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Abstract In ensemble systems, several experts, which may have access to possibly different
data, make decisions which are then fused by a combiner (meta-learner) to obtain a final
result. Such ensemble-based systems are well-suited for processing big-data from sources
such as social media, in-stream monitoring systems, networks, and markets, and provide
more accurate results than single expert systems. However, most existing ensemble-learning
techniques have two limitations: (i) they are supervised, and hence they require access to
the true label, which is often unknown in practice, and (ii) they are not able to evaluate the
impact of the various data features/contexts on the final decision, and hence they do not
learn which data is required. In this paper we propose a joint estimation—detection method
for evaluating the accuracy of each expert as a function of the data features/context and for
fusing the experts decisions. The proposed method is unsupervised: the true labels are not
available and no prior information is assumed regarding the performance of each expert.
Extensive simulation results show the improvement of the proposed method as compared
to the state-of-the-art approaches. We also provide a systematic, unsupervised method for
ranking the informativeness of each feature on the decision making process.
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1 Introduction

In numerous big data applications [e.g., data-driven marketing (Brown et al. 2011), surveil-
lance (Craig and Ludloff 2011), sensing and networking (Segaran and Hammerbacher 2009),
and health monitoring (Tseng et al. 2008)] involving data mining, decision making, predic-
tions etc., ensemble-based approaches have been shown to produce more accurate results
than single-expert systems (Kuncheva and Whitaker 2003; Tekin and van der Schaar 2013;
Zhang et al. 2013). Another key advantage is that, when the various experts have access
to and base their decisions on heterogeneous sources of data, ensemble-based approaches
do not need to centralize the data acquisition and processing, thereby enabling low-delay,
distributed processing by individual experts.

An ensemble system is constructed from a set of (possibly heterogeneous)! experts and
a proper combining rule for fusing the outputs of the experts. Individual experts may have
access to heterogeneous data and may have been trained using different data sets. Hence,
by properly combining their outputs, ensemble-based methods can achieve more accurate
decisions.

As mentioned above, in many applications, the data may be distributed among the experts,
with each of the experts using a part of the data. The data may be partitioned horizontally
so that each expert works with different disjoint subsets of the entire data set, or vertically
so that each expert works with a subset of dimensions (or features) of the same data (Zhang
et al. 2013; Zheng et al. 2011).

It is well-known that the success of ensemble methods depends on the diversity of the
experts. Bagging (Bootstrap aggregating, Breiman 1996), Boosting, (Schapire 1990), and
AdaBoost (Freund and Schapire 1997) represent examples of ensemble learning methods in
which diversity is achieved by using different training subsets. Neural networks and decision
trees represent examples in which diversity is achieved based on the structure of the expert
and the parameters selected during their training stage.

In any ensemble system, the combiner, which combines the local decisions of the experts,
plays an essential role in determining the overall performance. Different methods have been
proposed to aggregate the individual decisions of experts. When the performance of experts
is unknown, majority rule is often employed (Kuncheva 2004), while when the performances
of the experts is known, weighted majority rules are often employed, in which different
optimally-designed weights are assigned to the experts based on their accuracies.

The method of tracking the best expert is one of the seminal works in online ensemble
learning based on weighted majority rule (Herbster and Warmuth 1998). In this approach,
the importance of each expert is modeled by a weight which is updated over time using
an adaptation method. Different variations of this method have been proposed in which the
fusion rule or adaptation algorithm were improved. To improve the adaptation equation, new
cost functions are suggested in Choromanska and Monteleoni (2012), Herbster and Warmuth
(2001), Monteleoni and Jaakkola (2004).

A priori information regarding the performance of each expert can be obtained using
training and validation data sets. For instance, the behavior knowledge space (BKS) method
estimates the densities of the classifier outputs and requires large training and validation data
sets (Huang and Suen 1995). In some ensemble systems, the experts and the combiner are
trained together, using a joint procedure, such as stacked generalization or mixture of experts
(Jacobs et al. 1991; Wolpert 1992).

! Here heterogeneity of classifiers implies that they may adopt different processing schemes, which may lead
to different error rates in classifying the data (Webb and Copsey 2011).
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Optimal fusion of local decisions requires the a priori knowledge of the accuracy of the
experts which, in many applications, may not be available. For example, the data may have an
extremely large dimension or the data stream may be time-varying which makes it difficult to
accurately evaluate the experts’ performance based on a priori, limited validation data sets.
Moreover, data streams are often received along with their context. The context could be a
small side information such as a description of the way the data is acquired (Tekin and van der
Schaar 2013), or it could be a small dimensional portion of the actual high dimensional data
representing one of its features or attributes. However, the accuracies of the experts often
vary with the context, and the combiner needs to know the accuracies of the experts for every
arriving context in order to optimally fuse their decisions, resulting in prohibitively high cost
in processing, communication and storage requirements.

In this paper we present an unsupervised ensemble learning method in which the combiner
has no prior information regarding the experts’ performance. In addition, the methods adopted
by the experts or the data in which they operate is also unknown by the combiner. Each expert
may use a different part of the big data, the preprocessed data, or even different correlated
data streams obtained from multiple sources. The combiner uses an unsupervised approach
to evaluate the accuracies of the experts as functions of the data context as well as to fuse the
decisions of individual experts. We introduce a model for estimating the experts’ accuracies
in terms of probabilities of false alarm and correct detection.

To contrast our approach with those in Choromanska and Monteleoni (2012), Herbster
and Warmuth (1998), Herbster and Warmuth (2001), Monteleoni and Jaakkola (2004), we
would like to point out that the main focus of these papers is to design an online fusion
rule using the unsupervised weighted majority rule. On the other hand, our approach uses
batch processing. We assume that the data is received along with some context and that
the performance of the individual experts is unknown. Our proposed method estimates the
performance of the experts in terms of their probabilities of detection and false alarm as a
function of the data context, and fuses the decisions of the individual experts. A novel feature
of our approach is the manner in which we develop the expectation maximization (EM)
algorithm to enable ensemble learning. Ordinarily, for a set of [ instances or time indexes,
the well-known EM algorithm (Dempster et al. 1977) must run for 2/ runs in order to obtain an
estimation of the parameters and the fused decisions for the [ instances. Instead, we introduce
separate prior probabilities for the fused decision of each instance. This allows us to obtain
an estimate of the parameters and the fused decision for the 7 instances from a single run of
the EM algorithm. We show that, even though unsupervised, our proposed ensemble learning
method outperforms numerous state-of-the-art ensemble approaches that are supervised.

In many applications we wish to determine the importance or influence of different features
on the final decision. Previously, different traditional feature selection methods have been
proposed in Holte (1993), Karegowda et al. (2010), Roobaert et al. (2006), Kannan and
Ramaraj (2010). These are supervised methods in which the true labels are known, and the
features are selected based on different criteria. Mutual information quotient (MIQ) and
mutual information difference (MID) are two effective feature selection methods which are
based on the mutual information between the true label and different features (Ding and Peng
2003; Peng et al. 2005). The main drawback of these methods is that they are supervised,
i.e., they need to know the true label. We extend our proposed method to select/rank the
features (data contexts), in terms of their impact on the ensemble’s decision making process.
We show that, even though unsupervised, our proposed feature selection method is similar
in performance to supervised feature selection methods such as MIQ and MID.
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A preliminary version of this paper appears in the proceedings of the 32nd International
Conference on Machine Learning, pp. 2076-2084, 2015. The current manuscript has the
following changes/additions from our ICML paper.

— We have explained our algorithm in more detail, with derivations and with additional
discussions.

— We have provided a discussion on the computational complexity of the proposed algo-
rithm.

— Assuming that the expectation maximization algorithm converges to the maximum like-
lihood solution, we have justified the combiner’s fusion rule.

— Using an information theoretic approach, we have proposed a new feature ranking algo-
rithm. The results show that this new feature ranking approach provides a performance
similar to the supervised ranking methods.

— We have included several additional results on the performance of the algorithm, on a
comparison of the proposed method with the majority rule, and on the effect of the values
of the parameters of the algorithm on its performance.

The rest of this paper is organized as follows. In Sect. 2, we introduce the required
notations and formulate the problem. In Sect. 3, the proposed approach is developed. The
feature selection procedure is introduced in Sect. 4. Finally, numerical results and concluding
remarks are presented in Sects. 5 and 6, respectively.

2 Problem formulation and notations

We consider an ensemble learning system with K experts; each expert classifies an input
data stream characterized by its context.

Since a multiple-choice decision making problem can be divided into a set of binary
decision problems (Lienhart et al. 2003), without loss of generality we consider the binary
decision problem here.

For each instance? i, let the portion of data available for the kth expert be denoted by
si(i) € Sk, and let Z(i) € Z be the context of the received data. As mentioned before, the
context may be a vector in general, and may represent a side information about the data or it
may be a subset of the features (attributes) of the data. The set Z is assumed to be a (subset
of a) metric space with the metric dz(z1, z2) that represents the distance between z; and z5.
Let y(i) € ¥ £ {0, 1} denote the true label at instance i. In the proposed approach, the true
label y(7) is not available to the combiner/ensemble learner and the combiner does not know
the methods used by the experts to classify the data. Our unsupervised method will use the
context Z (i) to estimate the accuracy of each expert.

LetZ2[Z(1)Z(2) ... ZU)]andy £ [y(1) y(2) ... y(I)] denote the observed vector
of contexts and the unobserved vector of true labels, respectively, for a duration / starting at
1. As mentioned previously, y is not available and its detection is also a part of the proposed
approach. We define the label matrix, A, by

AL [80(1) 80(2) -+ 50(1)]
81(1) 61(2) -+ 81(1)

where column i corresponds to the true label y(7), and at each instance i, one of the elements
in column 7 is 1 and the other is 0. If §0(i) = 0, then §;(i) = 1, indicating that at instance

ey

2 For other applications such as processing a database, instance can be replaced by the index of the data
sample.
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Distributed multiple sources
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Fig. 1 System model includes data si (i) for k = 1,2, ..., K received from distributed multiple sources at

instance i to K experts for making local decisions. The context Z (i) of data is also available to the expert
system. The combiner (learner) uses the local decisions from the experts and the contexts from the sources in
order to estimate the accuracy of each expert as a function of its context and also to fuse the local decisions to
make the final decision, y (). The combiner will also extract the importance of different features of the data
in the decision making process

i we have y(i) = 1; similarly, if 3o(i) = 1, then §;(i) = 0, indicating that at instance { we
have y(i) = 0.

Let (i) be the local decision of the kth expert at instance i and let y(i) =
[&1 @) y20) ... yx( )]Jr denote the vector of K local decisions at instance i, where T rep-
resents the transpose operation. Finally, let ¥ denote the collection of local decisions for
duration I defined by the following matrix.

@ o i)

LM 2@ e 2D
Y = ) ) : . 2

yk) k@) - YD)

The entire system is shown in Fig. 1. The system is comprised of a set of diverse experts.
Every expert makes a local decision which it delivers to the combiner for the final decision.
Individual experts may be trained with different data sets and may have different error rates.
As shown Fig. 1, the performance of an expert is affected by the part of data dedicated to it and
its classification rule. In the rest of the paper, in order to make the problem mathematically
tractable, we assume that given the label and context, the decisions of the individual experts
are independent.

The combiner receives the decisions of all the experts, Y, (as well as the context Z) and
needs to fuse them to get an estimate of the (unknown) true labels. However, to enable the
efficient fusion of the received decisions, the combiner must estimate the accuracy of each
expert. We describe these accuracies in terms of the probabilities of correct decision for each
expert. More specifically, we associate a probability of (correct) detection® and a probability
of false alarm* with each expert. In order to estimate these probabilities, we require the true
labels (which are unknown). On the other hand, (for the combiner) to detect the true labels, we

3 The probability that the expert makes a correct determination of the true label when the label is 1.

4 The probability that the expert makes a an incorrect determination of the true label when the label is 0.
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require the probabilities of detection and false alarm. From this, it can be easily seen that these
two problems are connected. A naive solution is to estimate the probabilities of false alarm
and detection for every possible label (decision) vector from 1 to 7 (2! possibilities), and then
use these estimated probabilities to evaluate the likelihood of observing the corresponding
label vector, and among all the label vectors, select the one with the highest likelihood.
Clearly, the computational complexity of this approach is prohibitive. In the next section we
present a novel method based on the EM algorithm which can be used to effectively detect
the true labels and estimate the probabilities of false alarm and detection for each expert with
significantly lower complexity than the brute force method.

In addition to characterizing the accuracy of each expert, the probabilities of detection
and false alarm model the changes in the input statistics of each expert. Furthermore, we note
that the effect of noisy data on the performance of each expert can also be included in these
probabilities. In particular, higher noise levels in the data result in a lower performance for
the experts in terms of probabilities of false alarm and detection. Since the performance of
an expert is determined by the context of its acquired data, these probabilities are assumed to
be functions of the context. For a fixed context, however, an expert has fixed probabilities of
detection and false alarm. Therefore, for context z and for expert k, we define the probability
of detection, denoted by p1x(z), and the probability of false alarm, denoted by po(z) as

P(@) £ p (@) =118, = 1:z), n=0,1 3
We assume that these probabilities are Lipschitz continuous with Lipschitz constant ¢, i.e.,

[Pyk(z1) — Poik(22)| < cpre dz (21, 22) “4)

where dz, defined previously, is the metric on the set Z. This assumption, which imposes a
constraint on how fast an expert’s accuracy can change with context, is clearly valid in most
practical situations (Kleinberg et al. 2008; Tekin and van der Schaar 2013). We arrange these
probabilities for all the experts into a matrix P(z) £ [P, n=0,1,k=1,2,..., K.
Note that the combiner does not know P (z) and one of the goals of our proposed method is
to estimate it.

We assign prior probabilities ¢ (i) and ¢ (i) to the true label y(i) fori = 1,2, ..., I and

arrange them in a matrix as follows>
a [P0(1) do(D) -+ ¢o()
‘L[«m(l) h@ ¢1(1>] ®

where ¢, (i) = p(8,(i) = 1) and ¢o(i) + ¢1(i) = 1. Please note that neither A nor @ are
available to the combiner. They are assumed to be unknown parameters which are evaluated
in the proposed method in order to estimate P and to detect y. To summarize, the two-tuple,
® = {P(z), @} is defined as the unknown parameter set which the combiner tries to estimate
based on the local decisions of the experts, Y, and context of the data, Z. After estimating
the parameter set @, the combiner detects the true labels y. In the next section, we propose
an approach based on the EM algorithm for the combiner to achieve these goals. A timing
diagram of available and unavailable information is shown in Fig. 2.

5 We would like to point out that although we refer to @ as the prior probability matrix, it is only introduced
here to convert the problem of detection of y into a problem of estimation of the matrix @. This point is made
clear in Sect. 3.2.
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True Decisions: I y() ‘ y(2) ‘ ‘ y() |
Expert 1 local decisions: »n@® n@ n)
Expert 2 local decisions: »QD 7,(2) 7D
Expert K local decisions: ):’K () j/K 2) )7K )
Contexts: Z(1) Z(2) Z(I)
L | | I |
1 2 1

Fig.2 Timing diagram of the proposed system. The gray areas include Y and Z show the available information
for the combiner. Note that the true labels in the first row are not available

3 Estimation of the experts’ accuracies and decision making

In this section, given the local decisions, Y, and the observed vector of contexts, Z, we first
develop an estimation method for ® (which includes the estimation of P(z), Vz € Z, and
@). Then, we use the estimated parameters to detect the true labels y.

3.1 Estimation procedure
The maximum likelihood estimate of ® given Y and Z is given by

(:):argmaxp(Y|(~),Z):argmapr(Y,A | ©,7) (6)
] e 3

By considering A as a latent variable, the mixture model in (6) can be iteratively solved using
the EM algorithm. First, we evaluate p(Y, A|®, Z) by

p(Y,Al®,Z) = p(Y|A;0,Z) p(A|O, Z) )

where p(Y|A; ©®, Z) represents the probability that the K experts, over the / instances, make
the decisions arranged as the matrix Y, given that: the parameter set, @ is known, the contexts
are as in Z, and the actual label matrix is A. Given this condition,® observations $; (i) and
Ym (j) will be independent for m # k ori # j. Also since the actual label is independent
of experts parameters and the context, i.e., p(A|®,Z) = p(A). Here we assume the actual
labels are independent over the instances. Therefore,

. N 0
p.aie.n=T[T1I1 [pzz(”(zm) (1= pu(Z @) 7 (i)] ®)
k i n

Note that in this section and for all the products and summations, i is in the range 1 to 7, k
goes from 1 to K, and 7 is in {0, 1}. The log-likelihood function is obtained as

6 As mentioned previously, we assume that given the true labels, i.e., A, and the contexts Z (as well as the
parameter set @), the experts’ decisions are independent.
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L(®;Y AZ)=logp(Y,A|®O,Z)

=2 >80k log py(Z())
ki n

1
+ (1= Je@))log (1 — py(Z (i) + e 10g¢n(i)] ©))

After finding the log-likelihood function we are able to construct the two steps of EM algo-
rithm: the expectation and the maximization steps. They are described below.

Expectation step

In this step, the expectation of the log-likelihood function, denoted by Q(®; ®°9) is
evaluated with respect to the conditional distribution p(A | Y; ©°9) of the latent variable
A, where ©°1 ig the previous estimate for ®. That is,

0 (©:0°9) = E 5 \y.0u0 [L(O; Y, A, Z)]

=22 >y b5l log py(Z()
k i n

1
+ (1= 51 log (1 = pyr(Z(@) + 7 log 6, ()] (10)

where E4c, p,... denotes expectation with respect to A given the variables C and D, .. ., and
where

y(0.1) = E zjy. 00 [8,()] = p(8,(1) = 1] ¥; 0, Z(i))
= p(,;(i) = 11§(): 0, Z(i))
_ PO 18,() = 1.0, Z() p3, () = 1| 07, Z(0))

>0 PG | 8j = 1: @M, Z()p(3j = 1] O, Z(i))

MO T (g z@n) ™ (1 = pizan)
= Z}-:o ¢;?1d(i)l'[k (p%d(z(i)))yk(i)(l _ p?}(d(z(i)))lf_\’k(i)
MO T (pz@n) ™ (1 = pizan)
80O [T () (1 - p9dzan) Y

an

Maximization step
In this step, Q(®; ®°'Y) is maximized with respect to @. In maximizing Q(©; ©°4)
with respect to ¢, (i) we must consider the constraint 237:0 ¢y (i) = 1. Therefore using the

Lagrange multiplier method, we maximize the Lagrangian 0 (@; e, k,-) given by

1
0 (0: 0% 1) = Q(@: 0% + 2, { D ¢y i) — 1 (12)
n=0

which gives

3Q' :y(n,.i) =0 (13)
3¢n(l) ¢n(l)
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Multiplying both sides by ¢, (i) and summing over n gives A; = — Z}:O y(j, 1), which
results in
. y(n, i) .
¢2ew(l) = =1 . .- y(n, 1) (14

We would like to note that since Q(®; ©®°!9) is a concave function of ¢, (i), and the constraint
is linear, the solution of the above Lagrangian in fact maximizes Q(®; (~)°1d).

Maximization of Q(®; ®°4) with respect to p,x(Z(i)) is also a constraint optimization
problem given by

P;;le(Z(i)) = arg max Q (@; @old)
Pnk(Z(i))

subject to:

[pnk (z1) — ppr(22)] < epedz (21, 22) , V21,22 € 2
0<pu@)<lforn=0,1, k=1,2,...,K, Vze Z (15)

Since log(.) is a concave function and y (1, i) and J;(i) are non-negative, and since non-
negative weighted sum of concave functions is still concave, Q (®; @O]d) is a concave function
of pyk(Z(i)). Therefore we can use convex optimization approaches to solve (15). Towards
this let

onk(l, ) £ epedz (2(D), 2())) (16)
Poc 2 [P (Z(D), pp(Z(2)), ..., pyp(Z()]T' a7

Y@ 2 D v, 1) (k) log pur(Z(@) + (1 = @) log (1 = pe(Z(@0) ) (18)

Then, to maximize Q(®; ©®°4) with respect to ppx(z) subject to the Lipschitz continuity
constraint in (4), we can solve the constrained optimization problem given by

Py = argmax ¥ (p,)
pnk
subject to:
[Pk (z(D)) — Pk UGN <o, j) YL, j, i=1,2,...,1,
0<pu(Z@) <lforn=0,1, k=1,2,...,K (19)
We can rewrite (19) as
Py = argmax ¥ (p)
pnk
subject to: Ap,]k <pand 0 < P < 1 (20)

where the inequalities are component-wise, and 0 and 1 are the all-zero and the all-one
column vectors of length 7, respectively, and where
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1 2 3 4 -1 1
[ 1 -1 0 0 0 0]
2 —1 1 0 0 0 0
3 1 0o -1 0 0 0
4 -1 0 1 0 0 0
21-1 1 0 0 0 0 -1
21 -1 0 0 0 0 1
21+1 0 1 -1 0 0 0
A A 2142 0 —1 1 0 0 0 (21)
2143 0 1 0 -1 0 0
2144 0 -1 1 1 0 0
41-1 1 0 0 o - 0 -1
412 -1 0 0 o - 0 1
12—1-1 0 0 0 o .- 1 -1
r-r|] 0 0 0 o - -1 1]
and
[ em1,2) ]
2 onk(1,2)
3 onk(1,3)
4 onk(1,3)
-1 | o1, 1)
21 onk (1, 1)
27+1 onk(2,3)
A 2142 an(z, 3) (22)
&= s on(2,4)
2144 onk(2,4)
4r1—1 on (2, 1)
412 onk(2, 1)
12—1-1| op((I —2), 1)
-1 | ow( = 1), 1) |
Here the maximization is performed with respect to the pjx, n =0,1,k=1,2,..., K, and

the rest of the parameters are considered fixed. Note that the objective function is concave and
the constraints are linear; therefore, (20) can be solved using interior point methods (Boyd
and Vandenberghe 2004).
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By iterating between the expectation step and the maximization step, until a stopping
criterion is satisfied,” we find an estimation of the parameter set.8

In each iteration of the EM, Egs. (11), (14), and (20) are calculated. (14) is directly derived
from (11), so they together need O(K I) multiplications. However, in each iteration to solve
(14), a use of the interior point algorithm is required which would be the most dominant term
in the computational complexity and requires O(+/K I) in each of its iterations. Assuming Nip
iterations are required for interior point, the computational complexity would be O(Np VKI)
(Anstreicher 1999). Finally, assuming that we run the EM Ngy times, the computational
complexity of the entire algorithm would be O(Ngv Nipv/K 1).

We denote the final estimates of the parameter set by @. Similarly we denote the final
estimates of P and @ and their entries p,x(z) and ¢, (i) by P, &, Dk (2) and (]3,, (i), respec-
tively.

In order to evaluate py(z) for all z € Z, we note that forany j = 1,2,...,1,7=0,1
andk=1,2,...,K,

Pk (2(j)) — eppdz (2, 2(j)) < Ppoi(2) (23)
Pk () + cqrdz (2, 2(j)) = Pppx(2) (24)
Therefore, we can interpolate the values of px(z(1+1)),l =0, 1, ..., I —1to obtain p,,(z)
forany z € Z. Let
ply(@) = lgljag] { Py () — enrdz (2, 2())} (25)
and
P2 = min (P + epdz @ 2())) (26)
We then set”
Pok(2) = min {p1,,(2), p2,(2)} 27)

Remark 1 The Lipschitz constants ¢, affect the performance of the algorithm in estimating
the parameters p,(z) as functions of z. As evident from (4), (23) and (27), smaller values of
cyk result in a smoother estimate for pj(z), while larger values of ¢, allow for larger vari-
ations in the estimates. Therefore the Lipschitz constants ¢, must be selected in accordance
with the performance of the classifiers as a function of the context variables. In particular, if
for example the detection performance pix(z) of the kth classifier is believed to be very sen-
sitive to the context variable z, i.e., small changes in z result in large changes in px(z), then
the value of c1; must be chosen to be large. On the other hand, if the detection performance
of the k-th classifier is not very sensitive to the context variable z, then a smaller value should
be assigned to cyx. That said, we would like to also point out that the Lipschitz condition
in (4) is introduced to enable the estimation of the functions p,(z) with a smaller number

TA stopping criterion could be a pre-selected number of iterations or a threshold on the relative difference
between the last two estimations. In Sect. 5, we have used the number of iterations as the stopping criterion
where we show the results of the parameter estimation for 1, 2 and 5 iterations of the algorithm. It is shown
that the estimated parameters after 2 and 5 iterations are very close and also close to the actual parameters.

8 For a discussion of the convergence properties of the EM algorithm we refer to Dempster et al. (1977),
Bishop (2006).

9 The minimum in (27) provides a maxmin approximation for the values of detection (false alarm) probabilities
that have been calculated. This is an interpolation problem and our approach is admittedly heuristic. Another
approach is to select the mean.

@ Springer



470 Mach Learn (2016) 105:459-485

of samples. It is important to note that even if c;x do not satisfy (4) for the true functions
Pk (2), our algorithm still works. However, in this case our estimates of p;(z) may not be as
accurate. In Fig. 5 of Sect. 5 we present results of the estimations for different values of the
Lipschitz constants to highlight this point. When the Lipschitz constants are not known, they
can be set to larger values initially. It is worth noting that for a given number of data samples,
with smaller values of the Lipschitz constants the results would be smoother. Knowing the
Lipschitz continuity provides extra information to the combiner about the performance of the
experts as a function of the context. This information limits the possibilities for the probabili-
ties of false alarms and detection of the experts to the set of functions satisfying the Lipschitz
continuity constraints. However, knowing this information is not critical in the detection of
the labels or the estimation of the parameters. When this information is not available at the
combiner, it can be set to a large number relative to the domain of context, Z. In this way, no
constraint will be applied to the EM algorithm. However to achieve a performance similar to
the case that the Lipschitz constants are known, more data samples will be required.

Similar to other estimation methods which do not have access to any prior information
about the probabilities of false alarm and detection of classifiers, there is always an ambiguity
between two global maximums in the optimization function. Assume that P, @, and their
entries pyi(z) and ¢, (i) are the actual parameters for the model. Then the probability of
observing Y given P, @, Z is obtained by,

p(Y|P @3 2) = p (Y|P, &: 2) 28)

where P is a matrix defined as Pk (2) = P(1—nk(z) and & is a matrix defined as ‘1;'7 i) &
&(1—n)(i). Therefore {P, @} and { P, QS} are both candidates for the final estimation. To
resolve this ambiguity, it is assumed that for the majority of classifiers, the probability of
detection is greater than the probability of false alarm, i.e., the majority of classifiers have a
performance above the chance line.

3.2 Combiner’s decisions

In the previous section, we evaluated the estimates of probabilities of false alarm and detection
for all the experts as well as the prior probabilities of the true labels P.

After estimating the parameters, one can use the estimated probabilities of false alarm
and detection to detect the current labels for 1 < i < I as well as the upcoming labels for
i > I.Based on the maximum likelihood (ML) rule and for all i, the detection of a label can
be performed as follows:

L, H/€<=1 Pf;’i(i)('z(i))(l — plk(Z(i)))I*}A’k(l;) |
siy =1 =Tl @) (= poz)!—HO 29)

0, otherwise.

It is well known that the sequence of estimates obtained from the EM algorithm converge
to a fixed point (Bishop 2006). Moreover, at this fixed point the derivative of the likelihood
function is zero. This point may be the global maximum of the likelihood function in which
case the fixed point obtained from EM is in fact the maximum likelihood estimate. However,
it is also possible that the fixed point is a local maximum or a saddle point of the likelihood
function. In this section we assume that the EM algorithm does indeed converge to the
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maximum likelihood estimate.!? Therefore, for 1 < i < I, we can represent the estimated
parameters as the ones which maximize the following,

logp (Y©,Z) =log > p(Y,A|6,Z)

T (50 =5k 4 % 1)
[TIT (P @@ x (1= puzan)' = ¢f @)

1 k=173=0

:1~|>

=10gz...z

do(1) o) i

logZﬁ

1 sl k=17

Vi (i . . — (i L . 3, ()
(PO @) x (1 = puz@))' " 9 ) (30)

—-

1
i=

0

where as before, if 6o(i) = 1 then 6;(i) = 0, and if 5o(i) = O then §;(i) = 1. Now (30) can
be written as follows.

1 K
log p(¥10,Z) = > log (9o [ ] pit™ (2 (1 = pox(z (i)' @
i=1 k=1

K
+ o) [T i@ (= puz i)' @) (31)

k=1

To maximize (31) with respect to

{$g().n=0,1i=12...1},

it is sufficient to maximize each term in the summation. Let

K
AW 2 [T po”Z @) (= por(Z (i)' @ (32)
k=1
K L .
and B() 2 [T pii” @) (1 = pi(z@)' 0. (33)
k=1

Then the argument in the summation can be written as

U = log (AW)go(1) + B)p1 (1) (34)

Maximizing U with respect to ¢ (i) and ¢ (i) with the constraint that ¢o(i) + ¢1 (i) = 1, we
see that the solution is either ¢pg(i) = 1—¢; (i) = 1 (if A(G) > B(@))orgg(i) = 1—¢1(i) =0
(if A(i) < B(i)). This means that for 1 < i < I, to detect the true labels, one can simply use
the following rule,

sy [ 1 @1G) = o)

Yo = [O, otherwise. (35)

We denote the final detected labels by y = [y(1), ¥(2), ..., y(I)]. The entire procedure
of estimating the parameter set and making decisions is summarized in Algorithm 1.

10" All our numerical results verify this to be the case.
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Algorithm 1 Estimation of the parameter set and combiner’s decisions

Input: The local decisions of K experts from 1 to /, ¥ and the corresponding contexts, Z
Output: The estimation of the probabilities of false alarm and detection for all of the experts, P, and the made
decisions, ¥

1: Assume an initial estimation for @eW11
2: while Stopping criterion is not satisfied do

3 pRdZa)) < pIV(Z(@)

4 ¢ < pV )

5: Find y (n, i) using (11)

6: Find qb{]‘ew (i) and p?)iw (Z(i)) using (14) and (20)

7: end while

8: For all z € Z, interpolate the values of p]’;zw (z(1 + 1)) using (25)—(27)
9: @ « "V

10: Make decisions using (35)

4 Feature selection

In this section, we extend the proposed approach in Sect. 3 in order to extract the importance
of each individual feature of a data set in the decisions of the individual experts as well
as the combiner’s decisions. Suppose that the received data is described by N features or
attributes. We denote the £th feature by x¢ € X¢ where X¢ denotes the set of values that
feature x* may assume. Hereafter, xt=x implies that the value of the £th feature, xt, is
x. The system model is the same as that in Fig. 1. Each expert sends its decisions to the
combiner and the combiner implements the proposed approach described in Sect. 3 once for
each feature, where a feature in this section is the same as a context in Sect. 3.

We assume that the ensemble system is constructed from a variety of experts and, with the
proposed approach, a very accurate detection performance can be achieved. In other words,
we assume that the combiner’s decisions are the same as the true labels. This assumption
allows us to analyze each feature independently of the others in terms of the information
between the feature and the actual label.

In the following, we find the amount of information that the local decision of the kth
expert provides about the final decision of the combiner when x¢ = x. Let 3 denote the
local decision of the kth expert which is used by the combiner to make the final decision y.
The mutual information between y and J; given that the £th feature takes the value x is given
by

pGe=n3=jlx'=x)
pGk=jlx)p(y=nlxt=x)

1o
:ZZPGkZIW:U,xe:x)p(i:nlxezx)

p(k=Jly=nx"=x)
p(k=jlxt=x)

(36)

11 Although we have used the symbol / for the number of indexes as well as the mutual information, we
believe from the context it should be clear which notation is in use.
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If we assume that the combiner is error-free and therefore its decisions are the same as
the true labels, we can write

N 1 — pox (x; £)
. e_ N . (e
1 (y, Vi | x —X) = (1 = pok (x; £)) (1 Ty (x,ﬁ)) log [~y 1 0) 37
pok (x; £)
+ pox (x; ) (1 — 75 (x; £)) log ————=
( y ) 75, (x5 €)
1 —pi(x;0)
1— ¥ s(x; ) log ——mMmMmMm—
+ (1 = pix (x; £)) 75 (x5 €) log T—m, (5 0)
1k (x; £)
+ pik (x5 0) 75 (x; £) log 222 (38)
5 (13 0)
where we have assumed that
A ~ Y4 _ _ A _ [_
P()’k—1|,V—777x —x)—p(yk—JIy—n,x —X) (39)

and where pox (x; £) and pii (x; €) are the false alarm and detection probabilities of expert k
when feature £ is in effect and the value of this feature is x, i.e.,

P02 p(Je=11y=1x"=x) (40)
P02 p (=113 =0.x" =x) (4D

Moreover, 73, (x; £) L2 pGk = 1| xt = x) is the prior probability of the local decision
of the kth expert given that the ¢th feature xt = x, and 5(x; £) L2 p3=1]x'=x)
is the prior probability of the final decision given that the ¢th feature x* = x. For an error-
free combiner which makes correct decisions in (almost) all the cases by fusing the local
decisions of experts, the final decision can be considered to be independent of the feature;
ie., wy(x; £) = p(y = 1). We can estimate these two prior probabilities from our proposed
algorithm (for the ¢th feature x¢ = x) according to

1 -
(60 = £ > 1) (42)
i=1
1
0= p(h=15=jlx =x)
j=0

1
=S (=115 =ix" =x)p(F=J12 =x)
j=0
= Pok() (1= 75053 00) + i (3 0) 75 (33 6) 3)

As a criterion for feature selection, we define the importance of the £th feature for the kth
expert, denoted by imp(¥¢; k), as the correlation coefficient between the information that the
kth expert provides for the true label when we use the £th feature as context. This is given by

Joe (1G9 | 20 =x) — puf,) (x — uf) dx
O’I O’F
kt Yk

imp(¢; k) = (44)
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where

1
1 LI ¢
WUy = —— I(;k|x _x)dx
ke szdx/Xl )

/L{ = ;/ xdx
Jyrdx Jx
(UkIZ)Z = fﬂldx/xz (1 (i; Bl xt = X) - M,il)zdx
(G[)Z — fX/lex/;‘(/z (x — ,ug)zdx (45)

If the importance of the £th feature for the kth expert, imp(¢; k) is small, it implies that the
variations of this feature will not have a significant effect on the performance of the expert, in
turn indicating that this feature is not very important for that expert. On the other hand, larger
values of imp(¢; k) imply that this feature provides more information about the decisions of
that expert. This point is further illustrated in the numerical results in Sect. 5. Finally, we
define the importance of the £th feature as,

imp(¢) = max imp(¢; k) (46)

For a system with a large number of various experts, imp(£) shows the maximum information
that can be provided by that feature from any expert among all possible experts. Therefore, if
one has the £th feature available and has to relay on a single expert, the maximum information
that can be provided by this feature about the actual label is imp(¢€).

The unsupervised feature selection method described above can be extended to more than
one feature per expert by letting the context be formed from the set of features of interest.

5 Numerical results

In this section, we first use a system with up to 8 experts to evaluate the performance of the
proposed unsupervised ensemble approach. The probabilities of false alarm and detection of
these 8 experts as a function of the context z are shown in Table 1. These probabilities are
selected in a way that they can represent a variety of behaviors. Many of the experts have
varying accuracies with different context values, and for many values of the context the false
alarm and detection probabilities of the experts are close to 0.5, i.e., these experts are not very
effective in detecting the true labels. Finally the £; norm is used as the distance measure,
ie.,dz(z1,22) = lz1 — z2ll1-

The majority rule is the most widely used fusion rule for ensemble learning since the
earliest studies of the subject (Blum 1995; Breiman 1996; Canzian et al. 2013; Fan et al. 1999;
Freund and Schapire 1997; Hadavandi et al. 2015; Herbster and Warmuth 1998; Littlestone
and Warmuth 1994; Schapire 1990; Stahl et al. 2015; Wang etal. 2003, 2015). In majority rule,
the combiner’s final decision is made by taking a vote among all the experts at each instant.
That is, the final decision is the one that the majority of the experts agree on. This decision
and the corresponding context is recorded for / consecutive instances. The probability of
detection of each expert for a given context is estimated as the fraction of instances where
the decision from the expert and the final decision from the majority rule agree and are both
one for that context. Similarly, the false alarm probability of an expert for a given context
is estimated as the fraction of instances that the expert’s decision was one, whereas the final
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Table 1 The probabilities of

false alarm and detection of the Pok(2) ok Pk Clk
classifiers Expert 1 —272+2z 20 5+ .5[sin@rg)| 3.1
Expert2  2(z —.5)2 2.0 9 0.1
Expert 3 5]sin(2rz)| 3.1 1—2(z—.5)? 2.0
Expert4 .1 0.1 542z - .52 2.0
Expert5 .5z 0.5 75+ 2(z — .5)° 1.5
Expert6  .25+2(z —.5) 1.5 75 —2(z — .5) 15
Expert 7 S —2) 0.5 54+ .5(z—.5) 0.5
Expert8  .2542(z —.5)° 1.5 52-2) 0.5

decision from the majority rule was a zero for that context. In the following we also compare
the performance of the proposed method with that of the majority rule.

We initialize the EM algorithm!? with all the probabilities of false alarm equal to 0.2,
all the probabilities of detection equal to 0.8, and ¢;(i) = 0.6 fori = 1,2,...,1. We
used 100 samples randomly selected from Z = {0, .05, .1, ..., 1}. To show the convergence
speed of the proposed approach, we use a system with 4 experts; namely Experts 1-4 from
Table 1. The estimated probabilities of false alarm and detection for all the experts are shown
in Fig. 3 for 1, 2 and 5 iterations of the EM algorithm. For this experiment, we choose the
Lipschitz constants from Table 1. It can be seen that the difference between the estimations
after the 2nd and the 5th iterations are very small, indicating the fast convergence of the
proposed approach. The results of using the majority rule are also shown in Fig. 3. This
figure demonstrates that the performance of the proposed combiner (in estimating the false
alarm and detection probabilities of the experts) is good even for a small set of experts. On
the other hand for the majority rule, the final estimated probabilities are very jagged, and in
all of the cases, the proposed approach significantly outperforms the majority rule. In the rest
of this section, we set the number of iterations to 5.

We define the probability of error as

pe = p (¥(i) # y(@)) (47)

In Fig. 4, we show the probability of error versus the number of instances / for the ensemble
system with Experts 1—4 from Table 1. The results are obtained from averaging 10* indepen-
dent trials. It can be seen that the proposed method significantly outperforms the majority
rule. In Fig. 4 we also show the standard deviation for the probability of error. It can be seen
that as expected, the standard deviation decreases with / and that the standard deviation of
the proposed method is smaller than that of the majority rule.

The Lipschitz constant ¢ depends on the data at hand. Figure 5 shows the effect of ¢ on
the final estimations. It can be seen that, a system with too small a constant (¢ = 0.3 here),
cannot estimate the actual probabilities, even though it is very smooth. On the other hand, a
constant which is too large (¢ = 2.7 here) causes jagged estimations.

12 The initial values for the parameter set can be arbitrary. However as it is normally expected the probabilities
of detection are greater than 0.5 and the probabilities of false alarm are less than 0.5. Therefore, in Sect. 5 we
set all the initial probabilities of detection to 0.8 and all the probabilities of false alarm to 0.2. The labels prior
probabilities, ¢y (i), can be any number in the interval [0, 1]. We have initialized ¢ (i) t0 0.6 fori = 1,2, ..., I.
We also used the number of iterations as the stopping criterion and observed that good results can be obtained
with 5 or fewer iterations.
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Expert 1 Expert 3 Expert 4
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¢ Our approach, after the Ist iteration |©
"""" Our approach, after the 2nd iteration
====Qur approach, after the 5th iteration
Actual probability
—O— Majority rule

probability of detection

0 0.5 1 0 0.5 1 0 0.5 1
z z z z

Fig. 3 Comparison of the estimations of the probabilities of false alarm and detection by using our method
and majority rule versus context for K = 4 different experts (Experts 1-4 from Table 1), / = 100 after
different number of iterations of the EM algorithm
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Fig. 4 The probability of error for the fusion center versus / for the ensemble system with Experts 1-4 from
Table 1

Next, we evaluate the performance of the proposed approach when the Lipschitz con-
stants are not available at the combiner. We use Expert 1-4 from Table 1 and since
Z =10, .05, .1, ..., 1} and a probability is always in [0, 1], we assume the Lipschitz constants
for all the experts are 1/0.05 = 20 which is the maximum possible value for the Lipchitz
constants in this set. We run the simulation for I = 64, 256, 1024, 4096. The results with
5 iterations of the EM algorithm are shown in Fig. 6. It can be seen that in the absence of
any knowledge about the Lipschitz constants, as I increases, the proposed approach still
converges to the actual parameters. However, in this case more data samples are required.
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Expert 1 Expert 2 Expert 3 Expert 4

*+ ¢=03
....... C:09
===-c=2.7
— Actual probability

0.8

£
<
Q
i)
&
o
5]
£
E
E]
S
<]
=
S

..
A
P l:\f'-""‘
AT A

probability of detection

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
z z z z

Fig. 5 Estimations of the probabilities of false alarm and detection versus context for K = 4 different
experts (Expert 1-4 from Table 1), I = 100 after 5 iterations of EM algorithm using our approach, and for
¢c=03,09,2.7
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Fig. 6 Results from the proposed method for Experts 1-4 from Table 1. The Lipschitz constants for all
the experts are set to 20 which is the maximum possible value for this setting. The simulation is run for
I = 64,256, 1024, 4096

To compare the performance of the proposed approach with the majority rule, we define a
reliability measure for the performance for the combiner, denoted by D p and defined below.

I e |Pok (@) — Pyx(2)| dz
Dp = = - 48
T énzz(“) J. o (2dz “48)

In Fig. 7, we evaluate the performance of the proposed approach and the majority rule as
a function of [ for different number of experts, where for K = k, Experts 1,2, ...,k are
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O Our approach === K=2
O Majority rule = ====K=4

10°
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Fig. 7 Reliability, Dp versus I for K = 2, 4, 8 experts

used. The reliability of the combiner is shown in Fig. 7 versus I for K = 2, 4, 8 classes. The
results are obtained from averaging 10* independent trials. As shown, the performance of the
combiner improves with the number of experts and / and the proposed approach outperforms
the majority rule in all cases.

In order to evaluate the performance of the proposed approach for real data, we used
the Wisconsin breast cancer data set (Murphy and Aha 1994). The goal is to classify each
data point as benign or malignant. Each data point in the data set has 9 different features:
(1) clump thickness, (2) uniformity of cell size, (3) uniformity of cell shape, (4) marginal
adhesion, (5) single epithelial, (6) bare nucleoli, (7) bland chromatin, (8) normal nucleoli,
and (9) mitoses. All the features are in the interval [1, 10]. We used DecisionStump (one-level
decision tree), KNN (k-nearest neighbor classifier), k-Star (instance classifier using entropy
as distance), LogitBoost + ZeroR (ZeroR classifier uses mode), Multilayer Perceptron, and
NaiveBayes (naive Bayes classifier) as experts.!> We trained each expert with 16 samples
randomly selected from the data set but with equal representation of each class. We used
241 samples from each class to perform the tests. Each of these features is considered as
context separately, but due to space limitations in Figs. 8 and 11, we show the performance
for clump thickness, uniformity of cell size, bland chromatin, normal nucleoli, and mitoses.
We implemented our approach for each of the contexts and for ¢ = 0.05, and the final
results in terms of probabilities of false alarm and detection versus context are shown in
Fig. 8. As shown, the NaiveBayse has the worst performance. When the context is set to be
clump thickness, the performance of k-Star deteriorates with increasing z, in the sense that
the probability of false alarm increases while the probability of detection does not change.
Therefore, if one wishes to use one of the experts, it can be suggested that for larger values
of clump thickness, it is better to use Multilayer Perceptron than k-Star.

The result of using majority rule to estimate the performance of different classifiers is
shown in Fig. 9. It can be seen that compare to Fig. 8, the estimated probabilities from the
majority rule are very jagged.

To evaluate the ability of the fusion rule in making the right decision about benign or
malignant samples, we compare the performance of our approach against the supervised and

13 We used machine learning classifiers from Weka. Detailed description of each classifier can be found in
Witten et al. (2011).

@ Springer



Mach Learn (2016) 105:459-485 479

DecisionStump KNN k-Star LogitBoost+ZeroR Multilayer Perceptron NaiveBayes
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Fig. 8 The proposed approach is used in order to evaluate the performance of different experts as stated on
the top of the sub-figures. Wisconsin breast cancer data set (Murphy and Aha 1994), is used in order to classify
the samples into benign and malignant. Each sample point has 9 features: (1) clump thickness, (2) uniformity
of cell size, (3) uniformity of cell shape, (4) marginal adhersion, (5) single epithelial, (6) bare nucleoli, (7)
bland chromatin, (8) normal nucleoli, and (9) mitoses. All the features values are in the interval [1, 10]. Before
running the approach each classifier has been trained with a small subset of data. The sub-figures show the
probabilities of false alarm and detection versus x, where x represents: clump thickness, uniformity of cell size,
bland chromatin, normal nucleoli, and mitoses (due to space limitations only these six contexts are selected to
be shown here). In this experiment, we set ¢ = 0.05. We should point out that the experts use all the 9 features
all the time; however, at each experiment only one of the features is available as a context for the combiner
and the rest are unknown
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Fig. 9 Majority rule is used in order to estimate the performance of different classifiers identified at the fop
of each subfigure as a function of the feature, x

unsupervised versions of the method of tracking the best expert (MTBE) (Herbster and War-
muth 1998), adaptive Perceptron weighted majority rule (APMR) (Canzian et al. 2013), and
the supervised optimal fusion rule (SOFR) (Chair and Varshney 1986), in term of probability
of error, p.. In MTBE, at each instance, the decision of each expert is compared against
the actual label in the supervised version (or the pool of the decisions in the unsupervised
version). A coefficient is associated with each expert and determines the weight of the expert
in the pooling. This weight is updated at each instance using a nonlinear function based
on how close the latest decision from the expert was to the actual label in the supervised
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Fig. 10 Comparison of our approach with the method of tracking the best expert (MTBE), adaptive Per-
ceptron weighted mejority rule (APMR), and supervised optimal fusion rule (SOFR) in terms of probability
of correct decision versus /. We used the Wisconsin breast cancer data set and applied the same 6 experts
of DecisionStump, KNN, k-Star, LogitBoost + ZeroR, Multilayer Perceptron, and NaiveBayes to obtain the
results

version (or to the pool of decisions in unsupervised version). We use MTBE for the com-
parison as one the seminal and widely used effective online learning approaches. APMR
is similar to MTBE, where the experts weights are updated using a linear function of the
previous decision and the pool or actual decision. However in supervised APMR, the update
for an expert weight happens only when the combiner decision is different from the actual
label. We compare our approach against APMR as one of the newer suggested approaches
for online learning based on Perceptron. SOFR is a supervised method in the sense that the
combiner knows the performance of all the experts in the system. It uses ML rule to fuse
the decision at each instant. The error rate of SOFR can be considered as a lower bound to
any (supervised or unsupervised) method to compare against. In Fig. 9, the results of the
comparison of these approaches and our proposed approach are shown. It can be seen that
the proposed approach works better than MTBE and APMR methods including the super-
vised MTBE. APMR and MTBE do not fuse the data optimally. Moreover, in its modeling,
APMR does not “reward” or “punish” the experts who make decision similar to or different
from the combiner even when the combiner correctly detects the true label. Another fun-
damental problem with the unsupervised MTBE and APMR is in their modeling methods.
Suppose an expert can correctly detect the event (detection probability of one) but has poor
performance when the true label is 0 (large false alarm probability). Since the model used in
MTBE and APMR only considers the correct detection, it can not properly characterize this
expert.

Clearly, if a supervised method optimally fuses the data, its performance would be better
than our proposed method as is the case with SOFR. In our proposed method, the combiner
(using the EM algorithm) estimates the parameters of the system to make the final decision
regarding the labels. The performance of our parameter estimation improves with the number
of samples. Therefore, as I increases, the performance of our method in estimating the
probabilities of false alarm and detection approaches that of the optimal ML estimator. On
the other hand, as the estimates approach the actual values, the performance of our fusion
rule approaches that of the ML detection rule. The proposed method is inferior to SOFR due
to the fact that SOFR implements ML detection rule based on the perfect knowledge of the
probabilities of false alarm and detection.

After estimating the probabilities of false alarm and detection and the prior probabilities,
we evaluate the amount of information provided from each expert and for each feature.
Figure 11 shows the information 1 (3; yx | zf = 7), between the local decision of each of
the 6 experts and the final combiner’s decision given the value of the feature, and calculated
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using (36). For example, when Mitoses is considered to be the context, and its value is
observed to be 10 then the outputs of DecisionStump and LogitBoost + ZeroR provide the
best information about the combiner’s final decision.

From these results on the information provided from the local decisions of each expert
given the value of the feature, we calculate the importance of each feature for every expert,
imp(¢; k). The final results are shown in Table 214 As an example, for KNN, the best
feature is bland chromatin while for k-Star, the best feature is uniformity of cell size.
The last column shows the importance of each feature, imp(£). It can be seen that the
most important feature is uniformity of cell size and the least important one is clump
thickness.

According to the value of imp(¢) for different £ = 1,2, ..., L, we rank the features
from 1 to 9, where the smaller number indicates the better feature. The result is shown in
Table 3. Table 3 also shows the ranking results from mutual information quotient (MIQ)
and mutual information difference (MID) (Ding and Peng 2003; Peng et al. 2005). MIQ
and MID are two well-known and effective supervised methods. With the Lipchitz constants
¢ = 0.01, 0.05, 0.5 the results of our unsupervised method, in which we do not observe (use)
the true labels, are close to the supervised methods MIQ and MID in which the true labels are
used. However, if we set the Lipschitz constant to be too small, for example, ¢ = 0.005, then
the final result would be less accurate. From this result and those in Fig. 6 it is evident that in
the absence of any knowledge about the Lipschitz constant, it should be set to a large value.
Here we also evaluate the performance of the ensemble learning when the experts in the
system are not well trained, which degrades the overall performance of the combiner. With
16 training samples the probability of error for the combiner is equal to 0.057 with I = 600
(see Fig. 10). To reduce the performance of the combiner we trained the experts with as few
as 6 and 4 samples. This increased the probability of error to 0.137 and 0.331, respectively,
with I = 600 samples. The final result of the feature rankings are shown in Table 3. From
the result in the table, it can be concluded that as the experts become less reliable in making
correct decisions, which increases the overall error probability of the combiner, the ranking
of the features becomes less accurate. It is worth noting that when the error rate of the system

14 While in the first six columns we show only two digits after the decimal point, in the last column four digits
are shown to more clearly distinguish the results.
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Table 3 Comparison of our proposed (unsupervised) feature selection method with mutual information quo-
tient (MIQ) and mutual information difference (MID), Ding and Peng (2003) and Peng et al. (2005)

Our approach MIQ MID

¢ = 0.005 0.01 0.05 0.5

pe = 0.05 0.05 0.331 0.137 0.05 0.05

Clump thickness 9 9 9 9 9 9 9 9
Uni. of cell size 1 1 4 1 1 1 1 1
Uni. of cell shape 2 3 1 3 3 3 3 3
Marginal adhersion 6 2 3 2 2 2 4 2
Single epithelial 3 7 5 5 5 5 6 5
Bare nucleoli 5 4 7 4 4 4 2 4
Bland chromatin 8 8 6 8 7 7 5 6
Normal nucleoli 7 6 8 6 8 8 7 8
Mitoses 4 5 2 7 6 6 8 7

is low, then the final decision of the combiner can be considered as the true label which is
independent of context (which is the same as feature in this example); more precisely, in this
case Eq. (42) holds. In other words, the proposed feature selection method in Sect. 4 works
well and, as shown in Table 3, the final feature ranking will be accurate.

6 Conclusion

In this paper, we provided an approach to estimate the accuracies of experts in ensemble-
based decision systems and to make final decision based on the local decisions of experts.
Moreover, since in many applications (especially medicine) the true label may be unknown,
the proposed approach is unsupervised. Our approach does not assume any prior information
about how the experts process the data to issue their decisions or their accuracies. The results
show the efficiency and accuracy of the proposed approach in decision making and learning
systems as well as for extracting the importance of each data feature. The proposed method
has many applications, including clinical decision support systems, surveillance systems,
transportation systems etc. The methods introduced in this paper can be extended in numerous
directions. Subsequently, we only describe a few. First, in the current system, the experts are
fixed and not adapting their expertise (rules) over time. Future work will investigate the
case in which experts change and adapt their expertise over time and the impact this has
on the ensemble operation and its performance. Second, in certain applications such as
predictions from social media, from financial or from transportation data, the experts may
significantly differ in terms of the quantity and quality of the data available to them. In such
settings, it may be important to adapt the operation of the proposed ensemble scheme to take
such variations into consideration. Finally, while the current experts are computer systems
(machine learning algorithms), future systems may consider local experts to be a mixture of
humans and computer systems. Understanding in which settings and for which applications
it is beneficial to adopt ensembles of both human and computerized experts represents yet
another interesting direction of future research.
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