- — NoSSL
[&]
£o0.21-

0e+00 3e+05 6e+05 9e+05

Timepoint (Data Instances)

Fig. 12 Incremental Recall@10 over time on the Netflix (10k users) dataset achieved by different SSL
methods as compared to noSSL (higher values are better)

On the Netflix dataset (random sample of 10,000 users) improvements of recommendation
quality are clear for all SSL methods (cf. Fig. 12). This is also reflected by p values in Table 5.

To summarise, our SSL framework achieved significant improvements in the recommen-
dations quality on all datasets. However, the computation time rose, especially when SSL3
was used. Nevertheless, the average processing time of a single data instance remained in
the range of milliseconds, ensuring that our approach can be used in real time.

6.3 Impact analysis of component implementations

In our framework we propose multiple components and several possible implementations for
each of them. To find the best implementation for each of the components, in this section we
present an analysis of impact of the implementations onto the quality of recommendations
(incremental recall).

In Fig. 13 we present the results of this analysis. Each sub-plot represents the impact anal-
ysis of one component. To analyse how much impact an implementation has, we performed a
series of experiments with the approximately optimal parameter setting from the grid search.
Only the implementation of the analysed component varied between single experiments.
Those experiments were run on all datasets. In the stacked bar plot in Fig. 13 we observe the
cumulative performance of each implementation on all datasets.

Since not all datasets are equally difficult (e.g. incremental recall of 0.009 on Epinions
dataset is a high result, while on other datasets it would considered low), we normalized the
bar hight for each dataset separately. This gives the same importance to each dataset in the
cumulative sum. The labels within the bars, however, indicate the incremental recall before
normalization. This is the reason why in the first column, for instance, the bar with IR of
0.006 on the Epinions dataset is higher that 0.058 on the ML1M dataset.

In the first subplot of Fig. 13 we see several instances of the reliability estimator component
together with their cumulative performance on all datasets (cf. colour legend). The best
cumulative performance was reached by the user popularity reliability estimator with the
stream-based normalization (ST for self-tuning). It is followed by item recall-based estimator,
user popularity estimator and user recall-based estimator with similar results.

The second subplot presents the same analysis for the unlabelled instance selector compo-
nent. Here, the latent item disagreement reached the best performance. However, the random
selector achieved a similar result while being computationally less expensive. Therefore,
in time-critical application scenarios we recommend the usage of the random unlabelled
instance selector.

@ Springer

Mach Learn (2017) 106:771-798 795

Reliability Estimator Unlabelled Instances Selector

— = T T T — — T
S 240 o241 [o.241| o241 Y 0241 0242
& (S S &
— 0.241) f0.240) . — 0.207 0.213 0231
8 jp214) o214 |0.214) J0.214) 0241 0240 © 0215
5 5
e 214
E 058/ 0.214) |0.214 . . E 0105 0.119 0.118 o
@ 1 [p117] foag fo117) 214 21d G
G |ooog S | oo 0113
=g 0117 fo.118 [o.119] o125 £ 0007 0E
- 10.007 007| 007| 0. 0.118 -
2 barg 50| [502 o] o boed | 0268 0.262 0272 0.267
< lo-q87 |o-ged] Jo.ged jo-qe7] o.g8s| foges] <C
£ 9o £ 0o £ 0o £ £ £ E] S @ Q S Q Q
=) =) =) > > = =] > >) o) S) I))
o c O c © c 5 5 & T 5 5 © £ © o © £ © ©
S Q S Qo El Qo = = S = = = Qo Q = Qo Q Qo
T v 0 7] 0 Il 4] 7] 0 a9 0 © 0 9 T 0
2 £ 2 = 2 4 ¢ ¢ 2 g ¢ & u [= 4 w o = w
° o ° © o 0 (7] (7} ° (7] () [} o © [} o © [}
a v} a (9] a s n A a [(%) s v s o s
[S) g = = PO o Q = o Q
g = %= § %33 § 8 kG 5 % - D
v v = U = 0
S5 E S5 3 =2 £ 5 © = S S5 9 o] a = € £
[T}) L 5 6 E = n £] v) g]
0 o= =1 = n 0 > 9] = = I = =
= = o -
IS =
Implementation £ £
mplementatio b1]
2 2
© ©
- -~
Implementation
Prediction Assembler Training Set Splitter
— T T T T T — T T T T
G | oz T o2
b 9 0.241 0231 0231 0234 0231
4 =4
— | 0214 — | o208
s s 0.214 0.206 0.206 0.201 0.205
@ @
0.119 0.123
£ £ 0119 0116 0115 0110
5 S 0124
S S
€ | oo < [0.002 0.002 0.002 0.002 oamn
D1 022 X 2| o 0272 02 0260 0267 0250
< X X gl e .08 < L L L L L L
> o kel o kel kel o o H 5 5 5
£ g @ @ @ o} 9] [0}] g 9 E 9]
= 0 jul 0 u = jul u = = = =
2 © @ © @ = @ @ = ° = ° = =
o 2 2 2 2 2 2 2 S 5 S 5 S S
3 = = w w] W = v &2 v &2 w v
o © © %) v = v © [} @ %] o
[i s s q s 1% o o o N o
: Q Q 2> Q © c el n c
% -4 -4 o< 4 £ 3 4 5 s 5 D ©
r 0 o = = - oy =
= B 9] © a € > > a
QE,]) 2 © 9] 2 < @ < g <
= 3 =1 o < £ ° € 4] o ~
G} -4 [C) a <] 3
. = -+ = =1
Implementation €
[a)

Dataset

Implementation
[ML100k [Epinions 5k CJ MLIM [Flixter 10k [0 Netflix 10k

Fig. 13 Analysis of impact of component instances onto the quality of recommendations (avg. incremental
recall). We conducted experiments with the optimal parameter setting, where only one component varied (e.g.
reliability estimator in the first subplot). Component instances with the highest cumulative sum of performance
on all dataset are the best (leftmost in all subplots)

The best implementation of the prediction assembler component is based on maximal
reliability, i.e. the prediction with maximal reliability serves as the final prediction of all
co-trainers. Using reliability estimates as weights performed relatively poor (sixth place in
the figure). As a method of splitting the training dataset among co-trainers the item average
splitter works the best. It assigns items with different average ratings to different co-trainers
(e.g. good items to one co-trainer, bad items to the other one), so that they can specialize on
each subgroup.

7 Conclusions

Recommender systems suffer from an extreme data sparsity. Only few items can be labelled
by users. Therefore, the number of unlabelled items is unproportionally higher than the
number of labelled ones. We propose a novel framework for stream-based semi-supervised
learning for recommender systems that exploits this abundant unlabelled information and
alleviates the sparsity problem.

This is the first such framework for stream-based recommender systems. We implemented
two semi-supervised learning (SSL) approaches: self-learning and co-training and evaluated

@ Springer

796 Mach Learn (2017) 106:771-798

them in a streaming setting on five real-world datasets. We showed that our SSL framework
achieves statistically significant improvements in the quality of recommendations. The best
performing approach is co-training with three learners (SSL3). This approach achieved sig-
nificant improvements compared to noSSL on all datasets. Co-Training with two learners
(SSL2) was significantly better than noSSL on four out of five datasets. The improvements
achieved by the self-learning method were not consistent on all datasets. Therefore, we
recommend this technique only after prior testing.

Even though the computation time increased, especially with the SSL3 method, the result-
ing computation time for each data instance remained in the range of milliseconds (maximally
311.7 ms on the Epinions dataset), which proves the applicability of our framework to real-
time applications.

In our experiments we used the BRISMF algorithm by Takécs et al. (2009), a state-of-
the-art matrix factorization algorithm. We extended the it by the ability to add dimensions
to a rating matrix during runtime, as new users and items appear in the stream. This is an
important feature, especially for volatile applications.

We also introduced a new evaluation protocol for stream-based recommender systems that
incorporates statistical testing, a correction for multiple tests and a sophisticated method of
splitting datasets for an unbiased stream-based evaluation.

A limitation of our method is the computation time. The number of possible co-trainers
is strongly limited. While three co-trainers still showed to be applicable in real-time, their
number cannot be much higher at the current state-of-the-art. This problem could be alleviated
by parallelization and distributed computing.

Also, in our current framework, co-trainers use different views onto the training data
during the batch training phase. In the streaming mode, all co-trainers receive the same
training instances. While it is not a problem for short streams, in potentially infinite streams
the co-trainers can approximate each other. In this case the advantage of SSL would slowly
degrade and the performance of the algorithm would converge towards the performance of
anoSSL algorithm. Once this happens, a retraining of the models with new data can restore
this advantage. In our future work, we plan to extend our framework so that views are also
applied online onto the stream instances. Thus, the potential retraining of models would not
be necessary.

As our framework is modular and can be extended easily, in our future work we plan to
implement further modules such as reliability measures and prediction assemblers. A further
open challenge is the increased computation time in the co-training approach.

Acknowledgements The authors would like to thank Daniel Kottke and Dr. Georg Krempl for suggestions
regarding self-tuning normalization for streams and evaluation. We also thank to the Institute of Psychology
II at the University of Magdeburg for making their computational cluster available for our experiments and to
our student, Florian Schweighofer, who helped us with implementation of selected training set splitters.

References

Bosni¢, Z., Demsar, J., KeSpret, G., Rodrigues, P. P., Gama, J., & Kononenko, I. (2014). Enhancing data
stream predictions with reliability estimators and explanation. Engineering Applications of Artificial
Intelligence, 34, 178-192.

Christakou, C., Lefakis, L., Vrettos, S., & Stafylopatis, A. (2005). A movie recommender system based on
semi-supervised clustering. CIMCA/IAWTIC, 2, 897-903.

Cremonesi, P., Koren, Y., & Turrin, R. (2010). Performance of recommender algorithms on top-n recommen-
dation tasks. In RecSys '10. ACM.

@ Springer

Mach Learn (2017) 106:771-798 797

de Souza, V.M. A, Silva, D. F,, Gama, J., & Batista, G. E. A. P. A. (2015). Data stream classification guided
by clustering on nonstationary environments and extreme verification latency. In S. Venkatasubramanian
& J. Ye (Eds.), SDM (pp. 873-881). SIAM.

Deshpande, M., & Karypis, G. (2004). Item-based top-n recommendation algorithms. ACM Transactions on
Information Systems (TOIS), 22(1), 143-177.

Desrosiers, C., & Karypis, G. (2011). A comprehensive survey of neighborhood-based recommendation meth-
ods. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender systems handbook (pp.
107-144). Berlin: Springer.

Dyer, K. B., Capo, R., & Polikar, R. (2014). COMPOSE: A semisupervised learning framework for initially
labeled nonstationary streaming data. IEEE Transactions on Neural Networks and Learning Systems,
25(1), 12-26.

Gama, J., Sebastido, R., & Rodrigues, P. P. (2009). Issues in evaluation of stream learning algorithms. In KDD.
ACM.

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information
tapestry. Communications of the ACM, 35(12), 61-70.

Halchenko, Y. O., & Hanke, M. (2012). Open is not enough. let’s take the next step: An integrated, community-
driven computing platform for neuroscience. Frontiers in Neuroinformatics, 6, 22.

Harper, F. M., & Konstan, J. A. (2016). The MovieLens datasets: History and context. 7iiS, 5(4), 19.

Hernando, A., Bobadilla, J., Ortega, F., & Tejedor, J. (2013). Incorporating reliability measurements into the
predictions of a recommender system. Information Sciences, 218, 1-16.

Koren, Y. (2008). Factorization meets the neighborhood: A multifaceted collaborative filtering model. In
Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining
(pp. 426-434). ACM.

Koren, Y. (2009). Collaborative filtering with temporal dynamics. In KDD ’09. ACM.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Com-
puter, 42(8), 30-37.

Linden, G., Smith, B., & York, J. (2003). Amazon.Com recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7, 76-80.

Massa, P., & Avesani, P. (2006). Trust-aware bootstrapping of recommender systems. In ECAI workshop on
recommender systems (pp. 29-33).

Matuszyk, P., & Spiliopoulou, M. (2014a). Hoeffding-CF: Neighbourhood-based recommendations on reliably
similar users. In V. Dimitrova, T. Kuflik, D. Chin, F. Ricci, P. Dolog & G. J. Houben (Eds.), User modeling,
adaptation, and personalization, Lecture notes in computer science (Vol. 8538, pp. 146-157). Springer.

Matuszyk, P., & Spiliopoulou, M. (2014b). Selective forgetting for incremental matrix factorization in recom-
mender systems. In Discovery science, LNCS. Springer.

Matuszyk, P., & Spiliopoulou, M. (2015). Semi-supervised learning for stream recommender systems. In:
N. Japkowicz & S. Matwin (Eds.), Discovery science, Lecture notes in computer science (Vol. 9356, pp.
131-145). Springer.

Matuszyk, P., Vinagre, J., Spiliopoulou, M., Jorge, A. M., & Gama, J. (2015). Forgetting methods for incre-
mental matrix factorization in recommender systems. In Proceedings of the SAC’15 conference. ACM.

McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percent-
ages. Psychometrika, 12(2), 153-157.

Preisach, C., Marinho, L.B., & Schmidt-Thieme, L. (2010). Semi-supervised tag recommendation—Using
untagged resources to mitigate cold-start problems. In M. J. Zaki, J. X. Yu, B. Ravindran & V. Pudi
(Eds.), Advances in knowledge discovery and data mining, Lecture notes in computer science (Vol. 6118,
pp. 348-357). Springer.

Rodrigues, P. P, Gama, J., & Bosnic, Z. (2008). Online reliability estimates for individual predictions in data
streams. In ICDM workshops (pp. 36—45). IEEE Computer Society.

Rosenberg, C., Hebert, M., & Schneiderman, H. (2005). Semi-supervised self-training of object detection
models. In WACV/MOTION (pp. 29-36). IEEE Computer Society.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th international conference on World Wide Web, WWW ’01 (pp.
285-295). ACM, New York.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2002). Incremental singular value decomposition algorithms
for highly scalable recommender systems. In Fifth international conference on computer and information
science (pp. 27-28).

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46(1), 561-584.

Sindhwani, V., Niyogi, P., & Belkin, M. (2005). A co-regularized approach to semi-supervised learning with
multiple views. In Proceedings of the ICML workshop on learning with multiple views.

@ Springer

798 Mach Learn (2017) 106:771-798

Su, X., & Khoshgoftaar, T. (2009). A survey of collaborative filtering techniques. Advances in Artificial
Intelligence, 2009, 4.

Takécs, G., Pildszy, 1., Németh, B., & Tikk, D. (2009). Scalable collaborative filtering approaches for large
recommender systems. Journal of Machine Learning Research, 10, 623—656.

Zhang, M., Tang, J., Zhang, X., & Xue, X. (2014). Addressing cold start in recommender systems: A semi-
supervised co-training algorithm. In SIGIR. ACM.

Zhou, Z. H., & Li, M. (2007). Semisupervised regression with cotraining-style algorithms. IEEE Transactions
on Knowledge and Data Engineering, 19(11), 1479-1493.

Zhou, Z. H., Zhan, D. C., & Qiang, Y. (2007). Semi-supervised learning with very few labeled training
examples. In AAAT (pp. 675-680). AAAI Press.

Zhu, T., Hu, B., Yan, J., & Li, X. (2010). Semi-supervised learning for personalized web recommender system.
Computing and Informatics, 29(4), 617-627.

Zhu, X. (2005). Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, Uni-
versity of Wisconsin-Madison.

@ Springer

	Stream-based semi-supervised learning for recommender systems
	Abstract
	1 Introduction
	2 Related work
	3 Semi-supervised framework for stream recommenders
	3.1 Incremental recommendation algorithm
	3.2 Stream co-training approach
	3.2.1 Initial training
	3.2.2 Streaming mode: supervised and unsupervised learning
	3.2.3 Unsupervised learning

	3.3 Stream-based self-learning

	4 Instantiation of framework components
	4.1 Incremental recommendation algorithm: extBRISMF
	4.2 Training set splitter
	4.2.1 User size splitter
	4.2.2 Random splitter
	4.2.3 Dimensions preserving random splitter
	4.2.4 User variance splitter
	4.2.5 Item variance splitter
	4.2.6 Average rating splitter

	4.3 Prediction assembler
	4.3.1 Recall-based prediction assembler
	4.3.2 RMSE-based prediction assembler
	4.3.3 Reliability-weighted prediction assembler
	4.3.4 Maximum reliability prediction assembler

	4.4 Selector of unlabelled instances
	4.4.1 Latent disagreement selector
	4.4.2 Random selector
	4.4.3 User-specific incremental-recall-based selector

	4.5 Reliability measure
	4.5.1 Sensitivity-based reliability measure
	4.5.2 Popularity-based reliability measure
	4.5.3 Random reliability measure
	4.5.4 RMSE-based reliability measure
	4.5.5 Normalization of reliability measures

	5 Evaluation protocol
	5.1 Parameter optimization
	5.2 Dataset splitting
	5.3 Evaluation measure
	5.4 Significance testing

	6 Experiments
	6.1 Datasets
	6.2 Performance of SSL
	6.3 Impact analysis of component implementations

	7 Conclusions
	Acknowledgements
	References

