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Abstract Archetypal analysis represents a set of observations as convex combinations of
pure patterns, or archetypes. The original geometric formulation of finding archetypes by
approximating the convex hull of the observations assumes them to be real–valued. This,
unfortunately, is not compatible with many practical situations. In this paper we revisit
archetypal analysis from the basic principles, and propose a probabilistic framework that
accommodates other observation types such as integers, binary, and probability vectors. We
corroborate the proposed methodology with convincing real-world applications on finding
archetypal soccer players based on performance data, archetypal winter tourists based on
binary survey data, archetypal disaster-affected countries based on disaster count data, and
document archetypes based on term-frequency data. We also present an appropriate visual-
ization tool to summarize archetypal analysis solution better.

Keywords Archetypal analysis · Probabilistic modeling · Majorization–minimization ·
Visualization · Convex hull · Binary observation

1 Introduction

Archetypal analysis (AA) represents observations as composition of pure patterns, i.e.,
archetypes, or equivalently convex combinations of extreme values (Cutler and Breiman
1994). Although AA bears resemblance with many well established prototypical analysis

Editor: Kristian Kersting.

B Sohan Seth
sohan.seth@hiit.fi

Manuel J. A. Eugster
manuel.eugster@hiit.fi

1 Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto
University, Espoo, Finland

2 Present Address: Institute for Adaptive and Neural Computation, School of Informatics, University
of Edinburgh, Edinburgh, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-015-5498-8&domain=pdf


86 Mach Learn (2016) 102:85–113

(a) (b)

Fig. 1 a Illustration of archetypal analysis with three archetypes Z, and b the corresponding factors H,
projections of the original observations on the convex hull of the archetypes; a also explicates the difference
between PCA and AA

tools, such as principal component analysis (PCA, Mohamed et al. 2009), non-negative
matrix factorization (NMF, Févotte and Idier 2011), probabilistic latent semantic analysis
(Hofmann 1999), and k-means (Steinley 2006); AA is arguably unique, both conceptually
and computationally. Conceptually, AA imitates the human tendency of representing a group
of objects by its extreme elements (Davis and Love 2010): this makes AA an interesting
exploratory tool for applied scientists (e.g., Eugster 2012; Seiler and Wohlrabe 2013). Com-
putationally, AA is data-driven, and requires the factors to be probability vectors: these make
AA a computationally demanding tool, yet brings better interpretability.

The concept of AA was originally formulated by Cutler and Breiman (1994). The authors
posed AA as the problem of learning the convex hull of a point-cloud, and solved it using
alternating non-negative least squares method. In recent years, different variations and algo-
rithms based on the original geometrical formulation have been presented (Bauckhage and
Thurau 2009; Eugster and Leisch 2011; Mørup and Hansen 2012). However, unfortunately,
this framework does not tackle many interesting situations. For example, consider the prob-
lem of finding archetypal response to a binary questionnaire. This is a potentially useful
problem in areas of psychology and marketing research that cannot be addressed in the stan-
dard AA formulation, which relies on the observations to exist in a vector space for forming
a convex hull. Even when the observations exist in a vector space, standard AA might not be
an appropriate tool for analyzing it. For example, in the context of learning archetypal text
documents with tf-idf as features, standard AA will be inclined to finding archetypes based
on the volume rather than the content of the document.

In this paper we revisit archetypal analysis from the basic principles, and reformulate it to
extend its applicability.We admit that the approximation of the convex hull, as in the standard
AA, is indeed an elegant solution for capturing the essence of ‘archetypes’, (see Fig. 1a, b for
a basic illustration). Therefore, our objective is to extend the current framework, not to discard
it. We propose a probabilistic foundation of AA, where the underlying idea is to form the
convex hull in the parameter space. The parameter space is often vectorial even if the sample
space is not (see Fig. 2 for the plate diagram). We solve the resulting optimization problem
using majorization–minimization, and also suggest a visualization tool to help understand
the solution of AA better.

The paper is organized as follows. In Sect. 2, we start with an in-depth discussion on
what archetypes mean, and how this concept has evolved over the last decade, and has
been utilized in different contexts. In Sect. 3, we provide a probabilistic perspective of this
concept, and suggest probabilistic archetypal analysis. Here we explicitly tackle the cases of
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Fig. 2 Plate diagram of
probabilistic archetypal analysis
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Table 1 Probability distributions used in the paper

Distribution Notation Pdf/pmf

Normal N (μ,Σ) (2π)
− K

2 |Σ |− 1
2 exp{− 1

2 (x − μ)′Σ−1(x − μ)}
μ ∈ R

K , Σ ∈ R
K×K

Dirichlet Dir(α) 1
B(α)

∏K
i=1 x

αi−1
i where B(α) =

∏K
i=1 Γ (αi )

Γ (
∑K

i=1 αi )

α = (α1, . . . , αK ),

K > 1, αi > 0

Poisson Pois(λ) λx

x ! exp{−λ}
λ > 0

Bernoulli Ber(p) px (1 − p)1−x

0 < p < 1

Multinomial Mult(n, p) n!
x1!···xK ! p

x1
1 · · · pxKK

n > 0,

p = (p1, . . . , pK ),
∑K

i=1 pi = 1

Bernoulli, Poisson andmultinomial probability distributions, and derive the necessary update
rules (derivations available as appendix). In Sect. 4, we discuss the connection between
AA and other prototypical analysis tools—a connection that has also been partly noted by
other researchers (Mørup and Hansen 2012). In Sect. 5 we provide simulations to show the
difference betweeen probabilistic and standard archetypal analysis solutions. In Sect. 6, we
discuss a visualization method for archetypal analysis, and present several improvements. In
Sect. 7,we present an application for each of the above observationmodels: finding archetypal
soccer players based on performance data; finding archetypal winter tourists based on binary
survey data; finding archetypal disaster-affected countries based on disaster count data; and
finding document archetypes based on term-frequency data. In Sect. 8 we summarize our
contribution, and suggest future directions.

Throughout the paper, we represent matrices by boldface uppercase letters, vectors by
boldface lowercase letter, and variables by normal lowercase letter. 1 denotes the row vector
of ones, and I denotes the identity matrix. Table 1 provides the definitions of the distributions
used throughout the paper. Implementations of the presented methods and source code to
reproduce the presented examples are available at http://aalab.github.io/.
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2 Review

The goal of archetypal analysis is to find archetypes, ‘pure’ patterns. In Sect. 2.1 we provide
some intuition on what these pure patterns imply. In Sect. 2.2, we discuss the mathematical
formulation of this archetypal analysis as suggested byCutler andBreiman (1994). InSect. 2.3
we discuss how this concept has been utilized since its inception: here, we point out key
references, important developments, and convincing applications.

2.1 Intuition

Archetypes are ‘ideal example of a type’. The word ‘ideal’ does not necessarily have a
qualitative meaning of being ‘good’, but this concept is mostly subjective. For example, one
can consider ideal example to be a prototype, and other objects to be variations of such
prototype. This view is close to the concept of clustering, where the centers of the clusters
are the prototypes. For archetypal analysis, however, ideal example has a different meaning.
Intuitively it implies that the prototype can not be surpassed, its the purest or the most
extreme that can be witnessed. A simple example of archetypes are the colors red, blue and
green (cf. Fig. 1a) in the RGB color space: any other color can be expressed as combinations
of these ideal colors. Another example can be comic book superheros who excel in some
unique characteristics, say speed or stamina or intelligence, more than anybody with these
abilities: they are the archetypal superheros with that particular ability. The non-archetypal
superheroes, on the other hand, possess “many” abilities that are not extreme. It is to be noted
that a person with all the abilities to their full realizations, if exists, is an archetype, Similarly,
if one considers normal humans alongside super-humans then a person with none of these
abilities is also an archetype.

In both these examples, the archetypes are rather trivial. If one represents each color in the
RGB space then it is obvious that the unit vectors R, G and B are pure colors or archetypes.
Similarly, if one represents every (super-)human in a two dimensional normalized scale of
strength and intelligence, then there are four extreme instances, and hence archetypes are:
first and second, person with highest score in either of these attributes and none in the other;
third and fourth, person with highest/lowest score in both these attributes. However, in reality
one may not observe these attributes directly, but some other features. For example, one can
describe a person with many personality traits, such as humor, discipline, optimism, etc., but
these characteristics cannot be measured directly. However, one can prepare a questionnaire
(or observed variables) that explores these (latent) personality traits. From this questionnaire,
curious users can attempt to identify archetypal humans, say an archetypal leader or an
archetypal jester.

Finding archetypal patterns in the observed space is a non-trivial problem. It is difficult,
in particular, since the archetype itself may not be belong to the set of observed samples
but should be inferred; yet, it should also not be “mythological”, but rather something that
might be observed. Cutler and Breiman (1994) suggested a simple yet elegant solution that
finds the approximate convex hull of the observations, and define the vertices as archetypes.
This allows individual observations to be best represented by composition (convex combina-
tion) of archetypes, while archetypes can only be expressed by themselves, i.e., they are the
‘purest form’ or ‘most extreme’ forms. Although, it is certainly not the most desired solution,
since, the inferred archetypes are restricted to be on the boundary of the convex hull of the
observations, whereas true archetype may be outside; inferring such archetypes outside the
observation hull will require strong regularity assumptions. The solution suggested by Cutler
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and Breiman (1994) finds a trade off between computational simplicity, and the intuitive
nature of archetype.

2.2 Formulation

Cutler and Breiman posed AA as the problem of learning the convex hull of a point-cloud.
They assumed the archetypes to be convex combinations of observations, and the observations
to be convex combinations of the archetypes. Let X be a (real-valued) data matrix with each
column as an observation. Then, this is equivalent to solving the following optimization
problem:

min
W,H

||X − XWH||2F (1)

with the constraint that both W and H are column stochastic matrices. Subscript F denotes
Frobenious norm. Given N observations, and K archetypes,W is N×K dimensional matrix,
and H is K × N dimensional matrix. Here, Z = XW are the inferred archetypes that exist
on the convex hull of the observations due to the stochasticity ofW and for each n-th sample
xn , Zhn is its projection on the convex hull of the archetypes.

Cutler and Breiman solved this problem using an alternating non-negative least squares
method as follows:

Ht+1 = arg minH≥0||X − ZtH||2F + λ||1H − 1||2 (2)

and

Wt+1 = arg minW≥0||Zt − XW||2F + λ||1W − 1||2 (3)

where after each alternating step, the archetypes (Z) are updated by solvingX = Zt+1Ht , and
Zt+1 = XWt , respectively. The algorithm alternates between finding the best composition
of observations given a set of archetypes, and then finding the best set of archetypes given a
composition of observations. Notice that the stochasticity constraint was cleverly enforced by
a suitably strong regularization parameter λ. The authors also proved that k > 1 archetypes
are located on the boundary of the convex hull of the point-cloud, and k = 1 archetype is the
mean of the point cloud.

2.3 Development

The first publication, to the best of our knowledge, which deals with the idea of “ideal types”
and observations related to them, is Woodbury and Clive (1974). There, the authors discuss
how to derive estimates of grades ofmembership of categorical observations, given an a-priori
defined set of ideal (or pure) types, in the context of clinical judgment. Twenty years later—in
1994—Cutler and Breiman (1994) formulated archetypal analysis (AA) as the problem of
estimating both the membership and the ideal types given a set of real-valued observations.
They motivated this new kind of analysis with, among other examples, the estimation of
archtyepal head dimensions of Swiss Army soldiers.

One of the original authors continued her work on AA in the fields of physics and applied
it on spatio-temporal data (Stone and Cutler 1996). In this line of research, Cutler and Stone
(1997) developedmoving archetypes, by extending the original AA framework with an addi-
tional optimization step, which estimates the optimal shift of observations in the spatial
domain over time. They applied this method to data gathered from a chemical pulse experi-
ment.Other researches took up the idea ofAAand applied it in different fields; the following is
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a comprehensive list of problemswhere other researchers have appliedAA: analysis of galaxy
spectra (Chan et al. 2003), ethical issues andmarket segmentation (Li et al. 2003), thermogram
sequences (Marinetti et al. 2007), gene expression data (Thøgersen et al. 2013); performance
analysis in marketing (Porzio et al. 2008), sports (Eugster 2012), and science (Seiler and
Wohlrabe 2013); face recognition (Xiong et al. 2013); and in game AI development (Sifa and
Bauckhage 2013).

In recent years, animated by the rise of the non-negativematrix factorization research, var-
ious authors have proposed extensions and variations to the original algorithm. The following
are a few notable publications. Thurau et al. (2009) introduce the convex-hull non-negative
matrix factorization (NMF). Motivated by the convex NMF, the authors make the same
assumption as made in AA that observations are convex combinations of specific observa-
tions. However, they derive an algorithm which estimates the archetypes not from the entire
set of observations but from potential candidates found from 2-dimensional projections on
eigenvectors: this leads to a solution also applicable for large data sets. The authors demon-
strate their method on a data set consisting of 150 million votes on World of Warcraft®

guilds. In Thurau et al. (2010), the authors present an even faster approach by deriving a
highly efficient volume maximization algorithm. Eugster and Leisch (2011) tackle the prob-
lem of robustness, and that a single outlier can break down the archetype solution. They
adapt the original algorithm to be a robust M-estimator and present an iteratively reweighted
least squares fitting algorithm. They evaluate there algorithm using the Ozone data from the
original AA paper with contaminated observations. Mørup and Hansen (2012) also tackle
the problem of deriving an algorithm for large scale AA. They propose a solution based on
a simple projected gradient method, in combination with an efficient initialization method
for finding candidates of archetypes. The authors demonstrate their method, among other
examples, with an analysis of the NIPS bag of words corpus and the Movielens movie rating
data set.

3 Probabilistic archetypal analysis

We observe that the original AA formulation implicitly exploits a simplex latent variable
model, and normal observation model, i.e.,

hn ∼ Dir(1), xn ∼ N (Zhn, ε1I). (4)

But, it goes a step further, and generates the loading matrix Z from a simplex latent model
itself with known loadings Θ ∈ R

M×N , i.e.,

wk ∼ Dir(1), zk ∼ N (Θwk, ε2I). (5)

Thus, the log-likelihood can be written as,

LL(X|W,H,Z,Θ) = −ε1

2
||X − ZH||2F − ε2

2
||Z − ΘW||2F + C(ε1, ε2). (6)

The archetypes Z, and corresponding factors H can then be found by maximizing this log-
likelihood (or minimizing the negative log-likelihood) under the constraint that bothW and
H are stochastic: this can be achieved by alternating optimization as Cutler and Breiman did
(but with different update rules for Z, and ε·, see Appendix 1 for details).

The equivalence of this approach to the standard formulation requires that Θ = X.
Although unusual in a probabilistic framework, this contributes to the data-driven nature of
AA. In the probabilistic framework, Θ can be viewed as a set of known bases that is defined
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by the observations, and the purpose of archetypal analysis is to find a sparse set of bases that
can explain the observations. These inferred bases are the archetypes, and the stochasticity
constraints on W and H ensure that they are the extreme values as one desires. It should be
noted that Θn does not need to correspond to Xn : more generally, Θ = XP where P is a
permutation matrix.

3.1 Exponential family

We describe AA in a probabilistic set-up as follows (see Fig. 2),

wk ∼ Dir(1), hn ∼ Dir(1), xn ∼ EF(xn;ΘWhn) (7)

where

EF(z; θ) = h(z)g(θ) exp(η(θ)�s(z)) (8)

with standard meaning for the functions g, h, η and s. Notice that, we employ the normal
parameter θ rather than the natural parameter η(θ), since the former is more interpretable.
In fact, the convex combination of θ is more interpretable than the convex combination of
η(θ), as a linear combination on η(θ)would lead to nonlinear combination of θ . To adhere to
the original formulation, we suggest Θ ·n to be the maximum likelihood point estimate from
observationX·n . Again, the columns ofΘ andX do not necessarily have to be corresponded.
Then, we find archetypes Z = ΘW by solving

arg minW,H≥0 − LL(X|W,H,Θ) such that 1W = 1, 1H = 1. (9)

We call this approach probabilistic archetypal analysis (PAA).
The meaning of archetype in PAA is different than in the standard AA since the former

lies in the parameter space, whereas the latter in the observation space. To differentiate
these two aspects, we call the archetypes Z = ΘW found by PAA [solving (9)], archetypal
profiles: our motivation is that Θ ·n can be seen as the parametric profile that best describes
the single observation xn , and thus, Z are the archetypal profiles that are inferred from them.
We generally refer to the set of indices that contribute to the k-th archetypal profile, i.e.,
{i : Wik > δ}, where δ is a small value, as generating observations of that archetype. Notice
that, when the observation model is multivariate normal with identity covariance, then this
formulation is the same as solving (1). We explore some other examples of EF: multinomial,
product of univariate Poisson distributions, and product of Bernoulli distributions.

3.2 Poisson observations

If the observations are integer–valued then they are usually assumed to originate from a
Poisson distribution. Then we need to solve the following problem,

arg minW,H≥0

∑

mn

[−Xmn log(ΛWH)mn + (ΛWH)mn
]

(10)

such that
∑

j H jn = 1 and
∑

i Wik = 1. Here Λmn is the maximum likelihood estimate of
the Poisson rate parameter from observation Xmn .

To solve this problem efficiently, we employ a similar technique used by Cutler and
Breiman by relaxing the equality constraint with a suitably strong regularization parameter.
However, we employ a multiplicative update rule afterwards instead of an exact method like
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the nonnegative least squares. The resulting update rules are (see Appendix 1 for derivation)

Ht+1 = Ht � ∇−
Ht

∇+
Ht

, ∇+
Hnj

=
∑

im

ΛimWmn + λ,

∇−
Hnj

=
∑

i

Xi j
∑

m ΛimWmn
∑

mn ΛimWmnHnj
+ λ

∑
n Hnj

(11)

and

Wt+1 = Wt � ∇−
Wt

∇+
Wt

, ∇+
Wmn

=
∑

i j

ΛimHnj + λ,

∇−
Wmn

=
∑

i j

Xi jΛimHnj
∑

mn ΛimWmnHnj
+ λ

∑
m Wmn

. (12)

Here � denotes Hadamard product. We choose λ to be 20 times the variance of the samples
which is sufficiently large to enforce stochasticity but not too strong to be dominating. A
similar value λ2 = 200 has been used by Eugster and Leisch (2011).

3.3 Multinomial observations

In many practical problems such as document analysis, the observations can be thought
of as originating from a multinomial model. In such cases, PAA expresses the underlying
multinomial probability as PWHwhere P is the maximum likelihood estimate achieved from
word frequency matrix X. This decomposition is very similar to PLSA: PLSA estimates a
topic by document matrix H and a word by topic matrix Z, while AA estimates a document
by topic matrix (W) and a topic by document matrix (H) from which the topics can be
estimated as archetypes Z = PW. Therefore, the archetypal profiles are effectively topics,
but topics might not always be archetypes. For instance, given three documents {A,B},
{B,C}, {C,A}; the three topics could be {A}, {B}, and {C}, whereas the archetypes can only
be the documents themselves. Thus, it can be argued that archetypes are topics with better
interpretability.

To find archetypes for this observation model one needs to solve the following problem,

arg minW,H≥0 −
∑

mn

Xmn log
∑

i j

PmiWi jH jn, (13)

such that
∑

j H jn = 1 and
∑

i Wik = 1.
This can be efficiently solved using expectation-maximization (or majorization–

minimization) framework with the following update rules (see Appendix 1 for derivation),

Ht+1
i j =

∑

kl

XilHi jW jkPkl

(HWP)il
, Ht+1

i j = Ht+1
i j

∑
j H

t+1
i j

(14)

and

Wt+1
jk =

∑

il

XilHi jW jkPkl

(HWP)il
, Wt+1

jk = Wt+1
jk

∑
k W

t+1
jk

. (15)
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3.4 Bernoulli observations

There are real world applications that deal with binary observations rather than real–valued or
integers, e.g., binary questionnaire inmarketing research. Such observations can be expressed
in terms of the Bernoulli distribution. To find the archetypal representation of binary pattern
we need to solve the following problem,

arg minW,H≥0

∑

mn

[−Xmn log(PWH)mn − Ymn log(QWH)mn
]
, (16)

such that
∑

j H jn = 1 and
∑

i Wik = 1, whereX is the binary data matrix (with 1 denoting
success/true and 0 denoting failure/false), Pmn is the probability of success estimated from
Xmn (effectively either 0 or 1), Ymn = 1 − Xmn , and Qmn = 1 − Pmn .

This is amore involved form than the previous ones: one cannot use relaxation technique as
in thePoisson case, since relaxation over the stochasticity constraintmight render the resulting
probabilities PWH greater than 1, thus making the cost function incomputable. Therefore,
we take a different approach toward solving this problem by reparameterizing the stochastic
vector (say s) by an unnormalized non-negative vector (say t), such that s = t/

∑
ti .We show

that the structure of the cost allows us to derive efficient update rules over the unnormalized
vectors using majorization–minimization. Given gn and vk to be the reparameterization of hn
andwk respectively, we get the following update equations, (see Appendix 1 for derivation),

Gt+1 = Gt � ∇n
G

∇d
G

,

with

∇d
Gnj

=
∑

i

Xi j +
∑

i

Yi j , (17)

∇n
Gnj

=
∑

i

Xi j
∑

m PimWmn
∑

mn PimWmnHnj
+

∑

i

Yi j
∑

m QimWmn
∑

mn QimWmnHnj
(18)

and

Vt+1 = Vt � ∇n
V

∇d
V

,

with

∇d
Vmn

=
∑

i j

Xi j
∑

m PimWmnHnj
∑

mn PimWmnHnj
+

∑

i j

Yi j
∑

m QimWmnHnj
∑

mn QimWmnHnj
, (19)

∇n
Vmn

=
∑

i j

Xi jPimHnj
∑

mn PimWmnHnj
+

∑

i j

Yi jQimHnj
∑

mn QimWmnHnj
. (20)

4 Related work

Archetypal analysis and its probabilistic extension share close connectionswith other popular
matrix factorization methods. We explore some of these connections in this section, and
provide a summary in Fig. 3. We represent the original data matrix by X ∈ X M×N where
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AA
Cutler and Breiman (1994)

C-NMF
Ding et al (2010)

PLSA
Hofmann (1999)

NMF
Lee and Seung (1999)

VCA
do Nascimento and Dias (2005)

S-NMF
Ding et al (2010)

PAA

EF-PCA
Mohamed et al (2009)

PPCA

1. Z = XW

5. Z,H nonnegative3. X ∼ f(ZH) 4. H nonnegative

2. H stochastic

Fig. 3 Relations among factorization methods. 1. data-driven methods where the loadings depend on input,
2. simplex factor models with probability vector as factors, 3. probabilistic methods, 4. non-negative factors
with arbitrary loadings, and 5. non-negative factors with non-negative loadings. The connections are elaborated
in Sect. 4

each column xn is an observation; the corresponding latent factor matrix byH ∈ R
K×N , and

loading matrix by Z ∈ R
M×K .

Principal component analysis and extensions: Principal component analysis (PCA) finds
an orthogonal transformation of a point-cloud, which projects the observations in a new
coordinate system that preserves the variance of the point-cloud the best. The concept of
PCA has been extended to a probabilistic as well as a Bayesian framework (Mohamed et al.
2009). Probabilistic PCA (PPCA) assumes that the data originates from a lower dimensional
subspace on which it follows a normal distribution (N ), i.e.,

hn ∼ N (0, I), xn ∼ N (Zhn, εI)

where hn ∈ R
K , xn ∈ R

M , K < M , and ε > 0.
Probabilistic principal component analysis explicitly assumes that the observations are

normally distributed: an assumption that is often violated in practice, and to tackle such
situations one extends PPCA to exponential family (EF). The underlying principle here is to
change the observation model accordingly:

hn ∼ N (0, I), xn ∼ EF(xn;Zhn),

i.e., each element of xn is generated from the corresponding element of Zhn as EF(z; θ) =
h(z)g(θ) exp(θs(z)) where s(z) is the sufficient statistic, and θ is the natural parameter:
PAA utilizes similar approach but with normal parameters.

Similarly, one can also manipulate the latent distribution. A popular choice is the Dirichlet
distribution (Dir), which has beenwidely explored in the literature, e.g., in probabilistic latent
semantic analysis (PLSA (Hofmann 1999)), hn ∼ Dir(1), xn ∼ Mult(Zhn), where 1Z = 1;
vertex component analysis (do Nascimento and Dias 2005), hn ∼ Dir(1), xn ∼ N (Zhn, εI);
and simplex factor analysis (Bhattacharya and Dunson 2012), a generalization of PLSA (or
more specifically of latent Dirichlet allocation, LDA (Blei et al. 2003)): PAA additionally
decompose the loading in simplex factors with known loading.
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Nonnegative matrix factorization and extensions: Non-negative matrix factorization (NMF)
decomposes a non-negative matrixX ∈ R

M×N+ in two non-negative matricesZ ∈ R
M×K+ and

H ∈ R
K×N+ such that X ≈ ZH. (Lee and Seung 1999) applied the celebrated multiplicative

update rule to solve this problem, and proved that such update rules lead to monotonic
decrease in the cost function using the concept ofmajorization–minimization (Lee and Seung
2000). Non-negative matrix factorization has been extended to convex non-negative matrix
factorization (C-NMF (Ding et al. 2010)) where X is not restricted to be non-negative, and
Z is expressed in terms of the X itself as Z = XW, whereW is again a non-negative matrix.
The motivation for this modification emerges from its similarity to clustering, and C-NMF
has been solved using multiplicative update rule as well.

To simulate the exact clustering scenario, however, H is required to be binary (hard
clustering) or at least column stochastic (fuzzy clustering). This leads to a more difficult
optimization problem, and is usually solved by proxy constraintH�H = I (Ding et al. 2006).
Several other alternatives have also been proposed for tackling the stochasticity constraints,
e.g., by enforcing it after each iteration (Mørup andHansen 2012), or by employing a gradient-
dependent Lagrangian multiplier (Yang and Oja 2012). However, both these approaches are
prone to finding local minima.

5 Simulation

In this section, we provide some simple examples showing the difference between prob-
abilistic and standard archetypal analysis solutions. Since we generate data following the
true probabilistic model, it is expected that the solution provided by PAA would be more
appropriate compared to the standard AA solution. Therefore, the purpose of this section is
to perform sanity check, and provide insight. Notice that generating observations with known
archetypes is not straight forward, since Θ depends on X.

Binary observations: We generate K = 6 binary archetypes in d = 10 dimensions by
sampling ηik ∼ Bernoulli(ps), where ηk is an archetype, and ps = 0.3 is the probability of
success. Given the archetypes, we generate n = 100 observations as xi ∼ Bernoulli(Ehi ),
where E = [η1, . . . , ηk], and each hi is a stochastic vector sampled from Dir(α). To ensure
that η’s are archetypes, we maintain more observations around ηks by choosing α = 0.4.
We find archetypal profiles using both PAA and standard AA, and then binarize them so that
they can be matched to the original archetypes using minimum Jaccard distance. We report
the results in Fig. 4. We observe that the archetypal profiles found by PAA are more accurate
with 15% more archetypal profiles matching uniquely to the true archetypes than standard
AA.

Poisson observations: We generate K = 6 count archetypes in d = 12 dimensions with one
minimal archetype (ηik = 0), one maximal archetype ηik ∼ Unif{1, . . . , 10}, and rest of
the archetpyes with two nonzero entries ηik ∼ Unif{1, . . . , 10}. Given the archetypes, we
generate n = 500 observations as xi ∼ Poisson(Ehi ), where E = [η1, . . . , ηk], and each hi
is a stochastic vector sampled from Dir(α). To ensure that η’s are archetypes, we maintain
more observations around ηks by choosing α = 0.4. We find archetypal profiles using both
PAA and standard AA, andmatch them to the original archetypes usingminimum l1 distance.
We report the results in Fig. 5. We observe that the archetypal profiles found by PAA are
more accurate with 9% more archetypal profiles matching uniquely to the true archetypes
than standard AA.
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Fig. 4 The figure compares the solutions achieved by standard archetypal analysis and the probabilistic
formulation on binary observations. Each column is an independent trial, and each algorithm has been run
10 times to find the best archetypal profiles. The archetypal profiles are binarized, and matched with the true
archetypes using minimum Jaccard distance. If a unique match is found then the corresponding archetypal
profile is displayed. Otherwise they are left blank, and tagged by a circle. We observe that the probabilistic
approach has been able to match archetypes better than the standard solution
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Fig. 5 The figure compares the solutions achieved by standard archetypal analysis and the probabilistic
formulation on count observations. Each column is an independent trial, and each algorithm has been run
10 times to find the best archetypal profiles. The archetypal profiles are matched with the true archetypes
using minimum l1 distance. If a unique match is found then the corresponding archetypal profile is displayed.
Otherwise they are left blank, and tagged by a circle. We observe that the probabilistic approach has been able
to match archetypes better than the standard solution

Term-frequency observations: We generate K = 5 archetypes on d = 3 dimensional
probability simplex by choosing K equidistant points pk on a circle in the simplex.
Given the archetypes, we generate n = 500 observations as xi ∼ Mult(ni ,Phi ), where
P = [ p1, . . . , pk], and each hi is a stochastic vector sampled from Dir(α). To ensure that
p’s are archetypes, we maintain more observations around them by choosing α = 0.5. We
deliberately choose an arbitrary number of occurrences ni ∼ Uniform[1000, 2000] for each
observation: this disrupts the true convex hull structure in the term-frequency observations.
We present 10 random runs on these observations for both PAA and standard AA in Fig. 6.
We observe that PAA finds the effective archetypes, with occasional local minima. However,
standard AA performs poorly since it finds the appropriate archetypes in the term-frequency
space, which are different when projected back on the simplex.

To evaluate the difference between PAA and standard AA quantitatively, we generate test
samples following the same data generating process for each observation model. For PAA,
given a test sample xi , we compute hi by maximizing p(xi |Zhi ). Here Z are the archetypes
inferred by the training samples. This can be done by minimizing the related cost functions
with respect to h while keeping W fixed (where Z = ΘW). For standard AA, we compute
the projection hi on inferred archetypes Z by solving (2). For standard AA, we treat Zh as
archetypal profile. We present the negative log-likelihood − ∑

i log p(xi |Zhi ) over all test
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Fig. 6 The figure compares the solutions achieved by standard archetypal analysis and probabilistic archetypal
analysis on term-frequency observations. Each observation vector of the term-frequency matrix is generated
from a probability vector within a clear convex hull (a). The probability vectors are generated such there are 5
archetypes. However, this structure is lost in the term-frequency values due to arbitrary number of occurrences
in each term-frequency vector (b). The standard AA applied to term-frequency matrix thus, does not capture
the true archetypes (b’)

Fig. 7 Comparison of PAA and standard AA on simulated datasets. We evaluate how well the inferred
archetypes can represent a new set of samples in terms of negative log-likelihood. We observe that PAA
achieves lower error over all trials

samples in Fig. 7. We observe that, as expected, PAA achieves better performance for each
observation model.

6 Simplex visualizations

The column stochasticity ofH allows a principled visualization scheme of archetypal analysis
solution, referred to as simplex visualization. We discuss certain aspects and enhancements
of this approach, and show how it can be utilized to better understand the inferred archetypes.

The stochastic nature of hn implies that Zhn exists on a standard (K − 1)-simplex with
the K archetypes Z as the corners, and hn as the coordinate with respect to these corners (see
Fig. 1b for an illustration). A standard simplex can be projected to two dimensions via a skew
orthogonal projection, where all the vertices of the simplex are shown on a circle connected
by edges. The individual factors hn can be then projected into this circle. Figure 8 illustrates
this principle with the simple data set already used in Fig. 1: (a, b) for the three archetypes
solution; (g, h) for the four archetypes solution; (j, k) for the five archetypes solution. Color
coding is used in the six figures to show the relation between the original observation xn
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 8 Simplex visualizations with extensions for different illustrative data sets and AA solutions: a–c and
d–f illustrate color-coded points based on the deviance; g–i illustrate the ordering of the vertices according to
the distances of the archetypes in the original space; and j–l illustrate the enhancement of the plot to show the
composition of observations (Color figure online)

and its projection hn . The visualization with three archetypes is known as ternary plot (see,
e.g., Friendly 2000), and has been used by Cutler and Breiman (1994). The extension to
more than three archetypes has also been used (e.g., Bauckhage and Thurau 2009; Eugster
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and Leisch 2013). However, a formal study of this visualization scheme, to the best of our
knowledge, remains to be explored. In the following, we present three enhancements of this
basic visualization to either highlight certain characteristics of an archetypal analysis solution
or to overcome consequences of the one-to-many projection.

In AA, observations which lie outside the approximated convex hull are projected onto
its boundary. Figure 8a, b show a simple scenario where these observations are projected
onto the corresponding edges. Figure 8d, e show an extreme case of this characteristic: the
observations lie on a three-dimensional sphere, and therefore the computed archetypes span a
space, which is completely empty. In the corresponding simplex visualization, however, this
aspect of the solution is not visible at all. We propose to visualize the ‘deviance’ D(xn) =
2(log p(xn |θn) − log p(xn |Zhn)) where θn is the maximum likelihood estimate of xn , as
colors of the points. In case of normal observation model the deviance reduces to the residual
sum of squares. Figure 8c shows the corresponding simplex visualization with deviance for
the three archetypes solution. The color scheme is from blue to white, with blue implying
zero deviance and the lighter the color, the higher the deviance.We can now identify howwell
the original observations have been approximated by the archetypes, and if they are inside the
convex hull. This extension is evenmore insightful in case of the sphere example. In the corre-
sponding simplex visualization in Fig. 8f, we can now clearly see that almost all observations
are outside the approximated convex hull; only around the corners the deviance is near to zero.

The basic simplex visualization arranges the vertices, which represents the archetypes,
equidistant on the circle. The archetypes in the original space, however, are usually not
equidistant to each other. Figure 8g and h illustrate this discrepancy: archetype A2, for
example, is much nearer to A3 than A4; in the simplex visualization, however, both are in
the same distance. We propose to order the vertices on the circle according to their distances
in the original space. This means, we first have to determine an optimal order of the vertices,
and then divide the 360◦ of the circle in relation to the original pairwise distances of the
determined neighbor vertices. Here, we solve a Traveling Salesman Problem to get an optimal
cyclic order (solved by using, for example, Hahsler and Hornik 2007); and then simply divide
the circle proportional to the original distances. Figure 8i shows the result: it is now clearly
visible that A2 and A3 are much nearer to each other than A3 and A4.

Another problem of the simplex visualization with more than three archetypes is the non-
uniqueness. As a result two projections hn1 and hn2 can be close to each other even though
they are composed of different archetypes. This goes against one’s intuition in judging which
archetypes the observations belong to. For example, the observations inside the dashed circle
in Fig. 8k. We get the idea that these observations are basically composed by A1, A2,
A5, and/or A4—but we do not get the exact compositions. We therefore propose to show
‘whiskers’, which point in the direction of the composing archetypes, Fig. 8l shows the
corresponding visualization. We can now easily see the composition of the observations
inside the dashed circle: the observations on the right side of the line are composed by A1
and A4; the observations on the left side of the line are composed by A1, A2, A5; and the
left-most observation is composed by A1, A5.We vary the length of the ‘whiskers’ according
to the coefficients hn ; the longer the whisker the closer the observation is to the archetype
the whisker points toward.

7 Applications

In each application below (except for the first two), we run PAA with 2–15 archetypes, 10
trials with random initializations for each number of archetypes, and choose the solution from
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Fig. 9 Convergence curves of each run for the three datasets. Convergence is reached when the relative
different between two successive iterations is less than 10−6

the trials with maximum likelihoods according to the “elbow criterion”. The elbow criterion
is a simple heuristic. Due to the fact that with each additional archetype LL increases, one
can compute solutions with successively increasing number of archetypes, plot LL against
the number or archetypes, and visually pick the solution after which the jump of LL “is
only marginal” (i.e., the elbow). This solution is ad hoc and subjective—but widely used:
“Statistical folklore has it that the location of such an ’elbow’ indicates the appropriate
number of clusters” (Tibshirani and Walther 2005). Figure 9 shows the convergence curves
of each run associated with the number of archetypes selected for final analysis.

7.1 Gaussian observations: archetypal soccer players

We use a data set already explored by Eugster (2012) for archetypal analysis, to evaluate
the solution provided by maximizing (6). We analyze soccer players playing in four Euro-
pean top leagues. The extracted data set consists of M = 25 skills of N = 1658 players
(all positions—Defender, Midfielder, Forward—except Goalkeepers) from the German Bun-
desliga, the English Premier League, the Italian Serie A, and the Spanish La Liga. The skills
are rated from 0 to 100 and describe different abilities of the players: physical abilities like
balance, stamina, and top speed; ball skills like dribble, pass, and shot accuracy and speed;
and general skills like attack and defence performance, technique, aggression, and teamwork.
Note that Eugster (2012) assumes that the differences are interpretable, i.e., the ratings are
on a ratio scale. We compute K = 4 archetypes, as in Eugster (2012).

Figure 10 shows the percentile plots of the computed solution. Archetype 1 is the
archetypal offensive player with all skills high except the defense, balance, header, and jump.
Archetype 2 is the archetypal center forward with high skills in attack, shot, acceleration,
header and jump, and low passing skills. Archetype 3 is the archetypal weak soccer player
with high skills in running, but low skills in most ball related abilities. Archetype 4 is the
archetypal defender with high skills in defense, balance, header, and jump. As expected, this
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Fig. 10 Percentile plot of the four archetypal profiles for the soccer players example. The result is basically
the same as in Eugster (2012). More information in Sect. 7.1

solution is very similar to the solution computedwith the classical algorithm and presented by
Eugster (2012, Figure 7). We observe only small differences between the two solutions; the
biggest difference is that Archetype 3 has a much higher aggression value in the probabilistic
solution than in the classical solution.

7.2 Multinomial observations: NIPS bag-of-words

We use a data set already explored by Mørup and Hansen (2012) for archetypal analysis,
to qualitatively evaluate the solution provided by PAA with multinomial observation model.
We analyze the NIPS bag-of-words corpus consisting of N = 1500 documents and M =
12419 words (available from (Bache and Lichman 2013)) and compute K = 10 document
archetypes, as in (Mørup and Hansen 2012). We use the term-frequencies as features without
normalizing them by the document frequency as in (Mørup andHansen 2012) to adhere to the
generative nature of the documents. Figure 11 shows the probability for eachword available in
the corpus to be generated by the corresponding archetype (Z). Following (Mørup andHansen
2012), we highlight the ten most prominent terms after ignoring the “common” terms, which
are present in each of the archetypes in the first 3000 words (with probability values> 10−4).
We can observe that the prominent terms in a particular archetype have low probability in
all the other archetypes: this agrees with our understanding of an archetype. Overall our
algorithm finds a similar solution to Mørup and Hansen (2012)—one difference, however,
protrudes: we find a “Bayesian Paradigm” archetype (A2), which Mørup and Hansen (2012)
finds as a k-means prototype. But, to the best of our knowledge a “Bayesian Paradigm”
archetypal document can make sense in a NIPS corpus.

7.3 Bernoulli observations: Austrian national guest survey

Analyzing binary survey data is of utmost importance in social science and marketing
research. A binary questionnaire is often preferred over an ordinal multi-category format,
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Fig. 11 The probability of the words available in the NIPS corpus for each of the ten archetypal profiles. The
number in parentheses refers to the corresponding archetype in (Mørup and Hansen 2012). The colored lines
show the ten most prominent words (after removing the “common” words), asterisk indicates which words
appear in both solutions. More information in Sect. 7.2 (Color figure online)

since the former is quicker and easier, whereas both are equally reliable, and the managerial
implications derived from them do not substantially differ (Dolnicar et al. 2011). In this
application, we analyze binary survey data from the Austrian National Guest Survey con-
ducted in the winter season of 1997 [for a cluster analysis of the summer season of 1997 see
(Dolnicar and Leisc 2004)]. The goal is to identify archetypal winter tourists, which may
facilitate developing and targeting specific advertising materials. The data consists of 2958
tourists. Each tourist answers 25 binary questions on whether he/she is engaged in a certain
winter activity (e.g., alpine skiing, relaxing, or shopping; see row description of Table 2 for
the complete list). In addition, a number of descriptive variables are available (e.g., the age
and gender of the tourist).

Here we present the six archetypes solution. Table 2 lists the archetypal profiles (i.e., the
probability of positive response) and, in parentheses, the corresponding archetypal observa-
tions (withmaximumw value). ArchetypeA1 is themaximal winter tourist who is engaged in
nearly every sportive and wellness activity with high probability. Archetype A3, on the other
hand, is the minimal winter tourist who is only engaged in alpine skiing and having dinner.
Both archetypes A5 and A4 are engaged in the basic Austrian winter activities (alpine skiing,
indoor swimming, and relaxing). In addition, A5 is engaged in traditional activities (dinner
and shopping), whereas A4 is engaged in more modern activities (snowboarding and going
to a disco). Finally, A6 and A2 are the non-sportive archetypes. A6 is engaged in wellness
activities and A2 with cultural activities. Note that important engagements of the archetypes
are missed if one only looks at the archetypal observations rather than the archetypal profiles;
e.g., the possible engagement of A2 in hiking. We can now utilize the factors H for each of
the tourists to learn their relations to the archetypal winter tourist profiles. This allows us, for
example, to target very specific advertising material to tourists for the next winter season.

To get further insight into the archetypes we explore the simplex visualization. Figure 12
shows four simplex visualizations with the archetypes arranged according to their distance
in the original space and the composition of the winter tourists indicated by corresponding
whiskers. Figure 12a shows the model deviance normalized from 0 (blue) to 1 (white).
We can observe that the tourists mainly explained by the Minimal (A3), Modern (A4),
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Table 2 The six archetypal profiles for the winter tourists example

A1 A3 A5 A4 A6 A2

Alpine Ski 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 0.00 (0) 0.00 (0)

Tour Ski 0.41 (1) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Snowboard 0.00 (0) 0.00 (0) 0.00 (0) 0.59 (1) 0.00 (0) 0.00 (0)

Cross Country 0.75 (1) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Ice Skating 0.60 (1) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Sledge 1.00 (1) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Tennis 0.15 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.20 (0)

Riding 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.08 (0)

Pool Sauna 0.96 (1) 0.00 (0) 0.37 (0) 1.00 (1) 0.82 (1) 0.11 (0)

Spa 0.22 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.79 (1) 0.00 (0)

Hiking 0.95 (1) 0.00 (0) 0.00 (0) 0.00 (0) 1.00 (1) 0.18 (0)

Walk 1.00 (1) 0.00 (0) 1.00 (1) 0.00 (0) 1.00 (1) 1.00 (1)

Excursion (org) 0.29 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.41 (1)

Excursion (ind) 0.81 (1) 0.00 (0) 0.00 (0) 0.00 (0) 0.94 (1) 1.00 (1)

Relax 0.99 (1) 0.00 (0) 1.00 (1) 1.00 (1) 1.00 (1) 0.81 (0)

Dinner 0.82 (1) 0.53 (0) 0.86 (1) 0.02 (0) 0.00 (0) 1.00 (1)

Shopping 1.00 (1) 0.00 (0) 1.00 (1) 0.01 (0) 0.33 (0) 1.00 (1)

Concert 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.29 (1)

Sightseeing 0.66 (1) 0.00 (0) 0.00 (0) 0.00 (0) 0.66 (1) 1.00 (1)

Heimat 0.58 (1) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Museum 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 1.00 (1)

Theater 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.30 (1)

Heurigen 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.45 (0)

Local event 0.99 (1) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.10 (0)

Disco 0.68 (1) 0.00 (0) 0.00 (0) 1.00 (1) 0.00 (0) 0.08 (0)

Interpretation of the archetypes Maximal Minimal Basic Non-sportive

Traditional Modern Wellness Cultural

The corresponding archetypal observations are shown in parentheses. For more information, see Sect. 7.3

Traditional (A5), and/or Wellness (A6) archetypes are well represented (darker blue). The
Maximal (A1) archetype seems to be an outlier, there are only a few observations near to this
archetype, and the deviance is higher for these observations. Figure 12b–d highlight tourists’
answers to certain questions (yes/black and no/gray). Figure 12b shows whether a tourist
does snowboarding or not. We can see that most of the tourists who do snowboarding are
arranged around and point towards A4, which we interpreted as the Modern archetype. In
Fig. 12c we highlight whether a tourist visits a museum or not. Here, most of the tourists who
go there are arranged around A2, which we interpreted as the Cultural archetype. Figure 12d
shows an activity which does not discriminate between archetypes—nearly all tourists do
shopping, and no specific pattern is visible in this visualization.

For comparison purpose, we also compute the six archetypes solution with the original
archetypal analysis algorithm (details and results canbe foundonline). The classical algorithm
finds archetypes with a similar intrepretation. However, we observe that the probabilistic
archetypal profiles are “more extreme” and therefore easier to interpret.
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(a) (b)

(c) (d)

Fig. 12 Simplexvisualizations for the theAustrian national guest survey example. The archetypes are arranged
according to their distance in the original space and the composition of the winter tourists is indicated by
corresponding whiskers. a shows the model deviance normalized from 0 (blue) to 1 (white); figures b–d
highlight tourists’ answers to certain questions (yes/black andno/gray). SeeSect. 7.3 for detailed interpretations
(Color figure online)

7.4 Poisson observations: disasters worldwide from 1900–2008

In this application, the goal is to identify archetypal countries that are affected by a partic-
ular disaster or a combination of disasters. This may be helpful in emergency management
and to facilitate devising disaster prevention plans for countries based on prevention plans
designed for the archetypal disaster-affected countries. We compile a dataset with disaster
counts for 227 countries (historical and present countries) in 15 categories from the EM-DAT
database (EM-DAT 2013). This is a global database on natural and technological disasters
between 1900–present. The criteria to be a disaster are: ten ormore reported casualty; hundred
or more people reported affected; declaration of a state of emergency; or call for international
assistance. The list of disaster categories is provided in Figure 13; see the EM-DAT website
for specific details.
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Fig. 13 The seven archetypal profiles for the disaster example: (top left) Plot of archetypal profiles (% ofmax-
imum value); (world maps) Factors H for each archetype. Disasters: complex disasters (CD), drought (DR),
earthquake (EQ), epidemic (EP), extreme temperature (ET), flood (FL), industrial accident (IA), insect infes-
tation (II), mass movement dry (MD), mass movement wet (MW), miscellaneous accident (MA), storm (ST),
transport accident (TA), volcano (VO), and wildfire (WF). See Sect. 7.4 for details

We present the seven archetypes solution; Figure 13 shows a summary. There are twomini-
mal profilesA1 andA7with small differences in the categories extreme temperature/flood and
storm. A1 can be considered as the archetypal profile for safe country where the correspond-
ing archetypal observations include Malta and the Cayman Islands (other close observations
are the Nordic countries). Archetype A5 is the maximal archetypal profile with counts in
every category, and the corresponding archetypal observations include China and United
States. This can be expected from the size and population of the countries; China (third and
first), USA (fourth and third). Other countries with high factor H for this archetypal profile
are India (seventh and second), and Russia (first and ninth). A3 and A4 are the archetypes
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(a) (b)

Fig. 14 Simplex visualizations for the disasters example: The archetypes are arranged according to their
distance in the original space. a shows the model deviance normalized from 0 (blue) to 1 (white); b shows
the projected countries scaled according to the number of Insect infestations (ISO2 country codes for the top
countries). See Sect. 7.4 for detailed interpretations (Color figure online)

that are affected by drought and epidemic; where A3 additionally has a high insect infestation
count. A2 is the archetype that is susceptible to complex disasters (where neither nature nor
human is the definitive cause) only, whereas A6 has high counts in the categories earthquake,
flood, mass movement wet, and volcano. Here the archetypal countries include Indonesia
and Colombia.

Figure 14 shows two simplex visualizations with the archetypes arranged according to
their distance in the original space. This arrangement shows that A1 is very near to A7,
which is in line with the archetypal profiles plot shown in Figure 13. Figure 14a shows
the model deviance normalized from 0 (blue) to 1 (white). We can see that A2, A3, A4,
A5 and A6 are basically outliers with only one or very few observations are around them.
Most of the observations with low deviance are near A1 and A7. Figure 14b highlights the
countries’ insect infestation (the higher the count the bigger the point). We can see a clear
pattern around A3, with Niger (NE), Chad (TD), Mali (ML), Senegal (SN), Sudan (SD),
Ethiopia (ET), Gambia (GM), Mauritania (MR), and Morocco (MA) as the top countries
affected by insect infestation.

For comparison purpose, we also compute the seven archetypes solution with the original
archetypal analysis algorithm (details and results can be found online). Both solutions are
similar. However, we observe that the probabilistic solution is more robust towards outliers.
This can be observed from the two simplex visualizations (available online). Both solutions go
towards the outliers, however, the classical solution is more sensitive towards it compared to
the probabilistic solution (e.g., PAA6 vs. AA6 and PAA5 vs. AA7). The robustness provides
more freedom to explain the other observations and increases the interpretability.

8 Discussion

Archetypal analysis expresses observations as composition of extreme values, or archetypes.
Archetypes can be thought of as ideal or pure characteristics, and the goal of archetypal analy-
sis is to find these characteristics, and to explain the available observations as combination
of these characteristics. The standard formulation of archetypal analysis was suggested by
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Cutler and Breiman and is based on finding the approximate convex hull of the observations.
Over the last decade this approach has been extensively used by researchers. But, their appli-
cations havemostly been limited to real–valued observations. In this paper, we have proposed
a probabilistic formulation of archetypal analysis, which enjoys several crucial advantages
over the geometric approach, including but not limited to the extension to other observation
models: Bernoulli, Poisson and multinomial. We have achieved this by approximating the
convex hull in the parameter space under a suitable observation model. Our contribution lies
in formally extending the standard AA framework, suggesting efficient optimization tools
based on majorization–minimization method, and demonstrating the applicability of such
approaches in practical applications. We have also suggested improvements of the standard
simplex visualization tool to better show the intricacies in the archetypal analysis solution.

The probabilistic framework provides further advantages that remain to be explored in their
entirety. For example, it provides a theoretically sound approach for choosing the number of
archetypes. This can be done by imposing appropriate priors overW andHmatrices, such as
a symmetric Dirichlet distribution with coefficient < 1. The prior can be used to effectively
shrink and expand the convex hull to fit the observations. Since the Dirichlet distribution is a
natural prior for multinomial distribution, this solution can be approximated relatively easily
using variational Bayes’ approach, and initial results show that this is indeed and effective
approach for choosing the number of archetypes. However, this becomes a slightly trickier
problem when applied to other observation models, such as normal and Poisson. We are
currently working on suitable methods to solve the related optimization problems efficiently.
It is worthmentioning that the convergence of the suggested algorithms is usually slower than
standard factormodels due to the additional constraint imposed on the loadingmatrix through
W. Additionally, multiplicative update itself can be slow, and therefore faster algorithms
should be investigated to scale up probabilistic archetypal analysis to larger datasets.

Another potential extension of the probabilistic framework is to tackle ordinal or Likert
scale variables. Since ordinal variables lack additivity, they must be addressed through a
probabilistic set-upwith suitable observationmodel. Given the fact that survey data is often in
Likert scale, archetypal analysis of such observations can have a large impact on social science
and marketing: describe, e.g., the personality of consumers in terms of the personality of the
most “extreme”, i.e., archetypal, consumers (using, e.g., the Likert scaled items defined by
the Big Five Inventory). We believe that these suggested improvements will make archetypal
analysis more robust and accessible to non-scientific users.

Acknowledgments The calculations presented above were performed using computer resources within the
Aalto University School of Science “Science-IT” project.

Appendix 1: Alternate update rule for standard archetypal analysis

A different set of update rules can be derived if standard archetypal analysis is viewed in a
probabilistic framework, i.e., if we wish to maximize,

LL(X|W,H,Z,Θ) = −ε1

2
||X − ZH||2F − ε2

2
||Z − ΘW||2F + NM

2
log ε1 + MK

2
log ε2

where the constant terms have been ignored. We additionally set priors over ε1 and ε2 to be
Gamma distributedwith parameters (α0, β0), and assume the same family, i.e., Gamma(α, β)

for the variational distributions. The variational distributions are then approximated as
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q(ε1) = Gamma

(

α0 + NM

2
, β0 + 1

2
||X − ZH||2F

)

q(ε2) = Gamma

(

α0 + MK

2
, β0 + 1

2
||Z − ΘW||2F

)

.

We find the point estimates of W and H by maximizing the variational lower bound, and
impose the stochasticity constraint in the same way as in (3) and (2). Finally, we find the
point estimate of Z by maximizing the variational lower bound as

Z = (〈ε1〉XH� + 〈ε2〉ΘW)(〈ε1〉HH� + 〈ε2〉)−1 (21)

where for Gamma distribution 〈ε〉 = α/β, and 〈·〉 denotes the expectation operator. We use
α0 = β0 = 1 such that the prior mean is 1.

Appendix 2: Update rules for multinomial observations

For simplicity, let us consider the following problem of finding, X = HWP where X is now
n×m matrix instead ofm×n matrix in the earlier sections. Then this problem can be viewed
as given a document choose a topic following H, then given a topic choose a document
(subtopic) followingW, and finally given a document (subtopic) choose a word following P.
Let z jkil be the indicator variable for selecting topic j and document (subtopic) k. Then the
log-likelihood of the observations X is given by

LL (X|H,W,P,R) =
∑

il

Xil log

⎛

⎝
∏

jk

Hi jW jkPkl

⎞

⎠

z jkil

+ C0

=
∑

i jkl

Xil z
jk
il log

(
Hi jW jkPkl

) + C0

At each expectation step we need to evaluate,

E

[
z jkil |X,H,W,P

]
= P(z jkik = 1|X,H,W,P) = Hi jW jkPkl

(HWP)il

then the maximization step gives us the final update equation.

Appendix 3: Update rule for Poisson observations

We show that the update rule discussed in the article leads to monotonic decrease in the cost
function using majorization–minimization. We reformulate the problem as

min
W,H≥0

∑

i j

[

−Xi j log
∑

mn

ΛimWmnHnj +
∑

mn

ΛimWmnHnj

]

+ λ
∑

j

(

− log
∑

n

Hnj +
∑

n

Hnj

)

+ λ
∑

n

(

− log
∑

m

Wmn +
∑

m

Wmn

)

where λ > 0 is a suitably large regularization parameter to enforce the equality constraint in
a relaxed fashion.
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Given φin j =
∑

m ΛimWmnHnj∑
mn ΛimWmnHnj

, andψnj = Hnj∑
n Hnj

, we can construct the auxiliary function

for H as,

∑

i j

[

−Xi j log
∑

mn

ΛimWmnH̃nj +
∑

mn

ΛimWmnH̃nj

]

+ λ
∑

j

(

− log
∑

n

H̃nj +
∑

n

H̃nj

)

=
∑

i j

[

−Xi j log
∑

n

φin j

φin j

∑

m

ΛimWmnH̃nj +
∑

mn

ΛimWmnH̃nj

]

+ λ
∑

j

(

− log
∑

n

ψnj

ψnj
H̃nj +

∑

n

H̃nj

)

≤
∑

i j

[

−Xi j

∑

n

φin j log

∑
m ΛimWmnH̃nj

φin j
+

∑

mn

ΛimWmnH̃nj

]

+ λ

⎛

⎝
∑

nj

−ψnj log
H̃nj

ψnj
+

∑

nj

H̃nj

⎞

⎠

=
∑

i j

[

−Xi j

∑

n

φin j log H̃nj +
∑

mn

ΛimWmnH̃nj

]

+ λ

⎛

⎝
∑

nj

−ψnj log H̃nj +
∑

nj

H̃nj

⎞

⎠ + C

where irrelevant terms not related to H̃ have been included in the constant C. The derivative
is then given by

∂·
∂H̃nj

= −
∑

i Xi jφin j

H̃nj
+

∑

im

ΛimWmn − λψnj

H̃nj
+ λ

= − Hnj

H̃nj

(
∑

i

Xi j
∑

m ΛimWmn
∑

mn ΛimWmnHnj
+ λ

∑
n Hnj

)

+
(

∑

im

ΛimWmn + λ

)

Equating the derivative to zero provides the update rule.

Given φimnj = ΛimWmnHnj∑
mn ΛimWmnHnj

, and ψmn = Wmn∑
m Wmn

, we can construct the auxiliary

function forW as,

∑

i j

[

−Xi j log
∑

mn

ΛimW̃mnHnj +
∑

mn

ΛimW̃mnHnj

]

+ λ
∑

n

(

− log
∑

m

W̃mn +
∑

m

W̃mn

)

=
∑

i j

[

−Xi j log
∑

mn

φimnj

φimnj
ΛimW̃mnHnj +

∑

mn

ΛimW̃mnHnj

]
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+ λ
∑

n

(

− log
∑

m

ψmn

ψmn
W̃mn +

∑

m

W̃mn

)

≤
∑

i j

[

−Xi j

∑

mn

φimnj log
ΛimW̃mnHnj

φimnj
+

∑

mn

ΛimW̃mnHnj

]

+ λ

(
∑

mn

−ψmn log
W̃mn

ψmn
+

∑

mn

W̃mn

)

=
∑

i j

[

−Xi j

∑

mn

φimnj log W̃mn +
∑

mn

ΛimW̃mnHnj

]

+ λ

(
∑

mn

−ψmn log W̃mn +
∑

mn

W̃mn

)

+ C

where irrelevant terms not related to W̃ have been included in the constant C.
The derivative is then given by

∂·
∂W̃mn

= −
∑

i j Xi jφimnj

W̃mn
+

∑

i j

ΛimHnj − λψmn

W̃mn
+ λ

= − Wmn

W̃mn

⎛

⎝
∑

i j

Xi jΛimHnj
∑

mn ΛimWmnHnj
+ λ

∑
m Wmn

⎞

⎠ +
⎛

⎝
∑

i j

ΛimHnj + λ

⎞

⎠

Equating the derivative to zero provides the update rule.

Appendix 4: Update rule for Bernoulli observations

Since the cost function consists of two similar terms, we show how to establish the auxiliary
function for one of them.

For H we have, φin j =
∑

m PimWmnHnj∑
mn PimWmnHnj

, and
∑

n φin j = 1, then

∑

i j

[
−Xi j log(PWH̃)i j

]

=
∑

i j

[

−Xi j log
∑

mn

PimWmnH̃nj

]

=
∑

i j

[

−Xi j log
∑

n

φin j

φin j

∑

m

PimWmnH̃nj

]

≤
∑

i j

[

−Xi j

∑

n

φin j log

∑
m PimWmnH̃nj

φin j

]

=
∑

i j

[

−Xi j

∑

n

φin j log
H̃nj

Hnj
− Xi j log

∑

mn

PimWmnHnj

]
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=
∑

i j

[

−Xi j

∑

n

φin j log

(
G̃nj

∑
p G̃pj

∑
p Gpj

Gnj

)

− Xi j log
∑

mn

PimWmnHnj

]

=
∑

i j

[

−Xi j

∑

n

φin j log
G̃nj

Gnj
+ Xi j

∑

n

φin j log

∑
p G̃pj

∑
p Gpj

− Xi j log
∑

mn

PimWmnHnj

]

≤
∑

i j

[

−Xi j

∑

n

φin j log
G̃nj

Gnj
+ Xi j

(∑
p G̃pj

∑
p Gpj

− 1

)

− Xi j log
∑

mn

PimWmnHnj

]

Taking derivative we get,

∑

i

[

−Xi jφin j
1

G̃nj
+ Xi j

1
∑

p Gpj

]

⇒ G̃nj =
∑

p Gpj
∑

i Xi j

(
∑

i

Xi j
∑

m PimWmnHnj
∑

mn PimWmnHnj

)

= Gnj
∑

i Xi j

(
∑

i

Xi j
∑

m PimWmn
∑

mn PimWmnHnj

)

ForW we have, φimnj = PimWmnHnj∑
mn PimWmnHnj

, and
∑

mn φimnj = 1, then ter

∑

i j

[
−Xi j log(PW̃H)i j

]

=
∑

i j

[

−Xi j log
∑

mn

PimW̃mnHnj

]

=
∑

i j

[

−Xi j log
∑

mn

φimnj

φimnj
PimW̃mnHnj

]

≤
∑

i j

[

−Xi j

∑

mn

φimnj log
PimW̃mnHnj

φimnj

]

=
∑

i j

[

−Xi j

∑

mn

φimnj log
W̃mn

Wmn
− Xi j log

∑

mn

PimWmnHnj

]

=
∑

i j

[

−Xi j

∑

mn

φimnj log

(
Ṽmn

∑
p Ṽpn

∑
p Vpn

Vmn

)

− Xi j log
∑

mn

PimWmnHnj

]

=
∑

i j

[

−Xi j

∑

mn

φimnj log
Ṽmn

Vmn
+ Xi j

∑

mn

φimnj log

∑
p Ṽpn

∑
p Vpn

− Xi j log
∑

mn

PimWmnHnj

]

≤
∑

i j

[

−Xi j

∑

mn

φimnj log
Ṽmn

Vmn
+ Xi j

∑

mn

φimnj

(∑
p Ṽpn

∑
p Vpn

− 1

)

− Xi j log
∑

mn

PimWmnHnj

]
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Taking derivative we get,

∑

i j

[

−Xi jφimnj
1

Ṽmn
+ Xi j

∑

m

φimnj
1

∑
p Vpn

]

⇒ Ṽmn =
∑

p Vpn
∑

i j Xi j
∑

m φimnj

⎛

⎝
∑

i j

Xi jPimWmnHnj
∑

mn PimWmnHnj

⎞

⎠

= Vmn
∑

i j
Xi j

∑
m PimWmnHnj∑

mn PimWmnHnj

⎛

⎝
∑

i j

Xi jPimHnj
∑

mn PimWmnHnj

⎞

⎠

The update rule can be derived from these equations after including the other term with Q.
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