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Abstract Many real-world datasets suffer frommissing or incomplete data. In the healthcare
setting, for example, certain patientmeasurement parameters, such as vitals and/or lab values,
may be missing due to insufficient monitoring. When present, however, these features could
be highly discriminative in predicting aspects of patient state. Therefore, it is desirable to
incorporate these sparsely measured features into a predictive model. Training predictive
algorithms on such datasets is complicated by the missing data. Overcoming this problem is
usually achieved by first estimating values for the missing data, which is referred to as data
imputation. Without strong prior knowledge about the relationship between features though,
it is common to fill in missing values with their respective population mean or median.
The accuracy of this approach is limited, however, and may simply inject noise into the
data. We propose a two-stage machine learning algorithm that learns a dynamic classifier
ensemble from an incomplete dataset without data imputation. The algorithm is very simple
to implement and applicable across a wide range of problems. Our method first employs a
variant of AdaBoost to learn a set of low-dimensional classifiers, each of which abstains from
predicting if its dependent feature(s) are missing. Our novel contribution is the secondary
dynamic ensemble learning stage in which the low-dimensional classifiers are combined
using a dynamic weighting that depends on the pattern of measured features in the present
input data. This allows the model to be resilient to missing data by adjusting the strength of
certain classifiers to account formissing features.We apply our algorithm to early detection of
hemodynamic instability in ICU patients. Providing an effective risk score of hemodynamic
instability has the potential to give the clinician sufficient time to intervene, thereby reducing
the chance of organ damage due to insufficient blood perfusion.We compare the results of our
algorithm to other commonmissing data approaches, includingmean imputation andmultiple
imputation methods, and discuss the advantages of the approach given the constraints of the
application domain (e.g., high specificity to combat hospital alarm fatigue).
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1 Introduction

The fundamental purpose of the cardiovascular system is to ensure adequate perfusion
and oxygenation of body tissue to maintain normal, healthy tissue and organ function. A
healthy physiological system has a number of compensatory mechanisms in place that help
to maintain an appropriate blood pressure and cardiac output to enable sufficient perfusion
of the end organs. Patients in the intensive care unit (ICU), however, are often physio-
logically compromised so that insults from significant disease processes such as sepsis,
hemorrhage, and acute heart failure may result in significant impairment of these control
functions, resulting in hemodynamic deterioration. Thus, in such cases, the ICU clini-
cian is often challenged to optimize hemodynamics by assimilating the myriad ICU data
and reacting with appropriate interventions in the form of intravenous fluids, blood prod-
ucts, and pharmacological agents, to help the patient maintain adequate cardiac output
and perfusion. The early detection of hemodynamic instability episodes and the imme-
diate initiation of appropriate corrective intervention can significantly improve patient
outcome.

ICU clinicians are presented with a large number of physiological data consisting of
periodic and frequently sampledmeasurements (e.g. second-by-second,minute-by-minute, 5,
or 15-min, depending on the particular device configuration), such as heart rate and respiratory
rate, as well as aperiodic measurements, such as noninvasive blood pressure and laboratory
studies. Labs are only measured every few hours or once a day to avoid unnecessary blood
draws. Moreover, certain lab results may only be ordered if a patient is suspected of a certain
condition. Lactate, for example, may only be measured for 15–20% of ICU patients that
are suspected of having lactic acidosis. The interpretation and reaction of these rich data
sources to impending hemodynamic instability can be a particularly difficult task in the
presence of overwhelming volumes of data, frequent false alarms, and frequently interrupted
workflows.

We propose a machine learning algorithm to detect hemodynamic deterioration in its
early stages, enabling clinicians to direct attention to those patients who may benefit
from it most, by creating an algorithm that meaningfully combines data that is available
in the current ICU environment. This includes information that may not be commonly
measured, but when measured can be very important. Our algorithm trains a predictive
classifier that is robust to missing data and handles missing data without data imputa-
tion. Avoiding data imputation makes the algorithm very simple and efficient for real-time
production scenarios. Instead, the algorithm learns a dynamic ensemble comprising many
univariate or low-dimensional classifiers, each of which abstains from predicting if its
dependent feature(s) are missing. This is achieved by a two-stage learning algorithm:
first, a variant of AdaBoost learns a set of low-dimensional classifiers, each of which
abstains from predicting if its dependent feature(s) are missing. Our novel contribu-
tion is the secondary dynamic ensemble learning stage in which the low-dimensional
classifiers are combined using a dynamic weighting that depends on the pattern of
measured features in the present input data. This allows the model to be resilient to
missing data by adjusting the strength of certain classifiers to account for missing fea-
tures.
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Table 1 Description of intervention criteria used to label patient ICU segments as hemodynamically unstable

A patient segment was labeled “unstable” under any of the following conditions

Administration of any quantity of any of the following inotropic and vasopressor medications

Dobutamine

Dopamine

Epinephrine

Norepinephrine

Phenylephrine

Vasopressin

Administration of Fluid Therapy (colloid or crystalloid) in the following dosages

2400 cc in 8h

3000 cc in 12h

Administration of Packed Red Blood Cells (PRBCs) in either of the following dosages

800 cc PRBC over course of 24h

500 cc in 2h followed by at least 700 cc of fluid therapy in 1h within a 12h period after
the PRBC intervention.

2 Data

Patient data were obtained from the eResearch Institute (McShea et al. 2010); the data
included records from 105,000 patients cared for at 50 hospitals. We refined the dataset
to include only those hospitals that reported fluids administered at least hourly so that we
could better gauge each patient’s therapy. From these hospitals, we excluded patients who
were designated as “Do Not Resuscitate” (DNR), “Comfort Measures Only” (CMO), or
“Allow Natural Death” (AND). This resulted in a finalized dataset of 40,883 patients from
across 25 hospitals, ranging from large teaching hospitals to smaller, community hospitals,
with a hospital mortality ranging from 0 to 7.8% (median = 3%).

The dataset originated from a non-annotated database, and as such, no gold standard
marker of hemodynamic instability was available. Instead, certain interventions by clinicians
were used to demarcate episodes of hemodynamic instability. The criteria for instability,
highlighted in Table 1, were developed based on a strong consensus among a group of
experienced intensive care physicians.1

For purposes of training and validation, the patients ICU stays were divided into 6h seg-
ments, and these segments were labeled as either stable or unstable. Unstable segments were
the 6h period prior to any intervention listed in Table 1. Patients could have multiple inter-
ventions, and thus multiple intervention segments. However, for subsequent interventions
there must be a stable period of 18h without an intervention. Stable segments were chosen
from patients who had none of the interventions listed in Table 1 or who ended their ICU
stay with at least 18h without an intervention. A 6h segment was chosen at random from
these stable periods for the stable segments.

The above criteria resulted in 49,256 labeled segments (44,019 stable; 5237 unstable:
instability prevalence 10.6%). We extracted a total of 57 features that comprised vital signs,
lab values, and demographic information about the patient. These features, along with their
measurement availability, are categorized by panel and component tests (Frassica 2005) in
Table 2. For each segment, the data extracted 1h prior to intervention was used for training.

1 Clinical feedback was provided by Joseph Frassica, MD and Mohammed Saeed, MD.
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Table 2 Listing of features used for hemodynamic instability prediction, along with their measurement
frequency (percentage of segments)

Arterial blood gas % Invasive vitals %

Arterial pH 45 Invasive mean blood pressure (iBPMean) 22

Bicarbonate (HCO3) 48 Invasive systolic blood pressure (iBPSys) 23

Arterial PaCO2 45 Invasive diastolic blood pressure (iBPDia) 23

SaO2 43 Invasive shock index (ISI) 24

Arterial base excess 29 Central venous pressure (CVP) 14

Ventilator parameters % Noninvasive vitals/demographics %

PF ratio 27 Noninvasive mean blood pressure (nBPMean) 99

FiO2 Set 30 Noninvasive systolic blood pressure (nBPSys) 99

Mean airway pressure
(MAP)

8 Noninvasive diastolic blood pressure (nBPDia) 99

Peak insp pressure (PIP) 10 Heart rate 100

Noninvasive shock index (NSI) 98

Age 98

Temperature (T) 21

Basic metabolic panel % Comprehensive metabolic panel %

Carbon dioxide (CO2) 96 Alanine aminotransferase (ALT) 71

Chloride 97 Albumin 71

Blood urea nitrogen
(BUN)

97 Alkaline phosphatase (ALP) 70

Creatinine 97 Aspartate transaminase (AST) 72

Potassium 97 Total bilirubin 73

Sodium 97 Total protein 67

Glucose 97

Calcium 96

Complete blood count % Complete blood count profile %

WBC - Leukocytes 96 Bands 9

RBC 96 Basophils (Basos) 40

Hematocrit 97 Eosinophils (Eos) 40

Hemoglobin 97 Lymphocytes (Lymphs) 41

Platelets 96 Monocytes (Monos) 40

Neutrophils (Polys) 40

Neutrophil-to-Lymphocyte ratio (NLR) 40

Additional tests % %

Amylase 15 Lactate dehydrogenase (LDH) 14

CPK 44 Magnesium 57

CPK MB 38 Partial thromboplastin time (PTT) 64

Ionized calcium 19 Prothrombin time (INR) 69

Lactate 17 Triglyceride 20

123



Mach Learn (2016) 102:443–463 447

We used sample-and-hold imputation to fill in features that were not available 1h prior
to intervention, but were measured sometime within a 6h period prior. Even despite this
imputation technique, many of the features were still missing a large number of values.

3 Methods

In the following, vectors will be denoted by bold-face: x. To reference the jth element of x,
we use the notation x j .

We are given a dataset of n labeled samples (x(1), y(1)), . . . , (x(n), y(n)), where each
x(i) ∈ R

p is a p-dimensional feature vector and y(i) ∈ {−1,+1} is its associated categorical
label that we wish to predict. In the case of the hemodynamic instability dataset from Sect. 2,
each element of x corresponds to a feature listed in Table 2, and y is the patient state label
(either “stable” or “unstable”). We assume the dataset is incomplete in that features are not
present or measured in every feature pattern. Certain features, such as Lactate and Central
Venous Pressure, may be missing on 80% or more of samples. We denote the jth feature
being missing on the i th sample as x (i)

j = φ.
As discussed in the Introduction, our approach can be broken down into two stages.

In Sect. 3.1, we discuss using a variant of AdaBoost to learn the set of low-dimensional
classifiers, each of which abstains when its dependent feature(s) are missing. This abstaining
AdaBoost model was first introduced by Schapire and Singer (1999) and applied to missing
data applications in Smeraldi et al. (2010). Then in Sect. 3.2, we introduce the second stage
of the algorithm that learns a dynamic ensemble, which weights the various classifiers based
on the presence/absence pattern of the input features.

3.1 AdaBoost with abstaining

AdaBoost (Schapire and Singer 1999) is a very effective machine learning technique for
building a powerful classifier from an ensemble of “weak learners”. Specifically, the boosted
classifier H(x) is modeled as a generalized additive model of many base hypotheses:

H(x) = b +
∑

t

αt h(x; θt) (1)

where b is a constant bias that accounts for the prevalence of the categories, and each h(x; θt)

is a function of x, with parameters given by the elements in the vector θt , and produces a
classification output (+1 or −1). We also allow each of the base classifiers to abstain from
voting (output = 0). A final classification decision is assigned by taking the sign of H(x),
which results in a weighted majority vote over the base classifiers in the model.

As is common for AdaBoost applications, we use the class of 1-dimensional decision
stumps as the base hypotheses:

h(x; θt = ( j, τ )) =
⎧
⎨

⎩

+1, x j ≥ τ

−1, x j < τ

0, x j = φ

(2)

Thus, each base classifier votes by comparing one of the p features in the data to a threshold.
If that particular feature is missing, the base classifier abstains from voting.

The algorithm to learn the bias b, base hypotheses h(x; θt) andweightingsαt is a version of
the traditional discrete AdaBoost algorithm adapted to accommodate classifiers that abstain,
which was described in Schapire and Singer (1999). This algorithm has been employed
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previously for missing data problems in predicting protein-protein interactions (Smeraldi
et al. 2010), but since it is a non-standard application of AdaBoost, we briefly reproduce the
details of the algorithm here.

AdaBoost seeks to minimize the exponential loss function:

n∑

i=1

exp
(
−y(i)H(x(i))

)
(3)

which can be shown to be an upper bound on the training error (Freund and Schapire 1999).
Optimization proceeds in a greedy fashion: at each iteration (or boosting round) t, a new
classifier is added to the model that most decreases the objective function in (3). Thus, at
iteration t = T , we fix the base classifiers learned at iterations 1, . . . , T − 1 and add a new
classifier h(x; θT ), weighted by αT , that minimizes the exponential loss objective:

n∑

i=1

exp

(
−y(i)

[
b +

T−1∑

t=1

αt h(x(i); θt) + αT h(x(i); θT )

])
(4)

=
n∑

i=1

w
(T )
i exp

(
−y(i)αT h(x(i); θT )

)
(5)

where w
(T )
1 , w

(T )
2 , . . . , w

(T )
n is the current weight distribution on the training data:

w
(T )
i = exp

(
−y(i)

[
b +

T−1∑

t=1

αt h(x(i); θt)

])
(6)

These weights reflect how well the current classifier (up to iteration T − 1) is performing on
each of the training examples: the larger the weight, the poorer the classifier predicts the true
label of that example.

The algorithm boils down to selecting h(x(i); θT ) and αT . It can be shown (Schapire and
Singer 1999) that the classifier that most decreases the objective is the one that minimizes:

D0(θT ) + 2
√
D+(θT )D−(θT ) (7)

where D0(θT ) =
n∑

i=1

w
(T )
i I(h(x(i); θT ) = 0) (8)

D+(θT ) =
n∑

i=1

w
(T )
i I(y(i)h(x(i); θT ) > 0) (9)

D−(θT ) =
n∑

i=1

w
(T )
i I(y(i)h(x(i); θT ) < 0) (10)

where I(x) is the indicator function. Intuitively, D0(θT ), D+(θT ) and D−(θT ) are the fraction
of examples (under the current training weight distribution) for which the classifier abstains,
classifies correctly, and classifies incorrectly. This best classifier can be identified efficiently
from the class of decision stumps.

Once the classifier has been selected, the weight can be computed analytically by setting
the derivative of (5) to zero, resulting in the following update:

αT = 1

2
log

(
D+(θT )

D−(θT )

)
(11)
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Notice that even though the classifier selection criterion (7) penalizes a classifier for abstain-
ing, the weighting αT that it is assigned if it is selected is not affected. Instead, a classifier’s
weighting only depends on how discriminative it is when it votes, and is not penalized for
abstaining.

Upon incorporating theweighted classifierαT h(x; θT ), we update theweight distribution:

w
(T+1)
i ← w

(T )
i exp

(
−y(i)αT h(x(i); θT )

)
(12)

and proceed to the next round of boosting t = T + 1.
Since the prevalence of hemodynamic instability in the ICU dataset is highly unbalanced

(roughly 10:1), the best classifier to add may often be one that is highly biased towards
the most prevalent category. To remove this effect, we re-tune the bias at each iteration.
Specifically, at the start of each boosting round, the bias is adjusted as follows:

b ← b + Δb (13)

Δb = 1

2
log

(∑n
i=1 w

(T )
i I(y(i) = +1)

∑n
i=1 w

(T )
i I(y(i) = −1)

)
(14)

This update adjusts the weight distribution to:

w
(T )
i ← w

(T )
i exp(−y(i)Δb) (15)

which has the appealing property of equalizing the weight distribution on positively and
negatively labeled examples:

n∑

i=1

w
(T )
i I(y(i) = −1) =

n∑

i=1

w
(T )
i I(y(i) = +1) (16)

This removes the prevalence bias and forces the learning algorithm to select a classifier with
good separation between the two classes.

After T rounds of boosting, we obtain a static ensemble classifier H(x). In the following
section, we will also require the set of univariate classifiers f1(x1), f2(x2), . . . , f p(xp) that
comprise this ensemble. These are the weighted sum of decision stumps acting on each of
the features. Figure 1 gives an example univariate classifier for the feature noninvasive shock
index. So at the end of each boosting round t = T , if the selected base classifier operates on
feature x j , we update the appropriate univariate classifier f j (x j ) ← f j (x j ) + αT h(x; θT ).
Thus, H(x) can be equivalently expressed as H(x) = ∑p

j=1 f j (x j ).

3.2 Dynamic ensemble learning

The goal of the dynamic ensemble is to add a secondary layer of resilience to missing data.
Our approach again avoids data imputation and instead trains a secondary learning algorithm
to combine the univariate classifiers learned in the previous section. The weighting assigned
to each of the classifiers is dynamic: it is a function of the presence/absence measurement
pattern of the input features. This allows the classifier to account for certain missing features
by adjusting the strength of predictions made by other univariate classifiers.

We illustrate the utility of the approach with an example. Assume, for simplicity, that our
classifier H(x) from the previous section is composed of three univariate classifiers, f1(x1),
f2(x2), and f3(x3):

H(x) = f1(x1) + f2(x2) + f3(x3) (17)
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Fig. 1 Example univariate
classifier for shock index. The
blue histogram underlay is the
population distribution of shock
index

and that the three univariate classifiers are approximately linearly dependent so that we may
write:

β1 f1(x1) + β2 f2(x2) + β3 f3(x3) ≈ 0 (18)

for some scalars β1, β2, β3. Note that we are not assuming that the underlying variables
x1, x2, x3 are dependent, only that their univariate classifier predictions are correlated.

Our goal is to most faithfully reproduce the predictions of H(x) above in the case of
missing data. For example, suppose that a given input pattern x is missing a value for x1
(x1 = φ), which causes f1(x1) to abstain. Given the redundancy implied by (18), however,
we can account for f1(x1) by faithfully reproducing it given f2(x2) and f3(x3), so that we
have:

H(x = (φ, x2, x3)) ≈
(
1 − β2

β1

)
f2(x2) +

(
1 − β3

β1

)
f3(x3) (19)

Similar equations can be derived if x2 or x3 is missing.
Mathematically, we can express our dynamic classifier, Hd(x) as follows:

Hd(x) = a1(x) f1(x1) + a2(x) f2(x2) + a3(x) f3(x3) (20)

a1(x) = 1 − β1

β2
I(x2 = φ) − β1

β3
I(x3 = φ) (21)

a2(x) = 1 − β2

β1
I(x1 = φ) − β2

β3
I(x3 = φ) (22)

a3(x) = 1 − β3

β1
I(x1 = φ) − β3

β2
I(x2 = φ) (23)

where I(·) is the indicator function. Here, a1(x), a2(x), a3(x) are data-dependent weight-
ings for each of the univariate classifiers. This allows the classifier to adjust the strength of
individual classifiers based on the measurement pattern to account for other missing features.

The above model requires knowledge of the coefficients β1, β2, β3 in (20), which could
be estimated via a linear regression. However, instead of learning the correlations between
univariate classifiers (as would be achieved by a linear regression), we learn the weighting
functions a j (x) directly to maximize classification accuracy. Thus, we treat the a j (x) in (20)
as parameters in a second-level classification algorithm that seeks tomaximize the accuracy of
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Hd(x(1)), . . . , Hd(x(n)) in predicting the category labels y(1), y(2), . . . , y(n). This is a more
direct approach, since our ultimate goal is to achieve high classification accuracy anyway.
In other words, we care to preserve the predictions outputted by H(x), not necessarily the
actual risk value H(x).

Moving away from the example above and into the general case, our classifier from
Sect. 3.1 is constructed from all p features and a constant bias, so we have p + 1 weighting
functions to learn:

Hd(x) =
p∑

j=0

a j (x) f j (x j ) (24)

where we denote x0 = 1 and f0(x0) = b, the bias term, for simplicity of notation. Given the
above discussion, and in particular the expressions (21)–(23) for a1(x), a2(x), a3(x) in our
toy example, the weighting functions are modeled as:

a j (x) = 1 +
p∑

k=1

s jkI(xk = φ), j = 0, 1, . . . , p (25)

Here, s jk represents the adjustment to the weighting on the classifier on feature j to account
for feature k being missing. Thus, s j j = 0, j = 0, 1, . . . , p since a feature cannot account
for itself being missing. This results in a total of p2 − 1 parameters. Also, although each
univariate classifier f j (x j ) is only a function of one variable, its weight a j (x) depends on
all of x through its measurement pattern I(x1 = φ), . . . , I(xp = φ).

Given (25), our task in learning a0(x), a1(x), . . . , ap(x) is equivalent to learning the coef-
ficients s jk, j = 0, 1, . . . , p, k = 1, . . . , p. Since Hd(x) is linear in these coefficients,
we can use a standard linear classification algorithm on the augmented set of features u jk(x),
defined by:

u jk(x) = f j (x j )I(xk = φ), j = 0, 1, . . . , p, k = 1, . . . , p (26)

Putting this all together, our dynamic classifier can be expressed as:

Hd(x) = H(x) +
p∑

j=0

p∑

k=1

s jku jk(x) (27)

This approach increases the feature space dimension considerably [from O(p) to O(p2)].
Depending on the size of the training dataset (and the disparity between p and n), this increase
may lead to overfitting. There are a fewways to overcome this problem, however. First, feature
pruning can be applied to the augmented set of features based on the measurement frequency
of pairs of features. Since u jk is only “on” when x j is measured (otherwise f j (x j ) abstains)
and xk is missing, u jk may be eliminated if this situation arises very infrequently. A natural
extension of this idea is to reduce the dimensionality of the feature space by applying principal
components analysis (PCA), or a similar technique. Another approach is to incorporate the
full augmented feature space, but incorporate a regularization term that penalizes model
complexity, such as the ridge or LASSO (Hastie et al. 2009).

Instead, we learn the weighting functions by running a number of supplemental boosting
rounds to further reduce the exponential loss function in (3), but we replace the class of weak
learners with the augmented set of features u jk(x). Thus, at each supplemental boosting
round, one of the augmented features is selected and incorporated into Hd(x). A benefit of
this approach is that the sparsity of the dynamic ensemble coefficients is directly controlled
by the number of supplemental boosting rounds run.
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However, since the weak learners are no longer binary valued [since the u jk(x) are
weighted sums of decision stumps], the AdaBoost with abstaining algorithm described in
the previous section does not apply. Rather, we use gradient boosting (Mason et al. 1999;
Friedman 2001), which selects a weak learner to add at each iteration based on its sim-
ilarity to the current gradient of the exponential loss objective function (3). Specifically,
let H (0)

d (x) = H(x) denote the dynamic ensemble classifier at the start of the supple-
mental boosting rounds (i.e., supplemental round t = 0). Then for supplemental rounds
t = 1, . . . , T , we first compute the current weight distribution on the samples:

w
(t)
i = exp

(
−y(i)H (t−1)

d (x(i))
)

, i = 1, . . . , n (28)

We then select a feature u(t)(x) that maximizes the following:

u(t)(x) = arg max
u jk (x)

∣∣∣∣∣

n∑

i=1

w
(t)
i y(i)u jk(x(i))

∣∣∣∣∣ (29)

The maximization in (29) selects the augmented feature most correlated with the current gra-

dient vector of the objective, which is given by
[
w

(t)
1 y(i), . . . , w

(t)
n y(i)

]
. The corresponding

weighting assigned to u(t)(x), denoted s(t), can be optimized using a line search procedure
(Schapire and Singer 1999). Finally, the dynamic classifier is updated:

H (t)
d (x) = H (t−1)

d (x) + s(t)u(t)(x) (30)

Incorporating a second-stage algorithm for ensemble learning is similar to the stacking
approach in machine learning (Wolpert 1992; Breiman 1996). In particular, our model for
the dynamic ensemble weightings in (25) resembles the approach in Sill et al. (2009), which
used custom-built meta-features to combine many strong predictive models into an even
more powerful one. Our approach instead is specific to the missing data problem and uses the
measurement pattern vectors as meta-features to combine simple univariate classifiers into
a powerful one that is robust to the missing data. Our optimization approach is also distinct
since it is built on the boosting framework.

4 Results

Algorithms to predict hemodynamic instability were trained and validated on the data
described in Sect. 2 using 10-fold cross-validation. When splitting the data into cross-
validation folds, we were careful to split by hospital, which allows us to test the inter-hospital
generalization performance of the classifier. A summary of the classification methods run
on these data, including the proposed dynamic ensemble method (referred to as “Dynamic-
Abstain-Boost”) are given in Table 3.

Cross-validated prediction accuracy measures for these techniques are provided in Fig. 2.
Due to the problemof alarm fatigue in hospitals, the application stresses the need for indicators
with a very low false positive rate (FPR). As a result, the plots focus on high specificity
decision thresholds (those with FPR < 0.05). Figure 2a, b plot the precision-recall and ROC
curves. Table 4 provides the area under the ROC curve (AUC) for each method, along with its
partial AUC (pAUC), defined as theAUC restricted to the FPR < 0.05 region. For reference, a
perfectly accurate classifier has a pAUC of 0.05, while a random classifier (with AUC = 0.5)
has a pAUC of 0.00125. Based on the application constraints, we view pAUC as the more
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Table 3 Description of machine learning algorithms applied to hemodynamic instability prediction

Classifier name Classifier description

Abstain-Boost Missing feature values are not imputed, and the AdaBoost algorithm with
abstaining, as described in Sect. 3.1 was run on the training dataset. Boosting
rounds were halted upon approximate convergence (as judged by a relative
tolerance of 1e − 4 on the decrease in AdaBoost objective function between
rounds)

Dynamic-Abstain-
Boost

The classifier learned from Abstain-Boost was run with at most 200 supplemental
boosting rounds (same convergence criteria as Abstain-Boost) to learn a
dynamic ensemble, as discussed in Sect. 3.2

Impute-Boost Missing features were first imputed with their population mean values. Standard
AdaBoost was then run on the completed training dataset. Boosting rounds were
halted upon approximate convergence (same convergence criteria as
Abstain-Boost)

MI-Boost The multiple imputations method (Schafer 1997) was used to generate 5
completed training datasets on each cross-validation fold. The completed
datasets were generated by replacing missing features with samples from the
multivariate normal distribution learned on the feature data. Standard AdaBoost
was then run on each of the 5 completed training datasets, and a final model was
generated by averaging the classifier models. The multiple imputations
procedure was run using the Amelia R software package (Honaker et al. 2011)

Abstain-LR Logistic regression (without regularization) was run on the missing dataset without
imputation. Instead, missing values were set to an arbitrary value (e.g., 0), and
the measurement pattern vector for each feature was added as a feature. This
approach is often called the dummy value adjustment method (Allison 2001) in
the statistics literature. Feature weights were optimized by maximizing the
logistic regression log-likelihood function using iteratively reweighted least
squares (IRLS)

Impute-LR Missing features were first imputed with their population mean value. Standard
logistic regression (without regularization) was then run on the completed
training dataset. Feature weights were optimized similarly to Abstain-LR

important measure. Based on the figures and the results in Table 4, Dynamic-Abstain-Boost
provides the best prediction accuracy. Interestingly, MI-Boost does not perform better than
simple mean imputation (Impute-Boost).

Since the true prevalence of hemodynamic instability may vary from hospital-to-hospital,
we estimated the precision of each classifier for various instability prevalences (assuming
fixed sensitivity and specificity) using Bayes’ rule:

Precision = Sensitivity

Sensitivity + (1 − Specificity)(100 − Prevalence)/Prevalence
(31)

The prevalence was varied from 1 to 10%, and for each prevalence value, we calculated the
F1 and F0.5 scores, defined as:

F1 = Precision · Recall
Precision + Recall

(32)

F0.5 = 1.25 · Precision · Recall
0.25 · Precision + Recall

(33)

The F1 score weighs precision and recall equally, while the F0.5 score places a higher empha-
sis on precision, which is appropriate in this application. Plots of these measures against
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Fig. 2 Cross-validated accuracymeasures on the hemodyanmic instability dataset. a Precision-Recall Curves.
b ROC Curves (FPR < 0.05). c F1 score. d F0.5 score

Table 4 AUC and pAUC
(FPR < 0.05) 1-h before
intervention

Classifier name AUC pAUC (FPR < 0.05)

Dynamic-Abstain-Boost 0.8772 0.0178

Abstain-Boost 0.8728 0.0167

Impute-Boost 0.8720 0.0165

MI-Boost 0.8617 0.0163

Impute-LR 0.8285 0.0154

Abstain-LR 0.8521 0.0163

instability prevalence are provided in Fig. 2c, d. Dynamic-Abstain-Boost is again the clear
winner with respect to all 3 of these measures.
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Table 5 Comparison methods integrating boosting and Naive Bayes (NB)

Algorithm name Description

NBWL-Boost Weak learners are decision stumps on the individual feature odds ratios
in (34). Since the odds ratios effectively impute missing values
(setting the odds ratio to 1) as described above, standard AdaBoost
without abstaining was employed

Abstain-Boost+NBWL Weak learners are decision stumps on the individual features
(Abstain-Boost) in conjunction with decision stumps on individual
feature odds ratios (NBWL-Boost)

Abstain-Boost+NBC Weak learners are decision stumps on the individual features
(Abstain-Boost) and a decision stump on the full NB classifier NBC
given in (34)

We also compared Dynamic-Abstain-Boost to AdaBoost algorithms augmented with fea-
tures developed from a generative model—Naive Bayes (NB), as proposed by Smeraldi et al.
(2010). NB is a natural fit with AdaBoost because the individual feature densities estimated
by NB act like univariate classifiers that may be treated as weak learners by AdaBoost.
Additionally, being a generative model, NB handles missing data in a natural way.

The NB classifier makes predictions based on the odds ratio P(y = +1|x)/P(y = −1|x),
which factorizes under the assumption of class-conditional independence between features:

NBC = P(y = +1)

P(y = −1)

p∏

j=1

P(x j |y = +1)

P(x j |y = −1)
(34)

Although independence between features is a strong assumption, the benefit of this represen-
tation is that it naturally handles missing data: if a feature x j is missing, its corresponding
odds ratio P(x j |y = +1)/P(x j |y = −1) is set to 1. The class-conditional densities were
estimated from the training data using kernel smoothing (function ksdensity in MATLAB),
and the prior odds were estimated empirically.

Abstain-Boost and Dynamic-Abstain-Boost were benchmarked against the 3 different
combinations of NB and AdaBoost classifiers listed in Table 5. All algorithms were trained
using the same boosting convergence criteria from above. Results were averaged and standard
errors were assessed over 5 distinct 10-fold cross-validations, each of which split the data
by hospital to test inter-hospital generalization ability. Table 6 lists the AUC and pAUC
(FPR < 0.05) results for all 5 methods. Dynamic-Abstain-Boost produces a significant
improvement in both AUC and pAUC (FPR < 0.05) over the other 4 classifiers considered.
The second best classifier is Abstain-Boost+NBWL, which enriches the hypothesis class
over Abstain-Boost by incorporating the individual feature odds ratios from NB, but backs
off from the stringent NB independence assumption by allowing the AdaBoost algorithm to
take into account correlations between feature odds ratios. We also found Abstain-Boost and
Abstain-Boost+NBC to provide identical performance. This is because they only differ by
incorporating the NBC feature in (34) and this feature was not found to be discriminative
due to it greatly over-exaggerating the odds ratio by neglecting feature dependencies.

4.1 Discussion and interpretation of results

The results show that Dynamic-Abstain-Boost provides a significant improvement in cross-
validated prediction accuracy in the presence of missing data over a number of other standard
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Table 6 Summary of naive bayes (NB) + Boosting results

Algorithm name AUC ± SE pAUC (FPR < 0.05) ± SE

NBWL-Boost 0.8748 ± 0.00045 0.0166 ± 0.000075

Abstain-Boost+NBWL 0.8766 ± 0.00033 0.0171 ± 0.000078

Abstain-Boost+NBC 0.8739 ± 0.00032 0.0169 ± 0.000073

Abstain-Boost 0.8739 ± 0.00032 0.0169 ± 0.000073

Dynamic-Abstain-Boost 0.8783 ± 0.00038 0.0179 ± 0.000053

Fig. 3 High-specificity region of the ROC curve contrasting Dynamic-Abstain-Boost with Abstain-
Boost+NBWL

approaches. Aside from statistical significance, however, is also the question of how substan-
tial the improvement is relative to the application domain. In this regard, the improvement
is most pronounced where it matters most for this application: the high specificity region of
the ROC curve. Due to the problem of alarm fatigue in hospitals, the success of a predictive
algorithm hinges on its prediction power under very low false positive rates. To illustrate
the improvement benefit, Fig. 3 plots the ROC curve in the low false positive region for
Dynamic-Abstain-Boost and the next-best performing classifier, Abstain-Boost+NBWL. At
FPR = 0.02, Dynamic-Abstain-Boost offers a 7.5% improvement in sensitivity (from 33 to
35.5%). In absolute terms, this amounts to an increased detection of ≈ 130 hemodynam-
ically unstable patients (2.5% of 5237 unstable patients). Stated differently, to achieve the
same sensitivity as Dynamic-Abstain-Boost, Abstain-Boost+NBWLmust increase its FPR to
0.0235, which results in an increase of 154 false positives (0.35% of 44,019 stable patients).

Since the main motivation of this application is for early detection of hemodynamic
instability, we also applied the Dynamic-Abstain-Boost classifier to earlier times in each 6-h
segment. When evaluating the classifier on a particular segment, we made sure to respect
the cross-validation partition so that accuracy results on earlier times are not biased. Table
7 provides a summary of AUC and pAUC results as a function of hours before intervention.
As expected, accuracy decreases for earlier times, but even at 6h before intervention were
are able to predict impending hemodynamic instability with an AUC > 0.8.
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Table 7 Dynamic-Abstain-
Boost AUC and pAUC
(FPR < 0.05) values before
intervention

Hours before intervention AUC pAUC

1 0.8772 0.0178

2 0.8622 0.0158

4 0.8341 0.0135

6 0.8030 0.0123

Interpreting the dynamic ensemble coefficients as a strength of association between vari-
ables is difficult for a number of reasons. First, the dynamic ensemble learning is driven to
maximize classification accuracy when a given feature is absent, not necessarily to imitate
the role of that missing feature. Second, a feature’s ensemble weight will only be adjusted to
replace another feature if this “replacement” feature is often measured when the other is not.
So, for example, although Hemoglobin and Hematocrit are expected to be highly correlated,
there are few circumstances where one is measured but not the other—therefore, they have
little value in replacing each other. Thus, the algorithm is biased to select “replacement”
features that are either measured very frequently or measured exclusively of the missing
feature.

Despite this, there are a number of interesting relationships that develop. For example,
Lactate is missing on 40,729 (82.7%) of examples. On these cases, the dominant features
that are adjusted to account for missing Lactate are Arterial PaCO2 (available on 38.3% of
examples when Lactate is missing) and AST (available on 68.1% of examples when Lactate
is missing). Lactate and PaCO2 are both related to anaerobic respiration, while Lactate levels
and liver function, as indexed by AST, are related to metabolic acidosis (Lian 2010). Another
example, Bicarbonate (HCO3) is missing on 25,414 (51.6%) of examples. On these cases,
HCO3 is primarily accounted for by adjusting the Carbon Dioxide predictor (available on
94.2% of examples when HCO3 is missing). Amajority of carbon dioxide in the blood exists
in the form of bicarbonate (Fischbach and Dunning 2009).

To isolate and analyze the impact of the dynamic ensemble learning stage on classifica-
tion performance, we first note that the dynamic ensemble classifier can be interpreted as a
family of static ensemble classifiers indexed by the set of 2p missing data patterns. This is
true because the ensemble weightings are fixed for all inputs with a common missing data
pattern. Specifically, if H(x) = ∑

f j (x j ) is the classifier learned by Abstain-Boost, then the
secondary dynamic ensemble stage learns a weighting function for each univariate classifier.
These weighting functions only depend on the presence/absence pattern in the input x; as
a result, for a given missing data pattern we obtain a fixed set of weights. Thus, for a fixed
missing data pattern, the Dynamic-Abstain-Boost classifier is just a different fixed linear
combination of the same univariate classifiers: Hd(x) = ∑

a j f j (x j ).
Given this interpretation, we can compare classification performance restricted to specific

missing data patterns to directly test the influence of the dynamic ensemble. This compares
the static ensemble Abstain-Boost to a static ensemble from the family defined by Dynamic-
Abstain-Boost. In total, there were 15, 662 distinct missing data patterns, many of which
occurred only once or a few times across the dataset. As a result, we only compare the two
classifiers on the 25 most prevalent missing data patterns. Overall, these 25 missing data
patterns accounted for about 20% of all examples. The missing data patterns considered
are provided in Table 8. In general, the most prevalent missing data patterns were missing
combinations of invasively measured features, such as central venous pressure and arterial

123



458 Mach Learn (2016) 102:443–463

Ta
bl
e
8

T
he

25
m
os
tp

re
va
le
nt

m
is
si
ng

da
ta
pa
tte
rn
s
in

th
e
he
m
od
yn
am

ic
in
st
ab
ili
ty

da
ta
se
t(
+
in
di
ca
te
s
fe
at
ur
e
is
m
ea
su
re
d)

Fe
at
ur
e
na
m
e

M
is
si
ng

da
ta
pa
tte
rn

nu
m
be
r

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25

A
rt
er
ia
lb

lo
od

ga
s

A
rt
er
ia
lp

H

H
C
O
3

A
rt
er
ia
lP

aC
O
2

Sa
O
2

A
rt
er
ia
lb

as
e
ex
ce
ss

Ve
nt
il
at
or

pa
ra
m
et
er
s

PF
ra
tio

Fi
O
2
se
t

M
A
P

PI
P

In
va
si
ve

vi
ta
ls

iB
PM

ea
n

+
+

iB
PS

ys
+

+

iB
PD

ia
+

+

IS
I

+
+

C
V
P

N
on
va
si
ve

vi
ta
ls
/d
em

og
ra
ph
ic
s

nB
PM

ea
n

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

nB
PS

ys
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

nB
PD

ia
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

H
ea
rt
ra
te

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

N
SI

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

123



Mach Learn (2016) 102:443–463 459

Ta
bl
e
8

co
nt
in
ue
d

Fe
at
ur
e
na
m
e

M
is
si
ng

da
ta
pa
tte
rn

nu
m
be
r

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25

A
ge

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

T B
as
ic
m
et
ab

ol
ic
pa

ne
l

C
O
2

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

C
hl
or
id
e

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

B
U
N

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

C
re
at
in
in
e

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

Po
ta
ss
iu
m

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

So
di
um

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

G
lu
co
se

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

C
al
ci
um

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

C
om

pr
eh
en
si
ve

m
et
ab

ol
ic
pa

ne
l

A
LT

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

A
lb
um

in
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

A
L
P

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

A
ST

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

To
ta
lb

ili
ru
bi
n

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

To
ta
lp

ro
te
in

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

C
om

pl
et
e
bl
oo

d
co
un

t

W
B
C

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

R
B
C

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

H
em

at
oc
ri
t

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

123



460 Mach Learn (2016) 102:443–463

Ta
bl
e
8

co
nt
in
ue
d

Fe
at
ur
e
na
m
e

M
is
si
ng

da
ta
pa
tte
rn

nu
m
be
r

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25

H
em

og
lo
bi
n

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

Pl
at
el
et
s

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

C
om

pl
et
e
bl
oo

d
co
un

tp
ro
fil
e

B
an
ds

B
as
os

+
+

+
+

+
+

+
+

E
os

+
+

+
+

+
+

+
+

Ly
m
ph

s
+

+
+

+
+

+
+

+

M
on

os
+

+
+

+
+

+
+

+

Po
ly
s

+
+

+
+

+
+

+
+

N
L
R

+
+

+
+

+
+

+
+

A
dd
it
io
na
lt
es
ts

A
m
yl
as
e

C
PK

+
+

+
+

+
+

+

C
PK

M
B

+
+

+
+

+
+

Io
ni
ze
d
ca
lc
iu
m

L
ac
ta
te

L
D
H

+

M
ag
ne
si
um

+
+

+
+

+
+

+
+

+
+

+
+

PT
T

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

IN
R

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

T
ri
gl
yc
er
id
e

+
+

+
+

123



Mach Learn (2016) 102:443–463 461

Fig. 4 Comparison of Abstain-Boost and Dynamic-Abstain-Boost on the 25 most prevalent missing data
patterns on the hemodynamic instability dataset. a Partial AUC (FPR < 0.05) for the 25 most prevalent
missing data patterns. b EMD between class-conditional distributions for the 25 most prevalent missing data
patterns

blood gas measurements, as well as white blood cell count profiles. For each missing data
pattern, we evaluated the classifier on all samples that had the requisite features measured.
For example, if the missing data pattern comprised only having heart rate and systolic blood
pressure measured, then the classifiers were re-evaluated on all data samples that had a heart
rate and systolic blood pressure measurement, disregarding all other features even if they
were measured. This resulted in a much larger sample size for each pattern to compare the
classifiers on. Figure 4a compares the cross-validated partial AUC (FPR < 0.05) values
for Abstain-Boost and Dynamic-Abstain-Boost for each of the 25 missing data patterns.
Dynamic-Abstain-Boost provides a measurable improvement on 24 of the 25 patterns.

Aside from comparing standard metrics of accuracy, we also compared the distance
between the class-conditional distributions of the classifier outputs on each of themissing data
patterns, which provides insight on the margin of separation between categories. Specifically,
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we computed p(H(x)|y = 0) and p(H(x)|y = 1) for Abstain-Boost and p(Hd(x)|y = 0)
and p(Hd(x)|y = 1) for Dynamic-Abstain-Boost. These distributions were developed using
classifier predictions on out-of-fold (test) samples. To quantify the distance between class-
conditional distributions, we used the Earth Mover’s Distance (EMD) (Peleg et al. 1989).
The name arises from considering the two distributions as piles of dirt: EMD then equals the
amount of work required to transform one pile of dirt into the other (here, “work” equals the
amount of dirt moved times the distance traveled). In one dimension, it can be shown that
the EMD between two probability distributions is equal to the area between their respective
cumulative distribution functions (Cohen and Guibas 1997). Figure 4b compares the EMD
between class-conditional distributions for Abstain-Boost and Dynamic-Abstain-Boost on
each of the 25 most prevalent missing data patterns. Dynamic-Abstain-Boost provides a
significant increase in EMD on all 25 patterns.

5 Conclusion

We proposed a principled and simple two-stage machine learning algorithm that learns
a dynamic classifier ensemble from an incomplete dataset without data imputation. The
ensemble offers resilience to missing data by adjusting the strength of predictions of certain
classifiers to account for missing features. We validated our approach on a real dataset to
predict hemodynamic instability in adult ICU patients. Our results show that predictive algo-
rithms can detect instability early (up to 6h before an intervention), providing the clinician
additional time to evaluate patient state and decide on intervention therapy.
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