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Abstract We describe online algorithms for learning a rotation from pairs of unit vectors
in R

n . We show that the expected regret of our online algorithm compared to the best fixed
rotation chosen offline over T iterations is

√
nT . We also give a lower bound that proves that

this expected regret bound is optimal within a constant factor. This resolves an open problem
posed in COLT 2008. Our online algorithm for choosing a rotation matrix is essentially an
incremental gradient descent algorithm over the set of all matrices, with specially tailored
projections. We also show that any deterministic algorithm for learning rotations has Ω(T )

regret in the worst case.

Keywords Rotations · Online learning · Regret bounds · Bregman projection · Minimax

1 Introduction

Rotations are a fundamental object in robotics and vision and the problem of learning
rotations, or finding the underlying rotation from a given set of examples, has numerous appli-
cations [see Arora (2009) for a summary of application areas, including computer vision, face
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recognition, robotics, crystallography, and physics]. Besides their practical importance, rota-
tions have been shown to be powerful enough to capture seemingly more general mappings.
Rotations can represent arbitrary Euclidean transformations via a conformal embedding by
adding two special dimensions (Wareham et al. 2005). Also Doran et al. (1993) showed that
the rotation group provides a universal representation for all Lie groups.

In the batch setting, the problem of learning a rotation was originally posed as the problem
of estimating the altitude of satellites by Wahba (1966). The related problem of learning
orthogonal, rather than rotation, matrices is known as the “orthogonal Procrustes problem”
(see Schonemann 1966). Algorithms for optimizing a static cost function over the set of
unitary matrices were proposed by Abrudan et al. (2008a, b) using descent over Riemannian
manifolds.

The question of whether there are online algorithms for this problem was explicitly posed
as an open problem in COLT 2008 (Smith and Warmuth 2008). An online algorithm for
learning rotations was given by Arora (2009). This algorithm exploits the Lie group/Lie
algebra relationship between rotation matrices and skew symmetric matrices respectively,
and the matrix exponential and matrix logarithm that maps between these matrix classes.
However, this algorithm deterministically predicts with a single rotation matrix in each trial.
In this paper, we prove that any such deterministic algorithm can be forced to have regret at
least Ω(T ), where T is the number of trials. In contrast, we give an algorithm that produces
a random rotation in each trial and has expected regret

√
nT , where n is the dimension of

the matrices.

1.1 Technical contributions

Themain technique used in this paper is a new variant of online gradient descent with Euclid-
ean projections (see e.g. Herbster and Warmuth 2001; Zinkevich 2003) that uses what we
call “lazy projections”. A straightforward implementation of the original algorithm requires
O(n3) time per iteration, because in each round we need to perform a Euclidean projection of
the parameter matrix onto the convex hull of orthogonal matrices, and this projection requires
the computation of a singular value decomposition. The crucial new idea is to project the
parameter matrix onto a convex set determined by the current instance that contains the con-
vex hull of all orthogonal matrices as a subset. The projection onto this larger set can be done
easily in O(n2) time and needs to be performed only when the current parameter matrix is
outside of the set. Surprisingly, our new algorithm based on this idea of “lazy projections”
has the same optimal regret bound but requires only O(n2) time per iteration.

The loss function for learning rotations can be expressed as a linear function. Such linear
losses are special because they are the least convex losses. The main case where such linear
losses have been investigated is in connectionwith theHedge and theMatrixHedge algorithm
(Freund and Schapire 1997; Warmuth and Kuzmin 2011). However for the latter algorithms
the parameter space is one-norm or trace norm bounded, respectively. In contrast, the implicit
parameter space of the main algorithm of this paper is essentially infinity norm bounded, i.e.
the convex hull of orthogonal matrices consists of all square matrices with singular values at
most one.

1.2 Outline of paper

We begin with some preliminaries in the next section, the precise online learning problem
for rotations, and basic properties of rotations. We also show how to solve the corresponding
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off-line problem exactly. We then give in Sect. 3 our main probabilistic algorithm and prove
a

√
nT regret bound for it. This bound cannot be improved by more than a constant factor,

since we can prove a lower bound of essentially
√

nT
2 (for the case when T ≥ n).

For the sake of completeness we also consider deterministic algorithms in Sect. 4. In
particular we show that any deterministic algorithm can be forced to have regret at least T
in general. In Sect. 5 we then present the optimal randomized and deterministic algorithms
for the special case when there is a rotation that is consistent with all examples. A number
of open problems are discussed in final Sect. 6. In “Appendix 1” we prove a lemma that
characterizes the solution to the batch optimization problem for learning rotations and in
“Appendix 2” we show that the convex hull of orthogonal matrices consists of all matrices
with maximum singular value one.

1.3 Historical note

A preliminary version of this paper appeared in COLT 2010 (Hazan et al. 2010b). Unfor-
tunately the algorithm we presented in the conference (based on the Follow the Perturbed
Leader paradigm) was flawed: the true regret bound it obtains is O(n

√
T ) as opposed to the

claimed bound of O(
√
nT ). After noticing this we published a corrigendum [posted on the

conference website, Hazan et al. (2010a)] with a completely different technique based on
online gradient descent that obtained the optimal regret O(

√
nT ). The algorithm presented

in this paper is similar, but much more efficient, taking O(n2) time per iteration rather than
O(n3).

2 Preliminaries and problem statement

2.1 Notation

In this paper, all vectors lie in R
n and all matrices in R

n×n . We use det(M) to denote the
determinant of matrix M. An orthogonal matrix is a matrix R whose columns and rows are
orthogonal unit vectors, i.e. R�R = RR� = I, where I is the identity matrix. We let O(n)

denote the set of all orthogonal matrices of dimension n × n and SO(n) denote the special
orthogonal group of rotation matrices, which are all orthogonal matrices of determinant one.
Since for n = 1 there is exactly one rotation matrix (i.e. SO(1) = {1}), the problem becomes
trivial, so throughout this paper we assume that n > 1.

For any vector x, ‖x‖ denotes the �2 norm and for any matrix A, ‖A‖F = √
tr(AA�) is

the Frobenius norm. All regret bounds of this paper immediately carry over to the complex
domain: replace orthogonal by unitary matrices and rotation matrices by unitary matrices of
determinant one.

2.2 Online learning of rotations problem

Learning proceeds in a series of trials. In every iteration for t = 1, 2, . . . , T :

1. The online learner is given a unit instance vector xt (i.e. ‖xt‖ = 1).
2. The learner is then required to predict (deterministically or randomly) with a unit vector

ŷt .
3. Finally, the algorithm obtains the “true” result, which is also a unit vector yt .
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4. The loss to the learner then is half the squared norm of the difference between her
predicted vector and the “true” rotated vector yt :

1
2‖ŷt − yt‖2 = 1 − y�

t ŷt (1)

5. If ŷt is chosen probabilistically, then we define the expected loss as

E
[
1
2

∥∥yt − ŷt
∥∥2] = 1

2E
[‖ŷt − yt‖2

] = 1 − y�
t E[ŷt ].

Note that the loss is linear in the prediction vector ŷt or the expected prediction vector E[ŷt ],
respectively. The goal of the learner is to minimize the regret on all T examples against the
best fixed rotation R chosen in hindsight:

RegretT =
T∑

t=1

E
[
1
2

∥∥yt − ŷt
∥∥2]− min

R∈SO(n)

T∑

t=1

1
2 ‖yt − Rxt‖2 . (2)

In this paper we give a probabilistic online algorithm with worst-case regret
√
nT and

an adversary strategy that forces any probabilistic algorithm to have have regret essen-

tially
√

1
2nT . Note that since our loss is linear in the rotation R, the best total loss

minR∈SO(n)

∑T
t=1

1
2 ‖yt − Rxt‖2 cannot be decreased by allowing mixtures of rotations.

When n > 1, then any unit vector can be rotated into any other unit vector. Namely one
can always produce an explicit rotation matrix Rt in Step 2 that rotates xt to ŷt (that is, ŷt in
the definition of regret (2) is replaced by Rtxt ). Such a rotation matrix can be computed in
O(n2) time, as the following lemma shows.

Lemma 1 Let x and ŷ be two unit vectors. Then we can find an explicit rotation matrix R
that rotates x onto ŷ, i.e. Rx = ŷ, in O(n2) time.

Proof We first take care of the case when ŷ = ±x: If ŷ = x we can simply let R = I; if
ŷ = −x and n is even, then we can use R = −I; finally, if ŷ = −x and n is odd, then choose
R = −I+2zz�, where z is an arbitrary unit vector orthogonal to x. In all these cases,Rx = ŷ
and |R| = 1.

For the remaining case (ŷ �= ±x), let d denote the dot product x · ŷ and let ŷ⊥ be
the normalized component of ŷ that is perpendicular to x, i.e. ŷ⊥ = ŷ−dx

‖ŷ−dx‖ . Let U be an

orthogonal matrix with x and ŷ⊥ as its first two columns. Now define R as UCU�, where

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d −√
1 − d2 0 0 · · · 0√

1 − d2 d 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

All unspecified off-diagonal entries are 0, and all diagonal entries starting from the third row
are 1. Now R is a rotation matrix that satisfies the requirements because

Rx = UCU�x = UC (1, 0, 0, . . . , 0)�

= U (d,
√
1 − d2, 0, 0, . . . , 0)�

= d x +
√
1 − d2 ŷ⊥ = ŷ,

RR� = UCC�U� = UIU� = I and det(R) = det(U) det(C) det(U) = det(C) = 1.
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Fig. 1 For two examples (x, y)
and (x, −y), the matrix
S = xy� − xy� = 0. Thus, any
rotation matrix R has the same
total loss. In particular, if ŷ = Rx
for any rotation matrix R, then
the total loss is exactly 2:
1
2 ‖y − ŷ‖2 + 1

2 ‖−y − ŷ‖2 =
2 −

(
y� − y�) ŷ = 2 − 0 = 2.

Thus the loss is at least 1 for at
least one of the examples
regardless of how ŷ was chosen.
We exploit this kind of argument
in our lower bounds

y−y

ŷ

x
rotation
applied

Note that R can be computed in O(n2) time by rewriting it as

R = I + U(C − I)U� = I + (d − 1)

(
xx� + ŷ⊥ (ŷ⊥)�)

+
√
1 − d2

(
ŷ⊥x� − x

(
ŷ⊥)�)

.

	

2.3 Solving the offline problem

Before describing our online algorithm, we need to understand how to solve the optimization
problem of offline (batch) algorithm:

argmin
R∈SO(n)

∑T
t=1

1
2 ‖yt − Rxt‖2 = argmin

R∈SO(n)

T −
(∑T

t=1y
�
t Rxt

)
(3)

= argmaxR∈SO(n) tr
((∑T

t=1xty
�
t

)
R
)

. (4)

The first equality follows from rewriting the loss function 1
2 ‖yt − Rxt‖2 as in (1). Note

that the T examples (xt , yt ) only enter into the optimization problem via the matrix S :=∑T
t=1 xty

�
t . This matrix functions as a “sufficient statistic” of the examples. As we shall see

later, our randomized online algorithm will also be based on this sufficient statistic.
In general, an optimization problem of the form

argmaxR∈SO(n) tr(SR) (5)

for some matrix S, is a classical problem known asWahba’s problem (Wahba 1966). Figure 1
gives a simple example of the challenges in solving Wahba’s problem: the optimum rotation
matrix may not be unique (any rotation matrix R has the same loss on the two examples
given in Fig. 1).

Nevertheless, the value ofWahba’s problem (5) has a very elegant solution expressed i.t.o.
the singular value decomposition (SVD) of S.

123



134 Mach Learn (2016) 104:129–148

Lemma 2 Let S = U�V� be any SVD of S, i.e.U andV are orthogonal matrices, and � =
diag(σ1, σ2, . . . , σn) is the diagonal matrix of non-negative singular values. Assume that σn
is the smallest singular value and let s := det(U) det(V). Since U and V are orthogonal,
s ∈ {+1,−1}. Now if W := diag(1, 1, . . . , 1, s), then

VWU� ∈ argmaxR∈SO(n) tr(SR),

and the value of the optimal solutions is
∑n−1

i=1 σi + sσn, which is always non-negative.

By (4), the solution to Wahba’s problem is obtained by solving the argmax problem of the
above lemma with S = ∑T

t=1 xty
�
t and the value of the original optimization problem (3) is

T −∑n−1
i=1 σi − sσn .

Note that the solution W given in the lemma is a rotation matrix since it is a product
of three orthogonal matrices, and its determinant equals det(U) det(V) det(W) = 1. The
solution can be found in O(n3) time by constructing a SVD of S.

We have been unable to find a complete proof of the above lemma for dimensions more
than 3 in the literature and therefore, for the sake of completeness, we give a self-contained
proof in “Appendix 1”.

Note that if we are simply optimizing over all orthogonal matrices R ∈ O(n), with no
condition on det(R), then we arrive at another classical problem known as the “orthogo-
nal Procrustes problem” (first solved by Schonemann 1966). The solution for this simpler
problem is also given in “Appendix 2” for completeness:

Lemma 3 Let S = U�V� be a SVD of S as in Lemma 2. Then

VU� ∈ argmaxR∈O(n) tr(SR)

and the value of the optimum solutions is
∑n

i=1 σi .

3 The randomized algorithm and main theorem

3.1 The algorithm

We begin by presenting our main randomized algorithm, called “Lazy Projection GD” (see
Algorithm 1).

Algorithm 1 Lazy Projection GD
1: Let W0 be the all zero matrix
2: for t = 1 to T do
3: Obtain instance vector xt

4: Compute zt = Wt−1xt and z̃t =
{ zt‖zt ‖ if zt �= 0
e1 otherwise

5: Choose prediction vector ŷt =
{ ±̃zt with probability 1±‖zt ‖

2 , if ‖zt‖ ≤ 1
z̃t otherwise

6: ComputeWm
t =

{
Wt−1 if ‖zt‖ ≤ 1

Wt−1

(
I −

(
1 − 1

‖zt ‖
)
xtx�

t

)
otherwise

7: Observe result vector yt and suffer expected loss E[ 12
∥∥yt − ŷt

∥∥2] = 1 − y�
t E[ŷt ] = 1 − y�

t Wm
t xt

8: UpdateWt = Wm
t + η ytx�

t
9: end for
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The algorithmmaintains a parameter matrixWt−1, which intuitivelymodels a distribution
for rotation matrices that transform xt onto ŷt . The goal will be to predict with unit vector
ŷt such that E(ŷt ) = Wt−1xt . This is not quite possible if ‖Wt−1xt‖ > 1. Therefore during
the t-th trial in Step 6 of the algorithm,Wt−1 is updated to an intermediate parameter matrix
Wm

t which makes it possible that the algorithm can predict with a unit vector ŷt such that
E(ŷt ) = Wm

t xt . As shown in Lemma 4, the update rule for obtaining Wm
t from Wt−1 in

Step 6 is a Bregman projection with respect to the squared Frobenius norm onto the set of
matrices W for which ‖Wx‖ ≤ 1:

Wm
t = argmin

W:‖Wxt‖2≤1

1
2‖W − Wt−1‖2F .

This ensures that ‖Wm
t xt‖ ≤ 1, making it possible to predict with unit vector ŷt such that

E(ŷt ) = Wm
t xt .

The prediction ŷt is computed as follows. There are two main cases depending on the
length of zt = Wt−1xt . When ‖zt‖ ≤ 1, then zt is not too long and unit vector z̃t := zt‖zt‖ in

direction zt is used for choosing the prediction.1 More precisely, the algorithm predicts with
ŷt = ±̃zt with probability 1±‖zt‖

2 . In this case the intermediate parameter matrix Wm
t is set

to be equal to the parameter matrixWt−1 and

E(ŷt ) = ‖zt‖ z̃t = zt = Wt−1xt = Wm
t xt . (6)

In the degenerate case when ‖zt‖ = 0, then the direction z̃t = zt‖zt‖ of zt is undefined and the

algorithm arbitrarily sets z̃t to the unit vector e1 = (1, 0, . . . , 0)�. Observe that the above
equalities (6) remain valid in this case.

When ‖zt‖ > 1, then zt is too long and the algorithm deterministically sets the prediction
ŷt to the shortened unit direction z̃t = zt‖zt‖ . Now the parameter matrixWt−1 also needs to be
“shortened” or “projected” as we shall see in a moment. More precisely, Wm

t is set to equal
Wt−1(I − (1 − 1

‖zt‖ )xtx�
t ) which ensures that

ŷt = z̃t = Wt−1xt
‖zt‖ = Wm

t xt .

We conclude that in all cases the expected loss of the algorithm is

E
(
1
2

∥∥yt − ŷt
∥∥2) = 1 − y�

t E(ŷt ) = 1 − y�
t W

m
t xt . (7)

This means that the update ofWt fromWm
t in Step 8 of the algorithm is a standard gradient

descent update with respect to the squared Frobenius norm and the above expected loss:

Wt = argmin
W

(
1
2

∥∥W − Wm
t

∥∥2
F + η(1 − y�

t Wxt )
)

.

We now prove that the update ofWm
t fromWt−1 is a Bregman projection with respect to the

squared Frobenius norm:

Lemma 4 Let V be a matrix and x be a unit vector. Then the projection of V on the set
{W : ‖Wx‖2 ≤ 1} is given by

argmin
W:‖Wx‖2≤1

1
2‖W − V‖2F =

{
V if ‖Vx‖ ≤ 1

V
(
I −

(
1 − 1

‖Vx‖
)
xx�

)
otherwise.

The projection can be computed in O(n2) time.

1 In the special case when ‖zt‖ = 1, then z̃t = zt and ŷt is deterministically chosen as z̃t .
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Proof If ‖Vx‖ ≤ 1 thenV is already in the set {W : ‖Wx‖2 ≤ 1} and hence the projection is
V itself. So assume that ‖Vx‖ > 1. Now note that the set {W : ‖Wx‖2 ≤ 1} is convex. Thus,
the projectionW of V onto this set lies on the boundary and satisfies ‖Wx‖ = 1. The theory
of Lagrange multipliers tells us that the optimum solution satisfies the following equation
for some constant α:

W − V + αWxx� = 0. (8)

By right multiplying the matrices on both sides of the equation with vector x, moving −Vx
to the right and squaring the length both sides we get

‖Wx‖2(1 + α)2 = ‖Vx‖2.
Since ‖Wx‖2 = 1, α = ±‖Vx‖ − 1. From Eq. (8) it follows that

W = V
(
I + αxx�)−1 = V

(
I − α

1+α
xx�) = V

(
I −

(
1 ∓ 1

‖Vx‖
)
xx�

))
.

The second equality follows from the Sherman–Morrison–Woodbury formula (see e.g. Bern-
stein 2009). Note that the inverse is defined becausewe are in the case ‖Vx‖ > 1 and therefore
both solutions for α are not equal to −1. The result now follows from the fact that for the
α = +‖Vx‖ − 1 solution, ‖W − V‖2F is smaller. 	


Wecall our algorithm “Lazy ProjectionGD”, because for the sake of efficiencywe “project
as little as necessary” while keeping the relationship E[ŷt ] = Wm

t xt . The algorithm takes
O(n2) time per trial since all steps can be reduced to a small number of matrix additions and
matrix vector multiplications. In the corrigendum to the conference version of this paper, an
alternate but more time expensive projection is used which projects Wt−1 onto the convex
hull of all orthogonal matrices. As sketched below, this is more involved because it requires
us to maintain the SVD decomposition of the parameter matrix.

Let B denote convex hull of all orthogonal matrices. In “Appendix 2” we show that B is
the set of all square matrices with singular values at most one. Projecting onto B consists
of computing the SVD of Wt−1 and capping all singular values larger than one at one (see
corrigendum to Hazan et al. 2010b). Next, the projected matrixWm

t is randomly rounded to
an orthogonal matrix Ut s.t. E[Ut ] = Wm

t (see Lemma 6 for details), and then the prediction
made is ŷt = Utxt . Overall, the algorithm takes O(n3) time per iteration.

As shown in “Appendix 2”, the convex hull B of all orthogonal matrices can be written
as an intersection of convex constraints:

B =
⋂

x:||x||=1

{W : ||Wx|| ≤ 1}.

So for the sake of efficiency we only project onto {W : ||Wxt || ≤ 1}, where xt is the current
instance, and not onto the full intersection B. This new “lazy projection” method is a simpler
method with update time O(n2) that avoids the need to maintain the SVD decomposition.
The possibility of using delayed projections was discussed in Section 5.5 of Helmbold and
Warmuth (2009). What is unique in our setting is that the convex set we project onto depends
on the instance xt .

3.2 Analysis and main theorem

We are now ready to prove our main regret bound for our on-line algorithm based on lazy
projections. Note that the learning rate depends on the number of trials T . However, it is easy
to run the algorithms in stages based on a geometric series of upper bounds on T [see for
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example Algorithm G1 of Cesa-Bianchi et al. (1996)]. This increases the regret bound by at
most a constant factor.

Theorem 1 If Algorithm 1 is run with η =
√

n
T on any sequence of T examples, then

T∑

t=1

E
[
1
2

∥∥yt − ŷt
∥∥2]− min

R∈SO(n)

T∑

t=1

1
2 ‖yt − Rxt‖2 ≤ √

nT .

Proof For any rotation matrix R,

1
2 ‖Wt − R‖2F = 1

2

∥∥∥Wm
t − R + η ytx�

t

∥∥∥
2

F

= 1
2

∥∥Wm
t − R

∥∥2
F + η tr

((
Wm

t − R
)
xty�

t

)
+ η2

2 ‖ytx�
t ‖2F

= 1
2

∥∥Wm
t − R

∥∥2
F + η

(
1
2 ‖yt − Rxt‖2 − E

[
1
2

∥∥yt − ŷt
∥∥2])+ η2

2

≤ 1
2 ‖Wt−1 − R‖2F + η

(
1
2 ‖yt − Rxt‖2 − E

[
1
2

∥∥yt − ŷt
∥∥2])+ η2

2 .

The first equality uses the update in Step 8 of Algorithm 1. In the second equality we expand

the square, and in the third we use 1
2 ‖yt − Rxt‖2 = 1− tr(Rxty�

t ) and E
[
1
2

∥∥yt − ŷt
∥∥2] =

1− tr(Wm
t xty

�
t ), which is Eq. (7) above. The last inequality is the most interesting. It follows

from the generalized Pythagorean theorem for Bregman divergences and the fact the update
fromWt−1 toWm

t is a Bregman projection onto the set {W : ‖Wxt‖2 ≤ 1} = {W : ‖Wxt‖ ≤
1}. The crucial fact is that this is a closed convex set that contains all rotation matrices. See
Herbster and Warmuth (2001) for an extended discussion of the application of Bregman
projections for obtaining regret bounds. By rearranging we get the following inequality for
each trial:

E
[
1
2

∥∥yt − ŷt
∥∥2]− 1

2 ‖yt − Rxt‖2 ≤ ‖Wt−1 − R‖2F − ‖Wt − R‖2F
2η

+ η

2
.

By summing over all T trials we get

∑
t

E
[
1
2

∥∥yt − ŷt
∥∥2]−

∑
t

1
2 ‖yt − Rxt‖2 ≤ ‖W0 − R‖2F − ‖WT − R‖2F

2η
+ ηT

2

≤ n

2η
+ ηT

2
,

since ‖W0 − R‖2F = ‖R‖2F = tr
(
RR�) = tr(I) = n and ‖WT − R‖2F ≥ 0. The RHS is

minimized at
√
nT by choosing η =

√
n
T . 	


As we shall see the above upper bound of
√
nT on the regret bound of our randomized

algorithm is rather weak in the noise-free case, i.e. when there is a rotation that has loss zero
on the entire sequence. It is an open problem whether the upper bound on the regret can be
strengthened to O(

√
nL+n)where L is the loss of the best rotation on the entire sequence of

trials. An O(
√
nL) regret bound was erroneously claimed in the conference paper of Hazan

et al. (2010b).
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3.3 Lower bounds on the regret

We now show a lower bound against any algorithm (including randomized ones).

Theorem 2 For any integer T ≥ n ≥ 2, there is a fixed instance vector sequence on which
any randomized online algorithm for learning rotations can be forced to have regret at least√

(T−1)(n−1)
4 = Ω(

√
nT ).

Proof Wefirst define the fixed instance sequence. Let ei denote the i-th standard basis vector,
i.e. the vector with 1 in its i-th coordinate and 0 everywhere else. In trial t < T , set xt = e f (t),
where f (t) = (t mod n− 1)+ 1 (i.e. we cycle through the coordinates 1, 2, . . . , n− 1). The
last instance is en .

We will now show that for any online algorithm for the rotations problem, there is
a sequence of result vectors yt of length T for which this algorithm has regret at least√

(T−1)(n−1)
4 = Ω(

√
nT ). Recall that e f (t) is the instance at trial 1 ≤ t < T . To achieve our

lower bound on the regret we set yt equal to the instance at trial t or its reverse with equal
probability, i.e. yt = σte f (t), where σt ∈ {−1, 1} uniformly at random. For any coordinate
i ∈ 1, 2, . . . , n−1, let Xi = ∑

t : f (t)=i σt . For the final trial T , the instance xT is en , and we
set the result vector to yT = σT en , where σT ∈ {−1, 1} is chosen in a certain way specified
momentarily. First, note that

ST =
T∑

t=1

ytx�
t = diag(X1, X2, . . . , Xn−1, σT ).

We choose σT so that

det(ST ) = σT

n−1∏

i=1

Xi > 0.

In other words, σT = sgn(
∏n−1

i=1 Xi ).
By Lemma 2, the solution to the offline problem is the rotation matrix R� =

argmaxR∈SO(n) tr(STR), where

R� = diag(sgn(X1), sgn(X2), . . . , sgn(Xn−1), σT ),

and the loss of this matrix is

T∑

t=1

1
2

∥∥yt − R�xt
∥∥2 = T − tr(ST R�) = T −

n−1∑

i=1

|Xi | − 1.

Since each Xi is a sum of at least 
 T−1
n−1 � Rademacher variables, Khintchine’s inequality

(Haagerup 1982) implies that Eσt [|Xi |] ≥
√

1
2
 T−1

n−1 � where the expectation is taken over the
choice of the σt ’s. Thus, the expected loss of the optimal rotation is bounded as follows:

Eσt

[
T∑

t=1

1
2

∥∥yt − R�xt
∥∥2
]

= T − Eσt [tr(STR�)]

≤ T − 1 − (n − 1)

√
1

2

⌊
T − 1

n − 1

⌋
. (9)
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Wenowshow that for t < T the expected loss of the algorithm is one,where the expectation
is with respect to σt as well as the internal randomization of the algorithm. Note that both
types of randomizations are independent. If Ealg[ŷt ] denotes the expected prediction vector
of the algorithm at trial t after receiving instance vector e f (t) and before receiving the result
vector yt = σtet , then

Eσt ,alg

[
1
2

∥∥yt − ŷt
∥∥2] = 1 − Eσt ,alg

[
y�
t ŷt

]
= 1 − Eσt [σt ] e�

f (t)Ealg
[
ŷt
] = 1.

In trial T , the algorithmmight at best have an expected loss of 0. Thus, the expected loss of the
algorithm is at least T − 1, and hence by subtracting (9), its expected regret (with respect to

both randomizations) is at least (n− 1)

√
1
2

⌊
T−1
n−1

⌋
. Since for a ≥ 1, 
a� ≥ max(a − 1, 1) ≥

(a − 1 + 1)/2 = a/2, the expected regret is lower bounded by

(n − 1)

√
1

4

(
T − 1

n − 1

)
=
√

(T − 1)(n − 1)

4
.

This implies that for any algorithm there is a choice of the σt ’s for which the algorithm has

expected regret (with respect to its internal randomization only) at least
√

(T−1)(n−1)
4 , as

required. Since T ≥ n ≥ 2, this lower bounds is Ω(
√
nT ). 	


As can be seen from the proof, the above lower bound is essentially
√

nT
2 for large n and T ,

s.t. T ≥ n. Recall that the upper bound of our Algorithm 1 is
√
nT .

We now generalize the above lower bound on the worst-case regret that depends on the
number of trials T to a lower bound that depends on the loss L of the best rotation in hindsight.
Applying Theorem 6 of Sect. 5 belowwith n orthogonal instances shows that any randomized
on-line algorithm can be forced to incur loss n on sequences of examples for which there is
a consistent rotation (i.e. L = 0). Combined with the above lower bound, this immediately
generalizes to the following lower bound for any L ≥ 0:

Corollary 1 For any L ≥ 0 and T ≥ 
L/2�, any randomized on-line algorithm can be
forced to have regret Ω(

√
nL + n) for some sequence of T examples for which the loss of

the best rotation is at most L.

Proof If L < 2n, then the lower bound of n for the noise free case already implies a lower
bound of Ω(

√
nL + n). If L ≥ 2n, then we apply the lower bound of the above theorem for

the first T0 = 
L/2� rounds. Note that T ≥ T0 ≥ n. We then achieve a regret lower bound
of Ω(

√
L/2�n) = Ω(
√
nL + n) for the first T0 rounds. Let R0 be the best rotation for the

first T0 rounds. Since the per trial loss of any rotation is at most 2, the loss of the best rotation
on the sequence of the T0 examples used in the construction of the above theorem is at most
2T0 ≤ L .

For the remaining T − T0 rounds, we simply use arbitrary pairs of unit vectors (xt , yt )
that are consistent with R0 (i.e. yt = R0xt for T0 < t ≤ T ). Thus, the rotation R0 incurs 0
additional loss, and hence its total loss is bounded by L; the algorithm, on the other hand,
also incurs 0 additional loss at best. Thus we have anΩ(

√
nL+n) lower bound on the regret

for the sequence of T examples in this construction, and the best rotation has loss at most L .
	


Note that the constant factors needed for the Ω(.) notation in the proofs of the lower bounds
are independent of the algorithm and the values of n and L .
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4 Deterministic online algorithms

We begin by showing that any deterministic algorithm can be forced to have regret T in T
trials. We then show how to construct a deterministic algorithm from any probabilistic one
with at most twice the loss.

Theorem 3 For any deterministic algorithm, there is a sequence of T examples (which may
be fixed before running the algorithm) such that the algorithm has regret at least T on it.

Proof The adversary sets all instances xt to e1. Since the algorithm is deterministic, the
adversary can compute the prediction ŷt , and then set the result vector yt = −ŷt . The per
trial loss is therefore

1
2

∥∥yt − ŷt
∥∥2 = 1

2‖2ŷt‖2 = 2,

amounting to a loss 2T in all trials.
The loss of the optimum rotation on the produced sequence of examples is

min
R∈SO(n)

1
2 ‖yt − Rxt‖2 = T − max

R∈SO(n)
tr(STR),

where ST = ∑T
t=1 e1y

�
t . By Lemma 2, maxR∈SO(n) tr(STR) ≥ 0. Thus, the loss of the

optimum rotation is at most T . Hence, the algorithm has regret at least 2T − T = T . 	

A simple deterministic algorithm would be to predict with an optimal rotation matrix for

the data seen so far using the algorithm of Lemma 2. However this Follow the Leader or
Incremental Off-Line type algorithm along with the elegant deterministic algorithms based
on Lie group mathematics (Arora 2009) all can be forced to have linear worst-case regret,
whereas probabilistic algorithms can achieve worst-case regret at most

√
nT . We don’t know

the optimalworst-case regret achievable by deterministic algorithms. In some cases theworst-
case regret of deterministic algorithm is at least F times the regret of the best probabilistic
algorithm, where F grows with the size of the problem (see e.g. Warmuth et al. 2011). We
show that for our rotation problem, the factor is at most 2.

Theorem 4 Any randomized algorithm for learning rotations can be converted into a deter-
ministic algorithm with at most twice the loss.

Proof We construct a deterministic algorithm from the randomized one that in each trial has
at most twice the loss. Let zt be the expected prediction E[ŷt ] of the randomized algorithm.
If zt = 0, we let the deterministic algorithm predict with e1. In this case the randomized
algorithm has expected loss 1− y�

t zt = 1 and the deterministic algorithm has loss at most 2.
If zt �= 0, then the deterministic algorithm predicts with ŷt = zt‖zt‖ . We need to show that

1 − y�
t ŷt ≤ 2(1 − y�

t zt )

⇔ 0 ≤ 1 − 2y�
t zt + y�

t
zt

‖zt‖ . (10)

Next observe that ‖zt‖ lies in the range [|y�
t zt | , 1]: the upper bound holds because zt lies

in the unit ball and the lower bound follows from the fact that |y�
t zt | is the length of the

projection of zt onto unit vector yt . Now if y�
t zt ≥ 0, then we use the upper bound on the

range to show that 1−2y�
t zt +y�

t
zt‖zt‖ ≥ 1−2y�

t zt +y�
t zt = 1−y�

t zt ≥ 0. If y�
t zt ≤ 0, then

we use the lower bound on the range to show that 1− 2y�
t zt + y�

t
zt‖zt‖ ≥ 1− 2y�

t zt − 1 ≥ 0.
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5 Learning when there is a consistent rotation

In Sect. 3 we gave a randomized algorithmwith at most
√
nT worst-case regret (when T ≥ n)

and showed that this regret bound is tight within a constant factor. However regret bounds
that are expressed as a function of number of trials T only guard against the high-noise
case and are weak when there is a comparator with small loss. Ideally we want bounds that
grow with the loss of the best comparator chosen in hindsight as was done in the original
online learning papers (see e.g. Cesa-Bianchi et al. 1996a; Kivinen and Warmuth 1997). In
an attempt to understand what regret bounds are possible when there is a comparator of low
noise, we carefully analyze the case when there is a rotationR consistent with all T examples,
i.e. Rxt = yt for all t = 1, 2, . . . , T . Even in this case, the online learner incurs loss until a
unique consistent rotation is determined and the question is which algorithm has the smallest
regret against such sequences of examples.

There is a randomized and a deterministic variant of the algorithm, but they only disagree
in the first trial. The deterministic variant predicts with ŷ1 = e1 and the randomized variant
with ŷ1 = ±e1 with probability 1

2 [i.e. E(ŷ1) = 0)]. In later trials the algorithm (both
variants) predict deterministically. At trial t ≥ 2, it first decomposes the instance xt in the
part x‖

t that lies in the span of the previous instances and x
⊥
t that is perpendicular to the span.

By definition, x‖
t is a linear combination of the past instances xq for 1, . . . , t − 1. Replacing

the instance vectors xq in the linear combination by the result vectors yq , we arrive at y
‖
t (See

Step 5). The algorithm essentially predicts with the direction vector of y‖
t until and including

the first trial S in which the matrix [x1, . . . , xS] has rank n − 1. From trial S + 1 to T , the
algorithm predicts with the unique consistent rotation.

Algorithm 2 Optimal noise-free algorithm

1: In trail 1, predict with ŷ1 =
{
e1 if deterministic
±e1 with probability 1

2 if randomized
2: for trial t = 2 to and including the first trial S in which rank([x1, . . . , xS ]) = n − 1

or S = T if this never happens do
3: Decompose the instance vector xt = x‖

t + x⊥
t and compute the linear combination x‖

t = ∑t−1
q=1 αqxq

4: if x‖ = 0 then predict with ŷt = y1.

5: else predict with ŷt = y‖
t

‖y‖
t ‖

, where y‖
t = ∑t−1

q=1 αqyq .

6: end for
7: for t = S + 1 to T do
8: Predict with ŷt = Rxt , where R is the rotation consistent with trials 1 through S
9: end for

Theorem 5 On any sequence of examples (x1, y1), . . . , (xT , yT ) that is consistent with a
rotation, the randomized version of Algorithm 2 has expected loss

∑S
t=1(1 − ‖x‖

t ‖). The
deterministic version has loss at most

(∑S
t=1

(
1 − ‖x‖

t ‖
))

+ 1.

Proof For proving the upper bound for the randomized algorithms, first note that in trial 1
the expected loss is 1 − y�

1 E(ŷ1) = 1 − y�
1 0 = 1 = 1 − ‖x‖

1‖. In trials 2 ≤ t ≤ S, the

deterministic choice ŷt = y‖
t

‖y‖
t ‖

assures that the loss is

1
2

∥∥yt − ŷt
∥∥2 = 1 − y�

t ŷt = 1 − ‖y‖
t ‖ = 1 − ‖x‖

t ‖. (11)
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In the special case when x‖
t = 0 then x�

t x1 = 0, and so y�
t y1 = 0 since we have a consistent

rotation and rotations preserve angles. Thus the deterministic prediction ŷt = y1 has loss
1 = 1 − ‖x‖

t ‖ as well. If S < T , then since rank([x1, x2, . . . , xS]) = n − 1, the vectors
x⊥
1 , x⊥

2 , . . . , x⊥
S are mutually orthogonal, with exactly n − 1 non-zero vectors. This gives

two sequences of mutually orthogonal vectors x⊥
1 , x⊥

2 , . . . , x⊥
S and y⊥

1 , y⊥
2 , . . . , y⊥

S such that
‖x⊥

t ‖ = ‖y⊥
t ‖ for t ≤ S, and exactly n − 1 non-zero vectors in each sequence. By Lemma 5

below we conclude that there is a unique rotation matrix R such that y⊥
t = Rx⊥

t for t ≤ S.
Since the result vectors yt are linear combinations of the orthogonal components y⊥

q for
q ≤ t , we have the rotationR is a unique rotation consistent with the first S examples. Hence
we find this rotation and incur no more loss in any trial t > S. Overall, the expected loss of
the randomized algorithm is

S∑

t=1

(1 − ‖x‖
t ‖).

The deterministic algorithm may have loss at most 2 in the first trial. For the rest of the trials
the deterministic algorithm is the same as the randomized one and has the same bound on

the loss, leading to an upper bound of
(∑S

t=1

(
1 − ‖x‖

t ‖
))

+ 1. 	

We now give a simple lemma which states that a rotation is essentially determined by its

action on n − 1 mutually orthogonal vectors. The proof is straightforward, but we include it
for the sake of completeness.

Lemma 5 Let x⊥
1 , x⊥

2 , . . . , x⊥
T and y⊥

1 , y⊥
2 , . . . , y⊥

T be two orthogonal sequences of vectors
in R

n such that ‖xt‖ = ‖yt‖ and both sequences have at most r ≤ n − 1 non-zero vectors.
Then there is a rotation matrix R such that yt = Rxt . If r = n − 1, then R is unique.

Proof Pairs (xt , yt )of length zero can be omitted andwithout loss of generalitywe can rescale
the remaining vectors so that their length is one, since rotations are a linear transformation and
preserve the scaling. Also we can always add more orthonormal vectors to both sequences
and therefore it suffices to find a rotation when r = n − 1 = T . Let x⊥

n and y⊥
n be unit

vectors orthogonal to the span of {x⊥
1 , x⊥

2 , . . . , x⊥
n−1} and {y⊥

1 , y⊥
2 , . . . , y⊥

n−1}, respectively.
Now, since rotations preserve angles and lengths, if there is a rotationR such thatRx⊥

t = y⊥
t

for t = 1, 2, . . . , n − 1, then we must have Rx⊥
n = ±y⊥

n . We now determine the right
sign of y⊥

n as follows. Let X = [x⊥
1 , x⊥

2 , . . . , x⊥
n−1, x

⊥
n ], Y+ = [y⊥

1 , y⊥
2 , . . . , y⊥

n−1, y
⊥
n ], and

Y− = [y⊥
1 , y⊥

2 , . . . , y⊥
n−1,−y⊥

n ]. Note that X, Y+ and Y− are all orthogonal matrices. The
desired rotation matrix R is a solution to one of following two linear systems RX = Y+
or RX = Y−, i.e. R = Y+X� or R = Y−X�, since X−1 = X�. Note that both Y+X�
and Y−X� are orthogonal matrices since they are products of orthogonal matrices, and the
determinant of one is the negative of the other. The desired rotation matrix is then the solution
with determinant 1. 	


We now prove a lower bound which shows that Algorithm 2 given above has the strong
property of being instance-optimal: viz., for any sequence of input vectors and for any
algorithm, there is a sequence of result vectors on which the loss achieved of the algorithm
is at least that of Algorithm 2:

Theorem 6 For any online algorithm and for every instance sequence x1, . . . , xT , there is an
adversary strategy for choosing the result sequence y1, . . . , yT for which there is a consistent
rotation, and the algorithm incurs loss

∑S
t=1(1 − ‖x‖

t ‖). Furthermore, if the algorithm is

deterministic, then the adversary can force a loss of at least
∑S

t=1(1 − ‖x‖
t ‖) + 1.
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Proof Let us begin with the lower bound for randomized algorithms. At trials t ≤ S, the

adversary finds some vector y⊥
t of length ‖x⊥

t ‖ =
√
1 − ‖x‖

t ‖2 that is perpendicular to the

span of {y1, . . . , yt−1} and chooses the result vector yt = y‖
t ± y⊥

t depending on which of

the two examples (xt , y
‖
t ± y⊥

t ) has larger expected loss. The expected loss of both examples
is

E
[
1
2‖y‖

t + y⊥
t − ŷt‖

]
+ E

[
1
2‖y‖

t − y⊥
t − ŷt‖

]
= 2 −

(
y‖
t + y⊥

t + y‖
t − y⊥

t

)�
E
[
ŷt
]

= 2 − 2
(
y‖
t

)�
E
[
ŷt
]

≥ 2 − 2‖y‖
t ‖ = 2 − 2‖x‖

t ‖,
where last inequality holds because ‖E[ŷt ]‖ ≤ E[‖ŷt‖] ≤ 1, and therefore (y‖

t )
�E[ŷt ] ≤

‖y‖
t ‖. It follows that one of the result vectors yt = y‖

t ± y⊥
t incurs expected loss at least

1− ‖x‖
t ‖ and the adversary makes that choice. Overall, the loss for any algorithm is at least

S∑

t=1

(
1 − ‖x‖

t ‖
)

.

For deterministic algorithms, the adversary can further force a loss of 2 on the first trial by
choosing y1 = −ŷ1, leading to a lower bound of 1 +∑S

t=1(1 − ‖x‖
t ‖).

We next show that for the examples (xt , yt ) produced by the adversary, there always
is a consistent rotation R such that yt = Rxt . Note that in the construction the vectors
y1, y2, . . . , yt lie in the span of the y⊥

1 , y⊥
2 , . . . , y⊥

t . So it suffices to show that there is a
rotation matrix R such that y⊥

q = Rx⊥
q for all q ≤ t . To show this we use Lemma 5. First,

we note that since rank of [x1, x2, . . . , xt ] is at most n − 1, and since x⊥
1 , x⊥

2 , . . . , x⊥
t are

mutually orthogonal and span the same subspace, there can be at most n − 1 non-zero x⊥
q

vectors. Further, by construction ‖y⊥
q ‖ = ‖x⊥

q ‖ for all q ≤ t . Thus, by Lemma 5, the desired
rotation exists and we are done. 	

The following algorithm seems more natural than Algorithm 2 above: Given xt , decompose
it into x‖

t and x⊥
t as before. Then predict with a rotation that is consistent with the previous

t − 1 examples (i.e. takes x‖
t to y‖

t ) and rotates x⊥
t to an arbitrary vector ±y⊥

t of the same
length that is orthogonal to the previous result vectors and whose sign is chosen uniformly.
Thus ŷt = y‖

t + ±y⊥
t and the expected loss of this algorithm is

1 − y�
t E

[
ŷt
] = 1 −

(
y‖
t + y⊥

t

)� (
y‖
t ± y⊥

t

)
= 1 − ||y‖

t ||2 = 1 − ||x‖
t ||2.

However the above lower bound shows that when y‖
t �= 0, then only the deterministic

prediction ŷt = y‖
t

‖y‖
t ‖

has the optimal loss 1 − ‖xt‖ [i.e. it makes the equalities (11) tight].

This is also in contrast to Algorithm 1, which often employs non-optimal random predictions
in trials when y‖

t �= 0. It seems that less randomization should be used when the loss of the
best offline rotation is small because a deterministic algorithm is essentially minimax optimal
in the noise-free case.

The deterministic variant of Algorithm 2 also does not predict with a consistent rotation.
It is easy to show that any deterministic algorithm that predicts with a consistent rotation
can be forced to have loss 2(n − 1) instead of the optimum n: when such an algorithm
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receives an instance vector that is orthogonal to all the previous instance vectors, the algorithm
deterministically predicts with a unit vector ŷt that is orthogonal to all the previous result
vectors. Since the adversary knows ŷt , it can simply choose the result vector yt as −ŷt . This
forces the algorithm to incur loss 2 and the can be repeated n − 1 times, at which point the
optimal rotation is completely determined.

6 Conclusions

We have presented a randomized online algorithm for learning rotation with a regret bound
of

√
nT and proved a lower bound of Ω(

√
nT ) for T > n. We also proved a lower bound

of Ω(
√
nL + n) for the regret of any algorithm on sequences on which the best rotation has

lost at most L . Recently, an upper bound was shown that matches this lower bound within
a constant factor (Nie 2015). However the algorithm that achieves this upper bound on the
regret is not the GD algorithm of this paper based on lazy projection but the GD algorithm
that projects into the convex hull of orthogonal matrices at the end of each trial (Hazan et al.
2010a). The latter algorithm requires O(n3) per trial (Hazan et al. 2010a). It is open whether
the O(n2) lazy projection version of GD has the same Ω(

√
nL + n) regret bound.

In general, we don’t know the best way to maintain uncertainty over rotation matrices.
The convex hull of orthogonal matrices seems to be a good candidate (as used in Hazan
et al. 2010a). For the sake of efficiency, we used an even larger hypothesis space in this
paper: we only require in Algorithm 1 that ‖Wm

t xt‖ ≤ 1 at trial t . The algorithm regularizes
with the squared Frobenius norm and uses Bregman projections with respect to the inequality
constraint ‖Wm

t xt‖ ≤ 1. However such projections “forget” information about past examples
and the squared Frobenius norm does not take the group structure of SO(n) into account.

One way to resolve some of these questions is to develop the minimax optimal algorithm
for rotations and the linear loss discussed in this paper. This was recently posted as an open
problem in Kotłowski and Warmuth (2011). In the special case of n = 2, the minimax regret
for randomized algorithm and T trials was determined to be

√
T , whereas for our randomized

algorithm we were only able to prove the larger regret bound of
√
2T . We have shown in

the previous section that in the noise-free case, the minimax regret is n − 1 for randomized
algorithms and 2(n−1) for deterministic ones. Curiously enough the minimax algorithm for
n = 2 and T trials (Kotłowski andWarmuth 2011) makes heavy use of randomness, whereas
in the noise-free case the optimal randomized algorithm only requires randomness in trials
when x‖

t = 0.
Another direction is to make the problem harder and study learning rotations when the

loss is non-linear. The question is whether for non-linear loss functions the GD algorithm
that projects on the parameter space of the convex hull of orthogonal matrices still achieves
a worst-case regret that is within a constant factor of optimal.
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Appendix 1: Solutions of Wahba’s problem and the orthogonal Procrustes
problem

We first prove Lemma 3, since it is simpler and it gives a reduction which will be useful for
the proof of Lemma 2.

Proof of Lemma 3 Recall that we want to compute

max
R∈O(n)

tr(SR).

Let S = U�V� be an SVD of S, so that U and V are orthogonal matrices, and � =
diag(σ1, σ2, . . . , σn) is a diagonal matrix of the non-negative singular values σi .

Now, we do a change of variables. Instead of maximizing over an orthogonal matrix R,
we maximize over orthogonal matrix W = V�RU. This lets us rewrite the dot product we
are minimizing over

tr(SR) = tr
(
SVWU�) = tr

(
U�V�VWU�) = tr(�W). (12)

SinceW is an orthogonal matrix, we have |Wii | ≤ 1 for all i . Hence, the linear expression
tr(�W) = ∑

i σiWii is maximized when W = I, the identity matrix. We conclude that
R = VU� is an optimal solution to maxR∈O(n) tr(SR) and the optimum value is

∑n
i=1 σi . 	


We have been unable to find a complete, rigorous solution of Wahba’s problem in the
literature for dimensions more than 3. For the sake of completeness, we give a complete
proof. This proof was obtained in collaborationwith AbhishekKumar, simplifying a previous
version given in the submitted version of this paper.

Proof of Lemma 2 Recall that we want to compute

max
R∈SO(n)

tr(SR).

As in the proof of Lemma 3, let S = U�V� be an SVD of S. As before, we do a change of
variables from a rotation matrix R to an orthogonal matrixW = V�RU, with the following
condition on the determinant ofW:

det(W) = det(V) det(R) det(U) = det(U) det(V) =: s ∈ {+1,−1}.
Using Eq (12), the problem now reduces to:

max
W∈O(n),det(W)=s

tr(�W). (13)

The case det(W) = 1 is easy. We already showed in the previous lemma that

I ∈ argmaxW∈O(n) tr(�W).

Thus in this case the constraint on the determinant ofW is immaterial and the optimum value
is
∑n

i=1 σi = ∑n−1
i=1 σi + sσn , where σn is the smallest singular value.

The case det(W) = −1 is considerably harder. We need to show W = diag(1, 1, . . . , 1,
−1) is an optimal solution which has value

∑n−1
i=1 σi − σn = ∑n−1

i=1 σi + sσn , where σn is
the smallest singular value.
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Let W be an arbitrary orthogonal matrix of determinant −1. We make the following
observations regardingW. First, if λ1, λ2, . . . , λn are the n (real or complex) eigenvalues of
W, then we have

n∏

i=1

λi = det(W) = −1.

Since W ∈ O(n), all eigenvalues λi have magnitude |λi | = 1: this is because if λ is an
eigenvalue ofW with eigenvector v, i.e. Wv = λv, then

‖v‖ = ‖Wv‖ = ‖λv‖ = |λ|‖v‖,
where the second equality usesW ∈ O(n).

We claim that at least one eigenvalue of the matrix W is −1. This is so because all the
complex eigenvalues of the realmatrix Smust occur in complex conjugate pairs, a + ib and
a − ib, for some b �= 0 and a2 + b2 = 1. Now, the product of any such complex conjugate
pair of eigenvalues is (a + ib)(a − ib) = a2 + b2 = 1. Hence, the product of all complex
eigenvalues is 1. Since the product of all eigenvalues (real or complex) is −1, and all real
eigenvalues are either +1 or −1, we must have at least one eigenvalue being −1.

For convenience of notation, let λn = −1. Now, we have

tr(W) =
n−1∑

i=1

λi + λn =
n−1∑

i=1

real(λi ) − 1 ≤ n − 1 − 1 = n − 2.

Here, real(z) is the real part of a complex number z, and we use the fact that the sum of two
complex conjugate eigenvalues a + ib and a − ib is 2a, which is the sum of their real parts.
We also used the fact that for any eigenvalue λi , real(λi ) ≤ 1 since |λi | = 1.

Finally, note that |Wii | ≤ 1 sinceW is an orthogonal matrix. Now, consider the following
linear program which is a relaxation of the optimization problem (13) [This is a relaxation
since the last inequality holds for all solutions of (13) and we drop the constraint that W is
an orthogonal matrix of determinant −1]:

max
∀i : −1 ≤ Wii ≤1 and

∑n
i=1 Wii ≤ n−2

n∑

i=1

σiWii .

The optimal solution to this linear program is obtained at a vertex of the polytope defined by
the constraints. We now characterize the vertices of the polytope as follows:

Claim 1 Any vertex of the polytope defined by the constraints of the above linear program
satisfies Wii ∈ {+1,−1} for all i , with at least one Wii set to −1.

Proof Any vertex is obtained by setting n of the inequalities to equalities.
Case 1: n of the −1 ≤ Wii ≤ 1 inequalities are tight. Then all Wii ∈ {−1,+1}, and to

satisfy
∑n

i=1 Wii ≤ n − 2, we must have at least one −1.
Case 2:

∑n
i=1 Wii equals the integer n−2, exactly n−1 of the inequalities−1 ≤ Wii ≤ 1

are tight for say 1 ≤ i ≤ n − 1, and the last one is not tight, i.e. −1 < Wnn < 1. Then for all
1 ≤ i ≤ n − 1, we have Wii ∈ {+1,−1}, since∑n

i=1 Wii = n − 2, an integer, Wnn is also
an integer, and hence must be zero. But then with Wii ∈ {+1,−1} for 1 ≤ i ≤ n − 1 the
sum

∑n−1
i=1 Wii is either n − 1 or at most n − 3. Thus

∑n
i=1 Wii = n − 2 can’t be satisfied

and case 2 does not give any more vertices. 	
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With this characterization of the vertices, since the σn is the smallest singular value, the
optimal vertex for the linear program is the one where Wii = 1 for 1 ≤ i ≤ n − 1, and
Wnn = −1. Thus the optimum value of the linear program is

∑n−1
i=1 σi − σn . Since this is a

relaxation to the original problem, this optimum value is only larger than the optimum of the
original problem. However, by setting W = diag(1, 1, . . . , 1,−1), which is an orthogonal
matrix of determinant−1, we achieve the same value in the original problem as in the relaxed
LP, and hence the optimal solution to the original problem is given by thisW. 	


Appendix 2:Acharacterization of the convexhull of the orthogonalmatrices

Let ||M||2 denote the spectral norm of matrixM which is the maximum singular value ofM.
Alternatively, this norm can be defined as: ||M||2 := max{||Mx|| : ||x|| = 1}.
Lemma 6 The convex hull B of all n × n orthogonal matrices is exactly the set of matrices
of spectral norm at most 1, that is

B = {M ∈ Rn×n : ‖M‖2 ≤ 1} =
⋂

x:||x||=1

{W : ||Wx|| ≤ 1}. (14)

Furthermore, given any matrix M ∈ B, there is a polynomial time randomized rounding
algorithm, which produces a random orthogonal matrix M̃ such that E[M̃] = M.

Proof The second equality of (14) follows from the alternate definition of the spectral norm.
To show that the convex hull of O(n) is the set of matrices of spectral norm at most 1,
first observe that since all singular values of any orthogonal matrix are equal to 1, we have
O(n) ⊆ B. Hence the convex hull of O(n) is contained in B. We now give the randomized
rounding procedure, which automatically implies that B is contained in the convex hull of
O(n), completing the characterization.

Let M ∈ B be any square matrix, and let M = U�V� be the SVD of M, where � =
diag(σ1, σ2, . . . , σn). Since ‖M‖2 ≤ 1, the singular value σi ∈ [0, 1] for all i = 1, 2, . . . , n.
Consider the random diagonal matrix �̃ = diag(σ̃1, σ̃2, . . . , σ̃n) defined as

σ̃i =
{
1 with probability (1 + σi )/2

−1 with probability (1 − σi )/2

Note that for all i , we have E[σ̃i ] = σi and therefore E[�̃] = �. Furthermore, �̃ is an
orthogonal matrix, and hence M̃ = U�̃V� is an orthogonal matrix too. Finally, by the
linearity of the expectation, E[M̃] = M. 	
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