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Abstract In this work we consider the learning setting where, in addition to the training
set, the learner receives a collection of auxiliary hypotheses originating from other tasks.
We focus on a broad class of ERM-based linear algorithms that can be instantiated with
any non-negative smooth loss function and any strongly convex regularizer. We establish
generalization and excess risk bounds, showing that, if the algorithm is fed with a good
combination of source hypotheses, generalization happens at the fast rate O(1/m) instead
of the usual O(1/

√
m). On the other hand, if the source hypotheses combination is a misfit

for the target task, we recover the usual learning rate. As a byproduct of our study, we also
prove a new bound on the Rademacher complexity of the smooth loss class under weaker
assumptions compared to previous works.

Keywords Fast-rate generalization bounds · Transfer learning · Domain adaptation ·
Rademacher complexity · Smooth loss functions · Strongly-convex regularizers

1 Introduction

In the standard supervised machine learning setting the learner receives a set of labeled
examples, known as the training set. However, very often we have additional information
at hand that could be beneficial to the learning process. One such an example is the use of
unlabeled data drawn from themarginal distributions, which gives rise to the semi-supervised
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learning setting (Chapelle et al. 2006). Another example is when the training data is coming
from a related problem, as in multi-task learning (Caruana 1997), domain adaptation (Ben-
David et al. 2010; Mansour et al. 2009), and transfer learning (Pan and Yang 2010; Taylor
and Stone 2009). Among others, there is the use of structural information, such as taxonomy,
different views on the same data (Blum and Mitchell 1998), or even a sort of privileged
information (Vapnik and Vashist 2009; Sharmanska et al. 2013). In recent years all these
directions have received considerable empirical and theoretical attention.

In this work we focus on a less theoretically studied direction in the use of supplementary
information—learning with auxiliary hypotheses, that is classifiers or regressors originating
from other tasks. In particular, in addition to the training set we assume that the learner is
supplied with a collection of hypotheses and their predictions on the training set itself. The
goal of the learner is to figure out which hypotheses are helpful and use them to improve the
prediction performance of the trained classifier. We will call these auxiliary hypotheses the
source hypotheses and we will say that helpful ones accelerate the learning on the target task.
We focus on the linear setting, that is, we train a linear1 classifier and the source hypotheses
are used additively in the prediction process, weighted by arbitrary weights. This generalizes
the setting in which the outputs of the source hypotheses are concatenated with the feature
vector, a widely used heuristic (Bergamo and Torresani 2014; Li et al. 2010; Tommasi et al.
2014).

The scenario described above is related to the Transfer Learning (TL) and Domain Adap-
tation (DA) ones, or learning effectively from a possibly small amount of data by reusing
prior knowledge (Thrun and Pratt 1998; Pan and Yang 2010; Taylor and Stone 2009; Ben-
David et al. 2010). However, transferring from hypotheses offers an advantage compared to
the TL and DA frameworks, where one requires access to the data of the source domain. For
example, in DA (Ben-David et al. 2010), one employs large unlabeled samples to estimate the
relatedness of source and target domains to perform the adaptation. Even if unlabeled data are
abundant, the estimation of adaptation parameters can be computationally prohibitive. This
is the case, for example, when a large number of domains is involved or when one acquires
new domains incrementally.

A recently proposed setting, closer to the onewe consider, is Hypothesis Transfer Learning
(HTL) (Kuzborskij and Orabona 2013; Ben-David and Urner 2013), where the practical
limitations of TL and DA are alleviated through indirect access to the source domain by
means of a source hypothesis. Also, in the HTL setting there are no restrictions on how the
source hypotheses can be used to boost the performance on the target task.

Albeit empirically the setting considered in this paper has already been extensively
exploited in the past (Yang et al. 2007; Orabona et al. 2009; Tommasi et al. 2010; Luo
et al. 2011; Kuzborskij et al. 2013). A first theoretical treatment of this setting was given
by Kuzborskij and Orabona (2013), where we analyzed a linear HTL algorithm that solves
a regularized least-squares problem with a single fixed, unweighted, source hypothesis. We
proved a polynomial generalization bound that depends on the performance of the fixed
source hypothesis on the target task.

1.1 Our contributions

We extend the formulation in Kuzborskij and Orabona (2013), with a general regularized
Empirical Risk Minimization (ERM) problem with respect to any non-negative smooth
loss function, not necessarily convex, and any strongly convex regularizer. We prove high-

1 Non-linear classifiers can be easily produced with the use of kernels.
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probability generalization bounds that exhibit fast rate, that is O(1/m), of convergence
whenever any weighted combination of multiple source hypotheses performs well on the
target task. In addition, we show that, if the combination is perfect, the error on the training
set becomes deterministically equal to the generalization error. Furthermore, we analyze the
excess risk of our formulation, and conclude that a good source hypothesis also speeds up
the convergence to the performance of the best-in-the-class. As a byproduct of our study, we
prove an upper bound on the Rademacher complexity of a smooth loss class that provides
extra information compared to that of Lipschitz loss classes. Our analysis, which might be
of independent interest, is an alternative to the analysis of Srebro et al. (2010) and it holds
under much weaker assumptions.

The rest of the paper is organized as follows. In the next section we make a brief review
of the previous work. Next, we formally state our formulation in Sect. 4 and present the main
results right after, in Sect. 5. In Sect. 5.1 we discuss the implications and compare them to
the body of literature in learning with fast rates and transfer learning. Next, in Sect. 6, we
present the proofs of our main results. Section 7 concludes the paper.

2 Related work

Kuzborskij andOrabona (2013) showed that the generalization ability of the regularized least-
squaresHTL algorithm improves if the supplied source hypothesis performswell on the target
task. More specifically, we proposed a key criterion, the risk of the source hypothesis on the
target domain, that captures the relatedness of the source and target domains. Later, Ben-
David and Urner (2013) showed a similar bound, but with a different quantity capturing the
relatedness between source and target. Instead of considering a general source hypothesis,
they have confined their analysis to the linear hypothesis class. This allowed them to show
that the target hypothesis generalizes better when it is close to the good source hypothesis.
From this perspective it is easy to interpret the source hypothesis as an initialization point in
the hypothesis class. Naturally, given a starting position that is close to the best in the class,
one generalizes well.

Prior to these works there were few studies trying to understand the learning with auxiliary
hypotheses subject to different conditions. Li and Bilmes (2007) have analyzed a Bayesian
approach to HTL. Employing a PAC-Bayes analysis they showed that given a prior on the
hypothesis class, the generalization ability of logistic regression improves if the prior is
informative on the target task. Mansour et al. (2008) analyzed a setting of multiple source
hypotheses combination. There, in addition to the source hypotheses, the learner receives
unlabeled samples drawn from the source distributions, that are used to weight and combine
these source hypotheses. They have studied the possibility of learning in such a scenario,
however, they did not address the generalization properties of any particular algorithm.

Unlike these works, we focus on the generalization ability of a large family of HTL
algorithms that generate the target predictor given a set of multiple source hypotheses. In
particular, we analyze Regularized Empirical Risk Minimization with the choice of any non-
negative smooth loss and any strongly convex regularizer. Thus our analysis covers a wide
range of algorithms, explaining their empirical success. One category of those, prevalent in
computer vision (Kienzle and Chellapilla 2006; Yang et al. 2007; Tommasi et al. 2010; Aytar
and Zisserman 2011; Kuzborskij et al. 2013; Tommasi et al. 2014), employs the principle
of biased regularization (Schölkopf et al. 2001). For example, instead of penalizing large
weights by introducing the term ‖w‖2 into the objective function, one enforces them to be
close to some “prior” model, that is ‖w−wprior‖2. This principle also found its applications
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in other fields, such as NLP (Daumé III 2007; Daumé III et al. 2010), and electromyography
classification (Orabona et al. 2009; Tommasi et al. 2013). Many empirical works have also
investigated the use of the source hypotheses in a “black box” sense, sometimes not even
posing the problem as transfer learning (Duan et al. 2009; Li et al. 2010; Luo et al. 2011;
Bergamo and Torresani 2014), and recently in conjunction with deep neural networks (Oquab
et al. 2014).

In the literature there are several other machine learning directions conceptually similar
to the one we consider in this work. Arguably, the most well known one is the Domain
Adaptation (DA) problem. The standard machine learning assumption is that the training
and the testing sets are sampled from the same probability distribution. In such case, we
expect that a hypothesis generated by the learner from that training set will lead to sensible
predictions on the testing set. The difficulty arises when training and testing distributions
differ, that is we have a training set sampled from the source domain and testing set from
the target domain. Clearly, the hypothesis generated from the source domain can perform
arbitrarily badly on the target one. The paradigm of DA, addressing this issue has received
a lot of attention in recent years (Ben-David et al. 2010; Mansour et al. 2009). Although,
this framework is different from the one we study in this work, we identify similarities and
compare our findings with the theory of learning from different domains in Sect. 5.2.

3 Definitions

In this section we introduce the definitions used in the rest of the paper.
We denote random variables by capital letters. The expected value of a random variable

distributed according to a probability distributionD is denoted by EX∼D[X ] and the variance
is denoted by VarX∼D[X ]. The small and capital bold letters will stand respectively for the
vectors and matrices, e.g. x = [x1, . . . , xd ]� and A ∈ R

d1×d2 .
Denoting by X and Y respectively the input and output space of the learning problem, the

training set is S = {(xi , yi )}mi=1, drawn i.i.d. from the probability distributionD defined over
X ×Y . Without the loss of generality we will have X = {x : ‖x‖ ≤ 1} and we will focus on
the problems where Y = [−C,C].

Tomeasure the accuracy of a learning algorithm,we introduce a non-negative loss function
�(h(x), y), which measures the cost incurred predicting h(x) instead of y. The risk of a
hypothesis h, with respect to a probability distribution D, and the empirical risk measured
on the sample S are then defined as

R(h) := E
(x,y)∼D

[�(h(x), y)], and R̂S(h) := 1

m

m∑

i=1

�(h(xi ), yi ).

In the following, the risk is measured with respect to the probability distribution of the target
domain, unless stated otherwise.We capture the smoothness of the loss function via following
definition.

3.1 H-smooth loss function

We say that a non-negative loss function � : Y × Y �→ R+ is H-smooth iff,

∀t, r ∈ R,∀y ∈ Y, |∇t�(t, y) − ∇r�(r, y)| ≤ H |t − r |.
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In this work we will make use of strongly convex regularizers, functions that are defined as
follows.

3.2 Strongly convex function

A function Ω is σ -strongly convex w.r.t. a norm ‖ · ‖ iff for all w, v, and α ∈ (0, 1) we have

Ω(αw + (1 − α)v) ≤ αΩ(w) + (1 − α)Ω(v) − σ

2
α(1 − α)‖w − v‖2.

We will quantify the complexity of a hypothesis class by the means of Rademacher com-
plexity (Bartlett and Mendelson 2003). In particular, the empirical Rademacher complexity
of the hypothesis class H measured on the sample S and its expectation are defined as

R̂S(H) := E
ε

[
sup
h∈H

1

m

m∑

i=1

εi h(xi )

]
and R(H) := E

S

[
R̂S(H)

]
.

Here, εi is a random variable such that P(εi = 1) = P(εi = −1) = 1
2 . Similarly, as in

the case of the risk, the Rademacher complexity is measured with respect to the probability
distribution of the target domain, unless stated otherwise.

4 Transferring from auxiliary hypotheses

In the following we will capture and generalize many transfer learning formulations that
employ a collection of given source hypotheses {hsrci : X �→ Y}ni=1 within the framework of
Regularized Empirical Risk Minimization (ERM). These problems typically involve a crite-
rion for source hypothesis selection and combination with the goal to increase performance
on the target task (Yang et al. 2007; Tommasi et al. 2014; Kuzborskij et al. 2015). Indeed,
some source hypotheses might come from tasks similar to the target task and the goal of an
algorithm is to select only relevant ones. In this work we will consider source combination

hsrcβ (x) :=
n∑

i=1

βi h
src
i (x),

and target hypothesis
hw,β(x) := 〈w, x〉 + hsrcβ (x), (1)

with the relevance of the sources characterized by the parameter β ∈ R
n . We will focus on

the Regularized ERM formulations with the choice of any non-negative smooth loss function
and any strongly-convex regularizer. This puts our problem into the class of the ones that can
be solved efficiently, yet endowed with interesting properties.

4.1 Regularized ERM for transferring from auxiliary hypotheses

Let � : Y × Y �→ R+ be an H -smooth loss function and let Ω : H �→ R+ be a σ -strongly
convex function w.r.t. a norm ‖ · ‖. Given the target training set S = {(xi , yi )}mi=1, λ ∈ R+,
source hypotheses {hsrci }ni=1, and parameters β obeying Ω(β) ≤ ρ, the algorithm generates
the target hypothesis hŵ,β , such that

ŵ = argmin
w∈H

{
1

m

m∑

i=1

�
(
〈w, xi 〉 + hsrcβ (x), yi

)
+ λΩ(w)

}
. (2)
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Note that (2) is minimized only w.r.t. w, that is, we do not analyze any particular algorithm
that searches for the optimal weights of the source hypotheses. However, we assume that
Ω(β) ≤ ρ, that is we constrain β through a strongly convex function. Thus, we cover
regularized algorithms generating β, which includes most of the empirical work in this field,
and potential new algorithms.

In the following we will pay special attention to a quantity that captures the performance
of the source hypothesis combination hsrcβ (x) on the target domain

Rsrc := R(hsrcβ ).

Our analysis will focus on the generalization properties of hŵ,β . In particular, our main goal
will be to understand the impact of the source hypothesis combination on the performance
of the target hypothesis. In our analysis we will discuss various regimes of interest, for
example considering perfect and arbitrarily bad source hypothesis. Our discussion will cover
scenarios where the auxiliary hypotheses accelerate the learning and the conditions when we
can provably expect perfect generalization. Finally, we will consider the consistency of the
algorithm (1) and pinpoint conditionswhenwe achieve faster convergence to the performance
of the best-in-the-class.

One special example covered by our analysis, commonly applied in transfer learning, is
the biased regularization (Schölkopf et al. 2001). Consider the following least-squares based
algorithm.

4.2 Least-squares with biased regularization

Given the target training set S = {(xi , yi )}mi=1, source hypotheses {wsrc
i }ni=1 ⊂ H, parameters

β ∈ R
n and λ ∈ R+, the algorithm generates the target hypothesis h(x) = 〈ŵ, x

〉
, where

ŵ = argmin
w∈H

{
1

m

m∑

i=1

(〈w, xi 〉 − yi )
2 + λ

∥∥w − Wsrcβ
∥∥2
2

}
. (3)

This problem has a simple intuitive interpretation: minimize the training error on the target
training set while keeping the solution close to the linear combination of the source hypothe-
ses. One can naturally arrive at (3) from a probabilistic perspective: The solution ŵ is a
maximum a posteriori estimate when the conditional distribution is Gaussian and the prior
is aWsrcβ-mean, 1

λ
I-covariance Gaussian distribution. Even though biased regularization is

a simple idea, it found success in a plethora of transfer learning applications, ranging from
computer vision (Kienzle and Chellapilla 2006; Yang et al. 2007; Tommasi et al. 2010; Aytar
and Zisserman 2011; Kuzborskij et al. 2013; Tommasi et al. 2014) to NLP (Daumé III 2007),
to electromyography classification (Orabona et al. 2009; Tommasi et al. 2013).

Claim Least-Squares with Biased Regularization is a special case of the Regularized ERM
in (1).

Proof Introducew′, such thatw′ = w−Wsrcβ. Then we have that problem (3) is equivalent
to

min
w∈H

{
1

m

m∑

i=1

(〈
w′ + Wsrcβ, xi

〉− yi
)2 + λ

∥∥w′∥∥2
2

}
,

which in turn is a special version of (2) when hsrci (x) = 〈wsrc
i , x

〉
, we use the square loss, and

‖ · ‖22 as regularizer. ��
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Albeit practically appealing, the formulation (3) is limited in the fact that the source
hypotheses must be a linear predictor living in the same space of the target predictor. Instead,
the formulation in (1) naturally generalizes the biased regularization formulation, allowing
to treat the source hypothesis as “black box” predictors.

5 Main results

In this section, we present themain results of this work: generalization and excess risk bounds
for the Regularized ERM. In the next section we discuss in detail the implications of these
results, while we defer the proofs to the subsequent sections.

The first bound demonstrates the utility of the perfect combination of source hypotheses,
while the second lets us observe the dependency on the arbitrary combination. In particular,
the first bound explicitates the intuition that given a perfect source hypothesis learning is not
required. In other words, when Rsrc = 0 we have that the empirical risk becomes equal to
the risk with probability one.

Theorem 1 Let hŵ,β be generated by Regularized ERM, given a m-sized training set S
sampled i.i.d. from the target domain, source hypotheses {hsrci : ‖hsrci ‖∞ ≤ 1}ni=1, any
source weights β obeying Ω(β) ≤ ρ, and λ ∈ R+. Assume that �(hŵ,β(x), y) ≤ M for any
(x, y) and any training set. Then, denoting κ = H

σ
and assuming that λ ≤ κ , we have with

probability at least 1 − e−η, ∀η ≥ 0

R(hŵ,β) ≤ R̂S(hŵ,β) + O

⎛

⎜⎜⎝
Rsrcκ√
mλ

+
√

Rsrcρκ2

mλ
+ Mη

m log

(
1 +

√
Mη
usrc

)

⎞

⎟⎟⎠ (4)

≤ R̂S(hŵ,β) + O
(

κ√
m

(
Rsrc

λ
+
√

Rsrcρ

λ

)
+ κ

m

(√
RsrcMη

λ
+
√

ρ

λ

))
, (5)

where usrc = Rsrc
(
m + κ

√
m

λ

)
+ κ

√
Rsrcmρ

λ
.

Now we focus on the consistency of the HTL. Specifically, we show an upper bound on the
excess risk of the Regularized ERM, which depends on Rsrc, that is the risk of the combined
source hypothesis hsrcβ on the target domain. We observe that for a small Rsrc, the excess risk
shrinks at a fast rate of O(1/m). In other words, good prior knowledge guarantees not only
good generalization, but also fast recovery of the performance of the best hypothesis in the
class.

This bound is similar in spirit to the results of localized complexities, as in the works
of Bartlett et al. (2005), Srebro et al. (2010), however we focus on the linear HTL scenario
rather than a generic learning setting. Later, in Sect. 5.1, we compare our bounds to these
works and show that our analysis achieves superior results.

Theorem 2 Let hŵ,β be generated by Regularized ERM, given the m-sized training set S
sampled i.i.d. from the target domain, source hypotheses {hsrci : ‖hsrci ‖∞ ≤ 1}ni=1, any source
weightsβ obeyingΩ(β) ≤ ρ, andλ ∈ R+. Then, denoting κ = H

σ
, assuming thatλ ≤ κ ≤ 1,
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and setting the regularization parameter

λ = O

⎛

⎜⎝

√√√√κ

τ

Rsrc + √
Rsrcρ√

m
+

√
κ

τ

√
Rsrc + √

Rsrcρ

m1.5

⎞

⎟⎠ ,

for any choice of τ ≥ 0, we have with high probability that

R(hŵ,β) − min
Ω(w)≤τ

R(hw,β)

= O
(√

Rsrc + 4
√
Rsrcρ

4
√
m

√
κτ +

4
√
Rsrc + 8

√
Rsrcρ

4√
m1.5

4
√

κτ 2 +
√

Rsrc

m
+ 1

m

)
.

5.1 Implications

We start by discussing the effect on the generalization ability of the source hypothesis combi-
nation. Intuitively, a good source hypothesis combination should facilitate transfer learning,
while a reasonable algorithmmust not fail ifwe provide itwith the bad one. That said, a natural
question to ask here is, what makes a good or bad source hypothesis? As in previous works in
transfer learning and domain adaptation, we capture this notion via a quantity that has two-
fold interpretation: (1) the performance of the source hypothesis combination on the target
domain; (2) relatedness of source and target domains. In the theorems presented in the previ-
ous sections we denoted it by Rsrc, that is the risk of the source hypothesis combination on the
target domain. In this sectionwewill consider various regimes of interest with respect to Rsrc.

5.1.1 When the source is a bad fit

First consider the case when the source hypothesis combination hsrcβ is useless for the purpose
of transfer learning, for example, hsrcβ (x) = 0 for all x. This corresponds to learning with no
auxiliary information. Then we can assume that Rsrc ≤ M , and from Theorem 1 we obtain
R(hŵ) − R̂S(hŵ) ≤ O (1/(√mλ)

)
. This rate matches the one in the analysis of regularized

least-squares (Vito et al. 2005; Bousquet and Elisseeff 2002), which is a special case of the
smooth loss function that the Regularized ERM employs. On the other hand, Srebro et al.
(2010) showed a better worst-case rateO(1/

√
mλ). However, their framework builds upon a

worst case Rademacher complexity which does not involve the expectation over the sample
and does not lead to the dependency on Rsrc we have obtained in Theorem 1. We will discuss
this problem in details later.

5.1.2 When the source is a good fit

Here we would like to consider the behavior of the algorithm in the finite-sample and asymp-
totic scenarios. We first look at the regime of small m, in particular m = O(1/Rsrc). In
this case, the fast rate term will dominate the bound, and we obtain the convergence rate of
O(

√
ρ/(m

√
λ)). In other words, we can expect faster convergence when m is small, where

“small” depends on Rsrc, the quality of combined source hypotheses. Now consider the
asymptotic behavior of the algorithm, particularly when m goes to infinity. In such case, the
algorithm exhibits a rate of O (Rsrc/

√
mλ + √

(Rsrcρ)/mλ
)
, so Rsrc controls the constant

factor of the rate. Hence, the quantity Rsrc governs the transient regime for small m and the
asymptotic behavior of the algorithm, predicting faster convergence in both regimes when it
is small.
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5.1.3 When source is a perfect fit

It is conceivable that the source hypothesis exploited is the perfect one, that is Rsrc = 0. In
other words, the source hypothesis combination is a perfect predictor for the target domain.
Theorem 1 implies that R(hŵ,β) = R̂S(hŵ,β) with probability one. We note that for many
practically used smooth losses, such as the square loss, this setting is only realistic if the
source and target domains match and the problem is noise-free. However, we can observe
Rsrc = 0, for example, when the squared hinge loss, �(z, y) = max{0, 1− zy}2, is used and
all target domain examples are classified correctly by the source hypothesis combination,
case that is not unthinkable for related domains.

5.1.4 Fast rates

There is a number of works in the literature investigating a rate of convergence faster than
1/

√
m subject to different conditions. In particular, the localized Rademacher complexity

bounds of Bartlett et al. (2005) and Bousquet (2002) can be used to obtain results similar to
the second inequality of Theorem 1. Indeed, Theorem 4 shows a bound which is very similar
to the localized ones, albeit with two differences. The r.h.s. of the first inequality in Theorem 4
vanishes when the loss class has zero variance. Though intuitively trivial, this allows to prove
a considerable result in the theory of transfer learning as it quantifies the intuition that no
learning is necessary if the source has perfect performance on the target task. Second, by
applying the standard localized Rademacher complexity bounds of Bousquet (2002), and
assuming the use of the Lipschitz loss function, we do not achieve a fast rate of convergence,
as can be seen from Theorem 8, shown in the ‘Appendix’. We suspect that assuming the
smoothness of the loss function is crucial to prove fast rates in our formulation.

Fast rates for ERM with the smooth loss have been thoroughly analyzed by Srebro et al.
(2010). Yet, the analysis of our HTL algorithm within their framework would yield a bound
that is inferior to ours in two respects. The first concerns the scenario when the combined
source hypothesis is perfect, that is Rsrc = 0. The generalization bound of Srebro et al. (2010)
does not offer a way to show that the empirical risk converges to the risk with probability
one—instead one can only hope to get a fast rate of convergence. The second problem
is in the fact that such bound would depend on the empirical performance of combined
source hypothesis. As we have noted before, the quantity Rsrc is essential because it captures
the degree of relatedness between two domains. In their bounds, one cannot obtain this
relationship through the Rademacher complexity term as we did in our analysis. The reason
for this is the stronger notion of Rademacher complexity that is employed by that framework,
involving a supremum over the sample instead of an expectation. The expectation over the
sample of the target distribution is crucial here, because it allows us to quantify how well the
source domain is aligned with the target domain, through the source hypothesis acting as a
link. However, one can attempt to obtain the bound on the empirical risk in terms of Rsrc.
We prove such a bound in the ‘Appendix’, Theorem 6, and conclude that if one has a good
source hypothesis or even a perfect one, the rate is O(1/ 4

√
m3), which is worse than ours.

5.2 Comparison to theories of domain adaptation and transfer learning

The setting in DA is different from the one we study, however, we will briefly discuss the
theoretical relationship between the two. Typically in DA, one trains a hypothesis from
an altered source training set, striving to achieve good performance on the target domain.
The key question here is how to alter, or to adapt, the source training set. To answer this
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question, the DA literature introduces the notion of domain relatedness, which quantifies
the dissimilarities between the marginal distributions of corresponding domains. Practically,
in some cases the domain relatedness can be estimated through a large set of unlabeled
samples drawn from both source and target domains. Theories of DA (Ben-David et al. 2010;
Mansour et al. 2009; Ben-David and Urner 2012; Mansour et al. 2008; Cortes and Mohri
2014) have proposed a number of such domain relatedness criteria. Perhaps the most well
known are the dHΔH-divergence (Ben-David et al. 2010) and its more general counterpart,
the Discrepancy Distance (Mansour et al. 2009). Typically, this divergence is explicitated in
the generalization bound along with other terms controlling the generalization on the target
domain. Let RDtrg(h) and RDsrc(h) denote the risks of the hypothesis h, measured w.r.t. the
target and source distributions. Then a well-known result of Ben-David et al. (2010) suggests
that for all h ∈ H

RDtrg(h) ≤ RDsrc(h) + 1

2
dHΔH(Dsrc,Dtrg) + ε�

H, (6)

where ε�
H = minh∈H {RDtrg(h) + RDsrc(h)}. This result implies that adaptation is possible

given that dHΔH(Dsrc,Dtrg) and ε�
H are small. One can try to reduce those by controlling the

complexity of the classH and by minimizing the divergence dHΔH(Dsrc,Dtrg). In practice,
the latter can be manipulated through an empirical counterpart on the basis of unlabeled
samples. Increasing the complexity of H indeed reduces ε�

H, but inflates dHΔH(Dsrc,Dtrg).
On the other hand, byminimizing dHΔH(Dsrc,Dtrg) alone puts us under the risk of increasing
ε�
H, since the empirical divergence is reduced without taking the labelling into account.
Clearly, this bound cannot be directly compared to our result in Theorem 1. However,

we note the term Rsrc appearing in our results, which plays a role very similar to dHΔH
in (6). In fact, by defining H = {x �→ 〈β,hsrc(x)〉 : Ω(β) ≤ τ }, where hsrc(x) =
[hsrc1 (x), . . . , hsrcn (x)]�, and fixing h = hsrcβ ∈ H in (6), we can write

Rsrc = RDtrg(hsrcβ ) ≤ RDsrc(hsrcβ ) + dHΔH(Dsrc,Dtrg) + ε�
H.

Plugging this into the generalization bound (5) and assuming that λ ≤ 1 and ρ ≤ 1/λ we
have for the target hypothesis h that

RDtrg(h) ≤ R̂S(h) + O
(
RDsrc(hsrcβ ) + dHΔH(Dsrc,Dtrg) + ε�

H√
mλ

+ 1

mλ

)
. (7)

Albeit this inequality shows the generalization ability of the transfer learning algorithm,
comparing to (6), we observe that DA and our result agree on the fact that the divergence
between the domains has to be small to generalize well. In fact, in the formulation we
consider, the divergence is controlled in two ways: implicitly, by the choice of hsrc and
through the complexity of class H, that is by choosing τ . Second, in DA we expect that a
hypothesis performs well on the target only if it performs well on the source. In our results,
this requirement is relaxed. As a side note, we observe that (7) captures an intuitive notion
that a good source hypothesis has to perform well on its own domain. Finally, in the theory
of DA ε�

H is assumed to be small. Indeed, if ε�
H is large, there is no hypothesis that is able

to perform well on both domains simultaneously, and therefore adaptation is hopeless. In
our case, the algorithm can still generalize even with large ε�

H, however this is due to the
supervised nature of the framework.

We now turn our attention to the previous theoretical works studyingHTL-related settings.
Few papers have addressed the theory of transfer learning, where the only information passed
from the source domain is the classifier or regressor. Mansour et al. (2008) have addressed
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the problem of multiple source hypotheses combination, although, in a different setting.
Specifically, in addition to the source hypotheses, the learner receives the unlabeled samples
drawn from the source distributions, which are used to weight and combine these source
hypotheses. The authors have presented a general theory of such a scenario and did not
study the generalization properties of any particular algorithm. The first analysis of the
generalization ability of HTL in the similar context we consider here was done by Kuzborskij
and Orabona (2013). The work focused on L2-regularized least squares and a generalization
bound involving the leave-one-out risk instead of the empirical one. The following result,
obtained through an algorithmic stability argument (Bousquet and Elisseeff 2002), holds with
probability at least 1 − δ

R(h) ≤ R̂loo
S (h) + O

(
4
√
Rsrc

√
mδλ0.75

)
, (8)

where Rsrc is the risk of a single fixed source hypothesis and h is the solution of a Regularized
Least Square problem. We first observe that the shape of the bound is similar to the one
obtained in thiswork, althoughwith the number of differences. First, contrary to our presented
bounds, their bound assumes the use of a fixed source hypothesis, which is not even weighted
by any coefficient. In practice, this is a very strong assumption, as one can receive an arbitrarily
bad source and have no way to exclude it. Second, the bound (8) seems to have a vanishing
behavior whenever the risk of the source Rsrc is equal to zero. This comes at the cost of
the use of a weaker concentration inequality. In Theorem 1 we manage to obtain the same
behavior with high probability. Finally, we get a better dependency on Rsrc.

5.3 Combining source hypotheses in practice

So far we have assumed that problem (4) is supplied with a pre-made combination of source
hypotheses, that is, we did not study a particular algorithm for tuning theβ weights. However,
by analyzing our generalization bound (1), it is easy to come up with algorithms that could
be used for this purpose. In particular, by minizing the bound w.r.t. β, and assuming that the
empirical risk R̂S(hsrcβ ) converges uniformly to Rsrc, we have with high probability that

min
Ω(β)≤ρ

R(hŵ,β) ≤ min
Ω(β)≤ρ

⎧
⎨

⎩R̂S(hŵ,β) + O
⎛

⎝
κ R̂S(hsrcβ )√

mλ
+
√

κ2ρ R̂S(hsrcβ )

mλ

⎞

⎠

⎫
⎬

⎭ .

Thus, at least theoretically, given a fixed solution ŵ, it is enough to jointly minimize the error
of the target hypothesis hŵ,β and the error of the source combination on the target training
set. This is particularly efficient when the square loss is used, since ŵ can be expresses in
terms of an inverse of a covariance matrix that has to be inverted only once (Orabona et al.
2009; Tommasi et al. 2014; Kuzborskij et al. 2015).

Many HTL-like algorithms can be captured through the above by choosing among differ-
ent loss functions and regularizers Ω . The simplest case is just a concatenation of the source
hypotheses predictions with the original feature vector. However, by choosing different reg-
ularizers and their parameters, we can treat the source hypotheses in a different way from the
original features. For example, one might enforce sparsity over the source hypotheses, while
using the usual L2 regularizer on the target solution ŵ.
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6 Technical results and proofs

In this section we present general technical results that are used to prove our theorems.
First, we present the Rademacher complexity generalization bound in Theorem 4, which

slightly differs from the usual ones. The difference comes in the assumption that the variance
of the loss is uniformly bounded over the hypothesis class. This will allow us to state a
generalization bound that obeys the fast empirical risk convergence rate subject to the small
class complexity. Second, we will also show a generalization bound with a confidence term
that vanishes if the complexity of the class is exactly zero.

Next, we focus on the Rademacher complexity of the smooth loss function class. We
prove a bound on the empirical Rademacher complexity of a hypothesis class, Lemma 3,
that depends on the point-wise bounds on the loss function. This novel bound might be of
independent interest.

Finally, we employ this result to analyze the effect of the source hypotheses on the com-
plexity of the target hypothesis class in Theorem 5.

6.1 Fast rate generalization bound

The proof of fast-rate and vanishing-confidence-term bounds, Theorem 4, stems from the
functional generalization of Bennett’s inequality which is due to Bousquet (2002, Theo-
rem 2.11) and we report it here for completeness.

Theorem 3 (Bousquet 2002) Let X1, X2, . . . , Xm be identically distributed random vari-
ables according to D. For all D-measurable, square-integrable g ∈ G, with EX [g(X)] = 0,
and supg∈G ess sup g ≤ 1, we denote

Z = sup
g∈G

m∑

i=1

g(Xi ). (9)

Let σ be a positive real number such that supg∈G VarX∼D[g(X)] ≤ σ 2 almost surely. Then
for all t ≥ 0, we have that

P (Z ≥ E[Z ] + t) ≤ exp

(
−vu

(
t

v

))
, (10)

where

v = mσ 2 + 2E[Z ],
u(y) = (1 + y) log(1 + y) − y.

The following technical lemma will be used to invert the right hand side of (10).

Lemma 1 Let a, b > 0 such that b = (1 + a) log(1 + a) − a. Then a ≤ 3b
2 log(

√
b+1)

.

Proof It is easy to verify that the inverse function f −1(b) of f (a) := (1+ a) log(1+ a)− a
is

f −1(b) = exp

[
W

(
b − 1

e

)
+ 1

]
− 1,

where the function W : R+ → R is the Lambert function that satisfies

x = W (x) exp (W (x)) .
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Hence, to obtain an upper bound to a, we need an upper bound to the Lambert function. We
use Theorem 2.3 in Hoorfar and Hassani (2008), that says that

W (x) ≤ log
x + C

1 + log(C)
, ∀x > −1

e
, C >

1

e
.

Setting C =
√
b+1
e , we obtain

a = f −1(b) ≤ e
b−1
e +

√
b+1
e

1 + log(
√
b+1
e )

− 1 = b + √
b

log(
√
b + 1)

− 1 ≤ 3b

2 log(
√
b + 1)

,

where in the last inequality we used the fact that x + √
x − log(

√
x + 1) ≤ 3

2 x,∀x ≥ 0, as
it can be easily verified comparing the derivatives of both terms. ��

The following lemma is a standard tool (Mohri et al. 2012, (3.8)–(3.13); Bartlett andMendel-
son 2003).

Lemma 2 (Symmetrization) For any f ∈ F , given random variables S = {Xi }mi=1, we have

E
S

sup
f ∈F

{
E
X
[ f (X)] − 1

m

m∑

i=1

f (Xi )

}
≤ 2R(F),

E
S

sup
f ∈F

{
1

m

m∑

i=1

f (Xi ) − E
X
[ f (X)]

}
≤ 2R(F).

Now we are ready to present the proof of Theorem 4.

Theorem 4 Consider the non-negative loss function � : Y × Y �→ R+, such that 0 ≤
�(h(x), y) ≤ M for any h ∈ H and any (x, y) ∈ X × Y . In addition, let the training set S
of size m be sampled i.i.d. from the probability distribution over X × Y . Also for any r ≥ 0,
define the loss class with respect to the hypothesis class H as,

L := {(x, y) �→ �(h(x), y) : h ∈ H ∧ R(h) ≤ r} .

Then we have for all h ∈ H, and any training set S of size m, with probability at least
1 − e−η, ∀η ≥ 0

R(h) − R̂S(h) ≤ 2R(L) + 3Mη

m log

(
1 +

√
2Mη
vm

) ≤ 2R(L) + 3

√
vMη

2m
+ 3Mη

2m
,

where v = 4R(L) + r .

Proof To prove the statement, we will consider the uniform deviations of the empirical risk.

Namely, we will show an upper bound on the random variable suph∈H
{
R(h) − R̂S(h)

}
.

For this purpose, we will use the functional generalization of Bennett’s inequality given by
Theorem 3. Consider the random variable

Z := m

2M
sup
h∈H

{
R(h) − R̂S(h)

}
.
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Using Theorem 3, we have

P

(
m

2M
sup
h∈H

{
R(h) − R̂S(h)

}
≥ m

2M
E

[
sup
h∈H

{
R(h) − R̂S(h)

}]
+ t

)

≤ exp

(
−vu

(
t

v

))
, (11)

where,

v = mσ 2 + m

M
E

[
sup
h∈H

{
R(h) − R̂S(h)

}]
,

σ 2 ≥ sup
h∈H

Var(x,y)

[
1

2M

(
�(h(x), y) − E

(x′,y′)
[�(h(x′), y′)]

)]
. (12)

We now need two things: invert the r.h.s. of (11), treating it as a function of t , and provide
an upper-bound on v. For the first part, recall that u(y) = (1+ y) log(1+ y) − y. To give an
upper-bound of t , we apply Lemma 1 with a = t

v
, and b = 1

v
η. This leads to the inequalities

t

v
≤ 3η

2v log
(
1 +

√
η
v

) ≤ 3η

4v
+ 3

2

√
η

v
.

Using this fact, we have with probability at least 1 − e−η with any η ≥ 0

m

2M
sup
h∈H

{
R(h) − R̂S(h)

}
≤ m

2M
E

[
sup
h∈H

{
R(h) − R̂S(h)

}]
+ 3η

2 log
(
1 +

√
η
v

) (13)

≤ m

2M
E

[
sup
h∈H

{
R(h) − R̂S(h)

}]
+ 3

4
η + 3

2
√

vη. (14)

Next we prove the bound on v. We first show that the variance of centered loss function,
σ 2, is uniformly bounded by the Rademacher complexity. From the definition of variance
we have

sup
h∈H

E
(x,y)

[
1

4M2

(
�(h(x), y) − E

(x′,y′)
[�(h(x′), y′)]

)2]
≤ sup

h∈H
1

4M2 E
(x,y)

[�(h(x), y)2]

≤ sup
h∈H

1

2M
E

(x,y)
[|�(h(x), y)|] = σ 2 = sup

h∈H
1

2M
R(h) = r

2M
. (15)

Last inequality is due to the fact that �(h(x), y) ≤ M . Now we upper-bound the second term
of v by applying Lemma 2,

1

2mM
E
S

[
sup
h∈H

m∑

i=1

(
�(h(xi ), yi ) − E

(x′,y′)
[�(h(x′), y′)]

)]

= 1

2M
E
S

[
sup
h∈H

{(
1

m

m∑

i=1

�(h(xi ), yi )

)
− E

(x′,y′)
[�(h(x′), y′)]

}]
≤ 1

M
R(L).

We conclude the proof by upper-bounding the expectation terms in (13) and (14) using
Lemma 2, and plugging the upper bound on v,

v ≤ 2m

M
R(L) + mσ 2 ≤ 2mR(L)

M
+ mr

2M
.

��
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6.2 Rademacher complexity of smooth loss class

In this section we study the Rademacher complexity of the hypothesis class populated by
functions of the form (1), where the parameters w and β are chosen by an algorithm with a
strongly convex regularizer. For this purpose we employ the results of Kakade et al. (2008,
2012), who studied strongly convex regularizers in a more general setting. Furthermore, we
will focus on the use of smooth loss functions as done by Srebro et al. (2010).

The proof of the main result of this section, Theorem 5, depends essentially on the fol-
lowing lemma, that bounds the empirical Rademacher complexity of a H -smooth loss class.

Lemma 3 Let � : Y × Y �→ R+ be the H-smooth loss function. Then for some function
class F , let the loss class be

L = {(x, y) �→ �( f (x), y) : f ∈ F} .

Then having the sample S of size m and the set

{τi : τi ≥ �( f (xi ), yi ), ∀(xi , yi ) ∈ S ∧ ∀ f ∈ F} ,

we have that

R̂S(L) ≤ E
ε

[
sup
f ∈F

{
2
√
3H

m

m∑

i=1

εi
√

τi f (xi )

}]
,

where εi is r.v. such that P(εi = 1) = P(εi = −1) = 1
2 .

Proof This proof follows a line of reasoning similar to the proof of Talagrand’s lemma for
Lipschitz functions, see for instance Mohri et al. (2012, p. 79). We will also use Lemma B.1
by Srebro et al. (2010) (arXiv extended version), stating that for any H -smooth non-negative
function φ : R �→ R+ and any x, z ∈ R,

|φ(x) − φ(z)| ≤ √6H(φ(x) + φ(z))|x − z|. (16)

Fix the sample S, then, by definition,

R̂S(L) = 1

m
E
ε

[
sup
f ∈F

{
m∑

i=1

εi�( f (xi ), yi )

}]

= E
ε1,...,εm−1

[
E
εm

[
sup
f ∈F

{um−1( f ) + εm�( f (xm), ym)}
]]

,

where um−1( f ) = ∑n
i=1 εi�( f (xi ), yi ). By definition of supremum, for any δ > 0, there

exist f1, f2 ∈ F such that

um−1( f1) + �( f1(xm), ym) ≥ (1 − δ)

(
sup
f ∈F

{um−1( f ) + �( f (x), y)}
)

and um−1( f2) − �( f2(xm), ym) ≥ (1 − δ)

(
sup
f ∈F

{um−1( f ) − �( f (x), y)}
)

.

Thus for any δ > 0, by definition of Eεm ,
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(1 − δ) E
εm

[
sup
f ∈F

{um−1( f ) + εm�( f (xm), ym)}
]

= 1 − δ

2

(
sup
f ∈F

{um−1( f ) + �( f (xm), ym)} + sup
f ∈F

{um−1( f ) − �( f (xm), ym)}
)

≤ 1

2

(
um−1( f1) + �( f1(xm), ym) + um−1( f2) − �( f2(xm), ym)

)

≤ 1

2

(
um−1( f1) + um−1( f2)

+ sm
√
6H�( f1(xm), ym) + �( f2(xm), ym)( f1(xm) − f2(xm))

)

≤ 1

2

(
um−1( f1) + um−1( f2) + sm

√
12Hτm( f1(xm) − f2(xm))

)

≤ 1

2
sup
f ∈F

{
um−1( f ) + sm

√
12Hτm f (xm)

}

+ 1

2
sup
f ∈F

{
um−1( f ) − sm

√
12Hτm f (xm)

}

= E
εm

[
sup
f ∈F

{
um−1( f ) + εm

√
12Hτm f (xm)

}]
.

To obtain the second inequality, we applied (16), where sm = sgn( f1(xm) − f2(xm)). Since
the inequality holds for all δ > 0, we have

E
εm

[
sup
f ∈F

{um−1( f ) + εm�( f (xm), ym)}
]

≤ E
εm

[
sup
f ∈F

{
um−1( f ) + εm

√
12Hτm f (xm)

}]
.

Proceeding in the same way for all the other εi , with i �= m, proves the lemma. ��

To prove Theorem 5 we will also use the following lemma in Kakade et al. (2012, Corol-
lary 4).

Lemma 4 (Kakade et al. 2012) If Ω is σ strongly convex w.r.t. ‖ · ‖ and Ω�(0) = 0, then,
denoting the partial sum

∑
j≤i v j by v1:i , we have for any sequence v1, . . . , vm and for any

u,

m∑

i=1

〈vi ,u〉 − Ω(u) ≤ Ω�(v1:m) ≤
m∑

i=1

〈∇Ω�(v1:i−1), vi
〉+ 1

2σ

m∑

i=1

‖vi‖2� .

Now we are ready to give the proofs of the Rademacher complexity results.

Theorem 5 Let Ω be a non-negative σ -strongly convex function w.r.t. a norm ‖ · ‖, and let
0 be its minimizer. Let risk and empirical risk be defined w.r.t. an H-smooth loss function
� : Y × Y �→ R+. Finally, given the set of functions { fi : X �→ Y}ni=1 with f(x) :=
[ f1(x), . . . , fn(x)]�, a combination fβ(x) = 〈β, f(x)〉, a scalar α > 0, and any sample S
drawn i.i.d. from distribution over X × Y , define classes

W =
{
w : Ω(w) ≤ α R̂S( fβ)

}
, V = {β : Ω(β) ≤ ρ} ,
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and the loss class

L = {(x, y) �→ �(〈w, x〉 + fβ(x), y) : w ∈ W ∧ β ∈ V} .

Then for the loss class L, setting constants supx∈X ‖x‖� ≤ B and supx∈X ‖f(x)‖� ≤ C, we
have that

R(L) ≤ 4
√
3H(B + C)

⎛

⎝1 +
√
2HB2α

σ

⎞

⎠ R( fβ)
√

α +√R( fβ)ρ√
mσ

.

Proof The core of the proof consists in an application of Lemma 3. In particular, Lemma 3
allows us to introduce additional information about the loss class by providing bounds on
the loss at each example. We will bound the loss at each example using the definition of
smoothness, extracting the empirical risk of hypothesis R̂S( fβ). The last step is to give an
upper-bound on the empirical Rademacher complexity of a class regularized by a strongly
convex function. We follow the proof of Kakade et al. (2012, Theorem 7) to accomplish this
task. First define the classes

HW := {x �→ 〈w, x〉 : w ∈ W} , HV := { fβ : β ∈ V} ,

and also define altered samples S′ := {√τixi }mi=1 and S′′ := {√τi f(xi )}mi=1, where τi is a
quantity independent from W and V . Then by applying Lemma 3, we have that,

R̂S(L) ≤ E
ε

⎡

⎢⎣ sup
w∈W
β∈V

{
2
√
3H

m

m∑

i=1

εi
√

τi 〈w, xi 〉 + 2
√
3H

m

m∑

i=1

εi
√

τi 〈β, f(xi )〉
}⎤

⎥⎦

≤ E
ε

[
sup
w∈W

{
2
√
3H

m

m∑

i=1

εi
√

τi 〈w, xi 〉
}]

+E
ε

[
sup
β∈V

{
2
√
3H

m

m∑

i=1

εi
√

τi 〈β, f(xi )〉
}]

= R̂S′(HW ) + R̂S′′(HV ).

Having this, we will follow the proof of Kakade et al. (2012, Theorem 7) to bound the
empirical Rademacher complexities R̂S′(HW ) and R̂S′′(HV ) with quantities of interest. Let
t > 0 and apply Lemma 4 with u = w and vi = tεi

√
τixi to get

sup
w∈W

{
m∑

i=1

〈
w, tεi

√
τixi
〉
}

≤ t2

2σ

m∑

i=1

‖εi√τixi‖2� + sup
w∈W

Ω(w) +
m∑

i=1

〈∇Ω�(v1:i−1), εi
√

τixi
〉

≤ t2B2

2σ

m∑

i=1

|τi | + α R̂S( f ) +
m∑

i=1

〈∇Ω�(v1:i−1), εi
√

τixi
〉
.

Now take expectation w.r.t. all the εi on both sides. The left hand side ismtR̂S′(HW ) and the
last term on the right hand side becomes zero since E[εi ] = 0. Denoting r = 1

m

∑m
i=1 |τi |

and multiplying through by 1
mt , we get

R̂S′(HW ) ≤ B2r t

2σ
+ α

mt
R̂S( fβ).
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Proving analogously for R̂S′′(HV ), we get that

R̂S(L) ≤ 2
√
3H

(
(B2 + C2)r t

σ
+ α R̂S( fβ) + ρ

mt

)
.

Optimizing over t gives us

R̂S(L) ≤ 4
√
3H(B + C)

√
r(α R̂S( fβ) + ρ)

mσ
.

Now focus on the upper bound of r . First we obtain bounds on each τi .We start with the bound
on the loss function, exploiting smoothness. Let �(〈w, x〉 + fβ(x), y) = φ(〈w, x〉 + fβ(x)),
where φ : R �→ R is an H -smooth function. From the definition of smoothness (Shalev-
Shwartz and Ben-David 2014, (12.5)), we have that for all w and v

φ(〈w, x〉 + fβ(x))

≤ φ(〈v, x〉 + fβ(x)) + φ′(〈v, x〉 + fβ(x)) 〈w − v, x〉 + H

2
〈w − v, x〉2

≤ φ(〈v, x〉 + fβ(x)) + 2
√
Hφ(〈v, x〉 + fβ(x))‖w − v‖‖x‖� + H

2
‖w − v‖2‖x‖2�.

(17)

To obtain the last inequality we used the generalized Cauchy-Schwarz inequality and the fact
that for an H -smooth non-negative function φ, we have that |φ′(t)| ≤ √

4Hφ(t), (Srebro
et al. 2010, Lemma 2.1). Now recall a property of a σ -strongly-convex function F , that holds
for its minimizer v and any w (Shalev-Shwartz and Ben-David 2014, Lemma 13.5),

‖w − v‖2 ≤ 2

σ
(F(w) − F(v)).

Since inequality (17) holds for any v, set v = 0, which is also the minimizer of Ω(·), apply
aforementioned property to get

φ(〈w, x〉 + fβ(x)) ≤ φ( fβ(x)) + 2

√
2H

σ
φ( fβ(x))Ω(w)‖x‖� + H

σ
Ω(w)‖x‖2�

⇒ �(〈w, xi 〉 + fβ(xi ), yi ) ≤ τi (18)

= �( fβ(xi ), yi ) +
√
8HB2α

σ
R̂S( fβ)�( fβ(xi ), yi ) + HB2α

σ
R̂S( fβ). (19)

The last inequality comes from the definition of the class H. Now we consider the average
and, by Jensen’s inequality,

r = 1

m

m∑

i=1

|τi | = R̂S( fβ) + 1

m

m∑

i=1

√
8HB2α

σ
R̂S( fβ)�( fβ(xi ), yi ) + HB2α

σ
R̂S( fβ)

≤ R̂S( fβ) +
√
8HB2α

σ
R̂S( fβ) + HB2α

σ
R̂S( fβ) ≤

⎛

⎝1 +
√
2HB2α

σ

⎞

⎠
2

R̂S( fβ).
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This gives us

R̂S(L) ≤ 4
√
3H(B + C)

⎛

⎝1 +
√
2HB2α

σ

⎞

⎠

√
R̂S( fβ)(α R̂S( fβ) + ρ)

mσ

≤ 4
√
3H(B + C)

⎛

⎝1 +
√
2HB2α

σ

⎞

⎠
R̂S( fβ)

√
α +

√
R̂S( fβ)ρ

√
mσ

.

Taking expectation w.r.t. the sample on both sides and applying Jensen’s inequality gives the
statement. ��
6.3 Proofs of main results

Proof of Theorem 1. To show the statement we will apply Theorem 4. In particular, we will
consider any choice of w and β within the set induced by a strongly-convex function Ω . To
apply Theorem 4, we need to upper bound the Rademacher complexity of the loss class L
and also the quantity r = sup f ∈L E(x,y)[ f (x, y)].

We obtain the bound on Rademacher complexity by applying Theorem 5. First define the
loss class L := {(x, y) �→ �(h, y) : h ∈ H} , and hypothesis class

H :=
{
x �→ 〈w, x〉 + hsrcβ (x) :

Ω(w) ≤ 1

λ
R̂S(h

src
β ) ∧ Ω(β) ≤ ρ ∧ R̂S(hw,β) ≤ R̂S(h

src
β )
}
.

To motivate the choice for the constraints observe that for

ŵ = argmin
w

{
R̂S(hw,β) + λΩ(w)

}
,

we have Ω(ŵ) ≤ λ−1 R̂S(h0,β) = λ−1 R̂S(hsrcβ ), and R̂S(hŵ,β) ≤ R̂S(hsrcβ ). That said, by

applying Theorem 5 with α = 1
λ
and fβ = hsrcβ and assuming that λ ≤ κ , we obtain

R(L) ≤ O
⎛

⎝ Rsrcκ√
mλ

+
√

Rsrcρκ2

mλ

⎞

⎠ .

Next we obtain the bound on r

r = sup
h∈H

E
(x,y)

[�(h(x), y)] = sup
h∈H

E
S

[
R̂S(h)

]
≤ E

S

[
sup
h∈H

R̂S(h)

]
≤ E

S
[R̂S(h

src
β )] = Rsrc.

The last two inequalities come from Jensen’s inequality and the definition of the class H.
Plugging the bounds on the Rademacher complexity and r into the statement of Theorem 4,
and applying the inequality

√
a + b ≤ √

a + b
2
√
a
to the

√
v term, gives the statement. ��

Proof of Theorem 2. For any choice of β with Ω(β) ≤ ρ, denote the best in the class by

w� = argmin
w : Ω(w)≤τ

R(hw,β).

By the definition of ŵ, we have

R̂S(hŵ,β) + λΩ(ŵ) ≤ R̂S(hw�,β) + λΩ(w�). (20)
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Now denote

Z = κ

√
Rsrc

m
(
√
Rsrc + √

ρ).

Then, by following the proof of Theorem 1 until the application of inequality
√
a + b ≤√

a + b
2
√
a
, ignoring constants, using the assumption (20), and assuming that λ ≤ κ ≤ 1 we

have that

R(hŵ,β) ≤ R̂S(hw�,β) + λτ + Z

λ
+
√

Mη

m

√
Rsrc + Z

λ
+ Mη

m

≤ R̂S(hw�,β) + λτ + Z

λ
+
√

RsrcMη

m
+

√
ZMη√
mλ

+ Mη

m
. (21)

Optimizing the l.h.s. over λ gives

λ� =
√

Z

τ
+ 1

τ

√
ZMη

m
.

We plug it back into (21) to obtain that

R(hŵ,β) ≤ R̂S(hw�,β) + √
τ

√

Z +
√

ZMη

m
+
√

RsrcMη

m
+ Mη

m

≤ R̂S(hw�,β) +
√
Rsrc + 4

√
Rsrcρ

4
√
m

√
κτ +

4
√
Rsrc + 8

√
Rsrcρ

4√
m1.5

4
√

κτ 2Mη

+
√

RsrcMη

m
+ Mη

m
. (22)

All that is left is to concentrate R̂S(hw�,β) around its mean. Denoting the variance by

V = E

[
m∑

i=1

(�(hw�,β(xi ), yi ) − R(hw�,β))2

]
,

we apply Bernstein’s inequality

P

(
m∑

i=1

(�(hw�,β(xi ), yi ) − R(hw�,β)) > t

)
≤ exp

(
− t2/2

V + Mt/3

)
.

Setting

e−η = exp

(
− t2/2

V + Mt/3

)
,

we have that with probability at least 1 − e−η, ∀η ≥ 0

R̂S(hw�,β) ≤ R(hw�,β) +
√
2ηE

[
(�(hw�,β(xi ), yi ) − R(hw�,β))2

]

m
+ 2Mη

3m

≤ R(hw�,β) + 2

√
R(hw�,β)Mη

m
+ 2Mη

3m

≤ R(hw�,β) + 2

√
RsrcMη

m
+ 2Mη

3m
.
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The last inequality comes from the observation that R(hw�,β) ≤ R(h0) = Rsrc. Plugging
this result into (22) completes the proof. ��

7 Conclusions

In this paper we have formally captured and theoretically analyzed a general family of
learning algorithms transferring information from multiple supplied source hypotheses. In
particular, our formulation stems from the regularized Empirical RiskMinimization principle
with the choice of any non-negative smooth loss function and any strongly convex regularizer.
Theoretically we have analyzed the generalization ability and excess risk of this family of
HTL algorithms. Our analysis showed that a good source hypothesis combination facilitates
faster generalization, specifically in O(1/m) instead of the usual O(1/

√
m). Furthermore,

given a perfect source hypothesis combination, our analysis is consistent with the intuition
that learning is not required. As a byproduct of our investigation, we came up with new
results in Rademacher complexity analysis of the smooth loss classes, which could be of
independent interest.

Our conclusions suggest the key importance of a source hypothesis selection procedure.
Indeed, when an algorithm is provided with enormous pool of source hypotheses, how to
select relevant ones on the basis of only a few labeled examples? This might sound similar
to the feature selection problem under the condition that n � m, however, earlier empirical
studies by Tommasi et al. (2014) with hundreds of sources did not find much corroboration
for this hypothesis when applying L1 regularization. Thus, it remains unclear if having few
good sources from hundreds is a reasonable assumption.

Appendix: Additional proofs

Theorem 6 Let hŵ,β be generated by Regularized ERM, given the m-sized training set S
sampled i.i.d. from the target domain, source hypotheses {hsrci }ni=1, any source weights β

obeying Ω(β) ≤ ρ, and λ ∈ R+. Assume that �(hŵ,β(x), y) ≤ M for any (x, y) and any
training set. Then, denoting κ = H

σ
and assuming that λ ≤ 1, we have with probability at

least 1 − e−η, ∀η ≥ 0

R(hŵ,β) ≤ R̂S(hŵ,β)

+ Õ
(⎛

⎝
√

Rsrc

m
+ 4

√
M2ρ

m3σ
+ 8

√
M4ρ

m7λ2σ 3

⎞

⎠
(√

Mκ

λ
+ √

κρ +√Mη

))
.

Proof To prove the statement we will use Theorem 1 of Srebro et al. (2010). In particular,
we need to obtain bounds on the empirical risk and also to bound the worst case Rademacher
complexity of the class

H =
{
x �→ 〈w, x〉 + hsrcβ (x) : Ω(w) ≤ R̂S(hsrcβ )

λ
∧ Ω(β) ≤ τ

}
.

The corresponding loss class is

L = {(x, y) �→ �(h(x), y) : h ∈ H ∧ R(h) ≤ Rsrc} .
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A constraint on Ω(β) in H comes from the statement of the theorem, while a constraint on
Ω(ŵ) comes from an observation that for

ŵ = argmin
w

{
R̂S(hw,β) + λΩ(w)

}
,

so we have Ω(ŵ) ≤ R̂S(h0,β )

λ
. The same argument immediately gives us a bound on the

empirical risk, that is, R̂S(hŵ,β) ≤ R̂S(h0,β) = R̂S(hsrcβ ). Taking expectation on both sides
gives the constraint of L.

By applying Theorem 1 of Kakade et al. (2008) and subadditive property of Rademacher
complexities (Bartlett and Mendelson 2003), we have that

R̂S(H) ≤
√
2R̂S(hsrcβ )

mλσ
+
√

2ρ

mσ
≤
√

2M

mλσ
+
√

2ρ

mσ
. (23)

Note that the upper bound is the bound on the worst-case Rademacher complexity since no
term depends on the sample.

All that is left to do is to show the bound on the empirical risk in terms of Rsrc. However,
we cannot use Theorem 1 of Srebro et al. (2010) since it is not symmetric. Instead we will use
a similar localized bound of Bartlett et al. (2005, Corollary 3.5). In order to apply it, we have
to obtain an upper bound on the Rademacher complexity of the loss class L that is a sub-root
function (Bousquet 2002, Definition 4.1). By using the fact that loss function is bounded, we
apply Talagrand’s lemma (Mohri et al. 2012), have R̂S(L) ≤ MR̂S(H), upper-bound with
the first inequality of (23) and applying Jensen’s inequality w.r.t. E[·] have

R(L) ≤ M

√
2Rsrc

mλσ
+ M

√
2ρ

mσ
.

Since upper bound is a sub-root function of Rsrc, we obtain it’s fixed point r� as required by
Corollary 3.5 and conclude that

r� ≤
√
2M2ρ

mσ
+ 2M2

mλσ
+ 2M 4

√
8ρ

m3λ2σ 3 .

Now we apply Corollary 3.5 and for any K > 0 we have with probability at least 1 −
e−η, ∀η ≥ 0 the following holds

R̂S(hŵ,β) ≤ K

⎛

⎝Rsrc +
√

M2ρ

mσ
+ M2

mλσ
+ M 4

√
ρ

m3λ2σ 3 + 1 + η

m

⎞

⎠ .

All that is left to do is to apply Theorem 1 of Srebro et al. (2010) to have

R(hŵ,β) ≤ R̂S(hŵ,β) + Õ
(⎛

⎝
√

Rsrc

m
+ 4

√
M2ρ

m3σ
+ M

m
√

λσ
+ 8

√
M2ρ

m7λ2σ 3 +
√
1 + η

m

⎞

⎠×

×
(√

Mκ

λ
+ √

κρ +√Mη

)
+ Mκ

mλ
+ κρ

m

)
.

Using the assumption on λ, we get the stated result. ��
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Guarantees using localized Rademacher complexity bounds

The following theorem is due to Bousquet (2002, Theorem 6.1). In particular, we state the
inequality appearing prior to the last in the proof, as it better serves our purpose.

Theorem 7 (Bousquet 2002) Let F be a class of non-negative functions such that ‖ f ‖∞ ≤
M almost surely. Letφm be a function defined on [0,∞) that is non-negative, non-decreasing,
not identically zero, and such that φm(r)/

√
r is non-increasing. Moreover let φm be such

that for all r > 0

R̂S(F) ≤ φm(r).

Define r�
m as the largest solution of the equation φm(r) = r .Then, for all η > 0, with

probability at least 1 − e−η for all f ∈ F and any {Xi }mi=1 drawn i.i.d.

E
X
[ f (X)] ≤ 1

m

m∑

i=1

f (Xi ) + 45r�
m +√8r�

m E
X
[ f (X)] +

√
4M(η + 6 log logm)E

X
[ f (X)]

m

+ 20M(η + 6 log logm)

m
.

The following HTL generalization bound is shown using Theorem 7.

Theorem 8 Let hŵ,β be generated by Regularized ERM, given the m-sized training set
S sampled i.i.d. from the target domain, source hypotheses {hsrci }ni=1, any source weights
β obeying Ω(β) ≤ ρ, and λ ∈ R+. Assume that � is a L-Lipschitz loss function and
�(hŵ,β(x), y) ≤ M for any (x, y) and any training set. Then we have with probability at
least 1 − e−η, ∀η ≥ 0

R(hŵ,β) ≤ R̂S(hŵ,β) + Õ
(
L2 + L

mλσ
+ L

√
ρ

mσ
+
√

Rsrc(L2 + L)

mλσ

+ √
Rsrc 4

√
L2ρ

mσ
+
√

RsrcMη

m
+ Mη

m

)
.

Proof The core of the proof is an application of Theorem 7. In particular, we have to obtain
the fixed point r�

m and upper bound R(h) with the risk of the source hypothesis Rsrc.
Considering the L-Lipschitz loss class of Theorem 7 to be L := {(x, y) �→

�(h(x), y) : h ∈ H}, we have the relationship R̂S(L) ≤ LR̂S(H) via Talagrand’s
lemma (Mohri et al. 2012, Lemma 4.2). Furthermore, let the hypothesis class be

H =
{
x �→ 〈w, x〉+hsrcβ (x) : Ω(w) ≤ 1

λ
R̂S(h

src
β ) ∧ Ω(β) ≤ ρ ∧ R̂S(hw,β) ≤ R̂S(h

src
β )

}
.

The motivation for the choice of constraints comes from the same argument as in the proof
of Theorem 1. That said, we obtain the upper bound

R̂S(L) ≤ L

√
2Rsrc

mλσ
+ L

√
2ρ

mσ
.

Both terms come by applying Theorem 7 by Kakade et al. (2012). In the first term we set

fmax = Rsrc and in the second fmax = ρ. Now define function φm(r) = L
√

2r
mλσ

+ L
√

2ρ
mσ

,
and observe that it verifies the condition of Theorem 7. Next, to obtain the upper bound on
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r�
m , we solve L

√
2r

mλσ
+ 2ρ

mσ
≤ r and get that r�

m ≤ L(L+1)
mλσ

+ L
√

2ρ
mσ

. As in Theorem 1, we
also get that R(h) ≤ Rsrc. Plugging r�

m and the bound on R(h) into Theorem 7, we have the
statement. ��
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