
Mach Learn (2015) 100:555–585
DOI 10.1007/s10994-015-5512-1

Incremental learning of event definitions with Inductive
Logic Programming

Nikos Katzouris1,2 · Alexander Artikis1,3 ·
Georgios Paliouras1

Received: 17 January 2015 / Accepted: 26 May 2015 / Published online: 20 June 2015
© The Author(s) 2015

Abstract Event recognition systems rely on knowledge bases of event definitions to infer
occurrences of events in time. Using a logical framework for representing and reasoning
about events offers direct connections to machine learning, via Inductive Logic Program-
ming (ILP), thus allowing to avoid the tedious and error-prone task of manual knowledge
construction. However, learning temporal logical formalisms, which are typically utilized by
logic-based event recognition systems is a challenging task, which most ILP systems cannot
fully undertake. In addition, event-based data is usually massive and collected at different
times and under various circumstances. Ideally, systems that learn from temporal data should
be able to operate in an incremental mode, that is, revise prior constructed knowledge in the
face of new evidence. In this workwe present an incrementalmethod for learning and revising
event-based knowledge, in the form of Event Calculus programs. The proposed algorithm
relies on abductive–inductive learning and comprises a scalable clause refinement method-
ology, based on a compressive summarization of clause coverage in a stream of examples.
We present an empirical evaluation of our approach on real and synthetic data from activity
recognition and city transport applications.

Editors: João Gama, Indre Žliobaite, Alípio M. Jorge, and Concha Bielza.

B Nikos Katzouris
nkatz@iit.demokritos.gr

Alexander Artikis
a.artikis@iit.demokritos.gr

Georgios Paliouras
paliourg@iit.demokritos.gr

1 Institute of Informatics and Telecommunications, National Center for Scientific
Research “Demokritos”, Athens, Greece

2 Department of Informatics and Telecommunications, National and Kapodistrian University
of Athens, Athens, Greece

3 Department of Informatics, University of Piraeus, Piraeus, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-015-5512-1&domain=pdf

556 Mach Learn (2015) 100:555–585

Keywords Incremental learning · Abductive–Inductive Logic Programming · Event
Calculus · Event recognition

1 Introduction

The growing amounts of temporal data collected during the execution of various tasks within
organizations are hard to utilize without the assistance of automated processes. Event recog-
nition (Etzion and Niblett 2010; Luckham 2001; Luckham and Schulte 2008) refers to the
automatic detection of event occurrences within a system. From a sequence of low-level
events (for example sensor data) an event recognition system recognizes high-level events
of interest, that is, events that satisfy some pattern. Event recognition systems with a logic-
based representation of event definitions, such as the Event Calculus (Kowalski and Sergot
1986), are attracting significant attention in the event processing community for a number
of reasons, including the expressiveness and understandability of the formalized knowledge,
their declarative, formal semantics (Paschke 2005; Artikis et al. 2012) and their ability to
handle rich background knowledge. Using logic programs in particular, has an extra advan-
tage, due to the close connection between logic programming and machine learning in the
field of Inductive Logic Programming (ILP) (Lavrač and Džeroski 1993; Muggleton and De
Raedt 1994). However, such applications impose challenges that make most ILP systems
inappropriate.

Several logical formalisms which incorporate time and change employ non-monotonic
operators as a means for representing commonsense phenomena (Mueller 2006). Negation
as Failure (NaF) is a prominent example. However, most ILP learners cannot handle NaF
at all, or lack a robust NaF semantics (Sakama 2000; Ray 2009). Another problem that
often arises when dealing with events, is the need to infer implicit or missing knowledge,
for instance possible causes of observed events. In ILP the ability to reason with missing,
or indirectly observable knowledge is called non-Observational Predicate Learning (non-
OPL) (Muggleton 1995). This is a task that most ILP systems have difficulty to handle,
especially when combined with NaF in the background knowledge (Ray 2006). One way to
address this problem is through the combination of ILP with Abductive Logic Programming
(ALP) (Denecker andKakas 2002;Kakas andMancarella 1990;Kakas et al. 1993).Abduction
in logic programming is usually given a non-monotonic semantics (Eshghi and Kowalski
1989) and in addition, it is by nature an appropriate framework for reasoning with incomplete
knowledge. The combination of ILP with ALP has a long history in the literature (Ade and
Denecker 1995). However, only recently has it brought about systems such as XHAIL (Ray
2009), TAL (Corapi et al. 2010) and ASPAL (Corapi et al. 2012; Athakravi et al. 2013) that
may be used for the induction of event-based knowledge.

The above three systems which, to the best of our knowledge, are the only ILP learners
that address the aforementioned learnability issues, are batch learners, in the sense that all
training data must be in place prior to the initiation of the learning process. This is not always
suitable for event-oriented learning tasks, where data is often collected at different times
and under various circumstances, or arrives in streams. In order to account for new training
examples, a batch learner has no alternative but to re-learn a hypothesis from scratch. The
cost is poor scalability when “learning in the large” (Dietterich et al. 2008) from a growing
set of data. This is particularly true in the case of temporal data, which usually come in
large volumes. Consider for instance data which span a large period of time, or sensor data
transmitted at a very high frequency.

123

Mach Learn (2015) 100:555–585 557

An alternative approach is learning incrementally, that is, processing training instances
when they become available, and altering previously inferred knowledge to fit new obser-
vations. This process, also known as Theory Revision (Wrobel 1996), exploits previous
computations to speed-up the learning, since revising a hypothesis is generally considered
more efficient than learning it from scratch (Biba et al. 2006; Esposito et al. 2000; Cattafi et al.
2010). Numerous theory revision systems have been proposed in the literature, however their
applicability in the presence of NaF is limited (Corapi et al. 2008). Additionally, as historical
data grow over time, it becomes progressively harder to revise knowledge, so that it accounts
both for new evidence and past experience. The development of scalable algorithms for the-
ory revision has thus been identified as an important endeavour (Muggleton et al. 2012). One
direction towards scaling theory revision systems is the development of techniques for reduc-
ing the need for reconsulting the whole history of accumulated experience, while updating
existing knowledge.

This is the direction we take in this work. We build upon the ideas of non-monotonic ILP
and use XHAIL as the basis for a scalable, incremental learner for the induction of event
definitions in the form of Event Calculus theories. XHAIL has been used for the induction of
action theories (Sloman and Lupu 2010; Alrajeh et al. 2010, 2011, 2012, 2009). Moreover,
in Corapi et al. (2008) it has been used for theory revision in an incremental setting, revising
hypotheses with respect to a recent, user-defined subset of the perceived experience. In
contrast, the learner we present here performs revisions that account for all examples seen so
far. We describe a compressive “memory” structure, which reduces the need for reconsulting
past experience in response to a revision. Using this structure, we propose a method which,
given a stream of examples, a theory which accounts for them and a new training instance,
requires at most one pass over the examples in order to revise the initial theory, so that
it accounts for both past and new evidence. We evaluate empirically our approach on real
and synthetic data from an activity recognition application and a transport management
application. Our results indicate that our approach is significantlymore efficient thanXHAIL,
without compromising predictive accuracy, and scales adequately to large data volumes.

The rest of this paper is structured as follows. In Sect. 2 we present the Event Calculus
dialect that we employ, describe the domain of activity recognition that we use as a running
example and discuss abductive–inductive learning and XHAIL. In Sect. 3 we present our
proposed method. In Sect. 4 we discuss some theoretical and practical implications of our
approach. In Sect. 5 we present the experimental evaluation, and finally in Sects. 6 and 7 we
discuss related work and draw our main conclusions.

2 Background

We assume a first-order language as in Lloyd (1987) where not in front of literals denotes
NaF. We define the entailment relation between logic programs in terms of the stable model
semantics (Gelfond and Lifschitz 1988)—see “Appendix 1” for details on the basics of logic
programming used in this work. Following Prolog’s convention, predicates and ground terms
in logical formulae start with a lower case letter, while variable terms start with a capital
letter.

2.1 The Event Calculus

The Event Calculus (Kowalski and Sergot 1986) is a temporal logic for reasoning about
events and their effects. It is a formalism that has been successfully used in numerous event

123

558 Mach Learn (2015) 100:555–585

Table 1 The basic predicates
and axioms of SDEC

Predicate Meaning

happensAt(E, T) Event E occurs at time T

initiatedAt(F, T) At time T a period of time for which
fluent F holds is initiated

terminatedAt(F, T) At time T a period of time for which
fluent F holds is terminated

holdsAt(F, T) Fluent F holds at time T

Axioms

holdsAt(F, T + 1) ←
initiatedAt(F, T)

holdsAt(F, T + 1) ←
holdsAt(F, T),

not terminatedAt(F, T)

recognition applications (Paschke 2005; Artikis et al. 2015; Chaudet 2006; Cervesato and
Montanari 2000). The ontology of the Event Calculus comprises time points, i.e. integers
or real numbers; fluents, i.e. properties which have certain values in time; and events, i.e.
occurrences in time that may affect fluents and alter their value. The domain-independent
axioms of the formalism incorporate the common sense law of inertia, according to which
fluents persist over time, unless they are affected by an event. We call the Event Calculus
dialect used in this work Simplified Discrete Event Calculus (SDEC). It is a simplified
version of the Discrete Event Calculus, a dialect which is equivalent to the classical Event
Calculus when time ranges over integer domains (Mueller 2008).

The building blocks of SDEC and its domain-independent axioms are presented in
Table 1. The first axiom in Table 1 states that a fluent F holds at time T if it has been initiated
at the previous time point, while the second axiom states that F continues to hold unless
it is terminated. initiatedAt/2 and terminatedAt/2 are defined in an application-specific
manner.

Running example: activity recognition Throughout this paper we use the task of activity
recognition, as defined in the CAVIAR1 project, as a running example. The CAVIAR dataset
consists of videos of a public space, where actors walk around, meet each other, browse
information displays, fight and so on. These videos have been manually annotated by the
CAVIAR team to provide the ground truth for two types of activity. The first type corresponds
to low-level events, that is, knowledge about a person’s activities at a certain time point (for
instance walking, running, standing still and so on). The second type corresponds to high-
level events, activities that involve more than one person, for instance two people moving
together, fighting, meeting and so on. The aim is to recognize high-level events by means of
combinations of low-level events and some additional domain knowledge, such as a person’s
position and direction at a certain time point.

Low-level events are represented in SDEC by streams of ground happensAt/2 atoms
(see Table 2), while high-level events and other domain knowledge are represented by ground
holdsAt/2 atoms. Streams of low-level events together with domain-specific knowledge will
henceforth constitute the narrative, in ILP terminology, while knowledge about high-level
events is the annotation. Table 2 presents an annotated stream of low-level events.We can see
for instance that the person id1 is inactive at time 999, her (x, y) coordinates are (201, 432)
and her direction is 270◦. The annotation for the same time point informs us that id1 and
id2 are not moving together. Fluents express both high-level events and input information,

1 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.

123

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

Mach Learn (2015) 100:555–585 559

Table 2 An annotated stream of low-level events

Narrative Annotation

· · · · · ·
happensAt(inactive(id1), 999) not holdsAt(moving(id1, id2), 999)

happensAt(active(id2), 999)

holdsAt(coords(id1, 201, 432), 999)

holdsAt(coords(id2, 230, 460), 999)

holdsAt(direction(id1, 270), 999)

holdsAt(direction(id2, 270), 999)

happensAt(walking(id1), 1000) not holdsAt(moving(id1, id2), 1000)

happensAt(walking(id2), 1000)

holdsAt(coords(id1, 201, 454), 1000)

holdsAt(coords(id2, 230, 440), 1000)

holdsAt(direction(id1, 270), 1000)

holdsAt(direction(id2, 270), 1000)

happensAt(walking(id1), 1001) holdsAt(moving(id1, id2), 1001)

happensAt(walking(id2), 1001)

holdsAt(coords(id1, 201, 454), 1001)

holdsAt(coords(id2, 227, 440), 1001)

holdsAt(direction(id1, 275), 1001)

holdsAt(direction(id2, 278), 1001)

· · · · · ·

such as the coordinates of a person. We discriminate between inertial and statically defined
fluents. The former should be inferred by the Event Calculus axioms, while the latter are
provided with the input.

2.2 Abductive–inductive learning

Given a domain description in the language of SDEC, the aim ofmachine learning addressed
in this work is to derive the Domain-Specific Axioms, that is, the axioms that specify how
the occurrence of low-level events affect the truth values of fluents that represent high-
level events, by initiating or terminating them. Thus, we wish to learn initiatedAt/2 and
terminatedAt/2 definitions from positive and negative examples.

Inductive Logic Programming (ILP) refers to a set of techniques for learning hypotheses in
the form of clausal theories, and is the machine learning approach that we adopt in this work.
An ILP task is a triplet ILP(B, E, M) where B is some background knowledge, M is some
language bias and E = E+ ∪ E− is a set of positive (E+) and negative (E−) examples for
the target predicates, represented as logical facts. The goal is to derive a set of non-ground
clauses H in the language of M that cover the examples w.r.t. B, i.e. B ∪ H � E+ and
B ∪ H � E−.

Henceforth, the term “example” encompasses anything known true at a specific time
point. We assume a closed world, thus anything that is not explicitly given is considered false
(to avoid confusion, in the tables throughout the paper we state both positive and negated
annotation atoms). An example is either positive or negative based on the annotation. For

123

560 Mach Learn (2015) 100:555–585

instance the examples at times 999 and 1000 in Table 2 are negative, while the example at
time 1001 is positive.

Learning event definitions in the form of domain-specific Event Calculus axioms with
ILP requires non-Observational Predicate Learning (non-OPL) (Muggleton 1995), meaning
that instances of target predicates (initiatedAt/2 and terminatedAt/2) are not provided with
the supervision, which consists of holdsAt/2 atoms. A solution is to use Abductive Logic
Programming (ALP) to obtain the missing instances. An ALP task is a triplet ALP(B, A,G)

where B is some background knowledge, G is a set of observations that must be explained,
represented by ground logical atoms, and A is a set of predicates called abducibles. An
explanation Δ is a set of ground atoms from A such that B ∪ Δ � G.

2.2.1 The XHAIL system

XHAIL is an abductive–inductive system that constructs hypotheses in a three-phase process.
Given an ILP task ILP(B,E,M), the first two phases return a ground program K , called
Kernel Set of E, such that B ∪ K � E . The first phase generates the heads of K’s clauses by
abductively deriving from B a set Δ of instances of head atoms, as defined by the language
bias, such that B ∪ Δ � E . The second phase generates K , by saturating each previously
abduced atomwith instances of body atoms that deductively follow from B∪Δ. The language
bias used by XHAIL is mode declarations (see “Appendix 1” for a formal account).

By construction, the Kernel Set covers the provided examples. In order to find a good
hypothesis, XHAIL thus searches in the space of theories that subsume the Kernel Set. To
this end, the latter is variabilized, i.e. each term that corresponds to a variable, according to
the language bias, is replaced by an actual variable. The variablized Kernel Set Kv is subject
to a syntactic transformation of its clauses, which involves two new predicates try/3 and
use/2.

For each clause Ci ∈ Kv and each body literal δ
j
i ∈ Ci , a new atom v(δji) is generated, as

a special term that contains the variables that appear in δ
j
i . The new atom is wrapped inside

an atom of the form try(i, j, v(δji)). An extra atom use(i, 0) is added to the body ofCi and two

new clauses try(i, j, v(δji)) ← use(i, j), δji and try(i, j, v(δji)) ← not use(i, j) are generated,

for each body literal δ j
i ∈ Ci .

All these clauses are put together into a programUKv .UKv serves as a “defeasible” version
of Kv from which literals and clauses may be selected in order to construct a hypothesis that
accounts for the examples. This is realized by solving an ALP task with use/2 as the only
abducible predicate. As explained in Ray (2009), the intuition is as follows: In order for the
head atom of clause Ci ∈ UKv to contribute towards the coverage of an example, each of
its try(i, j, v(δji)) atoms must succeed. By means of the two rules added for each such atom,

this can be achieved in two ways: Either by assuming not use(i, j), or by satisfying δ
j
i and

abducing use(i, j). A hypothesis clause is constructed by the head atom of the i-th clause
Ci of Kv , if use(i, 0) is abduced, and the j-th body literal of Ci , for each abduced use(i, j)
atom. All other clauses and literals from Kv are discarded. Search is biased by minimality,
i.e. preference towards hypotheses with fewer literals. This is realized by means of abducing
a minimal set of use/2 atoms.

Example 1 Table 3 presents the process of hypothesis generation by XHAIL. The input
consists of a set of examples, a set of mode declarations (omitted for simplicity) and the
axioms of SDEC as background knowledge. The annotation says that fighting between
persons id1 and id2 holds at time 1 and it does not hold at times 2 and 3, hence it is terminated

123

Mach Learn (2015) 100:555–585 561

Table 3 Hypothesis generation by XHAIL for Example 1

Input

Narrative Annotation

happensAt(abrupt(id1), 1). holdsAt(fighting(id1, id2), 1).

happensAt(walking(id2), 1). not holdsAt(fighting(id3, id4), 1).

not holdsAt(close(id1, id2, 23), 1). not holdsAt(fighting(id1, id2), 2).

happensAt(abrupt(id3), 2). not holdsAt(fighting(id3, id4), 2).

happensAt(abrupt(id4), 2). not holdsAt(fighting(id1, id2), 3).

holdsAt(close(id3, id4, 23), 2). holdsAt(fighting(id3, id4), 3).

Mode declarations Background knowledge: SDEC (Table 1)

Phase 1 (Abduction):

Δ1={initiatedAt(fighting(id3,id4), 2),
terminatedAt(fighting(id1, id2), 1)}
Phase 2 (Deduction):

Kernel Set K : Variabilized Kernel Set Kv :

initiatedAt(fighting(id3, id4), 2) ← initiatedAt(fighting(X, Y), T) ←
happensAt(abrupt(id3), 2), happensAt(abrupt(X), T),

happensAt(abrupt(id4), 2), happensAt(abrupt(Y), T),

holdsAt(close(id3, id4, 23), 2). holdsAt(close(X, Y , 23), T).

terminatedAt(fighting(id1, id2), 1) ← terminatedAt(fighting(X, Y), T) ←
happensAt(abrupt(id1), 1), happensAt(abrupt(X), T),

happensAt(walking(id2), 1), happensAt(walking(Y), T),

not holdsAt(close(id1, id2, 23), 1). not holdsAt(close(X, Y , 23), T).

Phase 3 (Induction):

Program UKv (Syntactic transformation of Kv):

initiatedAt(fighting(X, Y), T) ← terminatedAt(fighting(X, Y), T) ←
use(1, 0), try(1, 1, vars(X, T)), use(2, 0), try(2, 1, vars(X, T)),

try(1, 2, vars(Y , T)), try(2, 2, vars(Y , T)),

try(1, 3, vars(X, Y , T)). try(2, 3, vars(X, Y ,T)).

try(1, 1, vars(X, T)) ← try(2, 1, vars(X, T)) ←
use(1, 1), happensAt(abrupt(X), T). use(2, 1), happensAt(abrupt(X), T).

try(1, 1, vars(X, T)) ← not use(1, 1). try(2, 1, vars(X, T)) ← not use(1, 1).

try(1, 2, vars(Y , T)) ← try(2, 2, vars(Y , T)) ←
use(1, 2), happensAt(abrupt(Y), T). use(2, 2), happensAt(walking(Y), T).

try(1, 2, vars(X, T)) ← not use(1, 2). try(2, 2, vars(Y , T)) ← not use(2, 2).

try(1, 3, vars(X, Y , T)) ← try(2, 3, vars(X, Y , T)) ←
use(1, 3), holdsAt(close(X, Y , 23), T). use(2, 3), not holdsAt(close(X, Y , 23), T).

try(1, 3, vars(X, T)) ← not use(1, 3). try(2, 3, vars(X, Y , T)) ← not use(2, 3).

Search: Abductive Solution:

ALP(SDEC ∪ UKv , {use/2},Narrative ∪ Annotation) Δ2 = {use(1, 0), use(1, 3),
use(2, 0), use(2, 2)}

Output hypothesis

initiatedAt(fighting(X, Y), T) ← terminatedAt(fighting(X, Y), T) ←
holdsAt(close(X, Y , 23), T). happensAt(walking(Y), T).

123

562 Mach Learn (2015) 100:555–585

at time 1. Respectively, fighting between persons id3 and id4 holds at time 3 and does not
hold at times 1 and 2, hence it is initiated at time 2. XHAIL obtains these explanations for
the holdsAt/2 literals of the annotation abductively, using the head mode declarations as
abducibles. In its first phase, it derives the two ground atoms in Δ1 (Phase 1, Table 3). In its
second phase, XHAIL forms a Kernel Set (Phase 2, Table 3), by generating one clause from
each abduced atom in Δ1, using this atom as head, and body literals that deductively follow
from SDEC ∪ Δ1 as the body of the clause.

The Kernel Set is variabilized and the third phase of XHAIL functionality concerns the
actual search for a hypothesis. This search is biased by minimality, i.e. preference towards
hypotheses with fewer literals. A hypothesis is thus constructed by dropping as many literals
and clauses from Kv as possible,while correctly accounting for all the examples. The syntactic
transformation on Kv (see also Sect. 2.2.1) results in the defeasible program UKv .

Literals and clauses necessary to cover the examples are selected from UKv by means
of abducing a set of use/2 atoms, as explanations of the examples, from the ALP task
presented in Phase 3 of Table 3. Δ2 from Table 3 is a minimal explanation for this ALP
task. use(1, 0) and use(2, 0) correspond to the head atoms of the two Kv clauses, while
use(1, 3) and use(2, 2) correspond respectively to their third and second body literal. The
output hypothesis in Table 3 is constructed by these literals, while all other literals and clauses
from Kv are discarded. ��

XHAILprovides an appropriate framework for learningEventCalculus programs.Amajor
drawback however is that it scales poorly, partly because of the increased computational
complexity of adbuction, which lies at the core of its functionality, and partly because of
the combinatorial complexity of learning whole theories, which may result in an intractable
search space. In what follows, we use the XHAIL machinery to develop a novel incremental
algorithm that scales to large volumes of sequential data, typical of event-based applications.

3 ILED: incremental learning of event definitions

A hypothesis H is called incomplete if it does not account for some positive examples
and inconsistent if it erroneously accounts for some negative examples. Incompleteness is
typically treated by generalization, e.g. addition of new clauses, or removal of literals from
existing clauses. Inconsistency is treated by specialization, e.g. removal of clauses, or addition
of new literals to existing clauses. Theory revision is the process of acting upon a hypothesis,
in order to change the examples it accounts for. Theory revision is at the core of incremental
learning settings, where examples are provided over time. A learner induces a hypothesis
from scratch, from the first available set of examples, and treats this hypothesis as a revisable
background theory in order to account for new examples.

Definition 1 provides a concrete account of the incremental setting we assume for our
approach, which we call incremental learning of event definitions (ILED).

Definition 1 (Incremental learning) We assume an ILP task ILP(SDEC, E,M), where E
is a database of examples, called historical memory, storing examples presented over time.
InitiallyE = ∅.At timen the learner is presentedwith a hypothesis Hn such thatSDEC∪Hn �
E , in addition to a new set of examples wn . The goal is to revise Hn to a hypothesis Hn+1,
so that SDEC ∪ Hn+1 � E ∪ wn .

A main challenge of adopting a full memory approach is to scale it up to a growing
size of experience. This is in line with a key requirement of incremental learning where “the

123

Mach Learn (2015) 100:555–585 563

incorporation of experience intomemory during learning should be computationally efficient,
that is, theory revisionmust be efficient in fitting new incoming observations” (Langley 1995;
Di Mauro et al. 2005). In the stream processing literature, the number of passes over a stream
of data is often used as a measure of the efficiency of algorithms (Li et al. 2004; Li and Lee
2009). In this spirit, the main contribution of ILED, in addition to scaling up XHAIL, is that
it adopts a “single-pass” theory revision strategy, that is, a strategy that requires at most one
pass over E in order to compute Hn+1 from Hn .

Since experience may grow over time to an extent that is impossible to maintain in the
working memory, we follow an external memory approach (Biba et al. 2006). This implies
that the learner does not have access to all past experience as a whole, but to independent
sets of training data, in the form of sliding windows. At time n, ILED is presented with a
hypothesis Hn that accounts for the historical memory so far, and a new example window
wn . If Hn covers the new window then it is returned as is, otherwise ILED starts the process
of revising Hn . In this process, revision operators that retract knowledge, such as the deletion
of clauses or antecedents are excluded, due to the exponential cost of backtracking in the
historical memory (Badea 2001). The supported revision operators are thus:

– Addition of new clauses.
– Refinement of existing clauses, i.e. replacement of an existing clause with one or more

specializations of that clause.

To treat incompleteness we add initiatedAt clauses and refine terminatedAt clauses, while
to treat inconsistency we add terminatedAt clauses and refine initiatedAt clauses. The goal
is to retain the preservable clauses of Hn intact, refine its revisable clauses and, if necessary,
generate a set of new clauses that account for new examples in the incoming window wn .
We henceforth call a clause preservable w.r.t. a set of examples if it does not cover negatives,
nor it disproves positives, and call it revisable otherwise.

Figure 1 illustrates the revision process with a simple example. New clauses are generated
by generalizing a Kernel Set of the incoming window, as shown in Fig. 1, where a termi-
natedAt/2 clause is generated from the new window wn . To facilitate refinement of existing
clauses, each clause in the running hypothesis is associated with a memory of the examples it
covers throughout E , in the form of a “bottom program”, which we call support set. The sup-
port set is constructed gradually, from previous Kernel Sets, as new example windows arrive.
It serves as a refinement search space, where the single clause in the running hypothesis Hn

is refined w.r.t. the incoming window wn into two specializations. Each such specialization
is constructed by adding to the initial clause one antecedent from the two support set clauses
which are presented in Fig. 1. The revised hypothesis Hn+1 is constructed from the refined
clauses and the new ones, along with the preserved clauses of Hn , if any.

ILED’s support set can be seen as the S-set in a version space (Mitchell 1979), i.e. the
space of all overly-specific hypotheses, progressively augmented while new examples arrive.
Similarly, a running hypothesis of ILED can be seen as an element of the G-set in a version
space, i.e. the space of all overly-general hypotheses that account for all examples seen so
far, and need to be further refined as new examples arrive.

There are two key features of ILED that contribute towards its scalability: First, re-
processing of past experience is necessary only in the case where new clauses are generated
by a revision, and is redundant in the case where a revision consists of refinements of existing
clauses only. Second, re-processing of past experience requires a single pass over the his-
torical memory, meaning that it suffices to re-visit each past window exactly once to ensure
that the output revised hypothesis Hn+1 is complete & consistent w.r.t. the entire historical
memory. These properties of ILED are due to the support set, which we next present in detail.

123

564 Mach Learn (2015) 100:555–585

Running Hypothesis Hn:

initiatedAt(fighting(X ,Y),T) ←
holdsAt(close(X ,Y , 23),T).

initiatedAt(fighting(X ,Y),T) ←
happensAt(active(X),T),
happensAt(abrupt(Y),T),
holdsAt(close(X ,Y , 23),T).

initiatedAt(fighting(X ,Y),T) ←
happensAt(active(X),T),
happensAt(kicking(Y),T),
holdsAt(close(X ,Y , 23),T).

. . .

Revised Hypothesis Hn+1

RefinedClauses:

initiatedAt(fighting(X ,Y),T) ←
holdsAt(close(X ,Y , 23),T),
happensAt(abrupt(Y),T).

initiatedAt(fighting(X ,Y),T) ←
holdsAt(close(X ,Y , 23),T),
happensAt(kicking(Y),T).

Revised Hypothesis Hn+1 :

NewClauses:

terminatedAt(fighting(X ,Y),T) ←
happensAt(walking(X),T),
not holdsAt(close(X ,Y , 23),T).

terminatedAt(fighting(X ,Y),T) ←
happensAt(walking(X),T),
happensAt(active(Y),T),
not holdsAt(close(X ,Y , 23),T).

Support set for the
running hypothesis

Kernel Set
construction

Kernel Set
construction

Kernel Set
construction

wnwn−1w0 wn−1w0

E
.

Fig. 1 Revision of a hypothesis Hn in response to a new example window wn . E represents the historical
memory of examples

A proof of soundness and the single-pass revision strategy of ILED is given in Proposition 3,
“Appendix 2”. The Pseudocode of ILED’s strategy is provided in Algorithm 3, “Appendix 2”.

3.1 Support set

In order to define the support set, we use the notion of most-specific clause. Given a set of
mode declarations M , a clauseC in the mode languageL(M) (see “Appendix 1” for a formal
definition) is most-specific if it does not θ -subsume any other clause inL(M). θ -subsumption
is defined below.

Definition 2 (θ -subsumption) Clause C θ -subsumes clause D, denoted C 	 D, if there
exists a substitution θ such that head(C)θ = head(D) and body(C)θ ⊆ body(D), where
head(C) and body(C) denote the head and the body of clause C respectively. Program �1

θ -subsumes program �2 if for each clause C ∈ �1 there exists a clause D ∈ �2 such that
C 	 D.

Intuitively, the support set of a clause C is a “bottom program” that consists of most-specific
versions of the clauses that disjunctively define the concept captured by C . A formal account
is given in Definition 3.

Definition 3 (Support set) Let E be the historical memory, M a set of mode declarations,
L(M) the corresponding mode language of M andC ∈ L(M) a clause. Also, let us denote by
covE (C) the coverage of clauseC in the historical memory, i.e. covE (C) = {e ∈ E |SDEC∪
C � e}. The support set C.supp of clause C is defined as follows:

123

Mach Learn (2015) 100:555–585 565

Algorithm 1 Support set construction and maintenance
1: let wn /∈ E be an example window, Hn a current hypothesis and

H ′
n = NewClauses ∪ RefinedClauses ∪ RetainedClauses a revision of Hn , generated in wn .

2: for all C ∈ H ′
n do

3: if C ∈ NewClauses then
4: C.supp ← {D ∈ K | C 	 D}, where K is the variabilized Kernel Set of wn

from which NewClauses is generated.
5: else if C ∈ RefinedClauses then
6: C.supp ← {D ∈ Cparent .supp | C 	 D}, where Cparent is the “ancestor”

clause of C , i.e. the clause from which C results by specialization.
7: else
8: let ewn

C be the true positives that C covers in wn , if C is an initiatedAt clause, or
the true negatives that C covers, if it is a terminatedAt clause.

9: if SDEC ∪ C.supp � ewn
C then

10: let K be a variabilized Kernel Set of wn .
11: C.supp ← C.supp ∪ K ′, where K ′ ⊆ K , such that SDEC ∪ K ′ � ewn

C

C.supp = ⋃

e∈covE (C)

{D ∈ L(M) | e ∈ covE (D) and C 	 D and

∀D′ ∈ L(M), if e ∈ covE (D′) then D′ 	 D}
The support set of clause C is thus defined as the set consisting of one bottom clause (Mug-
gleton 1995) per each example e ∈ covE (C), i.e. one most-specific clause D of L(M) such
that C 	 D and SDEC∪ D � e. Assuming no length bounds on hypothesized clauses, each
such bottom clause is unique2 and covers at least one example from covE(C); note that since
the bottom clauses for a set of examples in covE (C) may coincide (i.e. be θ -subsumption
equivalent – they θ -subsume each other), a clause D in C.supp may cover more than one
example from covE (C). Proposition 1 highlights themain property of the structure. The proof
is given in “Appendix 2”.

Proposition 1 Let C be a clause in L(M). C.supp is the most specific program of L(M)

such that covE (C.supp) = covE (C).

Proposition 1 implies that clause C and its support set C.supp define a space S of specializa-
tions of C , each of which is bound by a most-specific specialization, among those that cover
the positive examples that C covers. In other words, for every D ∈ S there is a Cs ∈ C.supp
so that C 	 D 	 Cs and Cs covers at least one example from covE (C). Moreover, Propo-
sition 1 ensures that space S contains refinements of clause C that collectively preserve
the coverage of C in the historical memory. The purpose of C.supp is thus to serve as a
search space for refinements RC of clause C for which C 	 RC 	 C.supp holds. Since such
refinements preserve C’s coverage of positive examples, clause C may be refined w.r.t. a
window wn , avoiding the overhead of re-testing the refined program on E for completeness.
However, to ensure that the support set can indeed be used as a refinement search space, one
must ensure that C.supp will always contain such a refinement RC . This proof is provided in
Proposition 2, “Appendix 9”.

The construction of the support set, presented in Algorithm 1, is a process that starts
when C is added in the running hypothesis and continues as long as new example windows

2 Thebottomclause relative to an example canbe large, or even infinite. To constrain its size, several restrictions
are imposed on the language, such as a maximum clause length, or a maximum variable depth. We refrain
from assuming extra language bias related to clause length and instead, for the purposes of this work, we
assume a finite domain and impose no particular bounds on clause length. In such context, the bottom clause
of an example e is unique and results from the ground most-specific clause that covers e, by properly replacing
terms with variables, as indicated by the mode declarations.

123

566 Mach Learn (2015) 100:555–585

Table 4 Knowledge for Example 2

Window w1

Narrative Annotation

happensAt(active(id1), 10). not holdsAt(fighting(id1, id2), 10).

happensAt(abrupt(id2), 10). holdsAt(fighting(id1, id2), 11).

holdsAt(close(id1, id2, 23), 10).

Kernel Set Variabilized Kernel Set

initiatedAt(f ighting(id1, id2), 10) ← K1 = initiatedAt(f ighting(X, Y), T) ←
happensAt(active(id1), 10), happensAt(active(X), T),

happensAt(abrupt (id2), 10) happensAt(abrupt (Y), T),

holdsAt(close(id1, id2, 23), 10) holdsAt(close(X, Y, 23), T).

Running Hypothesis Support Set

C = initiatedAt(f ighting(X, Y), T) ← C.supp = {K1}
happensAt(active(X), T).

Window w2

Narrative Annotation

happensAt(active(id1), 20). not holdsAt(fighting(id1, id2), 20).

happensAt(kicking(id2), 20). holdsAt(fighting(id1, id2), 21).

holdsAt(close(id1, id2, 23), 20).

Kernel Set Variabilized Kernel Set

initiatedAt(f ighting(id1, id2), 20) ← K2 = initiatedAt(f ighting(X, Y), T) ←
happensAt(active(id1), 20), happensAt(active(X), T),

happensAt(kicking(id2), 20) happensAt(kicking(Y), T),

holdsAt(close(id1, id2, 23), 20) holdsAt(close(X, Y, 23), T).

Running Hypothesis Support Set

Remains unchanged C.supp = {K1,K2}
Window w3

Narrative Annotation

happensAt(active(id1), 30). not holdsAt(fighting(id1, id2), 30).

happensAt(walking(id2), 30). not holdsAt(fighting(id1, id2), 31).

not holdsAt(close(id1, id2, 23), 30).

Revised Hypothesis Support Set

C1 = initiatedAt(f ighting(X, Y), T) ← C1.supp = {K1,K2}
happensAt(active(X), T),

holdsAt(close(X, Y, 23), T).

arrive. While this happens, clauseC may be refined or retained, and its support set is updated
accordingly. The details of Algorithm 1 are presented in Example 2, which also demonstrates
how ILED processes incoming examples and revises hypotheses.

Example 2 Consider the annotated examples and running hypothesis related to the fighting
high-level event from the activity recognition application shown in Table 4. We assume that
ILED starts with an empty hypothesis and an empty historical memory, and that w1 is the
first input example window. The currently empty hypothesis does not cover the provided

123

Mach Learn (2015) 100:555–585 567

examples, since in w1 fighting between persons id1 and id2 is initiated at time 10 and thus
holds at time 11. Hence ILED starts the process of generating an initial hypothesis. In the
case of an empty hypothesis, ILED reduces to XHAIL and operates on a Kernel Set of w1

only. The variabilized Kernel Set in this case will be the single-clause program K1 presented
in Table 4, generated from the corresponding ground clause. Generalizing this Kernel Set
yields a minimal hypothesis that covers w1. One such hypothesis is clause C shown in Table
4. ILED stores w1 in E and initializes the support set of the newly generated clause C as in
line 3 of Algorithm 1, by selecting from K1 the clauses that are θ -subsumed by C , in this
case, K1’s single clause.

Window w2 arrives next. In w2, fighting is initiated at time 20 and thus holds at time 21.
The running hypothesis correctly accounts for that and thus no revision is required. However,
C.supp does not cover w2 and unless proper actions are taken, property (i) of Proposition 1
will not hold once w2 is stored in E . ILED thus generates a new Kernel Set K2 from window
w2, as presented in Table 4, and updatesC.supp as shown in lines 7–11 of Algorithm 1. Since
C θ -subsumes K2, the latter is added to C.supp, which now becomes C.supp = {K1, K2}.
Now covE (C.supp) = covE (C), hence in effect, C.supp is a summarization of the coverage
of clause C in the historical memory.

Windoww3 arrives next, which has no positive examples for the initiation of fighting. The
running hypothesis is revisable in window w3, since clause C covers a negative example at
time 31, by means of initiating the fluent fighting(id1, id2) at time 30. To address the issue,
ILED searches C.supp, which now serves as a refinement search space, to find a refinement
RC that rejects the negative example, and moreover RC 	 C.supp. Several choices exist for
that. For instance, the following program

initiatedAt(f ighting(X, Y), T) ←
happensAt(active(X), T),

happensAt(abrupt (Y), T).

initiatedAt(f ighting(X, Y), T) ←
happensAt(active(X), T),

happensAt(kicking(Y), T).

is such a refinement RC , since it does not cover the negative example in w3 and subsumes
C.supp. ILED however is biased towards minimal theories, in terms of the overall number of
literals and would prefer the more compressed refinement C1, shown in Table 4, which also
rejects the negative example inw3 and subsumesC.supp. ClauseC1 replaces the initial clause
C in the running hypothesis. The hypothesis now becomes complete and consistent w.r.t. E .
Note that the hypothesis was refined by local reasoning only, i.e. reasoning within window
w3 and the support set, avoiding costly look-back in the historical memory. The support set of
the new clause C1 is initialized (line 5 of Algorithm 1), by selecting the subset of the support
set of its parent clause that is θ -subsumed byC1. In this caseC1 	 C.supp = {K1,K2}, hence
C1.supp = C.supp. ��
The support set of a clause C is a compressed enumeration of the examples that C covers
throughout the historical memory. It is compressed because each variabilized clause in the
set is expected to encode many examples. In contrast, a ground version of the support set
would be a plain enumeration of examples, since in the general case, it would require one
ground clause per example. The main advantage of the “lifted” character of the support set
over a plain enumeration of the examples is that it requires much less memory to encode the
necessary information, an important feature in large-scale (temporal) applications.Moreover,
given that training examples are typically characterized by heavy repetition, abstracting away

123

568 Mach Learn (2015) 100:555–585

Algorithm 2 revise(SDEC, Hn, wn, K
wn
v)

Input: The axioms of SDEC, a running hypothesis Hn an example window wn and a vari-
abilized Kernel Set Kwn

v of wn .
Output: A revised hypothesis H ′

n

1: let U(Kwn
v ,Hn) ← GeneralizationTransformation(Kwn

v) ∪ RefinementTransformation(Hn)
2: let Φ be the abductive task Φ = ALP(SDEC ∪ U(Kwn

v ,Hn), {use/2, use/3},wn)
3: if Φ has a solution then
4: let Δ be a minimal solution of Φ

5:

let NewClauses = {αi ← δ1i ∧ . . . ∧ δni |
αi is the head of the i−th clause Ci ∈ Kwn

v

and δ
j
i is the j−th body literal of Ci

and use(i, 0) ∈ and use(i, j) ∈ , 1 ≤ j ≤ n }
6: let RefinedClauses = { head(Ci) ← body(Ci) ∧ δ

j,k1
i ∧ . . . ∧ δ

j,km
i |

Ci ∈ Hn and use(i, j, kl) ∈ , 1 ≤ l ≤ m, 1 ≤ j ≤ |Ci.supp| }
7: let RetainedClauses = {Ci ∈ Hn | use(i, j, k) /∈ for any j, k}
8: let RefinedClauses = ReduceRefined(NewClauses,RefinedClauses,RetainedClauses)
9: else
10: Return No Solution
11: Return 〈RetainedClauses,RefinedClauses,NewClauses〉

Table 5 Syntactic transformations performed by ILED

GeneralizationTransformation RefinementTransformation

Input: A variabilized Kernel set Kv Input: A running hypothesis Hn

For each clause Di = αi ← δ1i , . . . , δni ∈ Fv: For each clause Di ∈ Hn:

Add an extra atom use(i, 0) to the body of Di For each clause Γij∈Di .supp

and replace each body literal δ ji with a new Generate one clause

atom of the form try(i, j, v(δji)), where v(δ
j
i) αi ← body(Di) ∧ not exception(i, j, v(αi))

contains the variables that appear in δ
j
i . where αi is the head of Di and v(αi)

Generate two new clauses of the form contains its variables. Generate one clause

try(i, j, v(δji)) ← use(i, j), δji and exception(i, j, v(ai)) ← use(i, j, k), not δj,ki

try(i, j, v(δji)) ← not use(i, j) for each δ
j
i . for each body literal δ j,ki of Γ

j
i .

redundant parts of the search space results in a memory structure that is expected to grow in
size slowly, allowing for fast search that scales to a large amount of historical data.

3.2 Implementing revisions

Algorithm 2 presents the revision function of ILED. The input consists of SDEC as
background knowledge, a running hypothesis Hn , an example window wn and a variabilized
Kernel Set Kwn

v ofwn . The clauses of K
wn
v and Hn are subject to theGeneralizationTansfor-

mation and the RefinementTransformation respectively, presented in Table 5. The former
is the transformation discussed in Sect. 2.2.1, that turns the Kernel Set into a defeasible pro-
gram, allowing the construction of new clauses. The RefinementTransformation aims at
the refinement of the clauses of Hn using their support sets. It involves two fresh predicates,
exception/3 and use/3. For each clause Di ∈ Hn and for each of its support set clauses
Γ

j
i ∈ Di .supp, one new clause head(Di) ← body(Di) ∧ not exception(i, j, v(head(Di)))

is generated, where v(head(Di)) is a term that contains the variables of head(Ci). Then an

123

Mach Learn (2015) 100:555–585 569

additional clause exception(i, j, v(head(Di))) ← use(i, j, k) ∧ not δj,ki is generated, for each

body literal δ j,k
i ∈ Γ

j
i .

The syntactically transformed clauses are put together in a program U (Kwn
v , Hn) (line 1

of Algorithm 2), which is used as a background theory along with SDEC. A minimal set of
use/2 and use/3 atoms is abduced as a solution to the abductive taskΦ in line 2 of Algorithm
2. Abduced use/2 atoms are used to construct a set ofNewClauses, as discussed in Sect. 2.2.1
(line 5 of Algorithm 2). These new clauses account for some of the examples in wn , which
cannot be covered by existing clauses in Hn . The abduced use/3 atoms indicate clauses of
Hn that must be refined. From these atoms, a refinement RDi is generated for each incorrect
clause Di ∈ Hn , such that Di 	 RDi 	 Di .supp (line 6 of Algorithm 2). Clauses that lack
a corresponding use/3 atom in the abductive solution are retained (line 7 of Algorithm 2).

The intuition behind refinement generation is as follows: Assume that clause Di ∈ Hn

must be refined. This can be achieved by means of the extra clauses generated by theRefine-
mentTransformation. These clauses provide definitions for the exception atom, namely one
for each body literal in each clause of Di .supp. From these clauses, one can satisfy the excep-
tion atom by satisfying the complement of the corresponding support set literal and abducing
the accompanying use/3 atom. Since an abductive solutionΔ is minimal, the abduced use/3
atoms correspond precisely to the clauses that must be refined.

Hence, each inconsistent clause Di ∈ Hn and each Γij∈Di.supp correspond to a set of
abduced use/3 atoms of the form use(i, j, k1), . . . , use(i, j, kn). These atoms indicate that
a specialization of Di maybe generated by adding to the body of Di the literals δ

j,k1
i , . . . , δ

j,kn
i

fromΓ
j
i . Then a refinement RDi such thatDi 	 RDi 	 Di.suppmaybe generated by selecting

one specialization of clause Di from each support set clause in Di.supp.

Example 3 Table 6 presents the process of ILED’s refinement. The annotation lacks pos-
itive examples and the running hypothesis consists of a single clause C , with a support
set of two clauses. Clause C is inconsistent since it entails two negative examples, namely
holdsAt(fighting(id1, id2), 2) and holdsAt(fighting(id3, id4), 3). The program that results
by applying the RefinementTransformation to the support set of clause C is presented in
Table 6, along with a minimal abductive explanation of the examples, in terms of use/3
atoms. Atoms use(1, 1, 2) and use(1, 1, 3) correspond respectively to the second and third
body literals of the first support set clause, which are added to the body of clauseC , resulting
in the first specialization presented in Table 6. The third abduced atom use(1, 2, 2) corre-
sponds to the second body literal of the second support set clause, which results in the second
specialization in Table 6. Together, these specializations form a refinement of clause C that
subsumes C.supp. ��
Minimal abductive solutions imply that the running hypothesis is minimally revised. Revi-
sions areminimal w.r.t. the length of the clauses in the revised hypothesis, but are not minimal
w.r.t. the number of clauses, since the refinement strategy described above may result in
refinements that include redundant clauses: Selecting one specialization from each support
set clause to generate a refinement of a clause is sub-optimal, since there may exist other
refinements with fewer clauses that also subsume thewhole support set, as Example 2 demon-
strates. To avoid unnecessary increase of the hypothesis size, the generation of refinements
is followed by a “reduction” step (line 8 of Algorithm 2). The ReduceRefined function
works as follows. For each refined clause C , it first generates all possible refinements from
C.supp. This can be realized with the abductive refinement technique described above. The
only difference is that the abductive solver is instructed to find all abductive explanations in
terms of use/3 atoms, instead of one. Once all refinements are generated, ReduceRefined

123

570 Mach Learn (2015) 100:555–585

Table 6 Clause refinement by ILED

Input

Narrative Annotation

happensAt(abrupt(id1), 1). not holdsAt(f ighting(id1, id2), 1).

happensAt(inactive(id2), 1). not holdsAt(f ighting(id3, id4), 1).

holdsAt(close(id1, id2, 23), 1). not holdsAt(f ighting(id1, id2), 2).

happensAt(abrupt(id3), 2). not holdsAt(f ighting(id3, id4), 2).

happensAt(abrupt(id4), 2). not holdsAt(f ighting(id1, id2), 3).

not holdsAt(close(id3, id4, 23), 2). not holdsAt(f ighting(id3, id4), 3).

Running hypothesis Support set

C = initiatedAt(fighting(X, Y), T) ← C1
s = initiatedAt(fighting(X, Y), T) ←

happensAt(abrupt(X), T). happensAt(abrupt(X), T),

happensAt(abrupt(Y), T),

holdsAt(close(X, Y , 23), T).

C2
s = initiatedAt(fighting(X, Y), T) ←

happensAt(abrupt(X), T),

happensAt(active(Y), T),

holdsAt(close(X, Y , 23), T).

Refinement transformation:

From C1
s : From C2

s :
initiatedAt(f ighting(X, Y), T) ← initiatedAt(f ighting(X, Y), T) ←

happensAt(abrupt (X), T), happensAt(abrupt (X), T),

not exception(1, 1, vars(X, Y, T)). not exception(1, 2, vars(X, Y, T)).

exception(1, 1, vars(X, Y, T)) ← exception(1, 2, vars(X, Y, T)) ←
use(1, 1, 2), not happensAt(abrupt (Y), T). use(1, 2, 2), not happensAt(active(Y), T).

exception(1, 1, vars(X, Y, T)) ← exception(1, 2, vars(X, Y, T)) ←
use(1, 1, 3), not holdsAt(close(X, Y, 23), T). use(1, 2, 3), not holdsAt(close(X, Y, 23), T).

Minimal abductive solution Generated refinements

Δ = {use(1, 1, 2), use(1, 1, 3), use(1, 2, 2)} initiatedAt(fighting(X,Y), T) ←
happensAt(abrupt(X), T),

happensAt(abrupt(Y), T),

holdsAt(close(X, Y , 23), T).

initiatedAt(fighting(X,Y), T) ←
happensAt(abrupt(X), T),

happensAt(active(Y), T).

searches the revised hypothesis, augmentedwith all refinements of clauseC , to find a reduced
set of refinements of C that subsume C.supp.

4 Discussion

Like XHAIL, ILED aims at soundness, that is, hypotheses which cover all given exam-
ples. XHAIL ensures soundness by generalizing all examples in one go. In contrast, ILED
has access to a memory of past experience for which newly acquired knowledge must

123

Mach Learn (2015) 100:555–585 571

account. Concerning completeness, XHAIL is a state-of-the-art system among its Inverse
Entailment-based peers. Although ILED preserves XHAIL’s soundness, it does not preserve
its completeness properties, due to the fact that ILED operates incrementally to gain effi-
ciency. Thus there are cases where a hypothesis can be discovered by XHAIL, but be missed
by ILED. As an example, consider cases where a target hypothesis captures long-term tem-
poral relations in the data, as for instance, in the following clause:

initiatedAt(moving(X, Y), T) ←
happensAt(walking(Y), T 1),
T 1 < T .

In such cases, if the parts of the data that are connected via a long-range temporal relation
are given in different windows, ILED has no way to correlate these parts in order to discover
the temporal relation. However, one can always achieve XHAIL’s functionality by increasing
appropriately ILED’s window size.

An additional trade-off for efficiency is that not all of ILED’s revisions are fully evaluated
on the historical memory. For instance, selecting a particular clause in order to cover a
new example, may result in a large number of refinements and an unnecessarily lengthy
hypothesis, as compared to one that may have been obtained by selecting a different initial
clause. On the other hand, fully evaluating all possible choices over E requires extensive
inference. Thus simplicity and compression of hypotheses in ILED have been sacrificed for
efficiency.

In ILED, a large part of the theorem proving effort that is involved in clause refinement
reduces to computing subsumption between clauses, which is a hard task. Moreover, just as
the historical memory grows over time, so do (in the general case) the support sets of the
clauses in the running hypothesis, increasing the cost of computing subsumption. However,
as in principle the largest part of a search space is redundant and the support set focuses
only on its interesting parts, one would not expect that the support set will grow to a size
that makes subsumption computation less efficient than inference over the entire E . In addi-
tion, a number of optimization techniques have been developed over the years and several
generic subsumption engines have been proposed (Maloberti and Sebag 2004; Kuzelka and
Zelezny 2008; Santos and Muggleton 2010), some of which are able to efficiently compute
subsumption relations between clauses comprising thousands of literals and hundreds of
distinct variables.

5 Experimental evaluation

In this section, we present experimental results from two real-world applications: Activity
recognition, using real data from the benchmark CAVIAR video surveillance dataset,3 as
well as large volumes of synthetic CAVIAR data; and City Transport Management (CTM)
using data from the PRONTO4 project.

Part of our experimental evaluation aims to compare ILED with XHAIL. To achieve this
aim we had to implement XHAIL, because the original implementation was not publicly
available until recently (Bragaglia and Ray 2014). All experiments were conducted on a
3.2GHz Linux machine with 4GB of RAM. The algorithms were implemented in Python,

3 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.
4 http://www.ict-pronto.org/.

123

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
http://www.ict-pronto.org/

572 Mach Learn (2015) 100:555–585

using the Clingo5 Answer Set Solver (Gebser et al. 2012) as the main reasoning component,
and a Mongodb6 NoSQL database for the historical memory of the examples. The code and
datasets used in these experiments can be downloaded from https://github.com/nkatzz/ILED.

5.1 Activity recognition

In activity recognition, our goal is to learn definitions of high-level events, such as fighting,
moving and meeting, from streams of low-level events like walking, standing, active and
abrupt, as well as spatio-temporal knowledge. We use the benchmark CAVIAR dataset for
experimentation. Details on the CAVIAR dataset can be found in Artikis et al. (2010).

CAVIARcontains noisy datamainly due to human errors in the annotation (List et al. 2005;
Artikis et al. 2010). Thus, for the experiments we manually selected a noise-free subset of
CAVIAR. The resulting dataset consists of 1000 examples (that is, data for 1000 distinct time
points) concerning the high-level events moving, meeting and fighting. These data, selected
from different parts of the CAVIAR dataset, were combined into a continuous annotated
stream of narrative atoms, with time ranging from 0 to 1000.

In addition to the real data, we generated synthetic data based on the manually-developed
CAVIARevent definitions described inArtikis et al. (2010). In particular, streams of low-level
events were created randomly and were then classified using the rules of Artikis et al. (2010).
The generated data consists of approximately 105 examples, which amounts to 100MB of
data.

The synthetic data is much more complex than the real CAVIAR data. This is due to two
main reasons: First, the synthetic data includes significantlymore initiations and terminations
of a high-level event, thus much larger learning effort is required to explain it. Second, in
the synthetic dataset more than one high-level event may be initiated or terminated at the
same time point. This results in Kernel Sets with more clauses, which are hard to generalize
simultaneously.

5.1.1 ILED versus XHAIL

The purpose of this experiment was to assess whether ILED can efficiently generate hypothe-
ses comparable in size and predictive quality to those of XHAIL. To this end, we compared
both systems on real and synthetic data using tenfold cross validation with replacement. For
the real data, 90% of randomly selected examples, from the total of 1000 were used for
training, while the remaining 10% was retained for testing. At each run, the training data
were presented to ILED in example windows of sizes 10, 50, 100. The data were presented in
one batch to XHAIL. For the synthetic data, 1000 examples were randomly sampled at each
run from the dataset for training, while the remaining data were retained for testing. Similar
to the real data experiments, ILED operated on windows of sizes of 10, 50, 100 examples
and XHAIL on a single batch.

Table 7 presents the experimental results. Training times are significantly higher for
XHAIL, due to the increased complexity of generalizing Kernel Sets that account for the
whole set of the presented examples at once. These Kernel Sets consisted, on average, of
30–35 16-literal clauses, in the case of the real data, and 60–70 16-literal clauses in the case
of the synthetic data. In contrast, ILED had to deal with much smaller Kernel Sets. The
complexity of abductive search affects ILED as well, as the size of the input windows grows.

5 http://potassco.sourceforge.net/.
6 http://www.mongodb.org/.

123

https://github.com/nkatzz/ILED
http://potassco.sourceforge.net/
http://www.mongodb.org/

Mach Learn (2015) 100:555–585 573

Table 7 Comparison of ILED and XHAIL

ILED XHAIL

G = 10 G = 50 G = 100 G = 900

Real CAVIAR data

Training time (s) 34.15 (±6.87) 23.04 (±13.50) 286.74 (±98.87) 1560.88 (±4.24)

Revisions 11.2 (±3.05) 9.1 (±0.32) 5.2 (±2.1) −
Hypothesis size 17.82 (±2.18) 17.54 (±1.5) 17.5 (±1.43) 15 (±0.067)

Precision 98.713 (±0.052) 99.767 (±0.038) 99.971 (±0.041) 99.973 (±0.028)

Recall 99.789 (±0.083) 99.845 (±0.32) 99.988 (±0.021) 99.992 (±0.305)

Synthetic CAVIAR data

Training time (s) 38.92 (±9.15) 33.87 (±9.74) 468 (±102.62) 21429 (±342.87)

Revisions 28.7 (±9.34) 15.4 (±7.5) 12.2 (±6.23) −
Hypothesis size 143.52 (±19.14) 138.46 (±22.7) 126.43 (±15.8) 118.18 (±14.48)

Precision 55.713 (±0.781) 57.613 (±0.883) 63.236 (±0.536) 63.822 (±0.733)

Recall 68.213 (±0.873) 71.813 (±0.756) 71.997 (±0.518) 71.918 (±0.918)

G is the window granularity

ILED handles the learning task relatively well (in approximately 30s) when the examples
are presented in windows of 50 examples, but the training time increases almost 15 times if
the window size is doubled.

Concerning the size of the produced hypothesis, the results show that in the case of real
CAVIAR data, the hypotheses constructed by ILED are comparable in size with a hypothesis
constructed by XHAIL. In the case of synthetic data, the hypotheses returned by both XHAIL
and ILEDwere significantly more complex. Note that for ILED the hypothesis size decreases
as the window size increases. This is reflected in the number of revisions that ILED performs,
which is significantly smallerwhen the input comes in larger batches of examples. In principle,
the richer the input, the better the hypothesis that is initially acquired, and consequently, the
less the need for revisions in response to new training instances. There is a trade-off between
the window size (thus the complexity of the abductive search) and the number of revisions.
A small number of revisions on complex data (i.e. larger windows) may have a greater total
cost in terms of training time, as compared to a greater number of revisions on simpler data
(i.e. smallerwindows). For example, in the case ofwindow size 100 for the real CAVIARdata,
ILED performs 5 revisions on average and requires significantly more time than in the case
of a window size 50, where it performs 9 revisions on average. On the other hand, training
times for windows of size 50 are slightly better than those obtained when the examples are
presented in smaller windows of size 10. In this case, the “unit cost” of performing revisions
w.r.t a single window are comparable between windows of size 10 and 50. Thus the overall
cost in terms of training time is determined by the total number of revisions, which is greater
in the case of window size 10.

Concerning predictive quality, the results indicate that ILED’s precision and recall scores
are comparable to those of XHAIL. For larger input windows, precision and recall are almost
the same as those of XHAIL. This is because ILED produces better hypotheses from larger
input windows. Precision and recall are smaller in the case of synthetic data for both sys-
tems, because the testing set in this case is much larger and complex than in the case of
real data.

123

574 Mach Learn (2015) 100:555–585

0

10

20

30

40

50

60

70

1K examples ≈
6K atoms

10K examples ≈
60K atoms

50K examples ≈
300K atoms

100K examples ≈
600K atoms

Ti
m

e
(in

 m
in

ut
es

)

Historical Memory size

50 100Incoming window size:

Fig. 2 Average times needed for ILED to revise an initial hypothesis in the face of new evidence presented in
windows of size 10, 50 and 100 examples. The initial hypothesis was obtained from a training set of varying
size (1K, 10K, 50K and 100K examples) which subsequently served as the historical memory

5.1.2 ILED scalability

The purpose of this experiment was to assess the scalability of ILED. The experimental
setting was as follows: Sets of examples of varying sizes were randomly sampled from the
synthetic dataset. Each such example set was used as a training set in order to acquire an
initial hypothesis using ILED. Then a new window which did not satisfy the hypothesis at
hand was randomly selected and presented to ILED, which subsequently revised the initial
hypothesis in order to account for both the historical memory (the initial training set) and
the new evidence. For historical memories ranging from 103 to 105 examples, a new training
window of size 10, 50 and 100was selected from the whole dataset. The process was repeated
ten times for each different combination of historical memory and newwindow size. Figure 2
presents the average revision times. The revision times for new window sizes of 10 and 50
examples are very close and therefore omitted to avoid clutter. The results indicate that
revision time grows polynomially in the size of the historical memory.

5.2 City transport management

In this section we present experimental results from the domain of City Transport Manage-
ment (CTM), using data from the PRONTO7 project. In PRONTO, the goal was to inform
the decision-making of transport officials by recognising high-level events related to the
punctuality of a public transport vehicle (bus or tram), passenger/driver comfort and safety.
These high-level events were requested by the public transport control centre of Helsinki,
Finland, in order to support resource management. Low-level events were provided by sen-
sors installed in buses and trams, reporting on changes in position, acceleration/deceleration,
in-vehicle temperature, noise level and passenger density. At the time of the project, the avail-
able datasets included only a subset of the anticipated low-level event types as some low-level
event detection components were not functional. Therefore, a synthetic dataset was gener-
ated. The synthetic PRONTO data has proven to be considerably more challenging for event
recognition than the real data (Artikis et al. 2015), and therefore we chose the former for

7 http://www.ict-pronto.org/.

123

http://www.ict-pronto.org/

Mach Learn (2015) 100:555–585 575

Abrupt
Acceleration

Start

Abrupt
Acceleration

End

Abrupt
Deceleration

Start

Abrupt
Deceleration

End

Sharp
Turn
Start

Sharp
Turn
End

Enter
Stop

Leave
Stop

Abrupt
Acceleration

Abrupt
Deceleration PunctualitySharp

Turn

Driving
Style

Driving
Quality

Fig. 3 City Transport Management partial event hierarchy (we omit the whole hierarchy to save space).
Additional high-level events, not presented here are noise level, vehicle temperature, and passenger density,
which depend on corresponding low-level events and affect driving quality

evaluating ILED. The CTM dataset contains 5 · 104 examples, which amount approximately
to 70MB of data.

In contrast to the activity recognition application, themanually developed event definitions
of CTM form a hierarchy. In these definitions, it is possible to define a function level that
maps high-level events to non-negative integers as follows: A level-1 event is defined in
terms of low-level events (input data) only. A level-n event is defined in terms of at least
one level-n − 1 event and a possibly empty set of low-level events and high-level events of
level below n−1. Hierarchical definitions are significantly more complex to learn compared
to non-hierarchical ones. This is because initiations and terminations of events in the lower
levels of the hierarchy appear in the bodies of event definitions in the higher levels, hence
all target definitions must be learnt simultaneously. As we show in the experiments, this
has a striking effect on the learning effort. A solution for simplifying the learning task is
to utilize knowledge about the domain (the hierarchy), learn event definitions separately,
and use the acquired theories from lower levels of the hierarchy as non-revisable background
knowledgewhen learning event definitions for the higher levels. A part of TheCTMhierarchy
is presented in Fig. 3. Consider the following fragment:

initiatedAt(punctuality(Id, nonPunctual), T) ←
happensAt(stopEnter(I d, StopId, late), T). (1)

initiatedAt(punctuality(Id, nonPunctual), T) ←
happensAt(stopLeave(I d, StopId, early), T). (2)

terminatedAt(punctuality(Id, nonPunctual), T) ←
happensAt(stopEnter(I d, StopId, early), T). (3)

terminatedAt(punctuality(Id, nonPunctual), T) ←
happensAt(stopEnter(I d, StopId, scheduled), T). (4)

initiatedAt(drivingQuality(Id, low), T) ←
initiatedAt(punctuali t y(I d, nonPunctual), T),

holdsAt(drivingStyle(I d, unsa f e), T). (5)

initiatedAt(drivingQuality(Id, low), T) ←
initiatedAt(drivingStyle(I d, unsa f e), T),

123

576 Mach Learn (2015) 100:555–585

holdsAt(punctuali t y(I d, nonPunctual), T). (6)

terminatedAt(drivingQuality(Id, low), T) ←
terminatedAt(punctuali t y(I d, nonPunctual), T). (7)

terminatedAt(drivingQuality(Id, low), T) ←
terminatedAt(drivingStyle(I d, unsa f e), T). (8)

Clauses (1) and (2) state that a period of time for which vehicle Id is said to be non-punctual
is initiated if it enters a stop later, or leaves a stop earlier than the scheduled time. Clauses
(3) and (4) state that the period for which vehicle Id is said to be non-punctual is terminated
when the vehicle arrives at a stop earlier than, or at the scheduled time. The definition of
non-punctual vehicle uses two low-level events, stopEnter and stopLeave.

Clauses (5)–(8) define low driving quality. Essentially, driving quality is said to be low
when the driving style is unsafe and the vehicle is non-punctual. Driving quality is defined in
terms of high-level events (we omit the definition of driving style to save space). Therefore,
the bodies of the clauses defining driving quality include initiatedAt/2 and terminatedAt/2
literals.

5.2.1 ILED versus XHAIL

In this experiment, we tried to learn simultaneously definitions for all target concepts, a total
of nine interrelated high-level events, seven of which are level-1, one is level-2 and one is
level-3. The total number of low-level events is eleven, while for both high-level and low-level
events, their negations are considered during learning. According to the employed language
bias, each high-level event must be learnt, while at the same time it may be present in the body
of another high-level event in the form of a (potentially negated) holdsAt/2, initiatedAt/2,
or terminatedAt/2 predicate.

We used tenfold cross validation with replacement, on small amounts of data, due to the
complexity of the learning task. In each run of the cross validation, we randomly sampled 20
examples from the CTM dataset, 90% of which was used for training and 10% was retained
for testing. This example size was selected after experimentation, in order for XHAIL to
be able to perform in an acceptable time frame. Each sample consisted of approximately
150 atoms (narrative and annotation). The examples were given to ILED in windows of
granularity 5 and 10, and to XHAIL in one batch. Table 8 presents the average training times,
hypothesis size, number of revisions, precision and recall.

Table 8 Comparative performance of ILED and XHAIL on selected subsets of the CTM dataset each con-
taining 20 examples

ILED XHAIL

G = 5 G = 10 G = 20

Training time (h) 1.35 (±0.17) 1.88 (±0.13) 4.35 (±0.2)

Hypothesis size 28.32 (±1.19) 24.13 (±2.54) 24.02 (±0.23)

Revisions 14.78 (±2.24) 13.42 (±2.08) −
Precision 63.344 (±5.24) 64.644 (±3.45) 66.245 (±3.83)

Recall 59.832 (±7.13) 61.423 (±5.34) 62.567 (±4.65)

G is the granularity of the windows

123

Mach Learn (2015) 100:555–585 577

ILED took on average 1–2h to complete the learning task, for windows of 5 and 10
examples, while XHAIL required more than 4h on average to learn hypotheses from batches
of 20 examples. Compared to activity recognition, the learning setting requires larger Kernel
Set structures that are hard to reason with. An average Kernel Set generated from a batch of
just 20 examples consisted of approximately 30–35 clauses, with 60–70 literals each.

Like the activity recognition experiments, precision and recall scores for ILED are compa-
rable to those of XHAIL, with the latter being slightly better. Unlike the activity recognition
experiments, precision and recall had a large diversity between different runs. Due to the
complexity of the CTM dataset, the constructed hypotheses had a large diversity, depend-
ing on the random samples that were used for training. For example, some high-level event
definitions were unnecessarily lengthy and difficult to be understood by a human expert. On
the other hand, some level-1 definitions could, in some runs of the experiment, be learnt
correctly even from a limited amount of data. Such definitions are fairly simple, consisting
of one initiation and one termination rule, with one body literal in each case.

This experiment demonstrates several limitations of learning in large and complex appli-
cations. The complexity of the domain increases the intensity of the learning task, which in
turn makes training times forbidding, even for small amount of data such as 20 examples
(approximately 150 atoms). This forces one to process small sets of examples at a time, which
in complex domains like CTM, results in over-fitted theories and rapid increase in hypothesis
size.

5.2.2 Learning with hierarchical bias

In an effort to improve the experimental results, we utilized domain knowledge about the
event hierarchy in CTMand attempted to learn high-level events in different levels separately.
To do so, we had to learn a complete definition for a high-level event from the entire dataset,
before utilizing it as background knowledge in the learning process of a higher-level event. To
facilitate the learning task further, we also used expert knowledge about the relation between
specific low-level and high-level events, excluding from the language bias mode declarations
which were irrelevant to the high-level event that was being learnt at each time.

The experimental setting was therefore as follows: Starting from the level-1 target events,
we processed the whole CTM dataset in windows of 10, 50 and 100 examples with ILED.
Each high-level event was learnt independently of the others. Once complete definitions for
all level-1 high-level events were constructed, theywere added to the background knowledge.
Thenwe proceededwith learning the definition of the single level-2 event (see Fig. 3). Finally,
after successfully constructing the level-2 definition, we performed learning in the top-level
of the hierarchy, using the previously constructed level-1 and level-2 event definitions as
background knowledge. We did not attempt a comparison with XHAIL because it is not able
to operate on the entire dataset.

Table 9 presents the results. For level-1 events, scores are presented as minimum–
maximum pairs. For instance, the training times for level-1 events with windows of 10
examples, range from 4.46 to 4.88min. Levels 2 and 3 have just one definition each, there-
fore Table 9 presents the respective scores from each run. Training times, hypotheses sizes
and overall numbers of revisions are comparable for all levels of the event hierarchy. Level-
1 event definitions were the easiest to acquire, with training times ranging approximately
between 4.50 and 7min. This was expected since clauses in level-1 definitions are signifi-
cantly simpler than level-2 and level-3 ones. The level-2 event definition was the hardest to
construct with training times ranging between 8 and 10min, while a significant number of
revisions was required for all window granularities. The definition of this high-level event

123

578 Mach Learn (2015) 100:555–585

Table 9 ILED with hierarchical
bias

ILED

G = 10 G = 50 G = 100

Level-1

Training time (min) 4.46–4.88 5.78–6.44 6.24–6.88

Revisions 2–11 2–9 2–9

Hypothesis size 4–18 4–16 4–16

Precision (%) 100 100 100

Recall (%) 100 100 100

Level-2

Training time (min) 8.76 9.14 9.86

Revisions 24 17 17

Hypothesis size 31 27 27

Precision (%) 100 100 100

Recall (%) 100 100 100

Level-3

Training time (min) 5.78 6.14 6.78

Revisions 6 5 5

Hypothesis size 13 10 10

Precision (%) 100 100 100

Recall (%) 100 100 100

(drivingStyle) is relatively complex, in contrast to the simpler level-3 definition, for which
training times are comparable to the ones of level-1 events.

The largest parts of training times were dedicated to checking an already correct definition
against the part of the dataset that had not been processed yet. That is, for all target events,
ILED converged to a complete definition relatively quickly, i.e. in approximately 1.5–3min
after the initiation of the learning process. From that point on, the extra time was spent on
testing the hypothesis against the new incoming data.

Window granularity slightly affects the produced hypothesis for all target high-level
events. Indeed, the definitions constructed with windows of 10 examples are slightly larger
than the ones constructed with larger window sizes of 50 and 100 examples. Notably, the defi-
nitions constructed with windows of granularity 50 and 100, were found concise, meaningful
and very close to the actual hand-crafted rules that were utilized in PRONTO.

6 Related work

A thorough review of the drawbacks of state-of-the-art ILP systems with respect to non-
monotonic domains, as well as the deficiencies of existing approaches to learning Event
Calculus programs can be found in Ray (2009), Otero (2001, 2003) and Sakama (2005,
2001). The main obstacle, common to many learners which combine ILP with some form of
abduction, like PROGOL5 (Muggleton and Bryant 2000), ALECTO (Moyle 2003), HAIL
(Ray et al. 2003) and IMPARO (Kimber et al. 2009), is that they cannot perform abduction
through negation and are thus essentially limited to Observational Predicate Learning.

TAL (Corapi et al. 2010) is a top–down non-monotonic learner which is able to solve the
same class of problems as XHAIL. It obtains a top theory by appropriately mapping an ILP

123

Mach Learn (2015) 100:555–585 579

problem to a corresponding ALP instance, so that solutions to the latter may be translated to
solutions for the initial ILP problem. Recently, the main ideas behind TAL were employed
in the ASPAL system (Corapi et al. 2012), an inductive learner which relies on Answer Set
Programming as a unifying abductive–inductive framework.

In Athakravi et al. (2013) the methodology behind TAL and ASPAL have been ported
into a learner that constructs hypotheses progressively, towards more scalable learning. To
address the fact that ASPALs top theory grows exponentially with the length of its clauses,
RASPAL, the system proposed in Athakravi et al. (2013), imposes bounds on the length
of the top theory. Partial hypotheses of specified clause length are iteratively obtained in a
refinement loop. At each iteration of this loop, the hypothesis obtained from the previous
refinement step is further refined by dropping or adding literals or clauses, using theory
revision as described in Corapi et al. (2008). The process continues until a complete and
consistent hypothesis is obtained. The main difference between RASPAL and our approach
is that in order to ensure soundness, RASPAL has to process all examples simultaneously. At
each iteration of its refinement loop, all examples are taken into account repeatedly, in order
to ensure that the revisions account for all them. Therefore, the grounding bottleneck that
RASPAL faces is expected to persist in domains that involve large volumes of sequential data,
typical of temporal applications, as the ones that we address in this work. This is because
even by imposing a small initial maximum clause length to RASPAL, in order to constrain
the search space, with a sufficient amount of data the resulting ground program will still be
intractable, if the data is processed simultaneously. In contrast, ILED is able to break the
dataset in smaller data windows and process them in isolation, while ensuring soundness.
By properly restricting window size, so that the unit cost of learning/revising from a single
window is acceptable, ILED scales to large volumes of data, since the cost of theory revision
grows as a linear function of the number of example windows in the historical memory.

The combination of ILP with ALP has recently been applied tometa-interpretive learning
(MIL), a learning framework where the goal is to obtain hypotheses in the presence of a
meta-interpreter. The latter is a higher-order program, hypothesizing about predicates or
even rules of the domain. Given such background knowledge and a set of examples, MIL
uses abduction w.r.t. the meta-interpreter to construct first-order hypotheses. MIL can be
realized both in Prolog and in Answer Set Programming, and it has been implemented in the
METAGOL system (Muggleton et al. 2014). MIL is an elegant framework, able to address
difficult problems like predicate invention and mutually recursive programs. However, it
has a number of important drawbacks. First, its expressivity is limited, as MIL is currently
restricted to dyadic Datalog, i.e. Datalog where the arity of each predicate is at most two.
Second, given the increased computational complexity of higher-order reasoning, scaling to
large volumes of data is a potential bottleneck for MIL.

CLINT (De Raedt and Bruynooghe 1994) is a seminal abductive–inductive theory revi-
sion system. It employs two revision operators: A generalization operator that adds new
clauses/facts to the theory and a specialization operator, that retracts incorrect clauses from
the theory. To generate new clauses, CLINT uses “starting clauses”, i.e. variabilized, most-
specific clauses that cover a positive example, which are thenmaximally generalized to obtain
a good hypothesis clause. CLINT also uses abduction in order to explain some examples, by
deriving new ground facts which are simply added to the theory. Abduction and induction are
independent and complementary, i.e. one is used when the other fails to cover an example,
contrary to ILED, where the two processes are tightly coupled, allowing to handle non-OPL.
Additionally, CLINT is restricted to Horn logic.

In Duboc et al. (2009), the theory revision system FORTE (Richards and Mooney 1995)
is enhanced by PROGOL’s bottom set construction routine and mode declarations, towards a

123

580 Mach Learn (2015) 100:555–585

more efficient refinement operator. In order to refine a clauseC , FORTE_MBC (the resulting
system), uses mode declarations and inverse entailment to construct a bottom clause from a
positive example covered by C . It then searches for antecedents within the bottom clause.
As in the case of ILED, the constrained search space results in a more efficient clause
refinement process. However FORTE_MBC (like FORTE itself) learns Horn theories and
does not support non-Observational Predicate Learning, thus it cannot be used for the revision
of Event Calculus programs. In addition, it cannot operate on an empty hypothesis (i.e. it
cannot induce a hypothesis from scratch).

INTHELEX (Esposito et al. 2000) learns/revises Datalog theories and has been used
in the study of several aspects of incremental learning, such as order effects (Di Mauro
et al. 2004, 2005) and concept drift (Esposito et al. 2004). In Biba et al. (2006) the authors
present an approach towards scaling INTHELEX by associating clauses in the theory at
hand with examples they cover, via a relational schema. Thus, when a clause is refined, only
the examples that were previously covered by this clause are checked. Similarly, when a
clause is generalized, only the negative examples are checked again. The scalable version of
INTHELEX presented in Biba et al. (2006)maintains alternative versions of the hypothesis at
each step, allowing it to backtrack to previous states. In addition, it keeps in memory several
statistics related to the examples that the system has already seen, such as the number of
refinements that each example has caused, a “refinement history” of each clause, etc.

Several limitations make INTHELEX inappropriate for inducing/revising Event Calculus
programs. First, the restriction of its input language toDatalog limits its applicability to richer,
relational event domains. For instance, complex relations between entities cannot be easily
expressed in INTHELEX. Second, the use of background knowledge is limited, excluding
for instance auxiliary clauses that may be used for spatio-temporal reasoning during learning
time. Third, although INTHELEX uses abduction for the completion of imperfect input data,
it relies on Observational Predicate Learning, meaning that it is not able to reason with
predicates which are not directly observable in the examples.

7 Conclusions

We presented an incremental ILP system, ILED, for constructing event recognition knowl-
edge bases in the form of Event Calculus theories. ILED combines techniques from
non-monotonic ILP and in particular, the XHAIL algorithm, with theory revision. It acquires
an initial hypothesis from the first available piece of data, and revises this hypothesis as
new data arrive. Revisions account for all accumulated experience. The main contribution
of ILED is that it scales-up XHAIL to large volumes of sequential data with a time-like
structure, typical of event-based applications. By means of a compressive memory structure
that supports clause refinement, ILED has a scalable, single-pass revision strategy, thanks
to which the cost of theory revision grows as a tractable function of the perceived experi-
ence. In this work, ILED was evaluated on an activity recognition application and a transport
management application. The results indicate that ILED is significantly more efficient than
XHAIL, without compromising the quality of the generated hypothesis in terms of predictive
accuracy and hypothesis size.Moreover, ILED scales adequately to large data volumeswhich
XHAIL cannot handle. Future work concerns mechanisms for handling noise and concept
drift.

Acknowledgments This work was partly funded by the EU Project SPEEDD (FP7 619435). We would like
to thank the reviewers of the Machine Learning Journal for their valuable comments.

123

Mach Learn (2015) 100:555–585 581

Appendix 1: Notions from (Inductive) Logic Programming

Interpretations and models (Gelfond and Lifschitz 1988). Given a logic program � a Her-
brand interpretation I is a subset of the set of all possible groundings of�. I satisfies a literal
a (resp. not a) iff a ∈ I (resp. a /∈ I). I satisfies a set of ground atoms iff it satisfies each one
of them and it satisfies a ground clause iff it satisfies the head, or does not satisfy at least one
body literal. I is a Herbrand model of � iff it satisfies every ground instance of every clause
in � and it is a minimal model iff no strict subset of I is a model of �. I is a stable model
of � iff it is a minimal model of the Horn program that results from the ground instances of
� after the removal of all clauses with a negated literal not satisfied by I , and all negative
literals from the remaining clauses.
Mode Declarations and mode language (Muggleton 1995). A mode declaration is an atom
of the formmodeh(s) ormodeb(s), where s is called a schema. A schema s is a ground literal
containing placemarkers. A placemarker is either +type (input) −type (output) or #type
(ground), where type is a constant. A set M of mode declarations defines a language L(M).
A clause C is in L(M) iff its head atom (respectively each of its body literals) is constructed
from the schema s in a modeh(s) atom (resp. in a modeb(s) atom) in M by: (a) replacing an
output placemarker by a new variable; (b) replacing an input placemarker by a variable that
appears in the head atom, or in a previous body literal; (c) replacing a ground placemarker
by a ground term. A hypothesis H is in L(M) iff C ∈ L(M) for each C ∈ H .

Appendix 2: ILED’s high-level strategy and Proofs of Propositions

Algorithm 3 iled(SDEC, M, Hn, wn) (ILED’s High-Level Strategy)
Input: The axioms ofSDEC, mode declarationsM, a hypothesis Hn such thatSDEC∪Hn �
E and an example window wn .
Output: A hypothesis Hn+1 such that SDEC ∪ Hn+1 � E ∪ wn

1: if SDEC ∪ Hn � wn then
2: let Kwn

v be a (variabilized) Kernel Set of wn
3: let 〈RetainedClauses,RefinedClauses,NewClauses〉 ← revise(SDEC, Hn , Kwn

v , wn)

4: let H ′ ← Hkeep ∪ RefinedClauses ∪ NewClauses
5: if NewClauses �= ∅ then
6: for all wi ∈ E, 0 ≤ i ≤ n − 1 do
7: if SDEC ∪ H ′

� wi then
8: let 〈RetainedClauses,RefinedClauses, ∅〉 ← revise(SDEC, H ′, ∅, wi)
9: let H ′ ← RetainedClauses ∪ RefinedClauses
10: let Hn+1 ← H ′
11: else
12: let Hn+1 ← Hn
13: let E ← E ∪ wn
14: Return Hn+1

Proof of Proposition 1 We first show that covE (C.supp) = covE (C). For the inclusion
covE (C.supp) ⊆ covE (C), assume that e ∈ covE (C.supp), i.e. e is covered by aD ∈ C.supp.
But C θ -subsumes D, therefore e ∈ covE (C). For the inverse inclusion, assume that
e ∈ covE (C) and let D be the most-specific clause of L(M), such that e ∈ covE (D) ()
(observe that if no such D exists, with D �= C , then C itself is the most-specific clause

123

582 Mach Learn (2015) 100:555–585

with the required property). Then by definition, D ∈ C.supp and from () we have that
e ∈ covE (C.supp), establishing the inclusion covE (C) ⊆ covE (C.supp).

The fact that C.supp is the most-specific program of L(M) with this property follows
immediately from Definition 3, since each clause in Li (C.supp) is most-specific in L(M)

with the property of covering at least one example from covE (C). ��
Proposition 2 Let Hn ∈ L(M) be as in the Incremental Learning setting (Definition 1), i.e.
SDEC∪ Hn � E , and wn be an example window. Assume also that there exists a hypothesis
Hn+1 ∈ L(M), such that SDEC ∪ Hn+1 � E ∪ wn, and that a clause C ∈ Hn is revisable
w.r.t. window wn. Then C.supp contains a refinement RC of C, which is preservable w.r.t.
wn.

Proof Assume, towards contradiction, that each refinement RC of C , contained in C.supp
is revisable w.r.t. wn . It then follows that C.supp itself is revisable w.r.t. wn , i.e. it either
covers some negative examples, or it disproves some positive examples in wn . Let e1 ∈ wn

be such an example that C.supp fails to satisfy, and assume for simplicity that a single clause
Cs ∈ C.supp is responsible for that. By definition, Cs covers at least one positive example
e2 from E and furthermore, it is a most-specific clause, within Li (M), with that property.
It then follows that e1 and e2 cannot both be accounted for, under the given language bias
L(M), i.e. there exists no hypothesis Hn+1 ∈ L(M) such that SDEC ∪ Hn+1 � E ∪ wn ,
which contradicts our assumption. Hence C.supp is preservable w.r.t. wn and it thus contains
a refinement RC of C , which is preservable w.r.t. wn . ��
Proposition 3 (Soundness and Single-pass Theory Revision) Assume the incremental learn-
ing setting described in Definition 1. ILED requires at most one pass over E to compute Hn+1

from Hn.

Proof For simplicity and without loss of generality, we assume that when a new example
window wn arrives, ILED revises Hn by (a) refining an single clause C ∈ Hn or (b) adding
a new clause C ′.

In case (a), clause C is replaced by a refinement RC such that C 	 RC 	 C.supp. By
property (iii) of the support set (see Proposition 1), RC covers all positive examples that C
covers in E , hence for the hypothesis Hn+1 = (Hn �C)∪RC it holds thatSDEC∪Hn+1 � E
and furthermoreSDEC∪Hn+1 � wn . HenceSDEC∪Hn+1 � E∪wn , fromwhich soundness
for Hn+1 follows. In this case Hn+1 is constructed from Hn in a single step, i.e. by reasoning
within wn without re-seeing other windows from E .

In case (b), Hn is revised w.r.t. wn to a hypothesis H ′
n = Hn ∪ C ′, where C ′ is a new

clause that results from the generalization of a Kernel Set of wn . In response to the new
clause addition, each window in E must be checked and C ′ must be refined if necessary.
Let Etested denote the fragment of E that has been tested at each point in time. Initially, i.e.
once C ′ is generated from wn , it holds that Etested = wn . At each window that is tested,
clause C ′ may (i) remain intact, (ii) be refined, or (iii) one of its refinements may be further
refined. Assume that wk, k < n is the first window where the new clause C ′ must be refined.
At this point, Etested = {wi ∈ E | k < i ≤ n}, and it holds that C ′ is preservable in Etested ,
since C ′ has not yet been refined. In wk , clause C ′ is replaced by a refinement RC ′ such that
C′ 	 RC′ 	 C′.supp. RC ′ is preservable in Etested , since it is a refinement of a preservable
clause, and furthermore, it covers all positive examples that C ′ covers in wn , by means of the
properties of the support set. Hence the hypothesis H ′′

n = (H ′
n � C ′) ∪ RC ′ is complete &

consistent w.r.t. Etested . The same argument shows that if RC ′ is further refined later on (case
(iii) above), the resulting hypothesis remains complete an consistent w.r.t. Etested . Hence,

123

Mach Learn (2015) 100:555–585 583

when all windows have been tested, i.e. when Etested = E , the resulting hypothesis Hn+1 is
complete & consistent w.r.t. E ∪ wn and furthermore, each window in E has been re-seen
exactly once, thus Hn+1 is computed with a single pass over E . ��

References

Ade, H., & Denecker, M. (1995). AILP: Abductive inductive logic programming. In Proceedings of the
international joint conference on artificial intelligence (IJCAI).

Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2009). Learning operational requirements from goal mod-
els. In Proceedings of the 31st international conference on software engineering (pp. 265–275). IEEE
Computer Society.

Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2010). Deriving non-zeno behaviour models from goal
models using ILP. Formal Aspects of Computing, 22(3–4), 217–241.

Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2011). An inductive approach for modal transition system
refinement. In Technical communications of the international conference of logic programming ICLP
(pp. 106–116). Citeseer.

Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2012). Learning from vacuously satisfiable scenario-based
specifications. In Proceedings of the international conference on fundamental approaches to software
engineering (FASE).

Artikis, A., Skarlatidis, A., & Paliouras, G. (2010). Behaviour recognition from video content: A logic pro-
gramming approach. International Journal on Artificial Intelligence Tools, 19(2), 193–209.

Artikis, A., Skarlatidis, A., Portet, F., & Paliouras, G. (2012). Logic-based event recognition. Knowledge
Engineering Review, 27(04), 469–506.

Artikis, A., Sergot, M., & Paliouras, G. (2015). An event calculus for event recognition. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 27(4), 895–908.

Athakravi,D.,Corapi,D.,Broda,K.,&Russo,A. (2013). Learning throughhypothesis refinement using answer
set programming. In Proceedings of the 23rd international conference of inductive logic programming
(ILP).

Badea, L. (2001). A refinement operator for theories. In Proceedings of the international conference on
inductive logic programming (ILP).

Biba, M., Basile, T. M. A., Ferilli, S., & Esposito, F. (2006). Improving scalability in ILP incremental systems.
In Proceedings of CILC 2006-Italian conference on computational logic, Bari, Italy, pp. 26–27.

Bragaglia, S. & Ray, O. (2014). Nonmonotonic learning in large biological networks. In Proceedings of the
international conference on inductive logic programming (ILP).

Cattafi, M., Lamma, E., Riguzzi, F., & Storari, S. (2010). Incremental declarative process mining. Smart
Information and Knowledge Management, 260, 103–127.

Cervesato, I., & Montanari, A. (2000). A calculus of macro-events: Progress report. In Proceedings of the
international workshop on temporal representation and reasoning (TIME). IEEE.

Chaudet, H. (2006). Extending the event calculus for tracking epidemic spread. Artificial Intelligence in
Medicine, 38(2), 137–156.

Corapi, D., Ray, O., Russo, A., Bandara, A., & Lupu, E. (2008). Learning rules from user behaviour. In Second
international workshop on the induction of process models.

Corapi, D., Russo, A., & Lupu, E. (2010). Inductive logic programming as abductive search. In Technical
communications of the international conference on logic programming (ICLP).

Corapi, D., Russo, A., & Lupu, E. (2012). Inductive logic programming in answer set programming. In
Proceedings of international conference on inductive logic programming (ILP). Springer.

De Raedt, L., & Bruynooghe, M. (1994). Interactive theory revision. In Machine learning: A multistrategy
approach, pp. 239–263.

Denecker, M., &Kakas, A. (2002). Abduction in logic programming. InComputational logic: Logic program-
ming and beyond, pp. 402–436.

DiMauro, N., Esposito, F., Ferilli, S., &Basile, T.M. A. (2004). A backtracking strategy for order-independent
incremental learning. In Proceedings of the European conference on artificial intelligence (ECAI).

Di Mauro, N., Esposito, F., Ferilli, S., & Basile, T. M. (2005). Avoiding order effects in incremental learning.
In AIIA 2005: Advances in artificial intelligence, pp. 110–121.

Dietterich, T. G., Domingos, P., Getoor, L.,Muggleton, S., &Tadepalli, P. (2008). Structuredmachine learning:
The next ten years. Machine Learning, 73, 3–23.

Duboc, A. L., Paes, A., & Zaverucha, G. (2009). Using the bottom clause andmode declarations in FOL theory
revision from examples.Machine Learning, 76(1), 73–107.

123

584 Mach Learn (2015) 100:555–585

Eshghi, K., & Kowalski, R. (1989). Abduction compared with negation by failure. In Proceedings of the 6th
international conference on logic programming.

Esposito, F., Semeraro, G., Fanizzi, N., & Ferilli, S. (2000). Multistrategy theory revision: Induction and
abduction in inthelex. Machine Learning, 28(1–2), 133–156.

Esposito, F., Ferilli, S., Fanizzi, N., Basile, T. M. A., & DiMauro, N. (2004). Incremental learning and concept
drift in inthelex. Intelligent Data Analysis, 8(3), 213–237.

Etzion, O., & Niblett, P. (2010). Event processing in action. Greenwich: Manning Publications Co.
Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer set solving in practice. Synthesis

Lectures on Artificial Intelligence and Machine Learning, 6(3), 1–238.
Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In International

conference on logic programming, pp. 1070–1080.
Kakas, A., &Mancarella, P. (1990). Generalised stable models: A semantics for abduction. In Ninth European

conference on artificial intelligence (ECAI-90), pp. 385–391.
Kakas, A., Kowalski, R., & Toni, F. (1993). Abductive logic programming. Journal of Logic and Computation,

2, 719–770.
Kimber, T., Broda, K., & Russo, A. (2009). Induction on failure: Learning connected horn theories. In Logic

programming and nonmonotonic reasoning, pp. 169–181.
Kowalski, R., & Sergot, M. (1986). A logic-based calculus of events. New Generation Computing, 4(1), 6796.
Kuzelka, O., & Zelezny, F. (2008). A restarted strategy for efficient subsumption testing. Fundamenta Infor-

maticae, 89(1), 95–109.
Langley, P. (1995). Learning in humans and machines: Towards an interdisciplinary science, chapter order

effects in incremental learning. Amsterdam: Elsevier.
Lavrač, N., & Džeroski, S. (1993). Inductive logic programming: Techniques and applications. London:

Routledge.
Li, H.-F., & Lee, S.-Y. (2009). Mining frequent itemsets over data streams using efficient window sliding

techniques. Expert Systems with Applications, 36(2), 1466–1477.
Li, H.-F., Lee, S.-Y., & Shan, M.-K. (2004). An efficient algorithm for mining frequent itemsets over the entire

history of data streams. In Proceedings of first international workshop on knowledge discovery in data
streams.

List, T., Bins, J., Vazquez, J., & Fisher, R. B. (2005). Performance evaluating the evaluator. In 2nd joint IEEE
international workshop on visual surveillance and performance evaluation of tracking and surveillance
(pp. 129–136). IEEE.

Lloyd, J. (1987). Foundations of logic programming. Berlin: Springer.
Luckham,D. (2001).The power of events: An introduction to complex event processing in distributed enterprise

systems. Boston: Addison-Wesley Longman Publishing Co., Inc.
Luckham,D.,&Schulte, R. (2008).Event processing glossary, version 1.1. Trento: Event Processing Technical

Society.
Maloberti, J., & Sebag, M. (2004). Fast theta-subsumption with constraint satisfaction algorithms. Machine

Learning, 55(2), 137–174.
Mitchell, T. (1979). Version spaces: An approach to concept learning. PhD thesis, AAI7917262.
Moyle, S. (2003). An investigation into theory completion techniques in inductive logic. PhD thesis, University

of Oxford.
Mueller, E. (2006). Commonsense reasoning. Burlington: Morgan Kaufmann.
Mueller, E. T. (2008). Event calculus. Foundations of Artificial Intelligence, 3, 671–708.
Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13(3&4), 245–286.
Muggleton, S., & Bryant, C. (2000). Theory completion using inverse entailment. In International conference

on inductive logic programming, pp. 130–146.
Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods. The Journal of

Logic Programming, 19, 629–679.
Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., et al. (2012). ILP turns 20. Machine

Learning, 86(1), 3–23.
Muggleton, S. H., Lin, D., Pahlavi, N., & Tamaddoni-Nezhad, A. (2014). Meta-interpretive learning: Appli-

cation to grammatical inference. Machine Learning, 94(1), 25–49.
Otero, R. P. (2001). Induction of stable models. Inductive Logic Programming, 2157, 193–205.
Otero, R. P. (2003). Induction of the effects of actions by monotonic methods. Inductive Logic Programming,

2835, 299–310.
Paschke, A. (2005). ECA-RuleML: An approach combining ECA rules with temporal interval-based KR event

logics and transactional update logics. Technical report, Technische Universitat Munchen.
Ray, O. (2006). Using abduction for induction of normal logic programs. In ECAI’06 workshop on abduction

and induction in articial intelligence and scientic modelling.

123

Mach Learn (2015) 100:555–585 585

Ray, O. (2009). Nonmonotonic abductive inductive learning. Journal of Applied Logic, 7(3), 329–340.
Ray, O., Broda, K., & Russo, A. (2003). Hybrid abductive inductive learning: A generalisation of progol. In

Proceedings of the international conference in inductive logic programming (ILP).
Richards, B., &Mooney, R. (1995). Automated refinement of first-order horn clause domain theories.Machine

Learning, 19(2), 95–131.
Sakama, C. (2000). Inverse entailment in nonmonotonic logic programs. In Proceedings of the international

conference on inductive logic programming (ILP).
Sakama, C. (2001). Nonmonotomic inductive logic programming. In Logic programming and nonmotonic

reasoning (pp. 62–80). Springer.
Sakama, C. (2005). Induction from answer sets in nonmonotonic logic programs. ACM Transactions on

Computational Logic, 6(2), 203231.
Santos, J., & Muggleton, S. (2010). Subsumer: A prolog theta-subsumption engine. In Technical communica-

tions of the 26th international conference on logic programming.
Sloman, M., & Lupu, E. (2010). Engineering policy-based ubiquitous systems. The Computer Journal, 53(5),

1113–1127.
Wrobel, S. (1996). First order theory refinement. In L. De Raedt (Ed.), Advances in inductive logic

programming (pp. 14–33). Citeseer.

123

	Incremental learning of event definitions with Inductive Logic Programming
	Abstract
	1 Introduction
	2 Background
	2.1 The Event Calculus
	2.2 Abductive--inductive learning
	2.2.1 The XHAIL system

	3 ILED: incremental learning of event definitions
	3.1 Support set
	3.2 Implementing revisions

	4 Discussion
	5 Experimental evaluation
	5.1 Activity recognition
	5.1.1 ILED versus XHAIL
	5.1.2 ILED scalability

	5.2 City transport management
	5.2.1 ILED versus XHAIL
	5.2.2 Learning with hierarchical bias

	6 Related work
	7 Conclusions
	Acknowledgments
	Appendix 1: Notions from (Inductive) Logic Programming
	Appendix 2: ILED's high-level strategy and Proofs of Propositions
	References

