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Abstract Bootstrapping is a computer-intensive statistical method which treats the data set
as a population and draws samples from it with replacement. This resampling method has
wide application areas especially in mathematically intractable problems. In this study, it is
used to obtain the empirical distributions of the parameters to determine whether they are
statistically significant or not in a special case of nonparametric regression, conicmultivariate
adaptive regression splines (CMARS), a statistical machine learning algorithm. CMARS is
the modified version of the well-known nonparametric regression model, multivariate adap-
tive regression splines (MARS), which uses conic quadratic optimization. CMARS is at
least as complex as MARS even though it performs better with respect to several criteria. To
achieve a better performance ofCMARSwith a less complexmodel, three different bootstrap-
ping regression methods, namely, random-X, fixed-X and wild bootstrap are applied on four
data sets with different size and scale. Then, the performances of the models are compared
using various criteria including accuracy, precision, complexity, stability, robustness and
computational efficiency. The results imply that bootstrap methods give more precise para-
meter estimates although they are computationally inefficient and that among all, random-X
resampling produces better models, particularly for medium size and scale data sets.
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1 Introduction

Models are simple forms of research phenomena that relate ideas and conclusions (Hjorth
1994). In statistics, formulating amodel to answer a scientific question is usually the first step
taken in an empirical study. Parametric and nonparametric models are two major approaches
to statistical modeling in machine learning. Parametric models depend on certain distrib-
utional assumptions; if those assumptions hold, they give reliable inferences. Otherwise,
nonparametric modeling is recommended.

Multivariate adaptive regression splines (MARS) is a nonparametric regression method
(Friedman 1991;Hastie et al. 2001), andwidely used in biology, finance and engineering. This
method is proved to be useful for handling complex data, which has a nonlinear relationship
among numerous variables.MARSbuildsmodels by running forward selection and backward
elimination algorithms in succession. In the forward algorithm, deliberately, as large model
as possible is fitted. Later, in the backward elimination, terms which do not contribute to the
model are omitted.

In recent years, a lot of studies have been conducted involving MARS modeling. To
exemplify, Denison et al. (1998) provide a Bayesian algorithm forMARS.Moreover, Holmes
and Denison (2003) used Bayesian MARS for classification. York et al. (2006) compare the
power of the least squares (LS) fitting to that of the MARS with polynomials. Kriner (2007)
uses this model for survival analysis. Deconinck et al. (2008) show that MARS is better for
fitting nonlinearities, more robust to small changes in data and easy to interpret compared
to boosted regression trees. Zakeri et al. (2010) predict the energy expenditure for the first
time in this research area by using MARS. Lin et al. (2011) apply MARS to time series data.
Lee and Wu (2012) study the MARS applications, where it is used as a metamodel in the
global sensitivity analysis of ordinary differential equation models. Ghasemi and Zolfonoun
(2013) propose a new approach for MARS using principal component analysis for selection
of inputs and apply it to determine the chemical amounts.

Depending on the power of MARS method in modeling high-dimensional and volumi-
nous data, several studies have been conducted to improve its capability. One of them is
Conic MARS (CMARS) developed as an alternative to backward elimination algorithm by
using conic quadratic programming (CQP) (Yerlikaya 2008), and it is improved to model
nonlinearities better (Batmaz et al. 2010). Taylan et al. (2010) compare the performances
of MARS and CMARS in classification. Later, its performance is rigorously evaluated and
compared with that of MARS using various real-life and simulated data sets with different
features (Weber et al. 2012). The results show that CMARS is superior to MARS in terms of
accuracy, robustness and stability under different data features. Moreover, it performs better
than MARS on noisy data. Nevertheless, CMARS produces models which are at least as
complex as MARS.

CMARS has also been compared with several other methods such as classification and
regression trees (CART) (Sezgin-Alp et al. 2011), infinite kernel learning (IKL) (Çelik 2010),
andgeneralized additivemodels (GAMs)withCQP (Sezgin-Alp et al. 2011) for classification,
and multiple linear regression (MLR) (Yerlikaya-Özkurt et al. 2014) and dynamic regression
model (Özmen et al. 2011) for prediction. These studies reveal that CMARSmethod performs
as good as or even better than the others considered. For detailed findings one can refer to a
comprehensive review of CMARS (Yerlikaya-Özkurt et al. 2014).

A quick look into literature demonstrates that almost a decade has been devoted to the
development and improvement of the CMARS method. All these studies lead to a powerful
alternative to MARS with respect to several criteria including accuracy. Nevertheless, as
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stated above, the complexity of CMARS models does not compete with that of MARS.
Therefore, in this study, we aim at reducing the CMARS models’ complexity. In the usual
parametric modeling, the statistical significance of the model parameters can be investigated
by testing hypothesis or by constructing confidence intervals (CIs). Because there are no
parametric assumptions regarding CMARS models, the methods of computational statistics
(CS) may be a plausible approach to take here.

CS is relatively a newer branch of statistics which developsmethodologies that intensively
use computers (Wegman 1988). Some examples include bootstrap, CART, GAMs, nonpara-
metric regression methods (Efron and Tibshirani 1991) and visualization techniques like
parallel coordinates, projection pursuits, and so on (Martinez and Martinez 2002). Advances
in the computer science make all these methods feasible and popular especially after 1980s.
In this study, the mathematical intractability appears to be the lack of distribution fitting to
CMARS parameters. An empirical cumulative distribution function (CDF) is tried to be fitted
to each parameter by a CS method, called bootstrap resampling. In this approach, samples
are drawn from the original samples with replacement (Hjorth 1994).

There are some applications of this technique to estimate the significance of parameters
in a model. Efron (1988) implements bootstrap to least absolute deviation (LAD). Efron and
Tibshirani (1993) employ resampling residuals to a model based on least median of squares
(LMS). Montgomery et al. (2006) apply bootstrapping residuals to a nonlinear regression
method, called Michaelis-Menten. Fox (2002) uses random-X and fixed-X resampling for a
robust regression technique which uses M-estimator with the Huber weight function. Also,
Salibian-Barrera andZamar (2002) apply bootstrapping to robust regression. Flachaire (2005)
compares the pairs bootstrap with wild bootstrap for heteroscedastic models. Austin (2008)
uses bootstrap and with backward elimination which results in improvement of estimation.
Chernick (2008) uses vector resampling for a kind of nonlinear model used in aerospace engi-
neering. Yetere-Kurşun and Batmaz (2010) compare regression methods employing different
bootstrapping techniques.

In this study, to reduce the complexity of CMARS models without degrading its per-
formance with respect to other measures, a new algorithm, called Bootstrapping CMARS
(BCMARS), is developed by using three different bootstrapping regression methods, namely
fixed-X, random-X andwild bootstrap. Next, these algorithms are run on four data sets chosen
with respect to different sample sizes and scales. Then, the performances of themodels devel-
oped are compared according to the complexity, stability, accuracy, precision, robustness and
computational efficiency.

This paper is organized as follows. In Sect. 2, MARS, CMARS, bootstrap regression and
validation methods are described. The proposed approach, BCMARS, is explained in Sect. 3.
In Sect. 4, applications and findings are presented. Results are discussed in Sect. 5. In the
last section, conclusions and further studies are stated.

2 Methods

2.1 MARS

MARS, developed by Friedman (1991), is a nonparametric regression model where there is
no specific assumption regarding the relationship between the dependent and independent
variables; it constructs one of the best models which approximates the nonlinearity and
handles the high dimensionality in data. MARS models are built in two steps: forward and
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backward. In the forward step, the largest possible model is obtained. However, this large
model leads to over fitting. Thus, a backward step is required to remove terms that do not
contribute significantly to the model.

In general, a nonparametric regression model is defined as

y = f (θ , x) + ε, (1)

where θ represents the unknown parameter vector; x shows the independent variable vector;
ε is the error term. In the model, f (θ , x) is the unknown form of the relation function.
In MARS model, instead of original predictor variables, a special form of them is used to
construct models. These are called basis functions (BFs) and represented with the following
equations

(x − t)+ =
{

x − t, i f x > t,
0, otherwise.

(t − x)+ =
{

t − x, i f x < t,
0, otherwise.

(2)

Here, t ∈ {
x1, j , x2, j , . . . , xN , j

}
( j = 1, 2, . . . , p) is called as a knot value and these two

BFs are the reflected pairs of each other. Note that (·)+ denotes the positive part of the
component in (2). The multivariate spline BFs take the following form to employ the BF that
is tensor products of univariate spline functions

Bm(xm) =
Km∏
k=1

[skm (xkm − tkm)]+, (3)

where Km represents the number of truncated functions in the mth BF; xkmshows the input
variable corresponding to the kth truncated linear function in the mth BF; tkm is the corre-
sponding knot value. Note that skm takes the value of 1 or -1. As a result, the MARS model
is defined as

y = f (θ , x) + ε = θ0 +
M∑

m=1

θm Bm
(
xm)+ ε, (4)

where each Bm is the mth BF, and M represents the number of BFs in the final model. Given
a choice for the Bm , the coefficients for the parameters (θm) are estimated by minimizing
the residual sum of squares (RSS) with the same method used in the MLR, called LS. The
important point here is to determine the Bm (xm). For this purpose, B0

(
x0
) = 1 is taken

as the starting function, and then, by considering all elements in the set of BFs as candidate
functions, the one which causes the most amount of reduction in the RSS is included in the
model.When the maximum number of terms (determined by the user) is reached, the forward
step ends. After obtaining the largest model, backward step starts to prevent overfitting. In
this step, a term in the model whose deletion causes the least amount of reduction in RSS is
deleted first. This procedure leads to the best estimated model function, f̂M , for each size
(number of terms) M . Cross validation (CV) is a possible technique for finding the optimal
value for M . However, generalized cross validation (GCV) is preferred by Friedman (1991)
in his original work since it reduces the computational burden; it is defined as

GCV = 1

N

∑N
i=1

(
yi − f̂M (θ , xi )

)2
(1 − C(M)/N )2

, (5)

here, the number of observations (i.e. number of data points) is represented by N ; the numer-
ator of (5) is the usual RSS; C(M) in denominator represents the cost penalty measure of a
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model with M BFs. The MARS model is constructed, when the minimum value of the GCV
is reached.

2.2 CMARS

CMARS is an alternative to the backward step of MARS developed by Weber et al. (2012),
Yerlikaya (2008). It uses BFs generated by the forward step of MARS, and applies CQP to
prevent over fitting. For this purpose, penalized RSS (PRSS) is constructed as the sum of two
components: RSS and the complexity measure, as follows

P RSS :=
N∑

i=1

(
yi − f

(
θ , x̃i

))2 +
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
Qm

θ2m
[
Dα

r,s Bm(zm)
]2

d zm,

(6)
where (x̃i , yi ) (i = 1, 2, . . . , N ) represents our data points with p-dimensional predic-
tor variable vector x̃i = (

x̃i1, x̃i2, . . . , x̃i p
)T

(i = 1, 2, . . . , N ) and N response values
(y1, y2, . . . , yN ). Furthermore, Mmax is the number of BFs reached at the end of the for-

ward step of MARS, V (m) =
{
κm

j | j = 1, 2, . . . , Km

}
is the variable set associated with

mth BF. zm = (
zm1 , zm2 , . . . , zmκm

)T represent variables that contribute to the mth BF. The
λm (m = 1, 2, . . . , Mmax) values are always nonnegative and used as penalty parameters.

Moreover, in Eq. (6), Dα
r,s Bm(zm) = ∂ |α| Bm

∂α1 zm
r ∂α2 zm

s
(zm) is the partial derivative for the mth BF

where α = (α1, α2), |α| = α1 + α2, and α1, α2 ∈ {0, 1} .

Here, the optimization approach adopted takes both the accuracy and complexity into
account. While accuracy is guaranteed by the RSS, complexity is measured by the second
component of PRSS in (6). The tradeoff between these two criteria are represented by the
penalty parameters λm (m = 1, 2, . . . , Mmax).

Riemann sums are used to approximate the discretized form of the integrals in (6) as
follows (Weber et al. 2012; Yerlikaya 2008)∫

Qm

θ2m
[
Dα

r,s Bm(zm)
]2

d zm

≈
∑

(σ j ) j∈{1,2,...,p}∈{0,1,2,...,N+1}Km

θ2m

⎡
⎣Dα

r,s Bm

⎛
⎝x̃

l
κm
1

σ
κm
1

,κm
1

, . . . , x̃
l
κm

Km

σ
κm

Km
,κm

Km

⎞
⎠
⎤
⎦
2

×
Km∏
j=1

⎛
⎝x̃

l
κm

j

σ
κm

j +1
,κm

j

− x̃
l
κm

j

σ
κm

j
,κm

j

⎞
⎠. (7)

As a result, PRSS is rearranged in the following form

P RSS ≈
N∑

i=1

(
yi − B(d̃i )θ

)2

+
Mmax∑
m=1

λmθ2m

(N+1)Km∑
i=1

⎛
⎜⎜⎜⎝

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

⎡
⎣Dα

r,s Bm

⎛
⎝x̃

l
κm
1

σ
κm
1

,κm
1

, . . . , x̃
l
κm

Km

σ
κm

Km
,κm

Km

⎞
⎠
⎤
⎦
2

⎞
⎟⎟⎟⎠
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×
Km∏
j=1

⎛
⎝x̃

l
κm

j

σ
κm

j +1
,κm

j

− x̃
l
κm

j

σ
κm

j
,κm

j

⎞
⎠. (8)

A short representation of PRSS is as follows

P RSS ≈
∥∥∥ y − B(d̃)θ

∥∥∥2
2
+

Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ2m, (9)

where B(d̃) =
(
1, B1(x̃

1), . . . , BM (x̃M ), BM+1(x̃
M+1), . . . , BMmax(x̃

Mmax)
)T

is an

(N × (Mmax + 1)) matrix with the point d̃ := (x̃1, . . . , x̃M , x̃M+1, . . . , x̃Mmax)T , and
θ := (

θ0, θ1, . . . , θMmax

)T; ‖ · ‖2 denotes the Euclidean norm in the argument. Here, the

elements of d̃, which are x̃1, x̃2, . . . , x̃Mmax , represent predictor data vector used in the mth

BF (m = 1, 2, . . . , Mmax). On the other side, Lim are defined as

Lim =

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

[
Dα

r,s Bm(x̂m
i )
]2
⎞
⎟⎟⎟⎠	x̂m

i

⎤
⎥⎥⎥⎦

1/2

. (10)

Here, x̂m
i (i = 1, 2, . . . , N ) are the canonical projections of the data points into the input

dimensions of mth BF with the same increasing order; 	x̂m
i represent the differences raised

on the i th data vector, x̂m
i (Weber et al. 2012; Yerlikaya 2008) is as given in (11)

x̂m
i =

⎛
⎝x̃

l
κm
1

σ
κm
1

,κm
1

, . . . , x̃
l
κm

Km

σ
κm

Km
,κm

Km

⎞
⎠ , 	x̂m

i =
Km∏
j=1

⎛
⎝x̃

l
κm

j

σ
κm

j +1
,
κm

j
− x̃

l
κm

j

σ
κm

j
,κm

j

⎞
⎠. (11)

Through a uniformpenalization, in otherwords, by taking the sameλ value for each derivative
term, PRSS can be turned into the Tikhonov regularization problem form given as follows
(Aster et al. 2012)

P RSS ≈
∥∥∥ y − B

(
d̃
)

θ

∥∥∥2
2
+ λ ‖Lθ‖22 . (12)

This problem can be evaluated from the view point of CQP, a technique used for continuous
optimization, and handled by placing an appropriate bound, M̃ , as follows to obtain the
optimal solution

min
t,θ

t, such that χ =
(
0N B(d̃)

1 0T
Mmax+1

)(
t
θ

)
+
(− y
0

)
,

η =
(
0Mmax+1 L
0 0T

Mmax+1

)(
t
θ

)
+
(
0Mmax+1√

M̃

)
,

χ ∈ L N+1, η ∈ L Mmax+2, (13)

where L N+1, L Mmax+2 are the (N + 1)- and (Mmax + 2)- dimensional second-order cones,
defined by
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L N+1 =
{
x = (x1, x2, . . . , xN+1)

T ∈ R
N+1|xN+1 ≥

√
x21 + x22 + · · · + x2N

}
(N ≥ 1),

and

L Mmax+2 =
{
x = (x1, x2, . . . , xMmax+2)

T ∈ R
Mmax+2|

xMmax+2 ≥
√

x21 + x22 + · · · + x2Mmax+1

}
(Mmax > 0). (14)

In applications, we observe that the log–log scale plot of the two criteria, ‖Lθ‖2 versus∥∥∥ y − B
(
d̃
)

θ

∥∥∥
2
, has a particular “L” shape whose corner point provides the optimum value

of
√

M̃ , and the proposed method provides a reliable solution to our problem. However, more
efficient and robust algorithm(s) for locating the corner of an L-curve can be developed.

2.3 Bootstrap regression

2.3.1 Bootstrap resampling

The bootstrap is a resampling technique that takes samples from the original data set with
replacement (Chernick 2008). It is a data-based simulation method useful for making infer-
ences such as estimating standard errors and biases, constructing CIs, testing hypothesis, and
so on. Implementation of this method is not difficult, but depends heavily on computers. The
bootstrap procedure can be defined as in Table 1.

Efron and Tibshirani (1993) indicate that bootstrap is applicable to any models such as
nonlinear ones and the models which use estimation techniques other than LS. According
to them, bootstrapping regression is applicable to nonparametric models as well as the para-
metric ones with no analytical solutions.

Let y = Xθ+ε be a usualMLRmodel, where X and θ represent the vector of independent
variables as its columns and model parameters, respectively. The error term, ε, is normally
distributed with zero mean and constant variance. If assumptions regarding the model are
satisfied, reliable inferences can be made. In cases such as nonnormal error distribution or
nonlinear model fitting, alternative approaches using bootstrap are recommended (Freedman
1981; Hjorth 1994). Three bootstrap regression methods used in the study are described
below.

2.3.2 Fixed-X resampling (residual resampling)

In this method, the response values are considered to be random due to the error component.
It is more advantageous when it is used with fixed (known) independent variables, with small
data sets, and adequate models (Fox 2002). The step-by-step algorithm of themethod is given
in Table 2.

Table 1 The bootstrap procedure
Step 1 Generate a-th bootstrap sample (x∗a) of size N from the

original sample with replacement

Step 2 Compute the statistic of interest for this sample

Step 3 Repeat steps 1–2 a = 1, . . ., A times and obtain the
empirical CDF of the statistic of interest
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Table 2 The fixed-X resampling
procedure Step 1 Fit the model y = Xθ + ε to the data and obtain the fitted

values, ŷ, and the residuals, e

Step 2 Select a bootstrap sample e∗a (a = 1, 2, . . . , A) of
residuals from e using the procedure in Table 1, and add
them to the fitted values to obtain new response variables,
ynew = ŷ + e∗a

Step 3 Fit the model ynew = Xθ + ε to the original independent
variables, X , and the new response variables, ynew, and
collect new parameter estimates, θ̂

Step 4 Repeat steps 2–3 A times

2.3.3 Random-X resampling (pairs bootstrap)

This technique can be used in case of heteroscedasticity, lack of significant independent
variables, and the need for semiparametric or nonparametric model approach (Chernick
2008). The step-by-step algorithm of the method is given in Table 3.

2.3.4 Wild bootstrap

The wild bootstrap is a relatively new approach, when compared to random-X resampling,
proposed for handling heteroscedastic models (Flachaire 2005). Its algorithm is the same
as to that of fixed-X resampling given in Table 2 with the only change in Step 2 that the
bootstrap of residuals, that is errors, e∗a(a = 1, . . . , A), are attached to the fitted values after
they are randomly assigned to be 1 or -1 with equal probability.

2.4 Validation technique and performance criteria

In the comparison of models, 3-fold CV technique is used (Martinez and Martinez 2002;
Gentle 2009). In this technique, data sets are randomly divided into three parts (folds).
At each of the three attempts, two different folds (66.6% of observations) are combined
to develop models while the other fold (33.3% of observations) is kept to test them. The
combined part and the other fold are referred to as training and test data sets, respectively.

The performances of the models developed are evaluated with respect to different criteria
including accuracy, precision, complexity, stability, robustness and efficiency. The accuracy
criterion is used to measure the predictive ability of the models while precision criterion
is used to determine the amount of variation in the parameter estimates; the less variable
ones indicate more precision. The mean absolute error (MAE), determination of coefficient
(R2) and percentage of residuals within three standard deviations (PWI). On the other hand,
the precision of parameter estimates are determined by their empirical CIs. Other criterion

Table 3 The random-X
resampling procedure Step 1 Select bootstrap samples of size N, using the procedure in

Table 1, among the rows of the augmented matrix,
Z = ( y|X) , Z∗a

Step 2 Fit the model y = Xθ + ε to Z∗a , and collect new
parameter estimates, θ̂

Step 3 Repeat steps 1–2 A times
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used in comparisons is the complexity; it is measured by the mean squared error (MSE). It is
expected that, in general, the performance measures for test data may not be as good as to that
of the training data. Besides, the stabilities of the accuracy and complexity measures obtained
from the training and test data sets are also evaluated. The definitions as well as bounds on
these measures, where applies, are presented in the Appendix. Furthermore, robustness of
the measures with respect to different data sets is evaluated by considering the standard
deviations of the measures. Moreover, to assess the computational efficiency of the models
build, computational run times are utilized.

3 BCMARS: bootstrapping CMARS

As stated above, studies indicate that CMARS is a good alternative to the backward part of
MARS method. However, CMARS produces models at least as complex as MARS models.
To overcome this problem, we propose to use a CS method, called bootstrap, due to the
lack of distributional assumptions of CMARS, and developed the BCMARS algorithm. The
steps of the algorithm given in Table 4 are followed for obtaining three different BCMARS
models, labeled as BCMARS-F (uses Fixed-X Resampling), BCMARS-R (uses Random-X
Resampling) and BCMARS-W (uses Wild Bootstrap) (Yazıcı 2011; Yazıcı et al. 2011).

In the Step 2 of Table 4, the optimal value of
√

M̃ is the closest solution to the corner
of L-curve which is the point with maximum curvature. To determine the corner point,∥∥∥ y − B

(
d̃
)

θ

∥∥∥
2
versus ‖Lθ‖2 is plotted in the log–log scale and its corner is located. This

point tries to minimize both criteria,
∥∥∥ y − B

(
d̃
)

θ

∥∥∥
2
and ‖Lθ‖2, in a balanced manner. We

should note here that the corner point is data dependent. There can be many solutions to the

CQP problem for different
√

M̃ values, which may lead to different estimates. To illustrate,

Table 4 The BCMARS
algorithm Step 1 The forward part of MARS algorithm is run and the set of

BFs is constructed using the original data, y and X . Note
that these BFs are considered as fixed

Step 2 CMARS model is constructed and the optimal value of
√

M̃
is decided as the corner point of the plot of∥∥∥ y − B

(
d̃
)

θ

∥∥∥
2
versus ‖Lθ‖2 in the log–log scale (see

Fig. 1). The selected value gives the best solution for both
accuracy and complexity in terms of PRSS in (12)

Step 3 Select one of the following BCMARS methods

• BCMARS-F: follow the procedure given in Table 2 by
using the model in (13) in place of the MLR model

• BCMARS-R: follow the procedure given in Table 3 by
using the model in (13) in place of the MLR model

• BCMARS-W: follow the procedure given in Sect. 2.3.4

Step 4 Decide on the level of significance, α, and construct
bootstrap percentile interval using Eq. (17), given in the
Appendix, to determine the significance of the
parameters. If the percentile interval includes zero, then
the parameter is found to be insignificant

Step 5 Repeat Steps 2–5 until there is not any insignificant
parameters in the model
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Fig. 1 The curve of ‖Lθ‖2 versus
∥∥∥ y − B

(
d̃
)

θ

∥∥∥
2
in log–log scale

let us consider three representative points for the L-curve, P1, P2 and P3, as given in Fig. 1.

While P1 and P3 minimize ‖Lθ‖2 and
∥∥∥ y − B

(
d̃
)

θ

∥∥∥
2
, respectively, P2, the corner of L-

curve, tries to minimize both simultaneously. Here, P1 represents the least complex and least
accurate solution whereas P3 represents the most complex and most accurate solution. On
the other hand, P2 provides better prediction performance than the other points with respect
to both complexity and accuracy criteria (Weber et al. 2012).

4 Application and findings

In order to evaluate and compare the performances of models developed by using MARS,
CMARS andBCMARSmethods, they are run on four different data sets to observe the effects
of certain data characteristics such as size (i.e. the number of observations, N) and scale (i.e.
the number of independent variables, p) on the methods’ performances. Note that the data
sets are classified as small and medium subjectively. The data sets used in comparisons are
presented in Table 5.

Table 5 Data sets used in comparisons

Scale (p)

(N, p) Small (p < 10) Medium (10 < p < 20)

Sample size (N)

Small (N ∼ 150) Concrete
slump (CS),
(Yeh 2007),
(103,7)

Uniform sam-
pling (US),
(Kartal 2007),
(160,10)

Medium (N ∼ 500) PM10 (Aldrin
2006), (500,7)

Forest fires
(FF) (Cortez
and Morais
2007),
(517,11)
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While validating the models, 3-fold CV is used as described in Sect. 2.4. As a result, three
models are developed and tested for each of the method applied on a data set. In applications,
the R package “Earth” Milborrow (2009), MATLAB (2009) and the MOSEK optimization
software (2011) run in MATLAB are utilized.

To construct BCMARS models, the algorithms given in Sect. 3 are applied step-by-step
by taking A, in Table 1, 2 and 3, as 1000. Then, the performance measures for each model
are calculated. Moreover, the computational run times of the methods are recorded to be
compared.

5 Results and discussion

In this section, it is aimed to compare the performances of the methods studied, namely
MARS, CMARS, BCMARS-F, BCMARS-R and BCMARS-W, in general, according to
different features of data sets such as size and scale. In these comparisons, various criteria
including accuracy, precision, stability, efficiency and robustness are considered.

5.1 Comparison with respect to overall performances

The mean and standard deviations of measures obtained from four data sets are given in
Table 6. These values are calculated for both training and testing data sets in addition to the
stability of measures. Definitions of themeasures and their bounds are given in the Appendix.
In this table, for training and test data, lower means for MAE and MSE; higher means for
R2 and PWI measures indicate better performances. Besides, stability values for all means
close to one indicate better performances. On the other hand, smaller standard deviations
imply robustness for the corresponding measure. The following conclusions can be drawn
from this table:

• BCMARS-F andBCMARS-R are themost accurate, robust and least complex for training
and testing data sets, respectively.

• BCMARS-R and BCMARS-W methods are the most stable, and BCMARS-R has the
most robust stability.

5.2 Comparison with respect to sample size

Table 7 presents the performancemeasures of themethods studied with respect to two sample
size categories: small and medium. Depending on the results given in the table, following
conclusions can be reached.

• All methods perform the best in small data sets when compared to the medium size for
training and testing data.

• BCMARS-F and MARS perform the best for small training and testing data sets, respec-
tively. Moreover, BCMARS-W competes with MARS in small testing data sets.

• Among all, BCMARS-W method is the most stable one in small data sets.
• BCMARS-F and BCMARS-W are the most stable methods in small size data when

compared to medium size.

Note that “the best” here indicates better performance with respect to at least two measures
out of four.
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Table 7 Averages of performance measures with respect to different sample sizes

Sample size Performance
measures

MARS CMARS BCMARS-F BCMARS-R BCMARS-W

Training

Small MAE 0.2340 0.3570 0.1899* 0.2092 0.3410

MSE 0.1773 0.6020 0.1158* 0.1387 0.3000

R2 0.8208 0.7840 0.8824* 0.8596 0.7350

PWI 1.0000* 0.9970 0.9910 0.9910 0.9870

Medium MAE 0.4563 0.4498* 0.4769 0.4874 0.5090

MSE 0.6257 0.6125 0.5469* 0.7630 0.8540

R2 0.3802 0.3978 0.4431* 0.3140 0.2908

PWI 0.9888 0.9900 0.9890 0.9940* 0.9830

Testing

Small MAE 0.3300* 0.5560 0.3440 0.7280 0.3790

MSE 0.3520* 1.0010 0.3980 0.3670 0.3570

R2 0.7110* 0.5760 0.6770 0.6800 0.6500

PWI 1.0000* 1.0000* 0.9910 0.9910 0.9920

Medium MAE 0.5849 0.6052 0.6518 0.5468* 0.6160

MSE 5.7800 2.1500 2.3100 0.7658* 1.7880

R2 0.1853* 0.1497 0.1765 0.1817 0.1178

PWI 0.9860* 0.9860* 0.9850 0.9860* 0.9830

Stability

Small MAE 0.2250 0.7300 0.7265 0.6110 0.9359*

MSE 0.4980 0.5770 0.5750 0.5530 0.8835*

R2 0.7700 0.5960 0.7350 0.7510 0.7710*

PWI 1.0000* 0.9970 0.9990 0.9990 0.9940

Medium MAE 0.4431 0.7578 0.7236 0.8888* 0.8022

MSE 0.5760 0.5620 0.4410 0.7049* 0.6150

R2 0.4450 0.3410 0.3830 0.5460* 0.4890

PWI 0.9915 0.9900 0.9898 0.9920 0.9948*

∗ indicates better performance with respect to the corresponding measure and sample

5.3 Comparisons with respect to scale

In Table 8, the performance measures of the studied methods with respect to two scale types:
small and medium are presented. Depending on the results given in the table, following
conclusions can be drawn:

• For training data sets, medium scale produces better models for all of the methods.
Moreover, BCMARS-F is the best performing one regardless of the scale.

• For testing data sets, MARS, BCMARS-F and BCMARS-W perform equally well on
both scales; while medium scale gives the best results for the other methods studied.

• MARS and BCMARS-W are the most stable methods for small scale data compared to
medium scale; CMARS and BCMARS-R are the most stable methods for medium scale
compared to small scale. BCMARS-F performs equally well on both scales.
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Table 8 Averages of performance measures with respect to different scale

Scale Performance
measures

MARS CMARS BCMARS-F BCMARS-R BCMARS-W

Training

Small MAE 0.5229 0.4140* 0.4720 0.4910 0.6561

MSE 0.4572 0.8992 0.3830* 0.4040 0.7728

R2 0.5483 0.4985 0.6139* 0.5928 0.4078

PWI 0.9970 0.9924 0.9980* 0.9980* 0.9934

Medium MAE 0.1677 0.1773 0.1384* 0.1492 0.1940

MSE 0.3417 0.3500 0.2260* 0.4450 0.3810

R2 0.6591 0.6630 0.7650* 0.6340 0.6170

PWI 0.9913 0.9920* 0.9820 0.9870 0.9770

Testing

Small MAE 0.6696 0.5445* 0.6747 0.6776 0.7130

MSE 0.7327* 2.3959 0.7717 0.7443 0.8469

R2 0.3297 0.3377* 0.3240 0.3293 0.2721

PWI 0.9964* 0.9901 0.9960 0.9960 0.9932

Medium MAE 0.2703 0.2790 0.2550* 0.6070 0.2820

MSE 5.4630 1.7800 1.8600 0.3130* 1.2980

R2 0.5107 0.5040 0.6000 0.6020* 0.4960

PWI 0.9892 0.9900* 0.9790 0.9810 0.9820

Stability

Small MAE 0.5008 0.7801 0.7041 0.7300 0.9200*

MSE 0.6515 0.5771 0.5183 0.5539 0.8378*

R2 0.6521* 0.3714 0.5540 0.5539 0.6277

PWI 0.9984* 0.9930 0.9977 0.9979 0.9980

Medium MAE 0.7666 0.7900 0.7505 0.7470 0.8100*

MSE 0.3474 0.5920 0.3480 0.8040* 0.6850

R2 0.5628 0.5310 0.6000 0.7600* 0.6330

PWI 0.9931* 0.9930* 0.9910 0.9930 0.9920

∗ indicates better performance with respect to the corresponding measure and scale

• MARS and BCMARS-W are more stable for small scale among all methods. BCMARS-
R is more stable for medium scale data sets.

5.4 Evaluation of the computational efficiencies

The elapsed time for eachmethod applied on each data set are recorded on Pentium (R) Dual-
Core CPU 2.80GHz processor and 32-bit operating systemWindows �computer during the
runs (Table 9). Depending on the results, following conclusions can be stated:

• Run times increases as sample size and scale increases, except MARS.
• Bootstrap methods run considerably longer times than MARS and CMARS. Three boot-

strap regression methods have almost the same computational efficiencies in small size
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Table 9 Run times (in seconds) of methods with respect to size and scale of data sets

Scale

Small Medium

Sample size

Small MARS: <0.08 s* MARS: <0.08 s*

CMARS: <4.47 s CMARS: <19.52 s

BCMARS-F: <1.6×103 s BCMARS-F: < 1.3×104 s

BCMARS-R: <1.6×103 s BCMARS-R: <1.8×104 s

BCMARS-W: <1.6×103 s BCMARS-W: <1.5×104 s

Medium MARS: <0.08 s* MARS: <0.09 s*

CMARS: <18.20 s CMARS: <21.67 s

BCMARS-F: <1.5×104 s BCMARS-F: <1.8×104 s

BCMARS-R: <0.7×104 s BCMARS-R: <3.1×104 s

BCMARS-W: <0.8×104 s BCMARS-W: <1.6×104 s

∗ indicates better performance with respect to run times

and small scale data sets. Run times of these methods increase almost ten times as much
as the scale increases from small to medium.

• BCMARS-R and BCMARS-W have similar better efficiencies in medium size small
scale data sets. Their run times increase almost five times as much as the sample size
increases in small scale data sets.

• BCMARS-F and BCMARS-W have similar better efficiencies for medium size medium
scale data sets.

5.5 Evaluation of the precision of model parameters

In addition to the accuracy, complexity and stability measures of the models, the CIs using
Eq. (17) given in the Appendix and two different standard deviations of the parameters as
described in Eq. (18) in the Appendix are calculated after bootstrapping. These values are
compared with those obtained from bootstrapping CMARS. For the detailed results, one can
refer to Yazıcı (2011). The shorter the lengths of the CIs and the smaller the standard devi-
ations are, the more precise the parameter estimates are. According to the results, following
conclusions can be drawn.

• In US (small size medium scale) data, CMARS, BCMARS-F and BCMARS-R build the
same models. Hence, the precision of their parameters are the same.

• For all data sets except US, the lengths of CIs become narrower and standard deviations
of the parameters become smaller after bootstrapping CMARS, thus, resulting in more
precise parameter estimates.

• In general, two different types of standard deviations obtained for all BCMARSmethods
are smaller than the ones obtained from CMARS.

6 Conclusion and further research

In this study, three different bootstrap methods are applied to a machine learning method,
calledCMARS,which is an improved version of the backward step of thewell-knownmethod
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MARS. Although CMARS overperformsMARSwith respect to several criteria, it constructs
models which are at least as complex as MARS (Weber et al. 2012). In this study, it is aimed
to reduce the complexity of CMARS models without degrading its performance. To achieve
this aim, bootstrapping regression methods, namely fixed-X and random-X resampling, and
wild bootstrap, are utilized by adopting an iterative approach to determine whether the para-
meters statistically contribute to the developed CMARS model or not. The reason of using a
computational method here is the lack of prior knowledge regarding the distributions of the
model parameters.

The performances of the methods are empirically evaluated and compared with respect
to several criteria (e.g. accuracy, complexity, stability, robustness, precision, computational
efficiency) by using four data sets which are selected subjectively to represent the small
and medium sample size and scale categories. All performance criteria are explained in the
Appendix. In addition, to validate all models developed, three-fold CV approach is used.

Depending on the comparisons, particularly for testing data and stability results presented
in Sect. 5, one may conclude the followings:

• In the overall, BCMARS-R is the best performing method.
• Small size (training and testing) data sets produce the best results for all methods; for

small and medium size data, BCMARS-W and BCMARS-R overperform the others,
respectively.

• Medium scale produces the best results for CMARS and BCMARS-R when compared
to the others, and BCMARS-R is the better performing one.

• Bootstrapping methods give the most precise parameter estimates; however, they are
computationally the least efficient.

In short, depending on the above conclusions, it may be suggested that BCMARS-R
method leads to more accurate, precise and less complex models, particularly for medium
size and medium scale data. Nevertheless, it is the least efficient method among the others
for this type of data set in terms of run time.

In the future, BCMARS methods are going to be applied on more data sets with small to
large size and scale to be able to examine the interactions that may exist between data size
and scale more clearly.

Acknowledgments Authors would like to thank to the editor and the anonyms referees for their valuable
comments and criticisms. Their contributions lead to the improved version of this paper.

Appendix: Definitions of comparison measures

Nomencleature

yi is the response value for the i th observation,
ŷi is the estimated response value for the i th observation,
ȳ is the value of the mean response,
N is the number of observations (sample size),
p is the number of terms (i.e. BFs) in the model,
ei = yi − ŷi is the residual for the i th observation,
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Accuracy measures

Mean absolute error (MAE)

M AE = 1

N

N∑
i=1

|ei | = 1

N

N∑
i=1

|yi − ŷi |, where M AE ≥ 0. (15)

Small values are the better.

The coefficient of determination (R2)

R2 =
∑N

i=1 (ŷi − ȳ)2∑N
i=1 (yi − ȳ)2

, where 0 ≤ R2 ≤ 1. (16)

Higher values indicate better fit.

Proportion of residuals within some user-specified range (PWI)

PWI is the proportion of residuals within some user-specified range such as three standard
deviations. The greater the percentage is, the better the performance is.

Precision measure

Percentile interval and bootstrap estimate of bias

(
θ̂

∗(α/2)
A , θ̂

∗(1−α/2)
A

)
. (17)

Percentile interval uses the empirical CDF of the bootstrap sample to find the upper(
θ̂

∗(1−α/2)
A

)
and lower

(
θ̂

∗(α/2)
A

)
endpoints.

Bootstrap estimate of standard deviation

Standard deviations of the distributions of parameters are calculated in two-ways

1.

ŝeA(θ̂) =
{

1

A − 1

A∑
a=1

(
θ̂∗a − θ̂

∗)2}1/2

, (18)

where θ̂
∗ = 1

A

A∑
a=1

θ̂∗a and θ̂∗a is the bootstrap replication of θ̂ (Martinez and Martinez

2002).
2. Using the associated empirical CDF, the standard deviation of each parameter is cal-

culated many (i.e. A) times, and the standard deviations of these values are obtained
(Yazici 2011). Thus, it measures the spread of the standard deviations around the mean
of standard deviations.
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Complexity measure

Mean square error (MSE)

M SE = 1

N − p

N∑
i=1

(
yi − ŷi

)2
, where M SE ≥ 0. (19)

Larger values indicate more complex models.

Stability measure

The stability of a model measured by

ST ABC R = min

{
C RT R

C RT E
,

C RT E

C RT R

}
, 0 < ST ABC R ≤ 1, (20)

where C RT R and C RT E represents the performance measures obtained from training and
testing samples, respectively. The stability measure close to one indicates higher stability. A
stable model performs equally well both on training and testing data (Osei-Bryson 2004).
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