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Abstract This paper presents the first generalization bounds for time series prediction with
a non-stationary mixing stochastic process. We prove Rademacher complexity learning
bounds for both average-path generalization with non-stationary β-mixing processes and
path-dependent generalization with non-stationary φ-mixing processes. Our guarantees are
expressed in terms of β- or φ-mixing coefficients and a natural measure of discrepancy
between training and target distributions. They admit as special cases previous Rademacher
complexity bounds for non-i.i.d. stationary distributions, for independent but not identically
distributed random variables, or for the i.i.d. case. We show that, using a new sub-sample
selection technique we introduce, our bounds can be tightened under the natural assumption
of asymptotically stationary stochastic processes. We also prove that fast learning rates can
be achieved by extending existing local Rademacher complexity analyses to the non-i.i.d. set-
ting.We conclude the paper by providing generalization bounds for learning with unbounded
losses and non-i.i.d. data.
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1 Introduction

Given a sample ((X1, Y1), . . . , (Xm, Ym)) of pairs in Z = X × Y , the standard supervised
learning task consists of selecting, out of a class of functions H , a hypothesis h : X → Y that
admits a small expected loss measured using some specified loss function L : Y ×Y → R+.
The common assumption in the statistical learning theory and the design of algorithms is
that samples are drawn i.i.d. from some unknown distribution and generalization in this
scenario has been extensively studied in the past. However, for many problems such as
time series prediction, the i.i.d. assumption is too restrictive and it is important to analyze
generalization in the absence of that condition. A variety of relaxations of this i.i.d. setting
have been proposed in themachine learning and statistics literature. In particular, the scenario
in which observations are drawn from a stationary mixing distribution has become standard
and has been adopted bymost previous studies (Alquier andWintenberger 2010;Alquier et al.
2014; Agarwal and Duchi 2013; Berti and Rigo 1997; Shalizi and Kontorovich 2013; Meir
2000; Mohri and Rostamizadeh 2009, 2010; Pestov 2010; Ralaivola et al. 2010; Steinwart
and Christmann 2009; Yu 1994). In this work, we seek to analyze generalization under the
more realistic assumption of non-stationary data. This covers a wide spectrum of stochastic
processes considered in applications, including Markov chains, which are non-stationary.

Suppose we are given a doubly infinite sequence ofZ-valued random variables {Zt }∞t=−∞
jointly distributed according to P. We will write Zab to denote a vector (Za, Za+1, . . . , Zb)

where a and b are allowed to take values −∞ and ∞. Similarly, Pb
a denotes the distribution

ofZb
a . Following Doukhan (1994), we define β-mixing coefficients for P as follows. For each

positive integer a, we set

β(a) = sup
t

‖Pt−∞ ⊗ P∞
t+a − Pt−∞ ∧ P∞

t+a‖TV, (1)

where Pt−∞ ∧ P∞
t+a denotes the joint distribution of Zt−∞ and Z∞

t+a . Recall that the total
variation distance ‖ · ‖TV between two probability measures P and Q defined on the same
σ -algebra of events G is given by ‖P − Q‖TV = supA∈G |P(A) − Q(A)|. We say that P
is β-mixing (or absolutely regular) if β(a) → 0 as a → ∞. Roughly speaking, this means
that the dependence with respect to the past weakens over time. We remark that β-mixing
coefficients can be defined equivalently as follows:

β(a) = sup
t

E
Zt−∞

[
‖P∞

t+a(·|Zt−∞) − P∞
t+a‖TV

]
, (2)

where P(·|·) denotes conditional probability measure (Doukhan 1994). Another standard
measure of the dependence of the future on the past is the ϕ-mixing coefficient defined for
all a > 0 by

ϕ(a) = sup
t

sup
B∈Ft

‖P∞
t+a(·|B) − P∞

t+a‖TV, (3)

where Ft is the σ -algebra generated by Zt−∞. A distribution P is said to be ϕ-mixing if
ϕ(a) → 0 as a → ∞. Note that, by definition, β(a) ≤ ϕ(a), so any ϕ-mixing distribution
is necessarily β-mixing. All our results hold for a slightly weaker notion of mixing based on
finite-dimensional distributions with β(a) = supt E‖Pt+a(·|Zt−∞) − Pt+a‖TV and ϕ(a) =
supt supB∈Ft

‖Pt+a(·|B) − Pt+a‖TV. We note that, in certain special cases, such as Markov
chains, mixing coefficients admit upper bounds that can be estimated from data (Hsu et al.
2015).
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We also recall that a sequence of random variables Z∞−∞ is (strictly) stationary provided
that, for any t and any non-negative integers m and k, Zt+m

t and Zt+m+k
t+k admit the same

distribution.
Unlike the i.i.d. case where E[L(h(X), Y )] is used to measure the generalization error of

h, in the case of time series prediction, there is no unique commonly used measure to assess
the quality of a given hypothesis h. One approach consists of seeking a hypothesis h that
performs well in the near future, given the observed trajectory of the process. That is, we
would like to achieve a small path-dependent generalization error

LT+s(h) = E
ZT+s

[
L(h(XT+s), YT+s)|ZT

1

]
, (4)

where s ≥ 1 is fixed. To simplify the notation, we will often write �(h, z) = L(h(x), y),
where z = (x, y). For time series prediction tasks, we often receive a sample YT

1 and wish
to forecast YT+s . A large class of (bounded-memory) auto-regressive models use the past q
observations YT

T−q+1 to predict YT+s . Our scenario includes this setting as a special case

where we take X = Yq and Zt+s = (Yt
t−q+1, Yt+s).1 The generalization ability of stable

algorithms with error defined by (4) was studied by Mohri and Rostamizadeh (2010).
Alternatively, one may wish to perform well in the near future when being on some

“average” trajectory. This leads to the averaged generalization error:

L̄T+s(h) = E

ZT
1

[LT+s(h)] = E
ZT+s

[�(h, ZT+s)]. (5)

We note that L̄T+s(h) = LT+s(h) when the training and testing sets are independent. The
pioneering work of Yu (1994) led to VC-dimension bounds for L̄T+s under the assumption
of stationarity and β-mixing. Later, Meir (2000) used that to derive generalization bounds
in terms of covering numbers of H . These results have been further extended by Mohri
and Rostamizadeh (2009) to data-dependent learning bounds in terms of the Rademacher
complexity of H . Ralaivola et al. (2010), Alquier and Wintenberger (2010), and Alquier
et al. (2014) provide PAC-Bayesian learning bounds under the same assumptions.

Most of the generalization bounds for non-i.i.d. scenarios that can be found in the machine
learning and statistics literature assume that observations come from a (strictly) stationary
distribution. The only exception that we are aware of is the work of Agarwal and Duchi
(2013), who present bounds for stable on-line learning algorithms under the assumptions of
asymptotically stationary process.2 The main contribution of our work is the first generaliza-
tion bounds for both LT+s and L̄T+s when the data is generated by a non-stationary mixing
stochastic process.3 We also show that mixing is in fact necessary for learning with L̄T+s ,
which further motivates the study of LT+s .

Next, we strengthen our assumptions and give generalization bounds for asymptoti-
cally stationary processes. In doing so, we provide guarantees for learning with Markov
chains—most widely used class of stochastic processes. These results are algorithm-agnostic
analogues of the algorithm-dependent bounds of Agarwal and Duchi (2013). Agarwal and

1 Observe that if Y is β-mixing, then so is Z and βZ(a) = βY(a − q). Similarly, the ϕ-mixing assumption is
also preserved. It is an open problem [posed by Meir (2000)] to derive generalization bounds for unbounded-
memory models.
2 Agarwal and Duchi (2013) additionally assume that distributions are absolutely continuous and that the loss
function is convex and Lipschitz.
3 While this work was under review, Kuznetsov and Mohri (2015) used techniques that appeared in the
extended abstract of this work (Kuznetsov and Mohri 2014) to establish generalization bounds for learning
with non-stationary non-mixing processes.
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Duchi (2013) also prove fast convergence rates when a strongly convex loss is used. Similarly,
Steinwart and Christmann (2009) showed that regularized learning algorithms admit faster
convergence rates under the assumptions of mixing and stationarity. We show that this is in
fact a general phenomenon and use local Rademacher complexity techniques (Bartlett et al.
2005) to establish faster convergence rates for stationary mixing or asymptotically stationary
processes.

Finally, all the existing learning guarantees only hold for bounded loss functions.However,
for a large class of time series prediction problems, this assumption is not valid. We conclude
this paper by providing the first learning guarantees for unbounded losses and non-i.i.d. data.

A key ingredient of the bounds we present is the notion of discrepancy between two
probability distributions that was used by Mohri and Muñoz (2012) to give generalization
bounds for sequences of independent (but not identically distributed) random variables. In
our setting, discrepancy can be defined as

d(t1, t2) = sup
h∈H

|Lt1(h) − Lt2(h)|. (6)

Similarly, we define d̄(t1, t2) by replacing Lt with L̄t in the definition of d(t1, t2). Discrep-
ancy is a natural measure of the non-stationarity of a stochastic process with respect to the
hypothesis class H and a loss function L . For instance, if the process is strictly stationary,
then d̄(t1, t2) = 0 for all t1, t2 ∈ Z. As a more interesting example, consider a weakly sta-
tionary stochastic process. A process Z is weakly stationary if E[Zt ] is a constant function of
t and E[Zt1 Zt2 ] only depends on t1 − t2. If L is a squared loss and a set of linear hypothesis
H = {YT

t−q+1 
→ w · YT
t−q+1 : w ∈ R

q} is used, then it can be shown (see Lemma 12;

“Appendix 1” that in this case we again have d̄(t1, t2) = 0 for all t1, t2 ∈ Z. This example
highlights the fact that discrepancy captures not only properties of the distribution of the
stochastic processes, but also properties of other important components of the learning prob-
lem such as the hypothesis set H and the loss function L . An additional advantage of the
discrepancy measure is that it can be replaced by an upper bound that, under mild conditions,
can be estimated from data (Mansour et al. 2009; Kifer et al. 2004).

The rest of this paper is organized as follows. In Sect. 2, we discuss the main technical tool
used to derive our bounds. Sections 3 and 5 present learning guarantees for averaged and path-
dependent errors respectively. In Sect. 4 we establish that mixing is a necessary condition
for learning with averaged path-dependent errors. In Sect. 6, we analyze generalization with
asymptotically stationary processes. We present fast learning rates for the non-i.i.d. setting
in Sect. 7. In Sect. 8, we conclude with generalization bounds for unbounded loss functions.

An extended abstract of this work appeared as (Kuznetsov and Mohri 2014). This version
includes complete proofs of the results in Sects. 2 and 6 as well as a detailed discussion of
the results of Sects. 3, 5 and 6. We have also clarified the proofs in Sect. 7. The material in
Sects. 4, 8 and Appendix is also entirely new.

2 Independent blocks and sub-sample selection

The first step towards our generalization bounds is to reduce the setting of a mixing stochastic
process to a simpler scenario of a sequence of independent random variables, where we can
take advantage of known concentration results. Oneway to achieve this is via the independent
block technique introduced by Bernstein (1927) which we now describe.
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We can divide a given sample ZT
1 into 2m blocks such that each block has size ai and we

require T = ∑2m
i=1 ai . In other words, we consider a sequence of random vectors Z(i) =

Zu(i)
l(i) , i = 1, . . . , 2m where l(i) = 1+∑i−1

j=1 a j and u(i) = ∑i
j=1 a j . It will be convenient to

refer to even and odd blocks separately. We will writeZo = (Z(1),Z(3) . . . ,Z(2m−1)) and
Ze = (Z(2),Z(4), . . . ,Z(2m)). In fact, we will often work with blocks that are independent.

Let Z̃o = (Z̃(1), . . . , Z̃(2m − 1)) where Z̃(i), i = 1, 3, . . . , 2m − 1, are independent and
each Z̃(i) has the same distribution as Z(i). We construct Z̃e in the same way. The following
result enables us to relate sequences of dependent and independent blocks.

Proposition 1 Let g be a real-valued Borel measurable function such that −M1 ≤ g ≤ M2

for some M1, M2 ≥ 0. Then, the following holds:

|E[g(Z̃o)] − E[g(Zo)]| ≤ (M1 + M2)

m−1∑
i=1

β(a2i ).

The proof of this result is given in Yu (1994), which in turn is based on Eberlein (1984) and
Volkonskii and Rozanov (1959).4 For the sake of completeness, we present the full proof of
this result below. We will also use the main steps of this proof as stand-alone results later in
the sequel.

Lemma 1 Let Q and P be probability measures on (Ω,F) and let h : Ω → R be a Borel
measurable function such that −M1 ≤ h ≤ M2 for some M1, M2 ≥ 0. Then

|E
Q
[h] − E

P
[h]| ≤ (M1 + M2)‖P − Q‖TV.

Proof We start by proving this claim for simple functions of the form

h =
k∑
j=1

c j1A j , (7)

where A j s are in F and pairwise disjoint. Note that we do not require c j ≥ 0. Observe that
in this case

E
Q
h − E

P
h =

k∑
j=1

c j (Q(A j ) − P(A j ))

≤
∑
j∈J1

c j (Q(A j ) − P(A j )) +
∑
j∈J2

c j (Q(A j ) − P(A j ))

4 The bound stated in Yu (1994) only holds in case M1 = 0, i.e. for non-negative g and at = a for all t .
Indeed, to see that if |g| ≤ M it need not be the case that |E[g(Z̃o)] −E[g(Zo)]| ≤ M(m − 1)β(a), consider
Zt = Z for all t , where P(Z = 1) = p and P(Z = −1) = q. Suppose g : RT → R s.t. g(z1, . . . , zma) = 1
if z1 = . . . = zma and −1 otherwise. Then one can show that Eg(S1)−Eg(S̃1) = 2− 2(pm + (1− p)m and
β(a) = p(1 − p) for any a. For any m we can find p such that 2 − 2(pm + (1 − p)m > (m − 1)p(1 − p).
For instance, if m = 2 then p = 1

2 will suffice.
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where J1 = { j : (Q(A j )− P(A j )) ≤ 0, c j ≤ 0} and J2 = { j : (Q(A j )− P(A j )) ≥ 0, c j ≥
0}. Therefore,
E
Q
h − E

P
h ≤ M1

∑
j∈J1

(P(A j ) − Q(A j )) + M2

∑
j∈J2

(Q(A j ) − P(A j ))

= M1

(
P(∪ j∈J1 A j ) − Q(∪ j∈J1 A j )

)
+ M2

(
Q(∪ j∈J2 A j ) − P(∪ j∈J2 A j )

)

≤ (M1 + M2)‖Q − P‖TV,

where the equality follows from the fact that A j s are disjoint. By symmetry, EPh − EQh ≤
(M1+M2)‖Q−P‖TV and combining these results shows that the lemma holds for all simple
functions of the form (7). To complete the proof of the lemmaweuse a standard approximation
argument. Set Ψn(x) = min(n, 2−n�2nx
) for x ≥ 0 and Ψn(x) = −min(n, 2−n�−2nx
)
for x < 0. From this definition it is immediate thatΨn(h) converges pointwise to h as n → ∞
and −M1 ≤ Ψn(h) ≤ M2. Therefore, by the bounded convergence theorem, for any ε > 0,
we can find n such that |EPh − EPΨn(h)| < ε and |EQh − EQΨn(h)| < ε. Since Ψn(h) is
a simple function of the form (7), by our previous result and the triangle inequality, we find
that

|E
P
h − E

Q
h| ≤ |E

P
h − E

P
Ψn(h)| + |E

P
Ψn(h) − E

Q
Ψn(h)| + |E

Q
h − E

Q
Ψn(h)|

≤ 2ε + (M1 + M2)‖Q − P‖TV.

Since the inequality holds for all ε > 0, we conclude that |EPh −EQh| ≤ (M1 + M2)‖Q −
P‖TV. ��

Note that, if |g| < M , then ‖EQg − EPg‖ ≤ 2M‖P − Q‖TV and the factor of 2 is
necessary in this bound. Consider a measure space Ω = {0, 1} equipped with a σ -algebra
F = {∅, {0}, {1},Ω}. Let Q and P be probability measures on (Ω,F) such that Q{0} =
P{1} = 1 and Q{1} = P{0} = 0. If h(0) = 1 and h(1) = −1 then |EQh − EPh| = 2 >

1 = ‖P − Q‖TV. Lemma 1 extended via induction yields the following result.

Lemma 2 Let m ≥ 1 and (
∏m

k=1 Ωk,
∏m

k=1 Fk) be a measure space with P a measure on

this space and Pj the marginal on (
∏ j

k=1 Ωk,
∏ j

k=1 Fk). Let Q j be a measure on (Ω j ,F j )

and define

β j = E

[∥∥∥∥Pj+1

(
· |

j∏
k=1

Fk

)
− Q j+1

∥∥∥∥
TV

]
,

for j ≥ 1 and β0 = ‖P1−Q1‖TV. Then, for any Borel measurable function h : ∏m
k=1 Ωk →

R such that −M1 ≤ h ≤ M2 for some M1, M2 ≥ 0, the following holds

|E
P
[h] − E

Q
[h]| ≤ (M1 + M2)

m−1∑
j=0

β j

where Q = Q1 ⊗ Q2 ⊗ . . . ⊗ Qm.

Proof Wewill prove this claim by induction onm. First supposem = 1. Then, the conclusion
follows from Lemma 1. Next, assume that the claim holds for m − 1, where m ≥ 2. We will
show that it must also hold for m. Observe that

|E
P
h − E

Q
h| ≤ |E

P
h − E

Pm−1⊗Qm

h| + | E
Pm−1⊗Qm

h − E
Q1⊗...⊗Qm

h|.
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For the first term we observe that

|E
P
h − E

Pm−1⊗Qm

h| = | E
Pm−1

E
Pm (·|Gm−1)

h − E
Pm−1

E
Qm

h|

≤ E
Pm−1

| E
Pm (·|Gm−1)

h − E
Qm

h|,

where G j = ∏ j
k=1 Fk . Applying Lemma 1 we have that the first term is bounded by (M1 +

M2)βm−1. To bound the second term we apply Fubini’s Theorem, Lemma 1 and inductive
hypothesis to get that

| E
Pm−1⊗Qm

h − E
Q1⊗...⊗Qm

h| = | E
Qm

E
Pm−1

h − E
Qm

E
Q1⊗...⊗Qm−1

h|
≤ E

Qm

| E
Pm−1

h − E
Q1⊗...⊗Qm−1

h|

≤ (M1 + M2)

m−2∑
j=0

β j

and the desired conclusion follows. ��

Proposition 1 now follows from Lemma 2 by taking Q j to be the marginal of P on
(Ω j ,F j ) and applying it to the case of independent blocks.

Proof of Proposition 1 We start by establishing some notation. Let Pj denote the joint
distribution of Z(1),Z(3), . . . ,Z(2 j −1) and let Q j denote the distribution of Z(2 j −1) (or
equivalently Z̃(2 j−1)).Wewill also denote the joint distribution ofZ(2 j+1), . . . ,Z(2m−1)
by P j . Set P = Pm and Q = Q1 ⊗ . . . ⊗ Qm . In other words, P and Q are distributions of
Zo and Z̃o respectively. Then

|Eg(Z̃o) − Eg(Zo)| = |E
Q
g − E

P
g| ≤ (M1 + M2)

m−1∑
j=0

β j

by Lemma 2. Observing that β j ≤ β(a2 j ) and β0 = 0 completes the proof of the Proposi-
tion 1. ��
Proposition 1 is not the only way to relate mixing and independent cases. Next, we introduce
an alternative technique that we name sub-sample selection, which is particularly useful
when the process is asymptotically stationary. Suppose we are given a sample ZT

1 . Fix a ≥ 1
such that T = ma for some m ≥ 1 and define a sub-sample Z( j) = (Z1+ j , . . . , Zm−1+ j ),
j = 0, . . . , a − 1. An application of Lemma 2 yields the following result.

Proposition 2 Let g be a real-valued Borel measurable function such that −M1 ≤ g ≤ M2

for some M1, M2 ≥ 0. Then

|E[g(Z̃Π)] − E[g(Z( j))]| ≤ (M1 + M2)m β(a),

where β(a) = supt E[‖Pt+a(·|Zt
1) − Π‖TV] and Z̃Π is an i.i.d. sample of size m from a

distribution Π .

The proof of Proposition 2 is the same as the proof of Proposition 1 modulo the definition
of measure Q which we set to Πm . Proposition 2 is commonly applied with Π the stationary
probability measure of an asymptotically stationary process.
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3 Generalization bound for the averaged error

In this section, we derive a generalization bound for averaged error L̄T+s . Given a sample
ZT
1 generated by a (β-)mixing process, we define Φ(ZT

1 ) as follows:

Φ(ZT
1 ) = sup

h∈H

(
L̄T+s(h) − 1

T

T∑
t=1

�(h, Zt )

)
. (8)

We assume that Φ is measurable which can be guaranteed under some additional mild
assumption onZ and H . We will also use I1 to denote the set of indices of the elements from
the sample ZT

1 that are contained in the odd blocks. Similarly, I2 is used for elements in the
even blocks.

We establish our bounds in a series of lemmas. We start by proving a concentration result
for dependent non-stationary data.

Lemma 3 Let L be a loss function bounded by M, and H an arbitrary hypothesis set. For
any a1, . . . , a2m > 0 such that T = ∑2m

i=1 ai , partition the given sample ZT
1 into blocks as

described in Sect. 2. Then, for any ε > max(E[Φ(Z̃o)],E[Φ(Z̃e)]), the following holds:

P(Φ(ZT
1 ) > ε) ≤ P(Φ(Z̃o)−E[Φ(Z̃o)] > ε1)+P(Φ(Z̃e)−E[Φ(Z̃e)] > ε2)+

2m−1∑
i=2

β(ai ),

where ε1 = ε − E[Φ(Z̃o)] and ε2 = ε − E[Φ(Z̃e)].
Proof Byconvexity of the supremumΦ(ZT

1 ) ≤ |I1|
T Φ(Zo)+|I2|

T Φ(Ze). Since |I1|+|I2| = T ,

for |I1|
T Φ(Zo)+ |I2|

T Φ(Ze) to exceed ε at least one element of {Φ(Zo),Φ(Ze)}must be greater
than ε. Thus, by the union bound, we can write

P(Φ(ZT
1 ) > ε) ≤ P(Φ(Zo) > ε) + P(Φ(Ze) > ε)

= P(Φ(Zo) − E[Φ(Z̃o)] > ε1) + P(Φ(Ze) − E[Φ(Z̃e)] > ε2).

We apply Proposition 1 to the indicator functions of the events {Φ(Zo) − E[Φ(Z̃o)] > ε1}
and {Φ(Ze) − E[Φ(Z̃e)] > ε2} to complete the proof. ��
Lemma 4 Under the same assumptions as in Lemma 3, the following holds:

P(Φ(ZT
1 ) > ε) ≤ exp

( −2T 2ε21

‖ao‖22M2

)
+ exp

( −2T 2ε22

‖ae‖22M2

)
+

2m−1∑
i=2

β(ai ),

where ao = (a1, a3, . . . , a2m−1) and ae = (a2, a4, . . . , a2m).

Proof We apply McDiarmid’s inequality (McDiarmid 1989) to the sequence of independent
blocks. We note that if Z̃o and Z̃ are two sequences of independent (odd) blocks that differ
only by one block (say block i) thenΦ(Z̃o)−Φ(Z̃) ≤ ai

M
T and it follows fromMcDiarmid’s

inequality that

P(Φ(Z̃o) − E[Φ(Z̃o)] > ε1) ≤ exp

( −2T 2ε21

‖ao‖22M2

)
.

Using the same argument for Z̃e finishes the proof of this lemma. ��
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The next step is to bound max(E[Φ(Z̃o)],E[Φ(Z̃e)]). The bound that we give is in terms
of the block Rademacher complexity defined by

R(Z̃o) = 1

|I1|E
[
sup
h∈H

m∑
i=1

σi l
(
h,Z(2i − 1)

)]
, (9)

where σi is a sequence of Rademacher random variables and l(h,Z(2i − 1)) = ∑
t �(h, Zt )

and where the sum is taken over t in the i th odd block. Below we will show that if the block
size is constant (i.e. ai = a), then the block complexity can be bounded in terms of the
regular Rademacher complexity.

Lemma 5 For j = 1, 2, let Δ j = 1
|I j |

∑
t∈I j d̄(t, T + s), which is an average discrepancy.

Then, the following bound holds:

max(E[Φ(Z̃o)],E[Φ(Z̃e)]) ≤ 2max(R(Z̃o),R(Z̃e)) + max(Δ1,Δ2). (10)

Proof In the course of this proof, Zt denotes a sample drawn according to the distribution
of Z̃o (and not that of Zo). Using the sub-additivity of the supremum and the linearity of
expectation, we can write

E

[
sup
h∈H

L̄T+s(h) − 1

|I1|
∑
t∈I1

�(h, Zt )

]

= E

[
sup
h∈H

L̄T+s(h) − 1

|I1|
∑
t∈I1

L̄t (h) + 1

|I1|
∑
t∈I1

L̄t (h) − 1

|I1|
∑
t∈I1

�(h, Zt )

]

≤ E

[
sup
h∈H

L̄T+s(h) − 1

|I1|
∑
t∈I1

L̄t (h) + sup
h∈H

1

|I1|
∑
t∈I1

L̄t (h) − 1

|I1|
∑
t∈I1

�(h, Zt )

]

= 1

|I1|
∑
t∈I1

sup
h∈H

∣∣L̄T+s(h) − L̄t (h)
∣∣+ 1

|I1|E
[
sup
h∈H

∑
t∈I1

L̄t (h) −
∑
t∈I1

�(h, Zt )

]

= Δ1 + 1

|I1|E
[
sup
h∈H

m∑
i=1

E[l(h, Z̃(2i − 1))] − l(h, Z̃(2i − 1))

]
.

The second term can be written as

A = 1

|I1|E
[
sup
h∈H

m∑
i=1

Ai (h)

]
,

with Ai (h) = E[l(h, Z̃(2i − 1))] − l(h, Z̃(2i − 1)) for all i ∈ [1,m]. Since the terms Ai (h)

are all independent, the same proof as that of the standard i.i.d. symmetrization bound in
terms of the Rademacher complexity applies and A can be bounded by R(Z̃o). Using the
same arguments for even blocks completes the proof. ��

Combining Lemma 4 and 5 leads directly to the main result of this section.
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Theorem 1 With the assumptions of Lemma 3, for any δ >
∑2m−1

i=2 β(ai ), with probability
1 − δ, the following holds for all hypotheses h ∈ H:

L̄T+s(h) ≤ 1

T

T∑
t=1

�(h, Zt ) + 2max(R(Z̃o),R(Z̃e)) + max(Δ1,Δ2)

+ max(‖ae‖2, ‖ao‖2)
√
log 2

δ′
2T 2 ,

where δ′ = δ −∑m−1
i=2 β(ai ).

The learning bound ofTheorem1 indicates the challenges faced by the learnerwhen presented
with data drawn from a non-stationary stochastic process. In particular, the presence of
the term max(Δ1,Δ2) in the bound shows that generalization in this setting depends on
the “degree” of non-stationarity of the underlying process. The dependency in the training
instances reduces the effective size of the sample from T to (T/(‖ae‖2 + ‖ao‖2))2. Observe
that for a general non-stationary process the learning bounds presented may not converge
to zero as a function of the sample size, due to the discrepancies between the training and
target distributions. In Sects. 6 and 7, we will describe some natural assumptions under
which this convergence does occur. However, in general, a small discrepancy is necessary
for learning to be possible, since Barve and Long (1996) showed that O(γ 1/3) is a lower
bound on the generalization error in the setting of binary classification where the sequence
ZT
1 is a sequence of independent but not identically distributed random variables and where

γ is an upper bound on discrepancy. We also note that Theorem 1 can be stated in terms of
a slightly tighter notion of discrepancy suph |L̄T+s − (1/|I j |)∑t∈I j L̄t | instead of average

instantaneous discrepancies Δ j .
When the same size a is used for all the blocks considered in the analysis, thus T = 2ma,

then the block Rademacher complexity terms can be replaced with standard Rademacher
complexities. Indeed, in that case, we can group the summands in the definition of the block
complexity according to sub-samplesZ( j) and use the sub-additivity of the supremum to find
that R(Z̃o) ≤ 1

a

∑a
j=1 Rm(Z̃( j)), where Rm(Z̃( j)) = 1

mE[suph∈H
∑

i=1 σi�(h, Zi, j )] with
(σi )i a sequence of Rademacher random variables and (Zi, j )i, j a sequence of independent
random variables such that Zi, j is distributed according to the law of Za(2i−1)+ j from ZT

1 .
This leads to the following perhaps more informative but somewhat less tight bound.

Corollary 1 With the assumptions of Lemma 3, and T = 2am, for some a,m > 0, for any
δ > 2(m − 1)β(a), with probability 1 − δ, the following holds for all hypotheses h ∈ H:

L̄T+s(h) ≤ 1

T

T∑
t=1

�(h, Zt ) + 2

a

2a∑
j=1

Rm(Z̃( j)) + 2

T

T∑
t=1

d̄(t, T + s) + M

√
log 2

δ′
8m

.

If the process is stationary, then we recover as a special case the generalization bound of
Mohri and Rostamizadeh (2009). If ZT

1 is a sequence of independent but not identically
distributed random variables, we recover the results of Mohri and Muñoz (2012). In the i.i.d.
case, Theorem 1 reduces to the generalization bounds of Koltchinskii and Panchenko (2000).

The Rademacher complexity Rm(Z̃( j)) that appears in our bound is not standard. In
particular, the random variables Z̃ j , Z̃2a+ j , . . . , Z̃2a(m−1)+ j may follow different distribu-
tions. However, Rm(Z̃( j)) can be analyzed in the same way as the standard Rademacher
complexity defined in terms of i.i.d. sample. For instance, it can be bounded in terms
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of distribution-agnostic combinatorial complexity measures such as the VC-dimension or
growth function using standard results such as Massart’s lemma (Mohri et al. 2012). Alter-
natively, for ρ-Lipschitz losses, Talagrand’s contraction principle can be used to bound the
Rademacher complexity of the set of linear hypotheses H = {x → w · Ψ (x) : ‖w‖H ≤ Λ}
by ρrΛ/

√
m, where H is a Hilbert space associated to the feature map Ψ and kernel K and

where r = supx K (x, x).

4 Mixing and averaged generalization error

In this section, we show that mixing is in fact necessary for generalization with respect to
averaged error.

We consider a task of forecasting binary sequences over Y = {±1} using side information
in X and history of the stochastic process. That is, a learning algorithmA is provided with a
sample ZT

1 ∈ X T × {±1}T and produces a hypothesis hZT
1
. At time T + 1, side information

XT+1 is observed and hZT
1
(XT+1) is forecasted by the algorithm. The performance of the

algorithm is evaluated using L(y, y′) = 1y �=y′ .
We have the following result.

Theorem 2 Let H be a set of hypotheses with d = VC−dim(H) ≥ 2. For any algorithmA,
there is a stationary process that is not β-mixing and such that for each T , there is T ′ ≥ T
such that

P

(
L̄T ′+1(hZT ′

1
) − inf

h∈H L̄T ′+1(h) ≥ 1

2

)
≥ 1

8
. (11)

Proof Since d ≥ 2, there is X ′ = {x1, x2} ⊂ X such that this set if fully shattered, that is
each of the dichotomies is possible on this set. The stochastic process we will define admits
X ′ for support. We will further assume H = H ′, where H ′ = {h1, h2, h3, h4} is a set of
hypotheses that represent all possible dichotomies on X .

Now let ST be sample of size T drawn i.i.d. from a Dirac mass δ(x1,1) and let hST be a
hypothesis produced by A when trained on this sample. Note that hST is a random variable
and the randomness may come from two sources: the sample ST and the algorithm A itself.
Thus, conditioned on ST , let pT be the distribution over H used by the algorithm to produce
hST . Note that pT is completely determined by (x1, 1, T ). If the algorithm is deterministic
then pT is a point mass.

Consider now a sequence of distributions p1, p2, . . ., define

hT = argmax
h∈H

pT (h)

and observe that pT (hT ) ≥ 1
4 . Let h

∗ be an element of H that appears in the sequence
h1, h2, . . . infinitely often. The existence of h∗ is guaranteed by the finiteness of H .

Let y0 = −h∗(x2). We define a distributionD = 1
2 δ(x1,1) + 1

2 δ(x2,y0). Then let (X1, Y1) ∼
D and for all t > 1,

(Xt , Yt ) ∼
{

δ(x1,1), i f X1 = x1,

δ(x2,y0), otherwise.
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We first show that this stochastic process satisfies (11). Indeed, observe that infh∈H L̄T ′+1
(h) = 0 and if ET = {L̄T+1(hZT

1
) ≥ 1

2 }

P(ET ′) = 1

2
P(ET ′ |X1 = x1) + 1

2
P(ET ′ |X1 �= x1) ≥ 1

2
P(ET ′ |X1 = x1).

Choose T ′ such that hT ′ = h∗ and observe that in that case

1

2
P(ET ′ |X1 = x1) ≥ 1

8
P(ET ′ |h∗ = hT ′ = hZT

1
, X1 = x1) = 1

8
,

where the last equality follows from:

L̄T+1(hZT
1
) = 1

2
L(hT ′(x1), 1) + 1

2
L(hT ′(x2),−hT ′(x2)) ≥ 1

2
,

when we condition on h∗ = hT ′ = hZT
1
and X1 = x1.

We conclude this proof by showing that this process is stationary and not β-mixing. One
can check that for any t , and any k and any sequence (z1, . . . , zk), the following holds

P(Zt = z1, . . . , Zt+k = zk) =

⎧
⎪⎨
⎪⎩

1
2 , if z1 = . . . = zk = (x1, 1),
1
2 , if z1 = . . . = zk = (x2, y0),

0, otherwise.

Since the right-hand side is independent of t it follows that this process is stationary. Now
observe that for any event A

|Pt+a(A|Z1 = (x1, 1),ZT
2 ) − Pt+a(A)| = 1

2
|δ(x2,y0)(A) − δ(x1,1)(A)|

and taking the supremum over A yields that ‖Pt+a(·|Z1 = (x1, 1),ZT
2 ) − Pt+a‖TV = 1

2 .
Similarly, one can show that ‖Pt+a(·|Z1 = (x2, y0),ZT

2 )−Pt+a‖TV = 1
2 , which proves that

β(a) = 1
2 for all a and this process is not β-mixing. ��

We note that, in fact, the process that is constructed in Theorem 2 is not even α-mixing.
Note that this result does not imply that mixing is necessary for generalizationwith respect

to path-dependent generalization error and this further motivates the study of this quantity.

5 Generalization bound for the path-dependent error

In this section, we give generalization bounds for a path-dependent error LT+s under the
assumption that the data is generated by a (ϕ-)mixing non-stationary process. In this section,
we will use Φ(ZT

1 ) to denote the same quantity as in (8) except that L̄T+s is replaced with
LT+s .

The key technical tool that we will use is the version ofMcDiarmid’s inequality for depen-
dent random variables, which requires a bound on the differences of conditional expectations
ofΦ [see Corollary 6.10 in McDiarmid (1989) or “Appendix 3”]. We start with the following
adaptation of Lemma 1 to this setting.

Lemma 6 Let ZT
1 be a sequence of Z-valued random variables and suppose g : Zk+ j → R

is a Borel-measurable function such that −M1 ≤ g ≤ M2 for some M1, M2 ≥ 0. Then, for
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any z1, . . . , zk ∈ Z, the following bound holds:

|E[g(Z1, . . . , Zk, ZT− j+1, . . . , ZT )|z1, . . . , zk] −E[g(z1, . . . , zk, ZT− j+1, . . . , ZT )]|
≤ (M1 + M2)ϕ(T + 1 − (k + j)).

Proof This result follows from an application of Lemma 1:

|E[g(Z1, . . . , Zk, ZT− j+1, . . . , ZT )|z1, . . . , zk] − E[g(z1, . . . , zk, ZT− j+1, . . . , ZT )]|
≤ (M1 + M2)‖PT

T− j+1(·|z1, . . . , zk) − PT
T− j+1‖TV

≤ (M1 + M2)ϕ(T + 1 − (k + j)),

where the second inequality follows from the definition of ϕ-mixing coefficients. ��
Lemma 7 For any z1, . . . , zk, z′k ∈ Z and any 0 ≤ j ≤ T − k with k > 1, the following
holds:

∣∣E[Φ(ZT
1 )|z1, . . . , zk] − E[Φ(ZT

1 )|z1, . . . , z′k]
∣∣ ≤ 2M(

j+1
T + γ ϕ( j + 2) + ϕ(s)),

where γ = 1 iff j + k < T and 0 otherwise. Moreover, if LT+s(h) = L̄T+s(h) then the term
ϕ(s) can be omitted from the bound.

Proof First, we observe that using Lemma 6 we have |LT+s(h) − L̄T+s(h)| ≤ Mϕ(s).
Next, we use this result, the properties of conditional expectation and Lemma 6 to show that
E[Φ(ZT

1 )|z1, . . . , zk] is bounded by

E

[
sup
h∈H

(
L̄T+s(h) − 1

T

T∑
t=1

�(h, Zt )

)∣∣∣∣z1, . . . , zk
]

+ Mϕ(s)

≤ E

[
sup
h∈H

(
L̄T+s(h) − 1

T

T∑
t=k+ j

�(h, Zt ) − 1

T

k−1∑
t=1

�(h, Zt )

)∣∣∣∣z1, . . . , zk
]

+ η

≤ E

[
sup
h∈H

(
L̄T+s(h) − 1

T

T∑
t=k+ j

�(h, Zt ) − 1

T

k−1∑
t=1

�(h, zt )

)]
+ Mγ ϕ( j + 2) + η,

where η = M(
j
T + ϕ(s)). Using a similar argument to bound E[Φ(ZT

1 )|z1, . . . , z′k] from
below by −M(γ ϕ( j + 2) + j

T + ϕ(s)) and taking the difference completes the proof. ��
The last ingredient needed to establish a generalization bound forLT+s is a bound onE[Φ].

The bound we present is in terms of a discrepancy measure and the sequential Rademacher
complexity introduced in Rakhlin et al. (2010) and further shown to characterize learning in
scenarios with sequential data (Rakhlin et al. 2011a, b, 2015). We give a brief overview of
sequential Rademacher complexity in “Appendix 2”.

Lemma 8 The following bound holds

E[Φ(ZT
1 )] ≤ E[Δ] + 2Rseq

T−s(H�) + M
s − 1

T
,

whereRseq
T−s(H�) is the sequential Rademacher complexity of the function class H� = {z 
→

�(h, z) : h ∈ H} and Δ = 1
T

∑T−s
t=1 d(t + s, T + s).
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Proof First, we write E[Φ(ZT
1 )] ≤ E

[
suph∈H (LT+s(h) − 1

T

∑T
t=s �(h, Zt ))

]
+ M s−1

T .

Using the sub-additivity of the supremum, we bound the first term by

E

[
sup
h∈H

1

T

T−s∑
t=1

(Lt+s(h) − �(h, Zt+s))

]
+ E

[
sup
h∈H

1

T

T−s∑
t=1

(LT+s(h) − Lt+s(h))

]
.

The first summand above is bounded by 2Rseq
T−s(H�) by Theorem 2 of Rakhlin et al. (2015).

Note that the result of Rakhlin et al. (2015) is for s = 1 but it can be extended to an arbitrary
s. We explain how to carry out this extension in “Appendix 2”. The second summand is
bounded by E[Δ] by the definition of the discrepancy. ��

Note that Lemma 8 and all subsequent results in this Section can be stated in terms of a
slightly tighter notion of discrepancy E[suph |LT+s − (1/T )

∑T
t=1 Lt |] instead of average

instantaneous discrepancy E[Δ].
McDiarmid’s inequality [Corollary 6.10 in McDiarmid (1989)], Lemma 7 and Lemma 8

combined yield the following generalization bound for path-dependent error LT+s(h).

Theorem 3 Let L be a loss function bounded by M and let H be an arbitrary hypothesis
set. Let d = (d1, . . . , dT ) with dt = jt+1

T + γtϕ( jt + 2) + ϕ(s) where 0 ≤ jt ≤ T − t and
γt = 1 iff jt + t < T and 0 otherwise (in case training and testing sets are independent we
can take dt = jt+1

T + γtϕ( jt + 2)). Then, for any δ > 0, with probability at least 1 − δ, the
following holds for all h ∈ H:

LT+s(h) ≤ 1

T

T∑
t=1

�(h, Zt ) + E[Δ] + 2Rseq
T−s(H�) + M‖d‖2

√
2 log

1

δ
+ M

s − 1

T
.

Observe that for the bound of Theorem 3 to be nontrivial the mixing rate is required to
be sufficiently fast. For instance, if ϕ(log(T )) = O(T−2), then taking s = log(T ) and
jt = min{t, log T } yields ‖d‖2 = O(

√
(log T )3/T ). Combining this with an observation

that by Lemma 6, E[Δ] ≤ 2ϕ(s) + 1
T

∑T
t=1 d̄(t, T + s) one can show that for any δ > 0

with probability at least 1 − δ, the following holds for all h ∈ H :

LT+s(h) ≤ 1

T

T∑
t=1

�(h, Zt ) + 2Rseq
T−s(H�) + 1

T

T∑
t=1

d̄(t, T + s) + O

(√
(log T )3

T

)
.

As commented in Sect. 3, in general, our bounds are convergent under some natural assump-
tions examined in the next sections.

6 Asymptotically stationary processes

In Sects. 3 and 5 we observed that, for a general non-stationary process, our learning bounds
may not converge to zero as a function of the sample size, due to the discrepancies between the
training and target distributions. The bounds that we derive suggest that for that convergence
to take place, training distributions should “get closer” to the target distribution. However,
the issue is that as the sample size grows, the target “is moving”. In light of this, we consider
a stochastic process that converges to some stationary distribution Π . More precisely, we
define

β(a) = sup
t

E
[‖Pt+a(·|Zt−∞) − Π‖TV

]
(12)
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and define φ(a) in a similar way. We say that a process is β- or φ-mixing if β(a) → 0 or
φ(a) → 0 as a → ∞ respectively. We define a process to be asymptotically stationary if
it is either β- or φ-mixing.5 This is precisely the assumption used by Agarwal and Duchi
(2013) to give stability bounds for on-line learning algorithms. Note that the notions of β-
and φ-mixing are strictly stronger than the necessary mixing assumptions in Sects. 3 and 5.
Indeed, consider a sequence Zt of independent Gaussian random variables with mean t and
unit variance. It is immediate that this sequence is β-mixing but it is not β-mixing. On the
other hand, if we use finite-dimensional mixing coefficients, then the following holds:

β(a) = sup
t

E
[‖Pt+a(·|Zt−∞) − Pt+a‖TV

]

≤ sup
t

E
[‖Pt+a(·|Zt−∞) − Π‖TV

]+ sup
t

sup
A

|E[ E
t+a

[1A|Zt−∞]] − Π |
≤ 2 β(a).

However, note that a stationary β-mixing process is necessarily β-mixing with Π = P0.
Asymptotically stationary processes constitute an important class of stochastic processes

that are common in many modern applications. In particular, any homogeneous aperiodic
irreducible Markov chain with stationary distribution Π is asymptotically stationary since

φ(a) = sup
t

sup
zT1

[‖Pt+a(·|zT1 ) − Π‖TV
] = sup

z∈Z
[‖Pa(·|z) − Π‖TV

] → 0,

where the second equality follows from homogeneity and the Markov property and where
the limit result is a consequence of the Markov Chain Convergence Theorem. Note that, in
general, a Markov chain may not be stationary, which shows that the generalization bounds
that we present here are an important extension of statistical learning theory to a scenario
frequent appearing in applications.

We define the long-term loss or error LΠ(h) = EΠ [�(h, Z)] and observe that L̄T (h) ≤
LΠ(h) + M β(T ) since by Lemma 1 the following inequality holds:

|L̄T (h) − LΠ(h)| ≤ M‖PT − Π‖TV ≤ ME
[‖PT (·|F0) − Π‖TV

]

≤ sup
t

E
[‖PT+t (·|Ft ) − Π‖TV

] = M β(T ).

Similarly, we can show that the following holds: LT+s(h) ≤ LΠ(h) + Mφ(s). Therefore,
we can use LΠ as a proxy to derive our generalization bound. With this in mind, we consider
Φ(ZT

1 ) defined as in (8) except L̄T+s is replaced by LΠ . Using the sub-sample selection
technique of Proposition 2 and the same arguments as in the proof of Lemma 3, we obtain
the following result.

Lemma 9 Let L be a loss function bounded by M and H any hypothesis set. Suppose that
T = ma for some m, a > 0. Then, for any ε > E[Φ(Z̃Π)], the following holds:

P(Φ(ZT
1 ) > ε) ≤ aP(Φ(Z̃Π) − E[Φ(Z̃Π)] > ε′) + T β(a), (13)

where ε′ = ε − E[Φ(Z̃Π)] and Z̃Π is an i.i.d. sample of size m from Π .

Proof By convexity of the supremum, the following holds:

Φ(ZT
1 ) ≤ 1

a

a∑
j=1

sup
h∈H

(
LΠ(h) − 1

m

m−1∑
t=0

�(h, Zta+ j )
)
.

5 Note that asymptotically stationary processes are called convergent (Kuznetsov and Mohri 2014).
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We denote byΦ(Z( j)) the j-summand appearing on the right-hand side. ForΦ(ZT
1 ) to exceed

ε at least one of Φ(Z( j))s must exceed ε. Thus, by the union bound, we have that

P(Φ(ZT
1 ) ≥ ε) ≤

a∑
j=1

P(Φ(Z( j)) ≥ ε).

Applying Proposition 2 to each term on the right-hand side yields the desired result. ��
Using the standard Rademacher complexity bound of Koltchinskii and Panchenko (2000)

for P(Φ(Z̃Π) − E[Φ(Z̃Π)] > ε′) yields the following result.

Theorem 4 With the assumptions of Lemma 9, for any δ > a(m − 1) β(a), with probability
1 − δ, the following holds for all hypothesis h ∈ H:

LΠ(h) ≤ 1

T

T∑
t=1

�(h, Zt ) + 2Rm(H,Π) + M

√
log a

δ′
2m

,

where δ′ = δ − T β(a) and Rm(H,Π) = 1
mE

[
suph∈H

∑m
i=1 σi�(h, Z̃Π,i )

]
with σi a

sequence of Rademacher random variables.

Note that our bound requires the confidence parameter δ to be at least T β(a). Therefore,
for the bound to hold with high probability, we need to require T β(a) → 0 as T → ∞. This
imposes restrictions on the speed of decay of β. Suppose first that our process is algebraically
β-mixing, that is β(a) ≤ Ca−d where C > 0 and d > 0. Then Tβ(a) ≤ C0Ta−d for
some C0 > 0. Therefore, we would require a = T α with 1

d < α ≤ 1, which leads to a

convergence rate of the order
√
T (α−1) log T . Note that we must have d > 1. If the processes

is exponentially β-mixing, i.e. β(a) ≤ Ce−da for some C, d > 0, then setting a = log T 2/d

leads to a convergence rate of the order
√
T−1(log T )2.

The Rademacher complexity Rm(H,Π) can be upper bounded by distribution-agnostic
combinatorial measures of complexity such as VC-dimension using standard techniques.
Alternatively, using the same arguments, it is possible to replaceRm(H,Π) by its empirical
counterpart 1

mE[suph∈H
∑m−1

t=0 σt�(h, Zat+ j )|Z( j)] leading to data-dependent bounds.

Corollary 2 With the assumptions of Lemma 9, for any δ > 2a(m−1) β(a), with probability
1 − δ, the following holds for all hypothesis h ∈ H:

LΠ(h) ≤ 1

T

T∑
t=1

�(h, Zt ) + 2

a

a∑
j=1

R̂m(H,Z( j)) + 3M

√
log 2a

δ′
2m

,

where δ′ = δ−T β(a)and R̂m(H,Z( j)) = 1
mE

[
suph∈H

∑m−1
t=0 σt�(h, Zat+ j)|Z( j)

]
is empir-

ical Rademacher complexity with σi a sequence of Rademacher random variables.

Proof By union bound, it follows that

P

(
Rm(H,Π) − 1

a

a∑
j=1

R̂m(H,Z( j)) ≥ ε
)

≤
a∑
j=1

P(Ψ (Z( j)) ≥ ε),

where Ψ (Z( j)) = Rm(H,Π) − R̂m(H,Z( j)). By Proposition 2, we can bound the above by

aP(Ψ (ZΠ) ≥ ε) + T β(a),
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whereZΠ is an i.i.d. sample of sizem fromΠ . The rest of the proof follows from the standard
result for Rademacher complexity of i.i.d. random variables, McDiarmid’s inequality and
union bound. ��

The significance of Corollary 2 follows from the fact that R̂m(H,Z( j)) can be estimated
from the sample ZT

1 leading to learning bounds that can computed from the data.
We conclude this section by observing that Theorem 1 and 3 could also be used to derive

similar learning guarantees to the ones presented in this section by directly upper bounding
the discrepancy:

d̄(T + s, t) = sup
h

∣∣∣L̄T+s(h) − L̄t (h)

∣∣∣ ≤ sup
h

∣∣∣L̄T+s(h) − LΠ(h)

∣∣∣+ sup
h

∣∣∣L̄t (h) − LΠ(h)

∣∣∣

≤E[sup
h

∣∣∣E[�(h, ZT+s)|Z0−∞] − LΠ(h)

∣∣∣

+ E[sup
h

∣∣∣E[�(h, Zt )|Z0−∞] − LΠ(h)

∣∣∣
≤ β(T + s) + β(t),

and similarly for d(T + s, t) ≤ φ(T + s)+φ(t)+2φ(s). However, we chose to illustrate our
sub-sample selection technique in this simpler setting since we will use it in Sects. 7 and 8
to give fast rates and learning guarantees for unbounded losses for non-i.i.d. data.

7 Fast rates for non-i.i.d. data

For stationary mixing processes, Steinwart and Christmann (2009) established fast conver-
gence rates when a class of regularized learning algorithms is considered.6 Agarwal and
Duchi (2013) also showed that stable on-line learning algorithms enjoy faster convergence
rates if the loss function is strictly convex. In this section, we present an extension of the
local Rademacher complexity results of Bartlett et al. (2005) which imply that, under some
mild assumptions on the hypothesis set (that are typically adopted in i.i.d. setting as well),
it is possible to achieve fast learning rates when the data is generated by an asymptotically
stationary process.

The technical assumption that we will exploit is that the Rademacher complexityRm(H�)

of the function class H� = {z 
→ �(h, z) : h ∈ H} is bounded by some sub-root function
ψ(r). A non-negative non-decreasing function ψ(r) is said to be sub-root if ψ(r)/

√
r is

non-increasing. Note that in this section Rm(F) always denotes the standard Rademacher
complexity with respect to distributionΠ defined byRm(F) = E[sup f ∈F 1

m

∑m
i=1 σi f (Z̃i )]

where Z̃i is an i.i.d. sample of size m drawn according to Π and F is an arbitrary function
class. Observe that one can always find a sub-root upper bound onRm({ f ∈ F : E[ f 2] ≤ r})
by considering a slightly enlarged function class. More precisely, for

Rm({ f ∈ F : E[ f 2] ≤ r}) ≤ Rm({g : E[g2] ≤ r, g = α f, α ∈ [0, 1], f ∈ F}) = ψ(r),

ψ(r) can be shown to be sub-root [see Lemma 3.4 in Bartlett et al. (2005)]. The following
analogue of Theorem 3.3 in Bartlett et al. (2005) for the i.i.d. setting is the main result of this
section.

6 In fact, the results of Steinwart and Christmann (2009) hold for α-mixing processes which is a weaker
statistical assumption than β-mixing.
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Theorem 5 Let T = am for some a,m > 0. Assume that the Rademacher complexity
Rm({g ∈ H� : E[g2] ≤ r}) is upper bounded by a sub-root function ψ(r) with a fixed point
r∗.7 Then, for any K > 1 and any δ > T β(a), with probability at least 1 − δ, the following
holds for all h ∈ H:

LΠ(h) ≤
(

K

K − 1

)
1

T

T∑
t=1

�(h, Zt ) + C1r
∗ + C2 log a

δ′
m

(14)

where δ′ = δ − T β(a), C1 = 704K/M, and C2 = 26MK + 11M.

Before we prove Theorem 5, we discuss the consequences of this result. Theorem 5 tells
us that with high probability, for any h ∈ H , LΠ(h) is bounded by a term proportional to the
empirical loss, another term proportional to r∗, which represents the complexity of H , and a
term in O( 1

m ) = O( 2aT ). Here, m can be thought of as an “effective” size of the sample and
a the price to pay for the dependency in the training sample. In certain situations of interest,
the complexity term r∗ decays at a fast rate. For example, if H� is a class of {0, 1}-valued
functions with finite VC-dimension d , then we can replace r∗ in the statement of the Theorem
with a term of order d log m

d /m at the price of slightly worse constants [see Corollary 2.2,
Corollary 3.7, and Theorem B.7 in Bartlett et al. (2005)].

Note that unlike standard high probability results, our bound requires the confidence
parameter δ to be at least T β(a). Therefore, for our bound to hold with high probability, we
need to require T β(a) → 0 as T → ∞ which depends on mixing rate. Suppose that our
process is algebraically mixing, that is β(a) ≤ Ca−d where C > 0 and d > 0. Then, we
can write T β(a) ≤ CTa−d and in order to guarantee that T β(a) → 0 we would require
a = T α with 1

d < α ≤ 1. On the other hand, this leads to a rate of convergence of the order
T α−1 log T and in order to achieve a fast rate, we need 1

2 > α which is possible only if d > 2.
We conclude that for a high probability fast rate result, in addition to the technical assumptions
on the function class H�, we may also need to require that the process generating the data
be algebraically mixing with exponent d > 2. We remark that if the underlying stochastic
process is geometrically mixing, that is β(a) ≤ Ce−da for some C, d > 0, then a similar
analysis shows that taking a = log T 2/d leads to a high probability fast rate of T−1(log T )2.

We now present the proof of Theorem 5.

Proof First, we define

Φ(ZT
1 ) = sup

h∈H

(
LΠ(h) − K

K − 1

1

T

T∑
t=1

�(h, Zt )

)
.

Observe that Φ(ZT
1 ) ≤ 1

a

∑a
j=1 Φ(Z( j)) and at least one of Φ(Z( j))s must exceed ε in order

for event {Φ(ZT
1 ) ≥ ε} to occur. Therefore, by the union bound and the sub-sample selection

technique of Proposition 2, we obtain that

P(Φ(ZT
1 ) > ε) ≤ aP(Φ(Z̃Π) > ε) + T β(a),

where Z̃Π is an i.i.d. sample of size m from Π . By Theorem 3.3 of Bartlett et al. (2005),

if ε = C1r∗ + C2 log
a
δ′

m , then aP(Φ(Z̃Π) > ε) is bounded above by δ − a(m − 1) β(a),
which completes the proof. Note that Theorem 3.3 requires that there exists B such that
EΠ [g2] ≤ BEΠ [g] for all g ∈ H�. This condition is satisfied with B = M since each
g ∈ H� is a bounded non-negative function. ��
7 The existence of a unique fixed point is guaranteed by Lemma 3.2 in Bartlett et al. (2005).
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We remark that, using similar arguments, most of the results of Bartlett et al. (2005) can
be extended to the setting of asymptotically stationary processes. Of course, these results
also hold for stationary β-mixing processes since, as we pointed out in Sect. 6, these are just
a special case of asymptotically stationary processes.

8 Unbounded loss functions

The learning guarantees that we have presented so far only hold for bounded loss functions.
For a large variety of time series prediction problems, this assumption does not hold. We now
demonstrate that the sub-sample selection technique of Proposition 2 enables us to extend the
relative deviation bounds (Cortes et al. 2013; Vapnik 1998) to the setting of asymptotically
stationary processes, thereby providing guarantees for learning with unbounded losses in
this scenario. In fact, since stationary mixing processes are asymptotically stationary, these
results are the first generalization bounds for unbounded losses even in that simpler case.

The guarantees that we present are in terms of the expected number of dichotomies gen-
erated by a set Q = {(z, t) 
→ 1�(h,z)≥t : h ∈ H, t ∈ R} over the sample ZT

1 that we denote
by SQ(ZT

1 ). We will also use the following notation for the αth moment of the loss function
with respect to stationary distribution: LΠ,α(h) = EΠ [�(h, Z)α]. Define

Φτ,α(ZT
1 ) = sup

h

(LΠ(h) − 1
T

∑T
t=1 �(h, Zt )

(LΠ,α + τ)1/α

)
.

Lemma 10 Let 0 ≤ ε < 1, 1 < α ≤ 2, and 0 < τ
α−1
α ≤ ε

α
α−1 . Let L be any (possibly

unbounded) loss function and H any hypothesis set such that LΠ,α(h) < ∞ for all h ∈ H.
Suppose that T = ma for some m, a > 0. Then, for any ε > 0, the following holds:

P(Φτ,α(ZT
1 ) > Γ (α, ε)ε) ≤ aP(Φτ,α(Z̃Π) > Γ (α, ε)ε) + T β(a),

where Z̃Π is an i.i.d. sample of size m fromΠ andΓ (α, ε) = α−1
α

(1+τ)
1
α + 1

α
( α
α−1

α−1)(1+
( α−1

α
)ατ

1
α )

1
α

[
1 + ( α−1

α
)

α−1
α log(1/ε)

] α−1
α
.

Proof We observe that the following holds:

{Φτ,α(ZT
1 ) > Γ (α, ε)ε}

=
{
∃h : 1

T

T∑
t=1

(LΠ(h) − �(h, Zt )) > (LΠ,α + τ)1/αΓ (α, ε)ε

}

=
{
∃h : 1

am

a∑
j=1

m−1∑
t=0

(LΠ(h) − �(h, Zta+ j )) > (LΠ,α + τ)1/αΓ (α, ε)ε

}

⊂ ∪a
j=1

{
∃h : 1

m

m−1∑
t=0

(LΠ(h) − �(h, Zta+ j )) > (LΠ,α + τ)1/αΓ (α, ε)ε

}

= ∪a
j=1{Φτ,α(Z( j)) > Γ (α, ε)ε}.
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Therefore, by Proposition 2 and the union bound the following result follows:

P(Φτ,α(ZT
1 ) > Γ (α, ε)ε) ≤

a∑
j=1

P(Φτ,α(Z( j)) > Γ (α, ε)ε)

≤ aP(Φτ,α(Z̃Π) > Γ (α, ε)ε) + T β(a),

and this concludes the proof. ��
Lemma 10, Corollary 13 and Corollary 14 in Cortes et al. (2013) immediately yield the
following learning guarantee for α = 2.

Corollary 3 With the assumptions of Lemma 10, for any δ > a(m−1) β(a), with probability
1 − δ, the following holds for all hypothesis h ∈ H:

LΠ(h) ≤
T∑
t=1

�(h, Zt ) + 2
√
LΠ,2(h)BmΓ0(2Bm)

where δ′ = δ − T β(a), Γ0(ε) = 1
2 +

√
1 + 1

2 log
1
ε
and

Bm =
√
2 logEΠ [SQ(ZT

1 )] + log 1
δ′

m
.

This result generalizes i.i.d. learning guarantees with unbounded losses to the setting of
non-i.i.d. data. Observe, that Γ0(2Bm) scales logarithmically with m and this bound admits
O(log(m)/

√
m) dependency. It is also possible to give learning guarantees in terms of higher

order moments α > 2.

Lemma 11 Let 0 ≤ ε < 1, α > 2, and 0 < τ ≤ ε2. Let L be any (possibly unbounded)
loss function and H any hypothesis set such that LΠ,α(h) < ∞ for all h ∈ H. Suppose that
T = ma for some m, a > 0. Then, for any ε > 0, the following holds:

P(Φτ,α(ZT
1 ) > Λ(α, ε)ε) ≤ aP(Φτ,α(Z̃Π) > Λ(α, ε)ε) + T β(a),

where Z̃Π is an i.i.d. sample of size m from Π and Λ(α, ε) = 2−2/α( α
α−2 )

α−1
α + α

α−1τ
α−2
2α .

Finally, it is also possible to extend the guarantees for the ERM algorithmwith unbounded
losses given for i.i.d. data in Liang et al. (2015), Mendelson (2014, 2015) to the setting of
asymptotically stationary processes using our sub-sample selection technique.

9 Conclusion

We presented a series of generalization guarantees for learning in presence of non-stationary
stochastic processes in terms of an average discrepancy measure that appears as a natural
quantity in our general analysis. Our bounds can guide the design of time series prediction
algorithms that would tame non-stationarity by minimizing an upper bound on the discrep-
ancy that can be computed from the data (Mansour et al. 2009; Kifer et al. 2004). The learning
guarantees that we present strictly generalize previous Rademacher complexity guarantees
derived for stationary stochastic processes or a drifting setting. We also presented simpler
bounds under the natural assumption of asymptotically stationary processes. In doing so, we
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have introduced a new sub-sample selection technique that can be of independent interest.
We also proved new fast rate learning guarantees in the non-i.i.d. setting. The fast rate guar-
antees presented can be further expanded by extending in a similar way several of the results
of Bartlett et al. (2005). Finally, we also provide the first learning guarantees for unbounded
losses in the setting of non-i.i.d. data.

Acknowledgements We thank Marius Kloft and Andrés Muñoz Medina for discussions about topics related
to this research. This work was partly funded by the NSF awards IIS-1117591 and CCF-1535987, a Google
Research Award, and the National Science and Engineering Research Council of Canada PGS D3 award.

Appendix 1: Proofs

Lemma 12 Let Y be a weakly stationary processes, L be a squared loss function and H =
{Yt

t−q+1 
→ w · Yt
t−q+1 : w ∈ R

q}. Then d̄(t1, t2) = 0 for all t1, t2.

Proof Observe that for any t1 we can write

E

[(
w · Yt

t1−q+1 − Yt1+s
)2] = E

[(
w · Yt

t1−q+1

)2]+ E[Y 2
t1+s] − 2E

[(
w · Yt

t1−q+1

)
Yt1+s

]
.

The first term on the right-hand side can be written as

q∑
j,i=1

w jwiE[Yt1−i+1Yt1− j+1] =
q∑

j,i=1

w jwi f (i − j)

for some function f , since Y is weakly stationary. Similarly we can write the last term as

q∑
j

w j f (s + j − 1)

and the second term is f (0). Therefore, we have that

E

[(
w · Yt

t1−q+1 − Yt1+s
)2] =

q∑
j,i=1

w jwi f (i − j) + f (0) − 2
q∑
j

w j f (s + j − 1).

Observe that the right-hand side in the last equation is independent of t1. This implies that
Lt1(h) = Lt2(h) for all t1, t2 and all h ∈ H , concluding the proof that d̄(t1, t2) = 0. ��

Appendix 2: Review of sequential rademacher complexity

One of the main ingredients for our generalization bounds in Sect. 5 is so called sequential
Rademacher complexity originally introduced in Rakhlin et al. (2010). Let G be a set of
functions from Z to R. Sequential Rademacher complexity of a function class G is defined
to be

R
seq
T (G) = 1

T
sup
z∈Z

E

[
sup
g∈G

T∑
t=1

εt g(zt (ε))

]
, (15)

where supremum is taken over all complete binary trees of depth T with values in Z and
ε is a sequence of Rademacher random variables. For our purposes we adopt the follow-
ing definition of a complete binary tree. A Z-valued complete binary tree z a sequence
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(z1, . . . , zT ) where zt : {±1}t−1 → Z. The reader should think of the root z1 as some con-
stant inZ. The left child of the root is z2(−1) and the right child is z2(1). A path in the tree is
ε = (ε1, . . . , εT−1). To simplify the notation we will write vt (ε) instead of zt (ε1, . . . , εt−1).
The following symmetrization result from Rakhlin et al. (2015) is needed in the proof of
Lemma 8.

Theorem 6 [Theorem 2 in Rakhlin et al. (2015)] The following bound holds

1

T
E

[
sup
g∈G

T∑
t=1

(
E
[
g(Zt+s)|Zt

1

]− g(Zt+s)
)]

≤ 2Rseq
T (G).

Proof The proof of this result is given in Rakhlin et al. (2015) for the case s = 1. We will
now demonstrate that the same proof is valid for an arbitrary s. Let {Z ′

t } be a decoupled
tangent sequence to {Zt }. That is, Z ′

t+s is drawn from Pt+s(·|Zt
1) independently of Z∞

t+1.
8

We will carry out the formal construction of this sequence at the end of this proof and in the
meantime we assume that such a sequence always exists. Observe that definition implies that

E[g(Zt+s)|Zt
1] = E[g(Z ′

t+s)|Zt
1] = E[g(Z ′

t+s)|ZT+s
1 ]

and also we have that g(Zt+s) = E[g(Zt+s)|ZT+s
1 ]. Following the argument from Rakhlin

et al. (2015), we have that

E

[
sup
g∈G

T∑
t=1

(
E[g(Zt+s)|Zt

1] − g(Zt+s)
)]

= E

[
sup
g∈G

T∑
t=1

E

[
g(Z ′

t+s) − g(Zt+s)|ZT+s
1

]]

≤ E

[
sup
g∈G

T∑
t=1

(
g(Z ′

t+s) − g(Zt+s)
)]

,

where the inequality is a consequence of the linearity of expectation and Jensen’s inequality.
The next step in the proof of Rakhlin et al. (2015) is to appeal to Lemma 18. Since Lemma 18
in Rakhlin et al. (2015) is stated in terms of decoupled tangent sequences with s = 1, we
repeat the argument here for s > 1.

Observe that since Zt+s and Z ′
t+s are independent and identically distributed given ZT

1 ,
if ET denotes expectation with respect to Z ′

T+s, ZT+s , we must have that

E
T

[
sup
g∈G

( T−1∑
t=1

(g(Z ′
t+s) − g(Zt+s)) + (g(Z ′

T+s) − g(ZT+s))
)
|ZT

1 ,Z′T
1

]

= E
T

[
sup
g∈G

( T−1∑
t=1

(g(Z ′
t+s) − g(Zt+s)) − (g(Z ′

T+s) − g(ZT+s))
)
|ZT

1 ,Z′T
1

]

= E
εT
E
T

[
sup
g∈G

( T−1∑
t=1

(g(Z ′
t+s) − g(Zt+s)) + εT (g(Z ′

T+s) − g(ZT+s))
)
|ZT

1 ,Z′T
1

]

= E
T
E
εT

[
sup
g∈G

( T−1∑
t=1

(g(Z ′
t+s) − g(Zt+s)) + εT (g(Z ′

T+s) − g(ZT+s))
)
|ZT

1 ,Z′T
1

]

≤ sup
zT+s ,z′T+s∈Z2

E
εT

[
sup
g∈G

( T−1∑
t=1

(g(Z ′
t+s) − g(Zt+s)) + εT (g(z′T+s) − g(zT+s))

)]
.

8 Note that the regular conditional law Pt+s (·|Zt
1) exists provided Z is a Polish space (Dudley 2002).
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Iterating the above inequality and using the tower property of the conditional expectation as
in Rakhlin et al. (2015), we obtain

E

[
sup
g∈G

T∑
t=1

(
E[g(Zt+s)|Zt

1] − g(Zt+s)
)]

≤ sup
z1+s ,z′1+s

E
ε1

. . . sup
zT+s ,z′T+s

E
εT

[
sup
g∈G

( T∑
t=1

εt (g(z
′
t+s) − g(zt+s))

)]

≤ 2 sup
z1+s

E
ε1

. . . sup
zT+s

E
εT

[
sup
g∈G

( T∑
t=1

εt g(zt+s)
)]

.

The last upper bound precisely matches Eq. (14) from Rakhlin et al. (2015) (up to re-
parametrization) and the rest of the argument is the same.

To complete the proof we show that the decoupled tangent sequence always exist. Exis-
tence of such a sequence in case s = 1 is well-known [see for example De la Peña and
Giné (1999)]. We show that the standard construction also works for an arbitrary s. If Z is a
sequence of random variables defined on the probability triple (Ω,Σ,P) and taking values
in (Z,B), where Z is a Polish space and B is its Borel σ -algebra. Then consider a measure
space a measure space (Ω ×ZN,Σ ×BN). Define a probability measure P̂ on this extended
measure space by

P̂(A × B) = E
P
[⊗∞

t=1Pt+s(B|Zt
1)1A] =

∫

A
⊗∞

t=1Pt+s(B|Zt
1)(w)dP(w)

With out loss of generality, we may assume that Zt is defined on the extended measure space
by Zt (w, z) = Zt (w) since Zt (w, z) and Zt have the same finite dimensional distributions.
We define Z ′

t (w, z) = zt . From this construction, it follows that Zt and Z ′
T are decoupled

tangent sequences and the proof is complete. ��

Appendix 3: McDiarmid’s inequality for dependent random variables

One of the main ingredients of our bounds in Sect. 5 is a version of McDiarmid’s inequality
for dependent random variables from McDiarmid (1989). For convenience of our reader, we
state this result in the next theorem.

Theorem 7 [Corollary 6.10 in McDiarmid (1989)] Let Z1, . . . , ZT be Z-valued random
variables andΦ : ZT → R be aBorel-measurable function such that there exist non-negative
constants c1, . . . , cT satisfying

|E[Φ(ZT
1 )|z1, . . . , zt ] − E[Φ(ZT

1 )|z1, . . . , z′t ]| ≤ ct

for all z1, . . . , zt , z′t ∈ Z. Then for any ε > 0 the following inequality holds

P(Φ(ZT
1 ) − EΦ(ZT

1 ) ≥ ε) ≤ exp

( −2ε2∑T
t=1 c

2
t

)
.

123



116 Mach Learn (2017) 106:93–117

References

Agarwal, A., & Duchi, J. (2013). The generalization ability of online algorithms for dependent data. IEEE
Transactions on Information Theory, 59(1), 573–587.

Alquier, P., & Wintenberger, O. (2010). Model selection for weakly dependent time series forecasting. Tech.
Rep. 2010-39, Centre de Recherche en Economie et Statistique.

Alquier, P., Li, X., & Wintenberger, O. (2014). Prediction of time series by statistical learning: General losses
and fast rates. Dependence Modelling, 1, 65–93.

Bartlett, P. L., Bousquet, O., & Mendelson, S. (2005). Local Rademacher complexities. Annals of Statistics,
33(4), 1497–1537.

Barve, R. D., & Long, P. M. (1996). On the complexity of learning from drifting distributions. In Proceedings
of the ninth annual conference on computational learning theory, COLT ’96.

Bernstein, S. (1927). Sur l’extension du thorme limite du calcul des probabilits aux sommes de quantits
dpendantes. Mathematische Annalen, 97(1), 1–59.

Berti, P., & Rigo, P. (1997). A Glivenko–Cantelli theorem for exchangeable random variables. Statistics and
Probability Letters, 32(4), 385–391.

Cortes, C., Greenberg, S., & Mohri, M. (2013). Relative deviation learning bounds and generalization with
unbounded loss functions. CoRR abs/1310.5796.

De la Peña, V. H., & Giné, E. (1999). Decoupling: From dependence to independence: Randomly stopped
processes, U-statistics and processes, martingales and beyond, probability and its applications. New
York: Springer.

Doukhan, P. (1994).Mixing: Properties and examples. Lecture notes in statistics. New York: Springer.
Dudley, R.M. (2002).Real analysis and probability, Cambridge studies in advancedmathematics. Cambridge:

Cambridge University Press.
Eberlein, E. (1984). Weak convergence of partial sums of absolutely regular sequences. Statistics and Proba-

bility Letters, 2(5), 291–293.
Hsu, D. J., Kontorovich, A., & Szepesvari, C. (2015). Mixing time estimation in reversible markov chains

from a single sample path. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.),
Advances in neural information processing systems 28 (pp. 1459–1467). New York: Curran Associates,
Inc.

Kifer, D., Ben-David, S., &Gehrke, J. (2004). Detecting change in data streams. In Proceedings of the thirtieth
international conference on very large data bases, VLDB ’04 (Vol. 30, pp 180–191).

Koltchinskii, V., & Panchenko, D. (2000). Rademacher processes and bounding the risk of function learning.
In E. Gin, D. Mason, & J. Wellner (Eds.), High dimensional probability II, progress in probability (Vol.
47, pp. 443–457). Boston: Birkhuser.

Kuznetsov, V., & Mohri, M. (2014). Generalization bounds for time series prediction with non-stationary
processes. In P. Auer, A. Clark, T. Zeugmann, & S. Zilles (Eds.), Algorithmic learning theory. Lecture
notes in computer science (Vol. 8776, pp. 260–274). Berlin: Springer.

Kuznetsov, V., & Mohri, M. (2015). Learning theory and algorithms for forecasting non-stationary time
series. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural
information processing systems 28 (pp. 541–549). New York: Curran Associates Inc.

Liang, T., Rakhlin, A., & Sridharan, K. (2015). Learning with square loss: Localization through offset
Rademacher complexity. In Proceedings of the 28th conference on learning theory, COLT 2015, Paris,
France, July 3–6, 2015 (pp. 1260–1285).

Mansour, Y., Mohri, M., & Rostamizadeh, A. (2009). Domain adaptation with multiple sources. In D. Koller,
D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems 21
(pp. 1041–1048). New York: Curran Associates Inc.

McDiarmid, C. (1989). On the method of bounded differences. Cambridge: Cambridge University Press.
Meir, R. (2000). Nonparametric time series prediction through adaptive model selection. Machine Learning,

39, 5–34.
Mendelson, S. (2014). Learning without concentration. In Proceedings of The 27th conference on learning

theory, COLT 2014, Barcelona, Spain, June 13–15, 2014 (pp. 25–39).
Mendelson, S. (2015). Learning without concentration. Journal of the ACM, 62(3), 21.
Mohri, M., & Muñoz, A. M. (2012). New analysis and algorithm for learning with drifting distributions. In

N. Bshouty, G. Stoltz, N. Vayatis, & T. Zeugmann (Eds.), Algorithmic learning theory, Lecture notes in
computer science (Vol. 7568, pp. 124–138).

Mohri, M., & Rostamizadeh, A. (2009). Rademacher complexity bounds for non-i.i.d. processes. In D. Koller,
D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems 21
(pp. 1097–1104). New York: Curran Associates Inc.

123



Mach Learn (2017) 106:93–117 117

Mohri, M., & Rostamizadeh, A. (2010). Stability bounds for stationary ϕ-mixing and β-mixing processes.
Journal of Machine Learning Research, 11, 789–814.

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning. Cambridge: The
MIT Press.

Pestov, V. (2010). Predictive PAC learnability: A paradigm for learning from exchangeable input data. In
Proceedings of the 2010 IEEE international conference on granular computing, GRC ’10 (pp. 387–391).

Rakhlin, A., Sridharan, K., &Tewari, A. (2010). Online learning: Random averages, combinatorial parameters,
and learnability. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, & A. Culotta (Eds.), Advances
in neural information processing systems 23 (pp. 1984–1992). New York: Curran Associates Inc.

Rakhlin, A., Sridharan, K., & Tewari, A. (2011a). Online learning: Beyond regret. In COLT 2011—The 24th
annual conference on learning theory (pp. 559–594)

Rakhlin, A., Sridharan, K., & Tewari, A. (2011b). Online learning: Stochastic, constrained, and smoothed
adversaries. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, & K. Weinberger (Eds.), Advances in
neural information processing systems 24 (pp. 1764–1772). New York: Curran Associates Inc.

Rakhlin, A., Sridharan, K., & Tewari, A. (2015). Sequential complexities and uniformmartingale laws of large
numbers. Probability Theory and Related Fields, 161(1–2), 111–153.

Ralaivola, L., Szafranski, M., & Stempfel, G. (2010). Chromatic pac-bayes bounds for non-iid data: Appli-
cations to ranking and stationary β-mixing processes. Journal of Machine Learning Research, 11,
1927–1956.

Shalizi, C., & Kontorovich, A. (2013). Predictive PAC learning and process decompositions. In C. Burges, L.
Bottou, M.Welling, Z. Ghahramani, &K.Weinberger (Eds.), Advances in neural information processing
systems 26 (pp. 1619–1627). New York: Curran Associates Inc.

Steinwart, I.,&Christmann,A. (2009). Fast learning fromnon-i.i.d. observations. InY.Bengio,D. Schuurmans,
J. Lafferty, C. Williams, & A. Culotta (Eds.), Advances in neural information processing systems 22 (pp.
1768–1776). New York: Curran Associates Inc.

Vapnik, V. (1998). Statistical learning theory. London: Wiley.
Volkonskii, V., & Rozanov, Y. (1959). Some limit theorems for random functions. I. Theory of Probability and

Its Applications, 4(2), 178–197.
Yu, B. (1994). Rates of convergence for empirical processes of stationary mixing sequences. The Annals of

Probability, 22(1), 94–116.

123


	Generalization bounds for non-stationary mixing processes
	Abstract
	1 Introduction
	2 Independent blocks and sub-sample selection
	3 Generalization bound for the averaged error
	4 Mixing and averaged generalization error
	5 Generalization bound for the path-dependent error
	6 Asymptotically stationary processes
	7 Fast rates for non-i.i.d. data
	8 Unbounded loss functions
	9 Conclusion
	Acknowledgements
	Appendix 1: Proofs
	Appendix 2: Review of sequential rademacher complexity
	Appendix 3: McDiarmid's inequality for dependent random variables
	References




