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Abstract Cluster analysis aims at classifying objects into categories on the basis of their
similarity and has been widely used in many areas such as pattern recognition and image
processing. In this paper,wepropose a novel clustering algorithmcalledQCCmainly basedon
the following ideas: the density of a cluster center is the highest in its K nearest neighborhood
or reverse K nearest neighborhood, and clusters are divided by sparse regions. Besides, we
define a novel concept of similarity between clusters to solve the complex-manifold problem.
In experiments, we compare the proposed algorithm QCC with DBSCAN, DP and DAAP
algorithmson synthetic and real-world datasets. Results show thatQCCperforms the best, and
its superiority on clustering non-spherical data and complex-manifold data is especially large.

Keywords Clustering · Center · Similarity · Neighbor · Manifold

1 Introduction

Clustering is one of primary methods in data mining and data analysis. It aims at classifying
objects into categories or clusters, on the basis of their similarity. The clusters are collections
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of objects whose intra-class similarity is high and inter-class similarity is low. Up to present
the study on clustering algorithms has been very active. Several different clustering methods
have been proposed (Xu andWunsch 2005), and they can be roughly divided into partitioning
methods (Han andKamber 2001;Kaufman andRousseeuw 2009;Ng andHan 2002;Ordonez
and Omiecinski 2002), hierarchical clustering (Zhang et al. 1996; Guha et al. 1998, 1999;
Karypis et al. 1999), density-based clustering (Ester et al. 1996; Hinneburg and Keim 1998;
Ankerst et al. 1999), grid-based clustering (Wang et al. 1997, 1999; Agrawal et al. 1998),
model-based clustering (Moore 1999; Smith et al. 2013; Rhouma and Frigui 2001), and so
on (Ling et al. 2007).

Given a dataset X = {x1, x2, . . . , xn}, the basic idea of a partitioningmethod is to partition
the dataset into k clusters (k < n). This kind of clustering algorithm generally starts with
an initial partition of X and then uses an iterative control strategy to optimize an objective
function. Among the proposed partitioning methods, k-means (Han and Kamber 2001) and
k-medoids (Kaufman and Rousseeuw 2009) are the primary representatives. However, these
methods are not applicable to non-spherical clusters. The model-based clustering method
(a.k.a., distribution-based method) assumes that the objects in a specified cluster are most
likely to be derived from a unique model. Expectation Maximization (EM)-based methods
(Mclanchan and Krishan 1997) are the well-known branch of such methods, which adopt
a fixed number of models, such as GMM, to approximate the object distribution. However,
it is usually difficult to know the model or describe the distribution of real datasets before
clustering. Moreover, this kind of clustering algorithm is still not applicable to non-spherical
datasets (Jain 2010).

The hierarchical clustering organizes the objects as a hierarchical structure and assumes
that the objects close to each other are more likely to be in the same cluster than the objects
far away from each other. Single-Link (Sneath and Sokal 1962), Complete-Link (King 1967)
and Ward method (Ward 1963) are the representative algorithms of this kind. The key idea
of density-based clustering is that the clusters are defined as areas with higher density. This
kind of method can correctly cluster the non-spherical datasets. The most popular example
of density-based clustering is DBSCAN (Ester et al. 1996). The spectral clustering algorithm
does not make assumptions on the forms of the clusters; it utilizes the spectrum of the similar-
ity matrix to map the data into a lower-dimensional space in which the objects can be easily
clustered by traditional clustering techniques (VonLuxburg 2007;Donath andHoffman 1973;
Hagen and Kahng 1992). This kind of clustering algorithm performs well on non-convex
datasets. However, the density-based and spectral clustering algorithms cannot successfully
cluster datasets containing structures with different densities or complex manifold.

In order to solve the problems mentioned above, we propose a new clustering method,
called QCC. The proposed algorithm is based on the following ideas: the density of a cluster
center is the maximum among its neighbors or reverse neighbors, and clusters are divided
by sparse areas. At first, we introduce a new concept of local density of each object. Then
QCC finds the quasi-cluster centers which correspond to initial clusters. Afterwards, we
define a new metric to evaluate the similarity between initial clusters. Finally, we obtain the
final clusters by merging the initial clusters between which the similarity is greater than α.
The experimental results on the synthetic and real-world datasets show that the proposed
algorithm is more effective than DP, DAAP and DBSCAN.

The rest of this paper is organized as follows. Section 2 is the related work of clustering.
Section 3 introduces some related concepts and definitions of clustering algorithms. Sec-
tion 4 presents the details of the proposed clustering algorithm QCC. Section 5 gives the
experimental results of comparing QCCwith DP, DAAP and DBSCAN. Section 6 concludes
our work.
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2 Related work

As one of primarymethods in datamining and data analysis, clustering has gotmore andmore
attention from the industry and academia. A great number of clustering algorithms have been
proposed. For many of traditional clustering algorithms, a key step is to find cluster centers.
For example, k-means (Han and Kamber 2001) and k-medoids (Kaufman and Rousseeuw
2009) methods classify the objects into a cluster based on the distances to the cluster center.
An objective function, typically the sum of the distance to a set of putative cluster centers, is
optimized until the best cluster centers candidates are found. In 2007, Brendan and Delbert
proposed a new clustering algorithm by passing messages between data points in Science,
called affinity propagation (AP) (Frey andDueck 2007). Themain purpose ofAP clustering is
to find the optimal representative points. Different from k-means, the AP algorithm does not
need to specify the initial cluster centers in advance. In contrast, it regards all data points as
potential cluster centers, and therefore avoids the arbitrariness in selecting the initial cluster
centers. However, AP cannot directly specify the final number of clusters. In order to generate
K clusters, Zhang et al. (2010) propose K-AP clustering algorithm.

The above mentioned center-based methods are not able to detect non-spherical clusters
(Jain 2010), since data points are always assigned to the nearest center. In 2014, Rodriguez
and Laio proposed a new clustering algorithm in Science, called DP. The DP algorithm is
based on the following idea: cluster centers are surrounded by neighbors with lower local
density, and they are at a relatively large distance from any points with a higher local density.
Non-spherical clusters can be easily detected by DP clustering algorithm. However, DP
suffers from identifying the ideal number of clusters. In 2016, Wang and Song proposed an
improved clustering algorithm called STClu that is insensitive to parameters. However the
result of DP and STClu is undesirable when clustering complex-manifold datasets. In 2014,
Hong et al. proposed a clustering algorithm called DAAP, and it can solve complex-manifold
problems by computing a similarity which is defined as the sum of the Edge-Weight of
shortest path (Jia et al. 2014). However, the time complexity of DAAP is much higher than
AP, K-AP and DP, for computing the specifically-defined similarity. Moreover, DAAP needs
too many parameters to set such as damping coefficient, the maximal iteration, the number
of neighbors and clusters, and generally, the clustering effect of DAAP is undesirable on
datasets that contain structures with different densities (Jia et al. 2014).

3 Preliminaries

Most of the existing density-based clustering algorithms, such as DBSCAN and DP, define
the density of each point pi as the number of neighbors with distance to pi less than the
cutoff distance dc, as shown in Eq. 1

ρi =
n∑

j

ϕ(di j − dc) (1)

In Eq. 1 if di j − dc < 0, ϕ(di j − dc) = 1 and otherwise ϕ(di j − dc) = 0. ρi is equal to
the number of points that are closer to point i than dc. However, once the inter-class density
variations is great, the value of dc is hard to set. For example, as shown in Fig. 1, if the value
of dc is set inappropriately, then there are no neighbors in the neighborhood of points a and
b within dc, but the neighbors of C1’s center include all points in C1. Moreover, although
points a and b are normal points, they will be regarded as noise by DBSCAN. However,
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Fig. 1 Illustration of large density variations

points a and b will be regarded as the cluster center by DP algorithm, since the local density
of points a and b is the largest in their neighborhood.

Since the proposed method is center-based, like DP and DAAP clustering algorithms, it
also needs to compute the density of every point. In order to avoid the above problem, we
introduce the following definitions. Let D be a dataset, p and q be two objects in D, and k
be a positive integer. We use d(p, q) to denote the Euclidean distance between objects p and
q .

Definition 1 (K -distance) The K -distance of p, denoted asDistK (p), is the distance d(p, o)
between p and o in D, such that:

(1) At least K objects o′ ∈ D/{p} satisfy d(p, o′) ≤ d(p, o), and
(2) At most (K − 1) objects o′ ∈ D/{p} satisfy d(p, o′) < d(p, o)

DistK (p) is the distance between p and the K th nearest neighbor of p. For example, as
shown in Fig. 2, when K = 3, the Dist3(p) = d(p, q). The DistK (p) can represent the
density of the object p. The smaller DistK (p) is, the much denser the area around p is.
Therefore, like paper Jin et al. (2006), we define the density of p, denoted as Den(p), as the
following equation:

Den(p) = 1

DistK (p)
(2)

Definition 2 (K Nearest Neighbor and Reverse K Nearest Neighbor) If d(p, q) ≤
DistK (p), then the object q is called the K Nearest Neighbor of p. All the K Nearest Neigh-
bors compose the K Nearest Neighborhood, denoted as KNN(p). If d(q, p) ≤ DistK (q),
then the object q is called the Reverse K Nearest Neighbor of p, and all the Reverse K
Nearest Neighbors compose the Reverse K Nearest Neighborhood, denoted as RKNN(p).
The formulation of KNN(p) and RKNN(p) is given as follows.

KNN(p) = {q|d(p, q) ≤ DistK (p)} (3)

RKNN(p) = {q|d(q, p) ≤ DistK (q)} (4)

For example, as shown in Fig. 2, when K = 3, 3NN(p) = {a, b, q}, 3NN(a) = {b, p, q},
3NN(b) = {a, p, q}, 3NN(q) = {d, p, b}, 3NN(d) = {q, p, b} and we can obtain that
R3NN(p) = {a, b, q, d}.
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Fig. 2 Illustration of k-distance,
KNN and RKNN (Color figure
online)

4 The QCC algorithm

In this paper we divide the neighbors of every point into Dense Neighbors and Sparse Neigh-
bors, which are defined in Definition 3.

Definition 3 (Dense and Sparse Neighbor) If the density of q is greater than the density of p
and q ∈ KNN(p), then the object q is called the Dense Neighbor of p, denoted asDN(p). On
the contrary, if the density of q is smaller than or equal to the density of p and q ∈ KNN(p),
then q is called the Sparse Neighbor of p, denoted as SN (p).

Definition 4 (Exemplar)We define point q as the Exemplar of pwhere q ∈ Q and d(p, q) =
minni=1{d(p, qi )}. Q is a collection defined as follows:

Q = {q|Den(q) = max {Den(KNN(p))} and p �= q} (5)

In Definition 4, n is the number of points in Q. From the definition of Exemplar, we can
know that each point of the dataset possesses at most one Exemplar. If the density of p is
greater than the density of all k nearest neighbors or reverse k nearest neighbors of p, p is
the Exemplar of itself. Then we call p a Quasi-Cluster Center.

Definition 5 (Quasi-Cluster Center) If object p satisfies one of the following two conditions,
then we call p a Quasi-Cluster Center.

1. ∀q ∈ KNN(p),Den(p) ≥ Den(q) or
2. ∀q ∈ RKNN(p),Den(p) ≥ Den(q)

Figure 3 is the Exemplar Graph (EG) which can be comprised by connecting each point
p to its Exemplar. As shown in Fig. 3, the parameter K is set to 30, and the red points
c1, c2, . . . , c7 are Quasi-Cluster Centers. Other red points will be treated as outliers that will
be explained in Algorithm 1.

As shown in Fig. 3, the top-right class is divided into 6 small clusters. However, from
the result of Fig. 4, we can see that the Quasi-Cluster Centers are the real cluster centers,
when we set an appropriate value of k. We also find that the number of Quasi-Cluster Centers
appears to decrease as the value of parameter k increases. For example, QCC finds 6 cluster
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Fig. 3 Exemplar graph and Quasi-Cluster Centers

centers in the top-right cluster in Fig. 3, when K = 30. However, as shown in the left
figure of Fig. 4, QCC only finds one cluster center that is the real cluster center of this
cluster, when K = 50. Hence, QCC can cluster these datasets by constantly spreading
out from the cluster centers, and obtain the accurate clustering result when the value of K is
appropriate.However, in thisway, it is hard to correctly cluster the complex-manifold datasets.
In order to solve the complex-manifold problem, we define the similarity between clusters as
follows.

Definition 6 (Similarity between clusters) Similarity between clustersCi andC j , denoted as
Sim(Ci ,C j ), is defined as the ratio of the number of points inCi ∩C j and K. The formulation
of similarity between clusters is shown as follows:

Sim(Ci ,C j ) = |Ci ∩ C j |
K

(6)

As shown in Fig. 5, the set of red points is the intersection of C1 and C2. We consider
the ratio of the number of these red points and K as the similarity between two adjacent
initial clusters. The value of Sim(Ci ,C j ) is no less than 0. If these two adjacent initial
clusters are divided by a sparse area, the similarity between these two clusters will be small.
Then these two clusters are two individual clusters. On the contrary, if these two adjacent
initial clusters are connected by a density area, the similarity between these two adjacent
clusters will be large. Then these two clusters will be merged into one cluster. In this way,
even if one large cluster is divided into many small clusters because the value of k is small,
as shown in Fig. 3, these small clusters C1,C2, . . . ,C7 will be finally merged into one
cluster.

Based on the above definitions, we propose a novel clustering algorithm, called QCC. The
procedure of QCC algorithm is minutely described in Algorithm 1.
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Fig. 5 The intersection of C1 and C2

Firstly, the proposed clustering algorithm QCC uses the KNN searching algorithm to
obtainKNN andRKNNof each point in D, and computes the density of each point. Secondly,
in step 5 ofAlgorithm1,QCCfinds the Exemplar of each point usingDefinition 4, and obtains
all Quasi-Cluster Centers using Definition 5. After that, QCC obtains the initial clusters via
the following steps.

1. QCC arbitrarily finds a Quasi-Cluster Center, and classifies it and its Sparse Neighbors
to the same cluster Ci .

2. Then QCC arbitrarily finds a point p in this cluster and classifies the Sparse Neighbors
of p to cluster Ci , until all points of this cluster have been visited.

3. Afterwards, QCC finds an unvisited Quasi-Cluster Center and repeats the above steps,
until all Quasi-Cluster Centers have been visited.

By doing so, the clusters spread from dense areas to sparse areas. As shown in Fig. 5, the
red points are classified to C1 and C2 at the same time. Then QCC merges all the clusters
between which the similarity is greater than α into one cluster. If the similarity between
clusters C1 and C2 is smaller than α, then the red points will be classified into the cluster
that its Exemplar belongs to. α is a user-defined parameter. A larger value of α leads to more
clusters. Actually, QCC algorithm is robust with respect to the choice of parameter K and α,
and this will be analysed in the next section.

After the above steps, QCC regards the clusters with |ci | < K (i.e., the number of points
in Ci smaller than K ) as outlier clusters. In other words, the point in these clusters is marked
as outlier. So the red points in Fig. 3 will be regarded as outliers except C1,C2, . . . ,C7.
Finally, QCC outputs the final clusters. Note that the value of K is preferably smaller than the
number of points in the smallest normal cluster of the dataset, otherwise the smallest normal
cluster may be merged to an adjacent big cluster. QCC can correctly cluster the dataset, as
long as the above conditions are met. The complexity of the QCC is O(n2). If we use the
K-D tree to search the neighbors of each point, the complexity of QCC would be decreased
to O(n ∗ log n).
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Algorithm 1: QCC-Clustering
Input: The dataset (D), the number of neighbors of each point (K), and the minimum similarity

between clusters (α)
Output: The final cluster results C = {c1, c2, ..., cM }
Initializing: r = 0, Kdis (i) = 0, Den(i) = 0, K NN (i) = ∅, RK NN (i) = ∅, SN =
∅, Exemplar(i) = i, Sim(ci , c j ) = 0, QCC = ∅;
(KNN(i), RKNN(i),)= KNN-Searching(D,K);
∀x ∈ D compute the Kdis (x) and find the SN(x);
for ∀x ∈ D do

y=max(Den(KNN(x)));
if y �= x then

Exemplar(x)=y;
end
if y==x then

r=r+1 and QCC (r) = x ;
end
z=max(Den(RKNN(x)));
if x==z then

r=r+1 and QCC (r) = x ;
end

end
for i=1 to r do

ci = QCC (i) ∪ SN (QCC (i));
for ∀x ∈ ci do

if visited(x) �= true then
visited(x)=true and ci = ci ∪ SN (x);

end
end

end
Compute the similarity matrix Sim(ci , c j ) between the clusters;
Merge all initial clusters that Sim(ci , c j ) > α;
if ∃(0 < Sim(ci , c j ) < α) then

if x ∈ ci&x ∈ c j then
x is classified to the cluster that it’s exemplar belongs to;

end
end
for i=1 to |C | do

if |ci | < K then
∀x ∈ ci is marked as outliers and delete ci from C;

end
end

5 Experimental analysis

5.1 Clustering on synthetic datasets

In order to demonstrate the effectiveness of QCC, we compare the proposed clustering algo-
rithm QCC with DBSCAN, DAAP and DP algorithms. DBSCAN is a famous density-based
clustering algorithm devoted to solve the manifold problem.We conduct experiments on four
synthetic datasets and Olivetti Face Database. Four synthetic datasets are illustrated in Fig. 6.
Data1, taken from Ester et al. (1996), consists of two spherical classes, two manifold classes
and a few outliers, a total of 582 points. Data2, taken from Ha et al. (2014), consists of three
spherical classes, one complex-manifold class and some noise points, a total of 1400 points.
Data3, taken from Cassisi et al. (2013), is composed of six high density manifold classes and
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Fig. 6 Four original synthetic datasets

some noise points, a total of 8000 points. Data4, taken from Zhu et al. (2014), consists of
159 points and has one dense spherical class and one sparse manifold class.

For DP, we decide on the right number of clusters to Data1, Data3 and Data4, and show
the best clustering result in repeated tests on Data2. Hence, we don’t show the decision graph,
deciding the number of the clusters, of DP in all results. For DAAP, we set the density factor
ρ to 2, the maximal iteration maxits to 1000, convergence of iteration coefficient convits to
100.

Figure 7 shows the clustering results of each approach on Data1. For DAAP, the number
(k) of neighbors used for constructing the adjacency matrix is set to 6, the value of damping
coefficient (lam) is set to 0.9. From this figure, we can see that DP algorithm can correctly
cluster the spherical class and simple manifolds class, but can’t correctly cluster the complex-
manifold class. Data1 is correctly clustered by DAAP, DBSCAN (eps = 15, minpoints = 5)
and QCC (K = 20, α = 0.3). DBSCAN and QCC algorithms detect out the noise points in
Data1, but DAAP can’t.

Figure 8 shows the clustering results of each algorithm on Data2. For DAAP, the number
(k) of neighbors used for constructing the adjacency matrix is set to 6, the value damping
coefficient (lam) is 0.9. DP fails to cluster the complex-manifold data that is grouped into
6 clusters. Owing to specifically-defined similarity, DAAP has certain capacity to cluster
complex-manifold dataset. However, DAAP fails to cluster themanifold class in Data2. Since
the shortest path is too long, the end region (marked by red square) of the manifold class was
wrongly clustered. Data2 is correctly clustered by DBSCAN (eps = 0.2, minpoints = 40)
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Fig. 7 The clustering results of a DP, b DAAP, c DBSCAN and d QCC algorithm on Data1

and QCC (K = 20, α = 0.3) algorithms, and most of the noise points in Data2 are detected
out by DBSCAN and QCC.

Figure 9 shows the clustering results of each algorithm on Data3. Although DP obtains
the right number of clusters in Data3 by manually selecting the cluster centers in the decision
graph, three clusters are incorrectly clustered. DAAP obtains the right number of clusters,
but some clusters are incorrectly clustered, too. Moreover, DAAP mistakenly regards a part
of noise as a small normal cluster. The clustering result of DBSCAN is obviously superior to
DP and DAAP, and DBSCAN detects out the noise points in Data3. However, some points
in normal clusters are treated as noise points by DBSCAN. Although QCC (K = 80, α = 6)
fails to detect out the noise in Data3, QCC obtains the right number of clusters and correctly
clusters all normal points.

Figure 10 shows the clustering results of each algorithm on Data4. Same as for the results
on Data3, although DP and DAAP obtain the right number of clusters by manually select
or set, the results of DP and DAAP are undesirable. Since the density variations of the two
clusters of Data4 is great, DBSCAN (eps = 2,minpoints = 5) fails to correctly cluster Data4.
DBSCAN does not obtain the right number of clusters in Data4, and mistakenly treats some
normal points as noise. The performance of QCC (K = 5, α = 0.2) is obviously superior to
that of DP, DAAP and DBSCAN on Data4.

From the above results and analysis, we can see that theDP algorithmhas a certain capacity
to cluster non-spherical data. However the DP algorithm can hardly correctly cluster the
complex-manifold datasets. DAAP has a certain capacity to cluster the datasets with complex
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Fig. 8 The clustering results of a DP, b DAAP, c DBSCAN and d QCC algorithm on Data2

manifold. However, DAAP fails to cluster those datasets containing long manifold class
(Data2), lots of noise (Data3) or great density variations between clusters (Data4). Although
the performance of DBSCAN is superior to that of DP andDAAP, DBSCAN fails to correctly
cluster on Data3 and Data4. Therefore, from the results with the synthetic datasets, we can
see that the proposed clustering algorithm QCC can get the right number of final clusters
without human intervention, and the scope ofQCC’s application iswider than other clustering
algorithms. Whether the datasets contain complex-manifold data or the density variations of
inter-class are great, QCC can get satisfactory clustering results. In order to demonstrate the
effectiveness of QCC, we also conduct experiments on real datasets in the following section.

5.2 Clustering on Olivetti Face Database

Like paper Rodriguez and Laio (2014), we also apply the QCC algorithm to the Olivetti
Face Database (Samaria and Harter 1994), a widespread benchmark for machine learning
algorithms, with the aim of identifying, without any previous training, the number of subjects
in the database. Similar to the experiment on synthetic datasets, we compare QCC with DP,
DAAP and DBSCAN algorithms. In this experiment, we use 10 clusters of Olivetti Face
Database. Each cluster is composed of 10 face pictures. The size of each picture is M ∗ N
with M = 112, N = 92. We regard the correlation of picture A and B as the similarity
between two images, denoted as S(A, B), and it is computed by the following equation.
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Fig. 9 The clustering results of a DP, b DAAP, c DBSCAN and d QCC algorithm on Data3

S(A, B) =
∑

m
∑

n(Amn − A)(Bmn − B)
√

(
∑

m
∑

n(Amn − A)2)(
∑

m
∑

n(Bmn − B)2)

(7)

Here A and B are the subjects of the Olivetti Face Database. Amn and Bmn(m =
{1, 2, . . . , M}, n = {1, 2, . . . , N }) represent the pixels of the two subject pictures. The value
of S is scaled between 0 and 1. The larger the value of S is, the more similar the two pictures
are. We define the distance between two pictures, denoted as d(A, B), as follows.

d(A, B) = 1 − S(A, B) (8)

The density is estimated via Eq. 2. In order to intuitively describe the efficiency of QCC,
we use the criteria of Purity and Recall to evaluate the clustering performance, which are
defined as follows:

Purity =
∑M

i=1

(
maxtc j∈T c

( |tc j∩Ci |
|Ci |

))

Mc
(9)

Recall =
∑T M

j=1

(
maxci∈C

( |tc j∩ci |
|tc j |

))

T Mc
(10)

Here, let D be a dataset containing TMc classes TC = {tc1, tc2, . . . , tcTMc}. The result
of clustering algorithm contains Mc clusters C = {c1, c2, . . . , cMc}. |ci | is the number of
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Fig. 10 The clustering results of a DP, b DAAP, c DBSCAN and d QCC algorithm on Data4

Fig. 11 Clustering results of DP on Olivetti Face Database (Color figure online)

points in ci . The range of Purity and Recall is [0,1]. The larger the value of Purity or Recall
is, the better the clustering performance is.

The results of DP, DAAP, DBSCAN and QCC are shown in Figs. 11, 12, 13 and 14,
respectively. In all results, faces with the same color belong to the same cluster.

Figure 11 shows the clustering result of DP on the Olivetti Face Database. We choose 12
points as cluster centers through decision graph (Rodriguez and Laio 2014), so DP detects
12 clusters. From Table 1, we can see that the Recall of DP is 0.82 and the Purity of DP is
0.88, which indicates that some recalled faces are not correctly clustered.
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Fig. 12 Clustering results of DAAP Olivetti on Face Database (Color figure online)

Fig. 13 Clustering results of DBSCAN on Olivetti Face Database (Color figure online)

Fig. 14 Clustering results of QCC on Olivetti Face Database (Color figure online)

Table 1 Comparison in terms of
Purity and Recall

DP DAAP DBSCAN QCC

Purity 0.88 0.61 0.98 1

Recall 0.82 0.67 0.63 0.9

Figure 12 shows the clustering result of DAAP on the Olivetti Face Database. Although
DAAP correctly detects 10 clusters by manually setting parameter k (i.e., the final number
of clusters), the Recall and Purity of DAAP are undesirable (only 0.67 and 0.61). Specially,
the Purity of DAAP is the lowest among the four algorithms.

Figure 13 shows the clustering result ofDBSCANon theOlivetti FaceDatabase.DBSCAN
only detects out 8 clusters. Two clusters, marked with red spots, are regarded as noise points.
Moreover, even in these 8 clusters, some faces marked with red spots are not recalled. Hence
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Fig. 15 The robustness experiment with respect to parameter K on Data1(α = 0.2). a K= 10, b K= 15, c
K= 20, d K= 25, e K= 30

the Recall of DBSCAN is only 0.63, and it is the lowest among the four algorithms, although
the Purity of DBSCAN is 0.98 (one recalled face marked with green spot is incorrectly
clustered).

The clustering results of QCC on the Olivetti Face Database is shown in Fig. 14. The
results show that the Olivetti Face Database is grouped into 11 clusters by QCC, because
one of the real 10 clusters that within the red border is divided into two clusters. Six images
marked with a red spot are considered as outliers by QCC. However, among the 11 clusters, 6
clusters are really correct, 2 clusters identifies 9 face images, and one cluster identifies 6 face
images in all 10 face images. Moreover, all the 11 clusters remain pure, namely including
only images of the same cluster. Hence, the Purity of QCC is 1 (the best one of all), and the
Recall of QCC is 0.9.
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Fig. 16 The robustness experiment with respect to parameter α on Data1(K = 25). a Quasi-Cluster Centers,
b α = 0.1, c α = 0.2, d α = 0.3, e α = 0.4, f α = 0.5, g α = 0.6, h α = 0.7, i α = 0.8

Through above experiments and analysis, we can get to the conclusion that the proposed
algorithm QCC outperforms DP, DAAP and DBSCAN algorithms. QCC algorithm has a
broader application than DAAP, DP and DBSCAN algorithms, as QCC is applicable to
datasets containing different density or complex-manifold clusters.

5.3 Robustness analysis

In order to demonstrate that QCC is robust with respect to the choice of parameter K and α,
we do the following experiments on two synthetic datasets (Data1 and Data5). As shown in
Figs. 17 and 18, Data5 consists of one spherical class, two complex-manifold classes, a total
of 2374 points.
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Fig. 17 The robustness experiment with respect to parameter K on Data5(α = 0.3). a K= 15, b K= 20, c
K= 25, d K= 30, e K= 35

Table 2 The number of
Quasi-Cluster Centers with
different values of K

15 20 25 30

Data1 39 31 28 23

Data5 137 96 69 58

First, for Data1, we set α to 0.2 with K changing from 10 to 30, and the experimental
results are shown in Fig. 15. For Data5, we set α to 0.3 with K changing from 15 to 35, and
the experimental results are shown in Fig. 17. We can learn from Figs. 15, 17 and Table 2
that the number of Quasi-Cluster Center gets smaller as the parameter K becomes larger.
When processing the cluster with complex manifold, QCC will obtain many Quasi-Cluster
Centers. Each Quasi-Cluster Center represents an initial cluster. Then QCC computes the
similarity between these initial clusters. The values of similarity of these initial clusters that
belong to the same class must be great. Finally, QCCmerges these initial clusters, and obtains
the final cluster with complex manifold. Hence, QCC can correctly cluster the datasets with
different values of K .Moreover, theoreticallyQCC is applicable to datasetswith any complex
manifold.
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Fig. 18 The robustness experiment with respect to parameter α on Data5(K = 40). a Quasi-Cluster Centers,
b α = 0.1, c α = 0.2, d α = 0.3, e α = 0.4, f α = 0.5, g α = 0.6, h α = 0.7, i α = 0.8

Then, for Data1, we set K to 25 with α changing from 0.1 to 0.8, and the experimental
results are shown in Fig. 16. Figure 16a shows the result of Quasi-Cluster Centers of Data1.
Figure 16b–i shows the clustering results of Data1. For Data5, we set K to 40with α changing
from 0.1 to 0.8, and the experimental results are shown in Fig. 18. Figure 18a shows the result
of Quasi-Cluster Centers of Data5. Figure 18b–i shows the clustering results of Data5 with
different value of α. Through lots of experiments, the good value range of α is [0.2, 0.5].

From these above results, we can see that QCC can obtain the correct clustering results
with different values of α. Hence, we can conclude that QCC is robust to parameters K and α.

6 Conclusion

In this paper, we propose a new clustering algorithm called QCC. The core idea of QCC is
that clusters are divided by sparse regions. Based on this idea, firstly, we introduce a new
metric to measure the local density of each object. Then we define the Quasi-Cluster Centers.
Remarkably, the real cluster centers must be included in the set of Quasi-Cluster Centers.
After that, QCCobtains the initial clusters through spreading fromdense areas to sparse areas.
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Afterwards, we define the similarity between initial clusters, and obtain the final clusters by
merging the initial clusters for which the similarity is greater than α. Therefore, QCC applies
to complex-manifold dataset. Through the experiments on the four synthetic datasets and the
Olivetti Face Database, we confirm that the proposed clustering algorithmQCC can correctly
cluster complex-manifold datasets and datasets with large density variation, andQCC ismore
effective than DP, DAAP and DBSCAN.
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