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Abstract Statistical relational learning (SRL) is concerned with developing formalisms for
representing and learning from data that exhibit both uncertainty and complex, relational
structure. Most of the work in SRL has focused on modeling and learning from data that only
contain discrete variables. As many important problems are characterized by the presence
of both continuous and discrete variables, there has been a growing interest in developing
hybrid SRL formalisms. Most of these formalisms focus on reasoning and representational
issues and, in some cases, parameter learning. What has received little attention is learning
the structure of a hybrid SRL model from data. In this paper, we fill that gap and make the
following contributions. First, we propose hybrid relational dependency networks (HRDNs),
an extension to relational dependency networks that are able to model continuous variables.
Second, we propose an algorithm for learning both the structure and parameters of an HRDN
from data. Third, we provide an empirical evaluation that demonstrates that explicitly mod-
eling continuous variables results in more accurate learned models than discretizing them
prior to learning.
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1 Introduction

Statistical relational learning (SRL) (Getoor and Taskar 2007) studies formalisms that
combine relational representations such as first-order logic with models for capturing uncer-
tainty. The motivation underlying SRL is that real-world domains such as patient clinical
histories, molecular structures, and social networks are characterized by the presence of
data that are complex, highly structured and uncertain. Many real-world problems are
also hybrid in that they contain both discrete and continuous variables. Examples of such
domains include robotics, where a robot’s location is described by continuous variables
and properties of encountered objects can be described by discrete variables; clinical his-
tories, where a patient’s temperature and blood pressure represent continuous variables
while their gender and diagnoses are discrete variables; and biology, where spatial rela-
tionships between molecules are modelled as continuous variables and atom types and
amino acid types are discrete properties. Unfortunately, few formalisms can cope with
structured and uncertain data that contain both continuous and discrete variables. On the
one hand, hybrid Bayesian networks (Murphy 1998) model uncertainty for both contin-
uous and discrete variables, but not relations. On the other hand, SRL approaches such
as logical Bayesian networks (LBNs) (Fierens et al. 2005), probabilistic relational mod-
els (Getoor et al. 2001), and relational dependency networks (Neville and Jensen 2007)
capture both structure and uncertainty in problems but are generally restricted to discrete
data.

To address this shortcoming, there has recently been increased interest in design-
ing hybrid SRL formalisms such as Hybrid Markov Logic Networks (HMLNs) (Wang
and Domingos 2008), Hybrid ProbLog (HProbLog) (Gutmann et al. 2011), Continuous
BayesianLogicPrograms (CBLPs) (Kersting andDeRaedt 2001), LearningModuloTheories
(LMT) (Teso et al. 2013) and Hybrid Probabilistic Relational Models (HPRMs) (Nar-
man et al. 2010). The vast majority of the work on hybrid SRL has focused on two
issues. The first is building up the machinery needed to represent continuous vari-
ables within the various SRL formalisms. The second is adapting inference procedures
such that they work for hybrid domains. Some formalisms provide support for learning
the parameters of a handcrafted structure from data. What has received little atten-
tion to date is designing algorithms that are able to learn the structure of a hybrid
SRL model (i.e., the dependencies among the variables and relations in a domain) from
data.

In this paper we fill that gap by exploring structure learning within a hybrid SRL con-
text. First, we describe hybrid relational dependency networks (HRDNs) a novel formalism
which extends RDNs to handle continuous variables. HRDNs approximate a joint prob-
ability distribution with a set of conditional probability distributions (CPDs). We discuss
several local conditional probability distributions that are adept at modeling continuous vari-
ables. Second, we present an algorithm that is able to learn the structure of an HRDN from
data.1 To the best of our knowledge, this is the first attempt to perform structure learn-
ing in the hybrid SRL setting. Third, we empirically evaluate our proposed algorithm on
one synthetic and one real-world data set. We find that applying our approach to the orig-
inal hybrid data results in more accurate learned models than discretizing the data prior to
learning.

1 Apublicly available implementation of our algorithmcan be found on http://dtai.cs.kuleuven.be/ml/systems/
llm.
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2 Background

We will review both propositional and relational dependency networks. First, we will intro-
duce some general definitions and notational conventions used throughout the paper.

We consider two types of variables. First, a random variable, called a randvar, is a variable
that has an associated range of values it can take based on a probability distribution. Second, a
logical variable, called a logvar, is a variable that has a finite domain of possible values it can
take. A logvar is a placeholder for objects such as students or courses. We denote variables
with uppercase letters and specific values with lowercase letters. Given a set of variables X ,
a boldface lowercase letter, such as x, represents an assignment of a value to each variable
in the set.

2.1 Propositional dependency networks

A dependency network (DN) (Heckerman et al. 2001) is a (cyclic) directed probabilistic
model that approximates a joint probability distribution over a set of random variables
with a set of conditional probability distributions (CPDs). A DN is a tuple (X , dep)
where X is a set of randvars and dep is a function that maps each randvar X ∈ X
to a conditional probability distribution p(X | Parents(X)), where Parents(X) ⊆
X \ {X}. The CPD quantifies how X depends on the variables in Parents(X). A DN
can be represented visually as a directed graph G = (V, E), containing one vertex VX

for each randvar X ∈ X and a directed arc from vertex VX to vertex VY iff X ∈
Parents(Y ).

Learning the structure of a DN from data requires determining Parents(X) for
each X ∈ X (i.e., the dependency structure) and the parameters of the CPD for X .
Even though the parameters of CPDs can be estimated by using a variety of regres-
sion or classification techniques, the standard method is to use probabilistic decision
trees. One scoring function that is often used when learning DNs (and other prob-
abilistic graphical models) is pseudo-loglikelihood (PLL) (Besag 1974). Optimizing
the PLL has the advantages that it can be decomposed into maximizing the log-
likelihood for each variable independently and calculating it does not require com-
puting the partition function (that is, summing over all possible configurations of
the randvars). The PLL of an assignment x to randvars X of a DN is calculated
as:

PLL(x) =
n∑

i=1

log [p(Xi = xi |Parents(Xi ))]. (1)

Learning each CPD independently could result in an inconsistent model. That is, there
may be no joint probability distribution such that it is possible to apply the rules of probability
to the joint distribution in order to derive each learned CPD.

Regardless of whether a DN is consistent, applying an ordered Gibbs sampler to the DN’s
CPDs results in a unique distribution, given that each variable in the DN is discrete and
each CPD in the DN is positive (Heckerman et al. 2001). Ordered Gibbs sampling randomly
selects the initial value for each random variable, and then in each Gibbs sweep iterates over
the variables in a fixed order and resamples the value of each Xi from its local distribution
p(Xi |Parents(Xi )). If the DN is consistent, it generates the joint probability distribution. If
theDN is inconsistent, this procedure is called an ordered pseudo-Gibbs sampler (Heckerman
et al. 2001).
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2.2 Relational dependency networks

Next, we review relational dependency networks (RDNs) (Neville and Jensen 2007). There
are severalways to defineRDNs, butweuse a definition that uses first-order logic as a template
language for constructing propositional dependency networks. We first briefly review the
relevant concepts from first-order logic, then we define RDNs. Throughout the discussion,
we will use a slightly modified version of the popular university model (Getoor et al. 2001)
as a running example.

We use the datalog subset of first-order logic. The alphabet consists of three types of
symbols: constants, logical variables, and predicates. A constant represents a specific object
and is denotedwith a lower-case letter (e.g.,pete). A logical variable (logvar)X is a variable
ranging over the objects in the domain. Logical variables may be typed in which case they
represent placeholders for a specific subset of objects in the domain. Predicate symbols P/n,
where n ≥ 0 is the arity of the predicate, represent properties of objects or relations among
objects. We use a typed language, that is, every argument position of a predicate has a type.
Each predicate P has a finite range, denoted range(P). In contrast to traditional logic, we do
not restrict the range of a predicate to { f alse, true}. For example, the range of a student’s
intelligence could be {low,med,high}. An atom is of the form P(t1, . . . ,tn) where P/n
is a predicate and each ti is an object or a logvar. The range of an atom is the range of
its predicate. A literal is an atom or its negation. An atom is ground if all its arguments are
constants. A substitution, denoted {X1/t1, . . . ,Xn/tn}, maps each logvar Xi to ti , where
ti is a logvar or a constant. A grounding substitution θ for an expression (e.g., an atom or
a set of logvars) maps each logvar occurring in that expression to a constant. The set of all
grounding substitutions for an expression E is denoted grsub(E). The result of applying a
substitution to an atom a is denoted aθ .

Similar to LBNs (Fierens et al. 2005), we use a set of statements to define the random
variables in a domain:

random(H) ← l1, . . . , ln

where H is an atom, and l1, . . . , ln is a conjunction of literals. Given a set of random variable
declarations RV D, the set of random variables Φ is the set of all ground atoms Aθ for which
there is a random variable declaration random(A) ← l1, . . . , ln in RV D and a substitution
θ such that l1θ , …, lnθ is true given the background knowledge (amongst others specifying
which ground atoms of the predicates in the body of the random variable declaration rules
are true). For example, the random variable declaration for the atom takes(S,C)

random(takes(S,C)) ← student(S), course(C) (2)

creates one randvar for each student S and course C in the domain.
It must always be possible to evaluate the conjunction in the right-hand side of a ran-

dom variable declaration, and we will use a closed-world assumption to guarantee this. As
is common practice in many other probabilistic logical model frameworks (Fierens et al.
2005; Richardson and Domingos 2006; Getoor et al. 2001), our random variable declarations
specify all random variables that are potentially of interest. For example, the random variable
declaration

random(grade(S,C)) ← student(S),course(C) (3)

specifies that every student gets a grade for every course, even though a precondition for
obtaining a grade is that student Smust take course C. In this case,grade(S,C)would have
a special value not_relevant in its domain, and we would have the background knowledge
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grade(S,C) = not_relevant ⇔ takes(S,C) = f alse (4)

We refer to these statements as relevancy conditions. Later, when learning the conditional
dependency for grade(S,C) on takes(S,C) and other random variables, we can easily
use such hard background knowledge and reduce the learning problem to the subspace of the
values of the parent random variables for which the dependent random variable is relevant.

Let hθ be a random variable. Given background knowledge, an interpretation I assigns
a value to hθ from its range or it assigns the special value not_relevant iff there exists a
relevancy condition hθ ⇔ ϕ in the background knowledge and ϕθ is true in I . The set of all
groundings of a predicate P that have an assigned value v �= not_relevant in interpretation
I is denoted as gr(P)I . We refer to the randvars in gr(P)I as P’s relevant randvars.

Now, we will introduce relational features. For this, we first need to define aggregation
functions.

Definition 1 (Aggregation function) An aggregation function for a domain D is a function
that maps every finite multiset of elements from D to a single value from a range R.

For example, mode is an aggregation function that maps a multiset of values from D to
the most frequently occurring value in the multiset.

Definition 2 (Discrete relational feature) Let L be a set of logvars, C be a conjunction of
randvar-value tests of the form G = v where G is an atom and v ∈ range(G), A be an
atom, and α be an aggregation function taking as input multisets of elements of range(A).
Assume the ranges of A, all atoms in C and α are discrete. Then, a discrete relational feature
FL:C,A,α is a function that maps any θ ∈ grsub(L) and interpretation I to

FL:C,A,α(θ, I ) = α
({I (Aθθ ′) | θ ′ ∈ grsub(Aθ,Cθ) and Cθθ ′ holds in I })

where we say Cθθ ′ holds in I iff ∀(G = v) ∈ C, I (Gθθ ′) = v.

A feature’s range is the range of its aggregation function α. The length of a feature is equal
to the number of randvar-value tests in C plus one (for A).

There are two cases for grounding a relational feature that warrant mention:

(a) |{I (Aθθ ′) | θ ′ ∈ grsub(Aθ,Cθ) and Cθθ ′ holds in I }| = 1, for all θ ∈ grsub(L)

(b) |{I (Aθθ ′) | θ ′ ∈ grsub(Aθ,Cθ) and Cθθ ′ holds in I }| = 0, for all θ ∈ grsub(L)

The first case uses value to denote the identity function which returns I (Aθθ ′). For exam-
ple, if each student S has exactly one value for intelligence, then the relational feature
F{S}:∅,intelligence(S),value simply returns the value taken by the randvar
intelligence(S), which represents theintelligence of a studentS, in interpretation
I . The second case requires applying an aggregation function to the empty set. Some aggre-
gation functions (e.g., mode) are not defined on the empty set, and in this caseFL:C,A,α(θ, I )
returns the value unde f ined .

Example 1 Consider the following relational feature:

F{S}:grade(S,C)=low,difficulty(C),mode

where C is a logvar denoting courses and S is a logvar denoting students. This feature
calculates the mode of the difficulties for the courses where a student received a low grade.
If a student has taken no courses or received no low grades, then, as discussed above, mode
would return the value undefined.
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Definition 3 (Discrete dependency statement) A discrete dependency statement is of the
form G | Parents(G). G is the target atom that has a discrete range and whose arguments
are all logvars. Parents(G) is a set of discrete relational features, where for each FL:C,A,α ∈
Parents(G), L is a subset of the logvars in G. Each dependency statement has an associated
conditional probability distribution (CPD) which quantifies how the target atom depends on
its parent set.

Example 2 An example of a discrete dependency statement is:

intelligence(S) | F{S}:takes(S,C)=true,grade(S,C),mode

which states that a student’s intelligence depends on the mode of grades received across all
courses the student has taken. As each student can take a varying number of courses, an
aggregation function, such as mode in this example, is needed to combine the values from
the varying number of parents into a single value.

We are now ready to formally define an RDN:

Definition 4 (RDN) An RDN is a tuple (P, RV D, dep), whereP is a set of predicates, each
with a discrete range, RV D is a set of randvar declarations, and dep is a function that maps
each P ∈ P to a discrete dependency statement.

An RDN (P, RV D, dep) is a template for constructing propositional DNs. Given the
background knowledge and a set of randvar declarations RV D, an induced DN has a node
for each randvar Gθ ∈ Φ.

The parent set of a ground atom Gθ in a dependency network is defined as

Parents(Gθ) = ParentsA(Gθ) ∪ ParentsC (Gθ)

where

ParentsA(Gθ) = {
Aθθ ′ | ∃FL:C,A,α ∈ Parents(G) : θ ′ ∈ grsub((Cθ, Aθ))

}

ParentsC (Gθ) = ∪ {
Cθθ ′ | ∃FL:C,A,α ∈ Parents(G) : θ ′ ∈ grsub((Cθ, Aθ))

}
(5)

There is an arc between two ground atoms Gθ and G′θ , if G′θ ∈ Parents(Gθ). The CPDs
are shared across all randvars that originate from the same predicate.

The pseudo-loglikelihood of an RDN M for an interpretation I involves only the relevant
randvars and it is calculated as:

PLL(M; I ) =
∑

P∈P

∑

g∈gr(P)I

log [p(I (g) | I (Parents(g))]. (6)

Example 3 Consider the following simple RDN for a domain with the following randvar
declarations:

random(intelligence(S)) ← student(S)

random(takes(S,C)) ← student(S),course(C)

random(grade(S,C)) ← student(S),course(C)

random(difficulty(C)) ← course(C)

where each predicate has a discrete range and the following dependency statement:

grade(S,C)
F{S}:∅,intelligence(S),value,
F{C}:∅,difficulty(C),value
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Fig. 1 The DN induced by grounding the RDN specified in Example 3. The dashed arrows specify the
relevancy condition on grade/2

The dependency states that a student’s grade in a course depends on the student’s intelligence
and the difficulty of the course. Note that this statement says that all ways of instantiating
the logvars S and C have an identical probabilistic relationship with S’s intelligence and C’s
difficulty. Figure 1 shows an induced propositional DN for this RDN given the relevancy
condition on grade/2 specified in (4), and a domain with two students bob and ann, and
two courses math and bio (short for biology). The dashed arrows denote the relevancy
conditions for the grade/2 randvars.

Given that RDNs are templates for constructing DNs, they inherent the semantics of
DNs (Neville and Jensen 2007). Namely, a consistent RDN specifies a joint probability
distribution over the randvars of a relational data set. Similarly, a unique joint probability
distribution for an RDN can be obtained by grounding out the model to obtain a DN and then
running an ordered pseudo-Gibbs sampler on the DN. Again, this can be done regardless of
whether the model is consistent. The distribution of an inconsistent RDN is the stationary
distribution of an ordered pseudo-Gibbs sampler (if it exists) applied to the model.

Learning the structure of an RDN follows the same paradigm as in the propositional case:
the CPD for each predicate is learned in turn. Normally, this is done by learning a relational
probability tree for each predicate (Neville and Jensen 2007; Natarajan et al. 2012). Section 6
provides a more in-depth discussion of existing RDN structure learning algorithms.

3 Hybrid relational dependency networks

We now describe HRDNs, our proposed extension to RDNs for hybrid domains. First, we
describe how to incorporate continuous variables. Second, we describe how to represent the
CPDs. Third, we briefly describe how to perform inference in HRDNs.

3.1 Representation

It is relatively natural to extend RDNs to incorporate continuous random variables. It requires
modifying the definitions presented in Sect. 2.2.

First, to introduce continuous variables, it suffices to declare the range of a predicate to
be an interval of the real numbers. Each continuous randvar associated with such a predicate
can then take on any value from this interval. For example, we could define a predicate
numHours/1 with the following random variable declaration:

random(numHours(C)) ← course(C)

that represents the number of hours needed to study for a course C. The range of this predicate
can be the following interval:
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range(numHours(C)) = [20.0,180.0]
Second, we need to modify the definition of a relational feature to account for the fact that

both atoms and aggregation functions can have continuous ranges.

Definition 5 (Numeric relational feature) A numeric relational feature has the same form,
FL:C,A,α , as a discrete relational feature. In contrast to a discrete relational feature, one or
both of A and α in a numeric relational feature must have a continuous range.

Example 4 Consider the following numeric relational feature:

F{S}:takes(S,C)=true,numHours(C),average

This feature computes the average number of hours a student spends studying for all taken
classes.

Third, we need to extend the definition of a dependency statement to incorporate numeric
relational features.

Definition 6 (Hybrid dependency statement) A hybrid dependency statement is of the form
G | Parents(G) where G’s range may be discrete or continuous and Parents(G) is a set
of discrete and/or numeric relational features. Each hybrid dependency statement has an
associated CPD.

Note that the type of a CPD for each hybrid dependency is determined according toG’s range:
for a discrete range it is a probability mass function, and for a continuous range it is a density
function.

Now we are ready to formally define an HRDN:

Definition 7 (HRDN) An HRDN is a tuple (P, RV D, dep), where P is a set of predicates,
whose ranges may be discrete or continuous, RV D is a set of randvar declarations and dep
is a function mapping each P ∈ P to a hybrid dependency statement.

Analogous to an RDN, an HRDN can be viewed as a template for constructing a hybrid
dependency network in the following way. The set of predicates P in an HRDN is split into
the set of predicates with discrete range PD and the set of predicates with continuous range
PC . Given a set of random variable declarations RV D for all predicates in P and a set of
constants, the set of randvars is Φ = ΦD

⋃
ΦC where ΦD denotes all randvars with discrete

ranges andΦC denotes all randvars with continuous ranges. The induced hybrid DNwill have
a node for each randvar in Φ and the parent set of a node is determined in the same manner
as described previously for discrete DNs. Each discrete randvar of a predicate Pd ∈ PD will
obtain its own copy of the discrete CPD associated with Pd and each continuous randvar of
a predicate Pc ∈ PC will obtain its own copy of the continuous CPD associated with Pc.

A consistent HRDN specifies the joint distribution over the randvars in its corresponding
hybrid dependency network. In parallel with the claims of Neville and Jensen (2007), there
is a direct correspondence between consistent HRDNs and hybrid Markov logic networks
(HMLN) in that the set of distributions that can be encoded by a consistent HRDN is equal to
the set of positive distributions that can be encoded with an HMLNwith the same adjacencies
provided they use the same aggregate functions. If an HRDN induces a hybrid DN that does
not contain cycles, then its semantics corresponds to those of a hybrid Bayesian network. Our
work primarily considers inconsistent HRDNs. In this case, if there is a stationary distribution
of an ordered pseudo-Gibbs sampler applied to an HRDNmodel, we refer to this distribution
as the one represented by the model.

123



Mach Learn (2015) 100:217–254 225

Fig. 2 The ground HRDN specified in Example 5. Squares represent randvars with a discrete range, and ovals
represent randvars with a continuous range. The dashed arrows specify the relevancy condition on grade/2

The pseudo-loglikelihood of an HRDN is computed as follows:

PLL(M; I )=
∑

Pd∈PD

∑

g∈gr(Pd )I

log[p(I (g) | I (Parents(g)))]

+
∑

Pc∈PC

∑

g∈gr(Pc)I
log[p(I (g) | I (Parents(g)))]. (7)

where the first summation goes over the predicates with a discrete range, and the second goes
over the predicates with a continuous range.

Example 5 To illustrate an HRDN, we could extend Example 3 with the numHours/1
predicate and add the following hybrid dependency statement:

numHours(C) | F{C}:∅,difficulty(C),value

which states that the number of hours spent studying for a class depends on its difficulty.
Figure 2 shows the ground hybrid DN for Example 5. Squares denote randvars with a discrete
range and ovals denote randvars with a continuous range.

3.2 Local distributions

Each dependency statement G | Parents(G) has an associated CPD. The type of model used
for a CPD depends on both the range of the target atom G and whether Parents(G) contains
discrete or numeric features.

In thiswork,we use a parametric approach to density estimation and focus only on variants
of Gaussian distributions to model continuous variables. Specifically, we use the following
models:

Multinomial If G has a discrete range and its parent set is empty, the CPD is modeled by
a multinomial distribution.
Gaussian If G has a continuous range and its parent set is empty, the CPD is modeled by
a Gaussian distribution.
Logistic Regression (LR) This CPD is used when the target atom has a discrete range
as it facilitates incorporating both discrete and continuous parents (Bishop 1995). Given
range(G) = {y1, y2, . . . , ym}, the conditional distribution for the first (m−1) values for
a specific grounding Gθ is:
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p(Gθ = yk | Parents(Gθ)) =
exp

(
wk,0 + ∑

F∈Parents(G) wk,F · F(θ)
)

1 + ∑m−1
j=1 exp

(
w j,0 + ∑

F∈Parents(G) w j,F · F(θ)
)

The distribution for the mth value is:

p(Gθ = ym | Parents(Gθ)) = 1

1 + ∑m−1
j=1 exp

(
w j,0 + ∑

F∈Parents(G) w j,F · F(θ)
)

(8)
In both equations, F is a relational feature, w j,F are the weights associated with F for
value y j , and w j,0 is y j ’s bias term.
Linear Gaussian (LG) A linear Gaussian CPD is used when G’s range is continuous and
all the features in the parent set are numeric (Lauritzen 1992; Koller et al. 1999). An
LG is a Gaussian distribution that models μ as a linear combination of the values of the
features in the parent set, but assumes a fixed variance σ 2. The distribution is given as:

p(Gθ | Parents(Gθ)) = N

⎛

⎝w0 +
∑

F∈Parents(G)

wF · F(θ), σ 2
G

⎞

⎠ (9)

where F is a numeric feature and wF is the weight associated with F .
Conditional Linear Gaussian (CLG) A conditional linear Gaussian (CLG) is used if G’s
range is continuous and its parents set contains a mix of discrete and numeric features.
There is a separate linear Gaussian model for every instantiation of the discrete parents.
More formally, consider partitioning the parent set of a predicate into the discrete features,
Fdiscrete, and the numeric features, Fcontinuous and let D be the Cartesian product of
ranges of all features in Fdiscrete. Then, the CPD consists of one LG model for each
d ∈ D:

p(Gθ | Fcontinuous, d) = N

⎛

⎝w0d +
∑

F∈Fcontinuous

wFd · F(θ), σ 2
d

⎞

⎠ (10)

Note that because there is a separate LG for each d , each one has an associated variance
σ 2
d . A conditional Gaussian is a special case of a CLGwhere the parent set only contains

discrete features. Here, a separate Gaussian (mean and variance) is learned for each
possible configuration of the parents.

As in the discrete case, it is possible that a feature does not have any groundings. If this
occurs and the aggregation function of the feature is not defined on the empty set, then we
again return the value undefined.

3.3 Inference

Similar to RDNs, inference in HRDNs can be performed by using an ordered pseudo-Gibbs
sampler. The difference lies in the fact that HRDNs contain both conditional density functions
and probability distributions. Given an HRDN, a set of constants for each type, and possibly
a set of relevance conditions, inference is performed as follows.

First, the model is grounded to create the corresponding propositional hybrid dependency
network. Second, each randvar gets its own copy of a CPD associated to its predicate. Third,
an ordering over the atoms is determined based on the relevance conditions, if specified.
This ordering has to ensure that when performing sampling for an atom A we first sample
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the values of the atoms in l of the relevance condition A ⇔ l. For example, consider the
relevance condition (4). In each Gibbs sweep, before we sample values for grade/2 we
make sure that the values for takes/2 are sampled.

Finally, in each Gibbs sweep we visit each ground atom in order and resample its value
according to its probability distribution or density function. A randvar is assigned a value
from its range or obtains the value not_relevant if there exists a relevance condition that is
satisfied in the sweep. Each sweep results in an interpretation I and a sample corresponds to
only the relevant randvars in I .

4 Structure learning

In this section we present our algorithm for learning the structure of an HRDN. This requires
learning a dependency statement and CPD for each predicate in the domain. It is possible to
use a decomposable score function to evaluate candidate structures. Thus the problem can
be tackled by independently learning a locally optimal CPD for each predicate. Therefore,
we refer to our approach as the Learner of Local Models (LLM). When learning the CPD for
each predicate, we define a space of candidate features and then greedily select those that
improve the score.

Next, we will describe in more detail the key elements of our algorithm, which are (1) its
high-level control structure, (2) how to learn a CPD for a single predicate, and (3) how to
score the candidate CPDs.

4.1 High-level control structure

Algorithm 1 outlines LLM and it receives as input a set of predicates P , a set of training
interpretations D, and a set of validation interpretations V . LLM assumes fully-observed
data. At a high level, the algorithm is quite simple. For each predicate P ∈ P , it invokes
the LearnOneModel function to learn a local distribution that models P using P . By using a
decomposable score function, such as pseudo-loglikelihood, the global score canbeoptimized
by independently finding the best local distribution for each predicate.2 The final model M
is obtained by conjoining all learned local distributions.

Note that this algorithm has the same high-level control structure as existing approaches
for learning RDNs. There are two important differences with existing approaches. The first is
that the data may contain continuous variables. The second is that, in order to accommodate
dependencies on continuous variables, the local distributions are represented via a logistic
regression or a (conditional) linear Gaussian as opposed to a relational probability tree.

Next, we describe in detail how to learn and evaluate local distributions.

Algorithm 1: LLM(Predicates P , Training data D, Validation data V )
M = {}
for all P ∈ P do
CPDP = LearnOneModel(P,P, D, V )
M = M ∪ {(P,CPDP)}

end for
return: (P, M)

2 Note that because we use greedy search the learned structure is a local and not a global maximum.
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4.2 Learning local distributions

Each learned CPD, regardless of its form, in an HRDN is parameterized by a set of features.
Learning the structure of the CPD requires determining which features should appear in the
parent set. This can be posed as the problem of searching through the space of candidate
features. We adopt a greedy approach that selects one feature at a time to add to the parent
set until no inclusion improves the score. Thus, in each iteration, the central procedure is
finding the single best feature and adding it to the parent set.

We construct candidate features in the followingway. First, let H = P(V1, . . . ,Vn), where
each Vi is a unique logvar, and let L = {V1, . . . ,Vn}. Next, we construct all A such that A
is different from H. Then, given a user-defined parameter N , for each A all conjunctions of
k ≤ N randvar-value tests C = {(G1 = v1), . . . , (Gk = vk)} are exhaustively enumerated
such that (1) all atoms Gi have a discrete range, (2) no atom Gi is identical to H or A,
(3) the set Q = {H,G1, . . . ,Gk, A} is connected.3 These restrictions ensure that the set of
candidate features is finite. For each constructed C and A one candidate feature FL:C,A,α for
each aggregation function α applicable to range(A) is generated. We consider the following
aggregation functions:

– If no aggregation is needed, we use value,
– If range(A) is discrete and not {true, f alse}, we use mode,
– If range(A) is discrete and {true, f alse}, we use proportion and exist ,
– If range(A) is continuous, we use average, maximum, and minimum.

The aggregation function proportion computes the proportionof a feature’s possible ground-
ings that are true. The other functions take on their traditional meanings.

Algorithm2 outlines our procedure for learning the dependency for a predicateP. As input,
it receives the target predicate P, the full set of predicates P for the domain, a training set D,
and a validation set V . First, the algorithm starts by constructing the set of candidate features
for P. Second, it repeatedly iterates through the set of candidate features and evaluates the
utility of adding each feature to the parent set. Each feature addition is followed by learning
the CPD on the training data D and then scoring it on the validation data V . In each iteration,
the single best feature is added to the parent set. If no feature improves the score, the procedure
terminates. Note that the form of the CPD depends on both P and the features in the parent
set. If P’s range is discrete, then the CPD is represented via logistic regression. If P’s range
is continuous, we use linear Gaussians if the parents only contain numeric features and
conditional linear Gaussians when the parent set contains both numeric and discrete features.

The two following subsections explain howwe estimate the parameters of the CPDs using
the training data and how we evaluate the local models.

4.3 Estimating the parameters for candidate CPDs

Next, we briefly describe how to estimate the parameters for the CPDs for the different types
of dependency statements that may appear in a learned HRDN.

Multinomial The maximum likelihood parameters of the multinomial are learned from
the data.
Gaussian The maximum likelihood estimates of the Gaussian’s mean and the variance
are learned from the data.

3 Here, we mean connected in the sense that the graph (Q, E) is connected with E = {{u, v} | u, v ∈
Q ∧ u and v share variables}.
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Algorithm 2: LearnOneModel(Target Predicate P, All Predicates P , Training Data D, Vali-
dation Data V )

Parents(P) = ∅
CPDP = learnCPD(Parents(P), D)
FS = GenerateCandidateFeatures(P, P)
repeat
Fbest = null
C PDbest = CPDP

for F in FS do
CPDtemp =learnCPD(Parents(P) ∪ {F}, D)
if score(CPDtemp, V ) > score(CPDbest, V ) then
CPDbest = CPDtemp
Fbest = F

end if
end for

if Fbest �= null then
Parents(P) = Parents(P) ∪ {Fbest }
CPDP = CPDbest
FS = FS \ {Fbest }

end if
until Fbest = null
return: CPDP

Logistic regression Parameter estimation requires learning the weight vectors for the
logistic regression model. We follow the standard approach and take the (partial) deriva-
tive of the conditional loglikelihood of the data and perform gradient ascent to estimate
the weights (Mitchell 1997).
Linear Gaussian Parameter learning requires estimating the weight vector for the linear
regression model. This can be done via standard techniques for training a linear regressor
and we use ridge regression (Bishop 1995). We estimate the variance by computing
the expected value of the squared difference between the actual value and the model’s
predicted value.
Conditional linear Gaussian In CLGs, each configuration of the discrete parents has an
associated LGmodel. The parameters for each LGmodel are learned as described above.

4.4 Evaluating candidate models

Traditionally, a candidatemodel is evaluated using a score function that trades off themodel’s
fit to the data versus some penalty term based on the model’s complexity to avoid overfitting.
For a candidatemodelM ,weuse the following score function,which is basedon theMinimum
Description Length (MDL) (Schwarz 1978):

MDL(M, D) = PLL(M, D) − Penalty(M, D) (11)

where PLL(M, D) is computed using Eq. (6) and Penalty(M, D) is the following penalty
term:

Penalty(M, D) = 1

2

∑

I∈D

∑

P∈P
log2(|gr(P)|I ) · BP · K
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where |gr(P)|I is the number of relevant randvars of predicate P in interpretation I , BP is the
number of free parameters in P’s CPD and K is the size of P’s CPD.4 Next, we will explain
in more detail how BP and K are calculated.

When the CPD for P is represented by a logistic regression model (see Eq. 8), the number
of free parameters is:

BP = (|range(P)| − 1) · (1 + |Parents(P)|)
where (1 + |Parents(P)|) is the number of weights that must be learned to parameterize
the model (i.e., one for each feature plus the intercept). For continuous CPDs, this is slightly
more involved to compute. For an LG, the number of free parameters is:

BP = 1 + (1 + |Parents(P)|)
where the first 1 is for the variance σ 2 and (1+ |Parents(P)|) is the number of weights that
must be learned to parameterize the model (i.e., one for each feature in the parent set plus
the intercept). Recall that in a CLG, one LG model is learned for each possible instantiation
of the discrete parents. Thus the number of free parameters for a CLG is:

BP = d · (1 + (1 + |ParentsC (P)|))
where d is the number of elements in the Cartesian product of the ranges of the discrete
parents, ParentsC (P) denotes only numeric features in the parent set of P and (1 + (1 +
|ParentsC (P)|)) is the number of parameters needed to model each LG.

The size K of P’s CPD is the sum of the feature lengths in the parent set:

K =
∑

F∈Parents(P)

|FL:C,A,α| (12)

where |FL:C,A,α| = |C | + 1 is the length of a feature.

5 Experiments

This section empirically evaluates ourHRDNstructure learning algorithmLLM. Specifically,
we want to answer the following questions:

1. How does varying the amount of training data affect the quality of the learned model and
the run time of the learning algorithm?

2. Do we learn more accurate models by learning a hybrid model (i.e., explicitly modeling
continuous variables) or by discretizing all continuous variables prior to learning?

3. How does our approach compare to MLN (Richardson and Domingos 2006) structure
learning?

All our code, data and models are publicly available.5 We first describe the data sets we will
use and then explain the experimental setup. Finally, we present and discuss the results.

5.1 Data sets

We use one synthetic and one real-world data set to answer these questions.

4 Because we assume that all variables are observed, we do not need to run Gibbs sampling to compute the
PLL.
5 http://dtai.cs.kuleuven.be/ml/systems/llm.
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Table 1 Data set characteristics for the synthetic data when varying the number of interpretations used for
learning

#Interpretations Average Sum of
#Randvars

1 19,627

2 39,308

4 79,027

8 157,959

16 315,334

#Interpretations is the number of training interpretations. Average Sum #Randvars is the number of randvars
summed across all training interpretations averaged over the ten generated data sets. Each interpretation has
100 students, 50 courses and 50 professors objects

Table 2 Data set characteristics for the synthetic data when varying the domain size of each object type in
the training interpretation

#Students #Courses #Prof essors Average
#Randvars

100 50 50 19,548

200 75 75 66,577

400 100 100 226,679

800 125 125 796,328

#Students, #Courses, and #Prof essors report the number of each type of object. Average #Randvars is
the number of randvars averaged over the ten data sets generated for each domain size

Synthetic university data We used a modified version of the well-known university
model (Getoor et al. 2001) to generate synthetic data. We made the following alterations.
First, we switched the range of intelligence/1 from discrete to continuous. Second,
we added two predicates with continuous ranges: numHours/1, which is the estimated
number of hours a student needs to study for a course, and ability/1, which is the ability
of a professor. Finally, we added a Boolean predicate friend/2, which denotes whether
two students are friends. Appendix 1 contains a complete description of the model.

We generate synthetic data in two ways. First, we fix the domain size of each type within
an interpretation and vary the number of training interpretations. We learn models by using
one, two, four, eight and 16 interpretations. We use one validation and one test interpretation.
Second, we fix the number of training and validation interpretations to one and vary the
domain size of each object. The learned models in this setup are evaluated on a test interpre-
tation consisting of 800 students, 125 courses and 125 professors. Tables 1 and 2 show the
characteristics of the domains for the first and second synthetic setup, respectively.

For each experimental condition, we repeat the following process ten times. We gener-
ate the appropriate number of interpretations, where each interpretation is constructed by
performing 2000 iterations of the ordered pseudo-Gibbs sampling (see Sect. 3.3) using the
handcrafted model and the specified number of constants.

For each generated data set, we also create a corresponding discretized version by binning
each continuous randvar into a number of equal-size intervals. We used 2, 4, 6 and 8 bins.

Real-world PKDD’99 financial data set Our real-world domain is the financial data set
from the PKDD’99Discovery Challenge (Berka 1999). It consists of services one bank offers
its clients such as loans, accounts, and credit cards among others. In the original data, the
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Table 3 Characteristics of the PKDD’99 financial data set

#Account #Loan #Client #District #Randvars

4,490 680 5,358 77 3,157,657

#Account , #Loan, #Client , and #District report the number of objects of each type and #Randvars is the
number of randvars in the data set

transaction table contains more than one million transactions. Therefore, we introduced
several predicates (e.g., average of monthly withdrawals for an account) to summarize the
information contained in this table. This results in 16 predicates6 about four types of objects:
clients, accounts, loans and districts. Ten predicates have a continuous range and six
have a discrete range.

We consider account to be the central object type in the PKDD’99 financial data set.
The original data set consists of 4500 accounts, but we omit ten accounts that have missing
data. We then split the data associated with these accounts into tenfolds. To avoid leakage of
information, all information about clients, loans and districts related to one account appear
in the same fold. We used sixfolds for training, threefolds for validation and one for testing.
Table 3 reports the characteristics of this data set.

Again, we create a discretized version of the data by binning each continuous randvar into
a number of equal-size intervals and used 2, 4, 6 and 8 bins.

5.2 Methodology

We compare the following four learners on all experiments:

LLM-H This corresponds to learning a model using our LLM algorithm on the data
containing both continuous and discrete variables.
LLM-DThis corresponds to learning amodel using ourLLMalgorithmon the discretized
data. Thus each learned local distribution is modeled using a logistic regression CPD.
LSM This corresponds to learning a model using the publicly available implementation
of LSM (Kok and Domingos 2010) on the discretized data. LSM is the state-of-the-art
Markov logic network structure learning algorithm.
IndependentThis learner constructs a model on the hybrid data such that all randvars are
independent. That is, itmodels the joint distribution as a product ofmarginal distributions.

On the experiments involving the PKDD’99 financial data set, we include an additional
baseline: a handcrafted model. We built a local model to predict each predicate by a set of
handcrafted non-relational features. These features are used to predict a property of an object
by means of some other properties of that object. The features can be found in Appendix 4.
For predicates with a discrete range, we used logistic regression. For predicates with a con-
tinuous range, we used both linear regression and MP5 (a regression tree) as implemented
in Weka (Hall et al. 2009).

Experimental details LLM is implemented as a combination of Java and Prolog. Java is
used for performing the learning and Prolog is used to compute the value of a feature. When
generating features,we set the length of the features to be atmost N = 3.Usually, in relational
domains, only a small fraction of the Boolean atoms is true (e.g., the number of people who
are friends is quite sparse compared to the number of possible friendships). Therefore, for

6 Table 11 in “Appendix 2” describes the predicates.
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efficiency reasons, we subsample the false Boolean atoms during learning (Natarajan et al.
2012) to achieve a 1:1 ratio of true to false groundings in all experiments.

For LSM, we contacted the authors in order to know what the most important parameters
were to tune. Then, we tried several parameter combinations, and used the validation data to
select appropriate ones for each data set.

Evaluation metrics We evaluate the quality of the learned models using several metrics.
First, to measure the quality of the probability estimates, we report the weighted pseudo-
loglikelihood (WPLL) (Kok and Domingos 2005). This corresponds to calculating the PLL
of an interpretation as the sumofPLLs for each predicate divided by the number of groundings
of that predicate in the interpretation.

Second, to measure the predictive performance, we report the area under the ROC curve
(AUC-ROC) for discrete predicates and the normalized root-mean-square error (NRMSE)
for continuous predicates. Because we have multi-class categorical variables in our domains,
we calculate the multi-class AUC-ROC (Domingos and Provost 2000), which we denote as
AUCtotal . The NRMSE for a predicate ranges from zero to one and is calculated by dividing
RMSE by the predicate’s range.

Additionally, since we know the model structure for the synthetic data, we compare how
closely the learned model reflects the handcrafted structure using the following edit distance.
For each predicate, we compare the true parent set to the learned parent set. For each feature
in the true parent set, we find its closest feature in the learned parent set according to the fol-
lowing distance metric. The distance Δ between two features, FL1:C1,A1,α1 and FL2:C2,A2,α2 ,
is calculated as:

Δ(F1,F2) = |C1\C2| + |C2\C1| + δA1,A2 + δα1,α2

where δA1,A2 equals zero if the two atoms A1 and A2 originate from the same predicate and
their logvars are equivalent, otherwise it equals one. Similarly, δα1,α2 equals zero if α1 and
α2 represent the same aggregation function, otherwise it equals one. When the best match is
found, both the true and the learned feature are excluded from further comparisons, and the
edit distance is incremented by the distance between them. Furthermore, the final distance is
incremented by the length of each feature that must be added or removed from the learned
dependency parent set.

We use a one-tailed paired t test to assess the significance of the results obtained through
ten independent runs for the synthetic experimental setup and tenfolds for the real-world
data set. The null hypothesis states that there is no difference between two approaches and
we reject it when p<0.01. For all metrics, we report the metric itself along with its standard
deviation.

5.3 Results and discussion

We now present experimental results for the synthetic and real-world data sets.
Results on synthetic data Table 4 shows how the WPLL of each approach varies as a

function of the number of training interpretations. Learning from the hybrid data results in a
significantly more accurate learned model than learning from the discretized data in all cases
except for one in which we have one training interpretation and six discretizing bins. When
using the same number of bins for discretization, LLM-D learns more accurate models than
LSM on all settings. Note that LSM ran out of memory on all runs when training on eight
and 16 interpretations. Finally, all learning approaches always outperform the no-learning
baseline.
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Table 4 The WPLL on the synthetic data as a function of the number of training interpretations

Nr. training interpretations

1 2 4 8 16

LLM-H −18.22 ± 0.5 −18.16 ± 0.5 −17.89 ± 0.2 −17.87 ± 0.2 −17.83 ± 0.3

LLM-D(#bins=2) −21.33 ± 0.3∗ −21.10 ± 0.3∗ −21.06 ± 0.3∗ −21.06 ± 0.3∗ −21.05 ± 0.2∗
LLM-D(#bins=4) −19.53 ± 0.6∗ −19.27 ± 0.3∗ −19.20 ± 0.3∗ −19.12 ± 0.3∗ −19.04 ± 0.3∗
LLM-D(#bins=6) −19.34 ± 0.9 −18.77 ± 0.4∗ −18.56 ± 0.3∗ −18.55 ± 0.3∗ −18.52 ± 0.3∗
LLM-D(#bins=8) −20.03 ± 1.0∗ −19.11 ± 0.8∗ −18.64 ± 0.5∗ −18.62 ± 0.5∗ −18.30 ± 0.3∗
LSM(#bins=2) −23.33 ± 0.2∗† −23.28 ± 0.2∗† −22.86 ± 0.8∗† OoM OoM

LSM(#bins=4) −23.00 ± 0.3∗† −22.86 ± 0.4∗† −21.65 ± 1.3∗† OoM OoM

LSM(#bins=6) −22.79 ± 0.4∗† −22.67 ± 0.4∗† −22.00 ± 1.3∗† OoM OoM

LSM(#bins=8) −22.62 ± 0.3∗† −22.62 ± 0.9∗† −21.27 ± 1.4∗† OoM OoM

Independent −23.68 ± 0.4∗ −23.63 ± 0.4∗ −23.53 ± 0.4∗ −23.54 ± 0.4∗ −23.52 ± 0.4∗

The best WPLLs are in bold, an asterisk (*) denotes significantly worse results for p<0.01 compared to
LLM-H. A dagger (†) denotes when LSM performs significantly worse than LLM-D for p<0.01 on the data
discretized with the same number of bins. OoM denotes out of memory

Table 5 The run times in minutes on the synthetic data as a function of the number of training interpretations

Nr. training interpretations

1 2 4 8 16

LLM-H 15.58 ± 1.8 18.72 ± 2.3 28.53 ± 2.7 48.16 ± 3.2 76.51 ± 3.51

LLM-D(#bins=2) 21.82 ± 4.3 30.48 ± 5.5 53.03 ± 13.7 85.74 ± 10.5 140.62 ± 19.2

LLM-D(#bins=4) 28.71 ± 5.7 40.24 ± 7.3 70.54 ± 17.5 109.80 ± 21.0 162.13 ± 41.0

LLM-D(#bins=6) 35.69 ± 7.1 49.84 ± 9.6 83.34 ± 24.0 135.73 ± 13.1 201.40 ± 139.2

LLM-D(#bins=8) 42.70 ± 8.5 57.63 ± 14.4 98.33 ± 29.1 166.11 ± 38.4 255.90 ± 46.7

LSM(#bins=2) 3.73 ± 0.1 6.70 ± 0.0 7.48 ± 0.1 OoM OoM

LSM(#bins=4) 3.44 ± 0.1 6.22 ± 0.1 8.49 ± 0.0 OoM OoM

LSM(#bins=6) 3.22 ± 0.0 6.23 ± 0.0 12.65 ± 0.0 OoM OoM

LSM(#bins=8) 4.34 ± 0.1 6.27 ± 0.1 13.33 ± 0.1 OoM OoM

The best run times are in bold and OoM denotes out of memory

Table 5 presents the run times for all algorithms as a function of increasing the number
of training interpretations. LSM is the fastest learner, but it produces lower-quality models.
For all approaches, the run time scales linearly with the number of interpretations. Learning
an HRDN is always faster than learning an RDN. When discretizing the data, the run time
is influenced by the number of bins used: the more bins there are, the slower the discrete
learner is. This occurs because adding more bins increases the size of the search space.

Finally, Fig. 3 shows how the edit distance varies as a function of the number of training
interpretations. As expected, the edit distance decreases as more training data are used.

Table 6 shows the WPLLs of all learners as a function of increasing the domain size for
each object. To encapsulate the effect of domain size changes in a single number, we use the
number of randvars in an interpretation. Again, we see that all the learners outperform the
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Fig. 3 The effect of the number of training interpretations on the average edit distance between the handcrafted
HRDN model and the hybrid model learned with LLM-H

Table 6 The WPLL on the synthetic data as a function of the domain size

Domain size (#students × #courses × #professors)

100×50×450 200×75×75 400×100×100 800×125×125

LLM-H −18.11 ± 0.3 −17.84 ± 0.2 −17.78 ± 0.2 −17.72 ± 0.3

LLM-D(#bins=2) −20.56 ± 0.5∗ −20.47 ± 0.2∗ −20.42 ± 0.2∗ −20.54 ± 0.2∗
LLM-D(#bins=4) −18.95 ± 0.8∗ −18.50 ± 0.2∗ −18.48 ± 0.2∗ −18.60 ± 0.3∗
LLM-D(#bins=6) −18.62 ± 0.9∗ −18.22 ± 0.6 −17.86 ± 0.2 −17.87 ± 0.2

LLM-D(#bins=8) −19.39 ± 0.8∗ −18.17 ± 0.6 −18.05 ± 0.6 −17.86 ± 0.4

LSM(#bins=2) −24.45 ± 0.2∗† −22.58 ± 0.1∗† −22.53 ± 0.2∗† −22.72 ± 0.2∗†
LSM(#bins=4) −23.00 ± 0.3∗† −23.15 ± 0.5∗† −22.20 ± 0.2∗† −21.83 ± 0.2∗†
LSM(#bins=6) −22.79 ± 0.4∗† −25.55 ± 0.3∗† −21.83 ± 0.2∗† −21.92 ± 0.2∗†
LSM(#bins=8) −22.62 ± 0.3∗† −25.64 ± 0.1∗† −21.71 ± 0.2∗† −21.79 ± 0.2∗†
Independent −23.55 ± 0.1∗ −23.48 ± 0.1∗ −23.46 ± 0.1∗ −23.42 ± 0.1∗

The best WPLLs are in bold, an asterisk (*) denotes significantly worse results for p <0.01 compared to
LLM-H. A dagger (†) denotes when LSM performs significantly worse than LLM-D for p <0.01 on the data
discretized with the same number of bins

independent model. LLM-H always learns significantly more accurate models than LSM.
LLM-H learns a significantly more accurate model than LLM-D except when discretizing
the data into 6 or 8 bins on the data sets with 200, 400 and 800 students.

Table 7 shows the run time of all approaches as a function of increasing domain size.
Similar to the previous setup, LSM exhibits better run times than either LLM-H or LLM-D,
but it produces lower-quality models. As expected, both LLM-H and LLM-D run time varies
quadratically with the increase in domain size. LSM’s run time seems to vary linearly, which
probably occurs due to its random-walk style search for patterns, which does not necessarily
examine all the variables in the training database. When learning (H)RDNs, LLM-H is faster
than LLM-D. Again, in general, increasing the number of bins increases the training time.

Figure 4 shows that the edit distance between LLM-H’s learnedmodel and the handcrafted
model decreases as the number of randvars in the training interpretation increases. More
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Table 7 The run times in minutes on the synthetic data as a function of the domain size for all the learners

Domain size (#students × #courses × #professors)

100×50×50 200×75×75 400×100×100 800×125×125

LLM-H 15.58 ± 1.8 54.61 ± 3.2 171.82 ± 21.5 2171.05 ± 306.3

LLM-D(#bins=2) 21.82 ± 4.3 98.68 ± 5.0 270.81 ± 38.7 2164.11 ± 154.6

LLM-D(#bins=4) 28.71 ± 5.7 128.51 ± 8.6 341.76 ± 40.7 3026.22 ± 317.4

LLM-D(#bins=6) 35.69 ± 7.1 156.98 ± 8.1 476.16 ± 50.8 2923.45 ± 150.7

LLM-D(#bins=8) 42.71 ± 8.5 182.18 ± 5.8 700.07 ± 80.8 4119.31 ± 387.3

LSM(#bins=2) 3.73 ± 0.1 6.13 ± 0.1 11.85 ± 0.1 18.34 ± 0.3

LSM(#bins=4) 3.44 ± 0.1 5.18 ± 0.1 10.32 ± 0.1 19.72 ± 0.2

LSM(#bins=6) 3.22 ± 0.0 5.74 ± 0.1 11.80 ± 0.1 19.68 ± 0.2

LSM(#bins=8) 4.34 ± 0.0 5.71 ± 0.1 11.33 ± 0.1 20.68 ± 0.2

The best run times are in bold
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Fig. 4 The effect of increasing the domain size of each object type on the average edit distance between the
handcrafted HRDN model and the hybrid model learned with LLM-H. We summarize the effect of changing
the domain sizes by showing the number of randvars in the training interpretation

(observed) random variables equates to more training data, and, as expected, more data
allows us to learn more accurate models.

In both synthetic setups, we noticed that in the learnedmodel difficulty(C) depends
on nrhours(C). This dependency is not encoded explicitly in the handcrafted model.
However, nrhours(C) does depend on difficulty(C) in the original model. In both
cases, this contributes to the edit distance.

More detailed results for both synthetic setups can be found in Appendix 3.
Results on the PKDD’99 financial data set Figure 5 shows the WPLL for all approaches

on the PKDD’99 financial data set as a function of the number of bins used for discretization.
For the handcrafted models, we denote the combination of logistic regression and linear
regression as LR+LinR, and the combination of logistic regression and MP5 regression trees
with LR+MP5. In the figure, the lines for LLM-H, LR+LinR, LR+MP5 and the independent
model are straight because these approaches operate directly on the hybrid data and hence
do not perform discretization. We see a clear ranking between the approaches: LLM-H >

LR+LinR > LR+MP5 > LLM-D > LSM > independent.
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Fig. 5 The WPLL for each approach on the PKDD’99 financial data set as a function of the number of bins
used for discretization. Note that the results for LLM-H, LR+LinR, LR+MP5 and the independent model do
not depend on the number of bins used for discretization

Table 8 The performance of the two variants of the handcrafted models, LR+LinR and LR+MP5, compared
to LLM-H on the hybrid data for the PKDD’99 financial data set

Evaluation Predicate LR+LinR LR+MP5 LLM-H

AUCtotal clientDistrict/2 0.59 ± 0.02∗ 0.59 ± 0.02∗ 0.64 ± 0.02

gender/1 0.50 ± 0.01 0.50 ± 0.01 0.50 ± 0.01

hasAccount/2 0.50 ± 0.01∗ 0.50 ± 0.01∗ 0.56 ± 0.01

freq/1 0.86 ± 0.01 0.86 ± 0.01 0.82 ± 0.01∗
hasLoan/2 0.76 ± 0.01∗ 0.76 ± 0.01∗ 1.00 ± 0.01

loanStatus/1 0.79 ± 0.03 0.79 ± 0.03 0.66 ± 0.04∗

NRMSE clientAge/2 0.28 ± 0.03 0.28 ± 0.01 0.28 ± 0.02

avgSalary/1 0.13 ± 0.01∗ 0.11 ± 0.01 0.13 ± 0.02∗
ratUrbInhab/1 0.20 ± 0.01∗ 0.15 ± 0.00 0.20 ± 0.00∗
avgSumOfW/1 0.02 ± 0.00 0.03 ± 0.00∗ 0.02 ± 0.00

avgSumOfCred/1 0.02 ± 0.01 0.03 ± 0.00∗ 0.02 ± 0.00

stdOfW/1 0.05 ± 0.01 0.05 ± 0.00 0.05 ± 0.01

stdOfCred/1 0.05 ± 0.01 0.04 ± 0.01 0.05 ± 0.01

avgNrWith/1 0.12 ± 0.02∗ 0.10 ± 0.00 0.15 ± 0.01∗
loanAmount/1 0.15 ± 0.02 0.15 ± 0.01 0.16 ± 0.02

monthlyPayments/1 0.17 ± 0.02 0.17 ± 0.01 0.18 ± 0.02

LR+LinR uses logistic regression for discrete predicates and linear regression for continuous predicates, and
LR+MP5 uses logistic regression for discrete predicates and regression trees for continuous predicates. The
best results are in bold and an asterisk (*) denotes the result that is significantly worse (p <0.01) than the best
result

Table 8 shows the (multi-class) AUCs and NRMSE for LLM-H and the handcrafted
models. All three approaches tend to have similar results on most predicates. Note that the
handcrafted features used to propositionalize the data are all features that LLM-H is able to
learn automatically.

Table 9 reports the AUCtotal for LLM-H, LLM-D and LSM. Out of the six discrete
predicates, LLM-H has a higher AUCtotal on one predicate, the same on two and worse on
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Fig. 6 The run time of each approach on the PKDD’99 financial data set as a function of the number of bins
used for discretization. The y-axis (run time) is on a log scale. Note that LLM-H’s results do not depend on
the number of bins used for discretization

three compared to LLM-D. Compared to LSM, it wins on three predicates, loses on two and
draws on one.

Figure 6 shows the run times for this data set as a function of the number of bins used for
discretization. LLM-H exhibits better run times than both LLM-D and LSM. LSM is faster
than LLM-D except when discretizing the data into two bins.

When we inspected the models learned on the PKDD’99 financial data set, we found a
considerable number of bi-directional dependencies. Thismeans that our algorithmsucceeded
in learning a model that is mostly structurally consistent. For example, it learned that the
monthly payment amount for a loan depends on the loan amount, and vice versa. The same
holds for the average salary and the ratio of urban inhabitants in a district, the average
amount withdrawn from an account and the average amount credited to an account, the
average amount withdrawn from an account and the average number of withdrawals for an
account, among others.

More detailed results for the PKDD’99 financial data set can be found in Appendix 3.
Discussion Now we can revisit and answer the three experimental questions posed at the

beginning of this section. To address the first question, we used the synthetic data to explore
the scaling behavior of our algorithm. We found that as the amount of training data increases
both the accuracy of the learned models and their faithfulness to the ground truth model
slightly improve.

The second question revolves around whether it is better to learn from hybrid data or
discretized data. On all experiments, we have seen that learning from the hybrid data directly
consistently results in significantly more accurate learned models (according to WPLL) than
discretizing the data prior to learning. Finally, we wanted to compare our proposed learning
algorithm to the state-of-the-art MLN learner. The results show that on both hybrid and
discrete data LLM learns more accurate models than LSM.

6 Related work

On the propositional level, researchers have considered extending formalisms such as
Bayesian networks and dependency networks to model both discrete and continuous
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distributions. In terms of hybrid Bayesian networks, most of the work has focused on infer-
ence (Koller et al. 1999; Yuan andDruzdzel 2007;Murphy 1998;Moral et al. 2001; Lauritzen
and Jensen 2001). There have also been some initial attempts for parameter learning (Mur-
phy 1998) and structure learning (Romero et al. 2006). Cobb et al. (2007) provides a more
detailed overview of work on hybrid Bayesian networks.

There has been some work on structure learning for hybrid dependency networks. Dobra
(2009) has proposed bounded stohastic search for variable selection (structure learning)
for sparse genetic dependency networks that contain both discrete and continuous variables.
Meinshausen and Bühlmann (2006) use neighbourhood selection with the Lasso for structure
learning as a computationally attractive alternative to standard covariance selection methods
for multivariate normal distributions. Guo andGu (2011) use dependency networks for multi-
label classification where each CPD represents a probabilistic or non-probabilistic binary
classifier that can have both discrete and continuous predictors.

Our work represents a relational approach and builds off of two lines of research: struc-
ture learning for RDNs and hybrid relational probabilistic models. There are two existing
structure learning approaches for RDNs (Neville and Jensen 2007; Natarajan et al. 2012).
Both approaches perform structure learning by finding the best conditional distribution inde-
pendently for each predicate. They slightly differ in how they represent the CPDs. Neville
and Jensen (2007) learn a single relational probability tree (Neville et al. 2003) for each
predicate. Natarajan et al. (2012) represent individual conditional distributions as a weighted
sum of relational regression trees (Blockeel and De Raedt 1998), which are learned by a
stage-wise optimization procedure. However, these approaches do not explicitly model con-
tinuous distributions and instead require them to be discretized. In contrast, our approach
is able to directly encode dependencies between discrete and continuous random variables
without discretization. Doing so necessitates representing the CPDs with logistic regression
or conditional (linear) Gaussian model as opposed to a relational probability tree.

There are several formalisms that can represent hybrid relational domains including
Hybrid Markov Logic Networks (HMLNs) (Wang and Domingos 2008), Hybrid Problog
(HProblog) (Gutmann et al. 2011), Continuous Bayesian Logic Programs (CBLPs) (Kersting
and De Raedt 2001), LearningModulo Theories (LMT) (Teso et al. 2013) and Hybrid Proba-
bilistic Relational Models (HPRMs) (Narman et al. 2010). Additionally, formalisms such as
Relational ContinuousModels (RCMs) (Choi et al. 2010) and Gaussian Logic (Kuželka et al.
2011) canmodel domains that exclusively contain continuous variables. The latter formalism
also provides support for structure learning.Most of these formalisms focus on representation
and reasoning issues in hybrid relational domains. HMLNs, CBLPs and LMTs also provide
support for learning the parameters of a given model from data. Next, we provide a more
detailed comparison between our approach and HMLNs, HProblog and CBLPs.

Representationally, HMLNs, CBLPs and HRDNs all serve as template languages for con-
structing a different type of propositional graphical model. Hence, each formalism inherits
the strengths and weaknesses of the underlying formalism. In contrast, HProblog is a proba-
bilistic extension of Prolog. There are differences in how each formalism models continuous
variables. HRDNs, HProblog and CBLPs explicitly state the form of the distribution (e.g.,
a Gaussian) and its parameters (e.g., the mean and variance). In contrast, HMLNs express
numeric variables through a set of soft constraints with a Gaussian penalty for diverging
values. One notable difference between HRDNs and CBLPs is that CBLPs do not permit a
discrete variable to have a continuous parent, whereas this is possible in HRDNs.

In terms of reasoning, HMLNs and HRDNs use approximate inference. Currently,
HProblog only supports an exact inference procedure which involves partitioning the contin-
uous probabilistic facts into admissible intervals. Scaling HProblog to large domains would
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require the development of a suitable approximate inference algorithm. Inference in CBLPs
can be split in two parts: logical inference and probabilistic inference. The former computes
the support network for a query (i.e., a Bayesian network containing all relevant variables
for the query). The latter applies off-the-shelf Bayesian network inference methods to the
resulting support network.

There are significant differences in the level of support for learning in each formalism.
Out of the four formalisms, HRDNs are the only one that support structure learning in
hybrid domains. Like HRDNs, HMLNs and CBLPs have algorithms for parameter learning.
Currently, HProblog does not support parameter learning.

7 Conclusions and future work

This paper addressed the problem of learning models from structured, relational data that
contain both discrete and continuous variables. To the best of our knowledge, this is the first
attempt to perform structure learning in a hybrid SRL setting. We introduced Hybrid Rela-
tional DependencyNetworks (HRDNs), a novel extension of relational dependency networks
that accommodate continuous variables and proposed an algorithm that automatically learns
the structure of an HRDN from data. Empirically, we evaluated the benefit of incorporating
continuous variables in a learned model on one synthetic and one real-world data set by
considering two versions of each data set: one that contains both continuous and discrete
variables, and one where each continuous variable is discretized prior to learning. We com-
pared our proposed algorithm to two learners that work only on discrete data: a variant of
our algorithm and LSM, the state-of-the-art MLN structure learner. We found that learning
directly from the hybrid data resulted in more accurate learned models than learning from
the discretized data.

One interesting direction for future work is to explore the suitability of modeling other
continuous conditional distributions, next to the Gaussians considered in this paper. In princi-
ple, other density functions can be used given that we can calculate the value of the function at
a point and that we can sample a value for a variable given the assignment to its parents. How-
ever, it is unclear how easy this is in practice for complex distributions, and whether issues
could arise with sampling inconsistent HRDNs containing relational conditional dependen-
cies.Wewould also like to extend our learning algorithm such that it could cope with missing
data and model latent variables. Additionally, we would like to explore other penalty terms
in the objective function such as a L1 penalty that has been used for learning propositional
DNs (Dobra 2009; Meinshausen and Bühlmann 2006). Finally, we would like to evaluate
our approach on more real-world domains.
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Appendix1:Handcraftedmodel and learnedhybridmodels for the synthetic
data

In this Appendix we compare the handcrafted and learned hybrid models for the syn-
thetic data set. We present the learned dependencies for both setups: fixed domain size and
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increasing domain size. For the former we show the learned dependencies when training
on 16 interpretations, and for the latter we present the learned dependencies for the largest
domain size (800 students, 125 courses and 125 professors).

Predicate declarations

range(difficulty(C)) = {easy,med, hard}
range(satisfaction(S,C)) = {low,med, high}
range(grade(S,C)) = {low,med, high}
range(takes(S,C)) = {true, f alse}
range(teaches(P,C)) = {true, f alse}
range(friend(S,S1)) = {true, f alse}
range(nrhours(C)) = [20.0, 180.0]
range(intelligence(S)) = [50.0, 180.0]
range(ability(P)) = [20.0, 100.0]

Handcrafted model

Below is the model we used to generate the synthetic data.

difficulty(C)

satisfaction(S,C)
F{S,C}:∅,grade(S,C),value,
F{C}:teaches(P,C),abili t y(P),value

grade(S,C)
F{S}:∅,intelligence(S),value,
F{C}:∅,di f f iculty(C),value

takes(S,C)
F{S}:∅,intelligence(S),value,
F{C}:∅,di f f iculty(C),value

teaches(P,C)
F{P}:∅,abili t y(P),value,
F{C}:∅,di f f iculty(C),value

friend(S,S1) F{S,S1}:{takes(S,C),takes(S1,C)},∅,proportion

nrhours(C) F{C}:∅,di f f iculty(C),value

intelligence(S) F{S}:∅,grade(S,C),mode

ability(P)
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Table 10 Local distributions used for the handcrafted model

Predicate Local Distribution Parameters

difficulty/1 Multinomial (0.2, 0.4, 0.4)

satisfaction/2 Logistic Regression satisfaction(S,C)=low →(-1.28,-0.07,0.028)

satisfaction(S,C)=med→(0.5,-0.4,0.009)

grade/2 Logistic Regression grade(S,C)=low →(-1.77,-0.04,1.75)

grade(S,C)=med →(-2.18,0.003,0.75)

takes/2 Logistic Regression takes(S,C)=true →(0.4,0.009,-0.607)

teaches/2 Logistic Regression teaches(P,C)=true →(-0.089,-0.012,0.305)

friend/2 Logistic Regression friend(S,S1)=true →(-0.08,1.5)

nrhours/1 Conditional Gaussian difficulty(C)=easy → N(20,6)

difficulty(C)=med → N(50,5)

difficulty(C)=hard → N(80,6)

intelligence/1 Conditional Gaussian grade(S,C)=low → N(60,5)

grade(S,C)=med → N(90,7)

grade(S,C)=high → N(110,5)

ability/1 Gaussian N(70,10)

For reasons of reproducibility, we also provide the parameters for the dependencies for
our handcrafted model. We will not do this for the learned models as there the parameters are
of less interest. The parameters for the dependencies are given in Table 10. The probabilities
of multinomial values are to be read in the order given in the predicate declaration. For
the logistic regression of a dependency P | Parents(P), we use the notation P = k →
(wk,0, wk,F1 , . . . , wk,Fn ) where wk,0 represents the bias term, and wk,Fi represents the i th
feature’s weight. The order of the feature parameters follows the order of the features in the
dependencies. The parameters of conditional Gaussians are of the form d → N (μd , σd),
where d represents an instantiation of discrete parents, and N (μd , σd) gives the Gaussian
distribution for that instantiation.

Learned model for a fixed domain size (16 training interpretations)

difficulty(C) F{C}:∅,nrhours(C),value

satisfaction(S,C)

grade(S,C)
F{S}:∅,intelligence(S),value,
F{C}:∅,di f f iculty(C),value

takes(S,C)
F{S,C}:satis f action(S,C)=low,∅,proportion ,
F{S,C}:∅,satis f action(S,C),value

teaches(P,C)

123



244 Mach Learn (2015) 100:217–254

friend(S,S1) F{S}:takes(S,C),∅,proportion

nrhours(C) F{C}:∅,difficulty(C),value

intelligence(S) F{S}:∅,grade(S,C),mode

ability(P)

Learned model for a domain size of 800 students, 125 courses and 125 professors

difficulty(C) F{C}:takes(S,C),∅,proportion

satisfaction(S,C)
F{S,C}:∅,grade(S,C),value,
F{C}:teaches(P,C),ability(P),value

grade(S,C)
F{S}:∅,intelligence(S),value,
F{C}:∅,difficulty(C),value,
F{S,C}:∅,satisfaction(S,C),value

takes(S,C) F{S,C}:{satisfaction(S,C)=mid,friend(S,S1),takes(S1,C)},∅,proportion

teaches(P,C) F{P}:∅,ability(P),value

friend(S,S1) F{S}:{satisfaction(S,C)=low,grade(S,C)=high,takes(S,C)},∅,proportion

nrhours(C) F{C}:∅,difficulty(C),value

intelligence(S) F{S}:∅,grade(S,C),mode

ability(P)
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Appendix 2: PKDD’99 real-world financial data set

Table 11 Description of the predicates in the PKDD’99 financial data set

Predicate name Description Range

clientAge(C,L) The age of client C at the moment of loan L origination R

clientDistrict(C,D) Client C lives in district D Boolean

gender(C) The gender of client C {m,f}

hasAccount(C,A) Client C has an account A Boolean

avgSalary(D) The average salary in district D R

ratUrbInhab(D) The ratio of urban inhabitants in district D R

avgSumofW(A) The average sum of monthly withdrawals for account A R

avgSumofCred(A) The average sum of monthly credits for account A R

stdOfW(A) The standard deviation of monthly withdrawals for account A R

stdOfCred(A) The standard deviation of monthly credits for account A R

freq(A) The frequency of statement issuance for account A {i,d,m}

avgNrW(A) The average number of withdrawals per a month for account A R

hasLoan(A,L) Account A has loan L Boolean

loanAmount(L) The amount of loan L R

loanStatus(L) The status of loan L {a,b,c,d}

monthlyPayments(L) The monthly payment amount for loan L R

Appendix 3: Detailed results for all domains

In this Appendix we present detailed results on per predicate WPLLs for all domains used
in our experiments.

Results on synthetic data

Tables 12,13, 14, 15 and 16 show the test set per randvar WPLLs for each predicate when
varying the number of training interpretations. Tables 17, 18, 19 and 20 show the test set per
randvar WPLLs for each predicate when varying the domain size of the training interpreta-
tions. In both cases, the WPLLs are averaged over all ten runs.

Results on the PKDD’99 financial data set

Tables 21 and 22 contain per randvar WPLLs for all learners applied on the PKDD’99
financial data set. All the WPLLs represent an average value over ten-fold cross-validation.
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Table 12 The per randvar WPLL for each predicate on the synthetic data when training on one interpretation

Hybrid Discretized
into 2 bins

Discretized
into 4 bins

Discretized
into 6 bins

Discretized
into 8 bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM

nrhours/1 −4.57 −5.46 −6.30 −4.90 −6.25 −4.81 −6.11 −5.41 −6.05

difficulty/1 −0.06 −0.83 −1.59 −0.27 −1.59 −0.28 −1.59 −0.17 −1.59

ability/1 −5.34 −5.95 −5.95 −5.70 −5.70 −5.71 −5.72 −5.72 −5.67

intelligence/1 −4.89 −5.71 −7.24 −5.34 −6.09 −5.21 −6.01 −5.39 −5.94

grade/2 −1.49 −1.51 −1.53 −1.48 −1.53 −1.48 −1.53 1.48 −1.53

satisfaction/2 −1.55 −1.55 −1.54 −1.56 −1.54 −1.56 −1.54 −1.55 −1.54

takes/2 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

friend/2 −0.14 −0.14 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15

teaches/2 −0.14 −0.14 −0.14 −0.14 −0.14 −0.14 −0.14 −0.14 −0.14

Total WPLL −18.22 −21.33 −24.45 −19.53 −23.00 −19.34 −22.79 −20.03 −22.62

The best results are in bold

Table 13 The per randvarWPLL for each predicate on the synthetic data when training on two interpretations

Hybrid Discretized
into 2 bins

Discretized
into 4 bins

Discretized
into 6 bins

Discretized
into 8 bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM

nrhours/1 −4.43 −5.41 −6.27 −4.82 −6.20 −4.61 −6.09 −5.01 −6.14

difficulty/1 −0.18 −0.69 −1.56 −0.28 −1.56 −0.08 −1.56 −0.10 −1.44

ability/1 −5.33 −5.93 −5.96 −5.66 −5.66 −5.67 −5.67 −5.66 −5.72

intelligence/1 −4.87 −5.71 −7.18 −5.21 −6.08 −5.09 −5.99 −5.01 −5.96

grade/2 −1.50 −1.51 −1.53 −1.46 −1.53 −1.48 −1.53 −1.47 −1.53

satisfaction/2 −1.55 −1.55 −1.54 −1.55 −1.54 −1.55 −1.54 −1.55 −1.54

takes/2 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

friend/2 −0.15 −0.16 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15

teaches/2 −0.14 −0.14 −0.14 −0.14 −0.14 −0.14 −0.14 −0.14 −0.14

Total WPLL −18.16 −21.10 −24.34 −19.27 −22.86 −18.77 −22.67 −19.11 −22.62

The best results are in bold

Table 14 The per randvarWPLL for each predicate on the synthetic data when training on four interpretations

Hybrid Discretized
into 2 bins

Discretized
into 4 bins

Discretized
into 6 bins

Discretized
into 8 bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM

nrhours/1 −4.37 −5.41 −6.07 −4.82 −5.62 −4.58 −6.07 −4.73 −5.44

difficulty/1 −0.01 −0.66 −1.31 −0.26 −0.95 −0.06 −0.90 −0.08 −0.85

ability/1 −5.31 −5.92 −5.92 −5.64 −5.64 −5.65 −5.68 −5.64 −5.68

intelligence/1 −4.85 −5.71 −6.12 −5.19 −6.08 −4.98 −5.98 −4.89 −5.94
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Table 14 continued

Hybrid Discretized
into 2 bins

Discretized
into 4 bins

Discretized
into 6 bins

Discretized
into 8 bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM

grade/2 −1.50 −1.51 −1.53 −1.45 −1.53 −1.45 −1.53 −1.46 −1.53

satisfaction/2 −1.55 −1.55 −1.54 −1.55 −1.54 −1.55 −1.54 −1.55 −1.54

takes/2 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

friend/2 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15

teaches/2 −0.10 −0.14 −0.14 −0.14 −0.10 −0.14 −0.14 −0.14 −0.14

Total WPLL −17.89 −21.06 −20.52 −19.20 −21.65 −18.56 −22.00 −18.64 −21.27

The best results are in bold

Table 15 The per randvarWPLL for each predicate on the synthetic datawhen training on eight interpretations

Hybrid Discretized
into 2 bins

Discretized
into 4 bins

Discretized
into 6 bins

Discretized
into 8 bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM

nrhours/1 −4.35 −5.41 OoM −4.82 OoM −4.58 OoM −4.73 OoM

difficulty/1 −0.02 −0.67 OoM −0.18 OoM −0.06 OoM −0.09 OoM

ability/1 −5.31 −5.92 OoM −5.63 OoM −5.65 OoM −5.63 OoM

intelligence/1 −4.86 −5.71 OoM −5.18 OoM −4.97 OoM −4.88 OoM

grade/2 −1.49 −1.51 OoM −1.46 OoM −1.46 OoM −1.45 OoM

satisfaction/2 −1.55 −1.55 OoM −1.55 OoM −1.55 OoM −1.55 OoM

takes/2 −0.00 −0.00 OoM −0.00 OoM −0.00 OoM −0.00 OoM

friend/2 −0.15 −0.15 OoM −0.15 OoM −0.15 OoM −0.15 OoM

teaches/2 −0.14 −0.14 OoM −0.14 OoM −0.14 OoM −0.14 OoM

Total WPLL −17.87 −21.06 OoM −19.12 OoM −18.55 OoM −18.46 OoM

The best results are in bold, and OoM denotes out of memory

Table 16 The per randvar WPLL for each predicate on the synthetic data when training on 16 interpretations

Hybrid Discretized
into 2 bins

Discretized
into 4 bins

Discretized
into 6 bins

Discretized
into 8 bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM

nrhours/1 −4.35 −5.41 OoM −4.79 OoM −4.57 OoM −4.50 OoM

difficulty/1 −0.02 −0.66 OoM −0.15 OoM −0.05 OoM −0.04 OoM

ability/1 −5.31 −5.91 OoM −5.63 OoM −5.64 OoM −5.61 OoM

intelligence/1 −4.83 −5.71 OoM −5.18 OoM −4.96 OoM −4.87 OoM

grade/2 −1.49 −1.51 OoM −1.46 OoM −1.46 OoM −1.45 OoM

satisfaction/2 −1.55 −1.55 OoM −1.55 OoM −1.55 OoM −1.55 OoM

takes/2 −0.00 −0.00 OoM −0.00 OoM −0.00 OoM −0.00 OoM

friend/2 −0.15 −0.15 OoM −0.15 OoM −0.15 OoM −0.15 OoM
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Table 16 continued

Hybrid Discretized
into 2 bins

Discretized
into 4 bins

Discretized
into 6 bins

Discretized
into 8 bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM

teaches/2 −0.14 −0.14 OoM −0.14 OoM −0.14 OoM −0.14 OoM

Total WPLL −17.85 −21.05 OoM −19.04 OoM −18.52 OoM −18.30 OoM

The best results are in bold, and OoM denotes out of memory

Table 17 The per randvar WPLL for each predicate on the synthetic data consisting of 100 students, 50
courses and 50 professors

Hybrid Discretized
into 2 bins

Discretized
into 4 bins

Discretized
into 6 bins

Discretized
into 8 bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM

nrhours/1 −4.66 −5.35 −6.30 −4.94 −6.25 −5.04 −6.11 −5.63 −6.05

difficulty/1 −0.07 −0.91 −1.59 −0.45 −1.59 −0.28 −1.59 −0.34 −1.59

ability/1 −5.35 −5.46 −5.95 −5.21 −5.70 −5.15 −5.72 −5.18 −5.67

intelligence/1 −4.73 −5.54 −7.24 −5.06 −6.09 −4.86 −6.01 −4.93 −5.94

grade/2 −1.51 −1.51 −1.53 −1.51 −1.53 −1.51 −1.53 −1.52 −1.53

satisfaction/2 −1.55 −1.55 −1.54 −1.55 −1.54 −1.55 −1.54 −1.55 −1.54

takes/2 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

friend/2 −0.16 −0.16 −0.15 −0.16 −0.15 −0.16 −0.15 −0.16 −0.15

teaches/2 −0.07 −0.07 −0.14 −0.07 −0.14 −0.07 −0.14 −0.07 −0.14

Total WPLL −18.11 −20.56 −24.45 −18.95 −23.00 −18.62 −22.79 −19.39 −22.62

The best results are in bold

Table 18 The per randvar WPLL for each predicate on the synthetic data consisting of 200 students, 75
courses and 75 professors

Hybrid Discretized
into 2 bins

Discretized
into 4 bins

Discretized
into 6 bins

Discretized
into 8 bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM

nrhours/1 −4.50 −5.28 −6.11 −4.69 −6.08 −4.70 −6.11 −4.76 −6.13

difficulty/1 −0.05 −0.71 −1.57 −0.18 −1.57 −0.24 −1.59 −0.14 −1.59

ability/1 −5.34 −5.60 −5.60 −5.29 −5.29 −5.26 −5.58 −5.26 −5.62

intelligence/1 −4.70 −5.61 −6.00 −5.11 −5.99 −4.77 −6.11 −4.77 −6.14

grade/2 −1.48 −1.50 −1.54 −1.46 −1.54 −1.47 −1.58 −1.47 −1.59

satisfaction/2 −1.55 −1.55 −1.54 −1.55 −1.54 −1.55 −1.59 −1.55 −1.59

takes/2 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −1.00 −0.00 −1.00

friend/2 −0.16 −0.16 −0.16 −0.16 −0.24 −0.16 −1.00 −0.16 −1.00

teaches/2 −0.07 −0.07 −0.07 −0.07 −0.91 −0.08 −1.00 −0.07 −1.00

Total WPLL −17.84 −20.47 −22.25 −18.50 −23.15 −18.22 −25.55 −18.17 −25.64

The best results are in bold
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Table 19 The per randvar WPLL for each predicate on the synthetic data consisting of 400 students, 100
courses and 100 professors

Hybrid Discretized
into 2 bins

Discretized
into 4 bins

Discretized
into 6 bins

Discretized
into 8 bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM

nrhours/1 −4.52 −5.32 −6.14 −4.72 −6.09 −4.51 −5.96 −4.76 −5.89

difficulty/1 −0.02 −0.70 −1.55 −0.17 −1.55 −0.12 −1.55 −0.10 −1.55

ability/1 −5.33 −5.53 −5.53 −5.28 −5.28 −5.21 −5.18 −5.22 −5.19

intelligence/1 −4.67 −5.62 −6.01 −5.10 −5.98 −4.79 −5.84 −4.74 −5.78

grade/2 −1.46 −1.48 −1.53 −1.45 −1.54 −1.45 −1.54 −1.46 −1.53

satisfaction/2 −1.54 −1.54 −1.54 −1.54 −1.54 −1.54 −1.54 −1.54 −1.54

takes/2 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

friend/2 −0.16 −0.16 −0.16 −0.16 −0.16 −0.16 −0.16 −0.16 −0.16

teaches/2 −0.07 −0.07 −0.07 −0.07 −0.07 −0.07 −0.07 −0.07 −0.07

Total WPLL −17.78 −20.42 −22.53 −18.48 −22.20 −17.86 −21.83 −18.05 −21.71

The best results are in bold

Table 20 The per randvar WPLL for each predicate on the synthetic data consisting of 800 students, 125
courses and 125 professors

Hybrid Discretized
into 2 bins

Discretized
into 4 bins

Discretized
into 6 bins

Discretized
into 8 bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM

nrhours/1 −4.48 −5.33 −6.18 −4.78 −5.96 −4.54 −5.99 −4.58 −5.92

difficulty/1 −0.02 −0.66 −1.53 −0.17 −1.55 −0.09 −1.53 −0.12 −1.53

ability/1 −5.34 −5.67 −5.67 −5.31 −5.18 −5.26 −5.26 −5.24 −5.24

intelligence/1 −4.66 −5.65 −6.04 −5.13 −5.84 −4.79 −5.84 −4.73 −5.79

grade/2 −1.45 −1.47 −1.54 −1.44 −1.54 −1.44 −1.53 −1.44 −1.53

satisfaction/2 −1.54 −1.54 −1.54 −1.54 −1.54 −1.53 −1.54 −1.53 −1.54

takes/2 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

friend/2 −0.15 −0.15 −0.15 −0.15 −0.16 −0.15 −0.15 −0.16 −0.15

teaches/2 −0.07 −0.07 −0.07 −0.07 −0.07 −0.07 −0.07 −0.07 −0.07

Total WPLL −17.72 −20.54 −22.72 −18.60 −21.83 −17.87 −21.92 −17.86 −21.79

The best results are in bold
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Table 22 The per randvar WPLL of the two variants of the handcrafted models, LR+LinR and LR+MP5,
compared to LLM-H on the hybrid data for the PKDD’99 financial data set

Predicate LR+LinR LR+MP5 LLM-H

avgNrWith/1 −0.96 −0.96 −0.09

avgSalary/1 −1.00 −1.00 −1.00

avgSumofCred/1 −1.00 −1.00 −0.02

avgSumOfW/1 −0.36 −0.36 −0.38

clientAge/2 −0.89 −0.89 −0.01

clientDistrict/2 −1.17 −1.17 −1.32

freq/1 −5.78 −5.77 −5.77

gender/1 −11.18 −10.98 −11.24

hasAccount/2 −5.74 −5.74 −5.74

hasLoan/2 −14.35 −14.98 −14.39

loanAmount/1 −14.51 −15.08 −14.54

loanStatus/1 −13.81 −13.82 −13.81

monthlyPayments/1 −14.05 −13.89 −14.05

ratUrbInhab/1 −4.31 −4.10 −4.60

stdOfCred/1 −18.14 −18.15 −18.26

stdOfW/1 −12.54 −12.61 −12.70

Total WPLL −119.79 −120.22 −117.93

LR+LinR uses logistic regression for discrete predicates and linear regression for continuous predicates, and
LR+MP5 uses logistic regression for discrete predicates and regression trees for continuous predicates. The
best results are in bold

Appendix 4: Features used for propositional learners

In order to compare our structure learning algorithm topropositional learners on thePKDD’99
financial data set, we handcrafted a number of features for each of the 16 predicates. Each
feature predicts a property of an object by using some other properties of that object.
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Predicates with discrete range

clientDistrict(C,D)
F{C}:∅,gender(C),value
F{C}:∅,avgSalary(D),value
F{C}:∅,ratUrbInhab(D),value

gender(C) F{C}:∅,hasAccount(A,C),exists

hasAccount(C,A)

F{C}:∅,gender(C),value
F{A}:∅,hasLoan(A,L),exists
F{A}:∅,freq(A),value
F{A}:∅,avgNrWith(A),value
F{A}:∅,avgSumOfW (A),value
F{A}:∅,avgSumOfCred(A),value
F{A}:∅,stdOfW (A),value
F{A}:∅,stdOfCred(A),value

freq(A)

F{A}:∅,avgNrWith(A),value
F{A}:∅,avgSumOfW (A),value
F{A}:∅,avgSumOfCred(A),value
F{A}:∅,stdOfW (A),value
F{A}:∅,stdOfCred(A),value

hasLoan(A,L)

F{L}:∅,loanAmount(L),value
F{L}:∅,loanStatus(L),value
F{L}:∅,monthlyPayments(L),value
F{A}:∅,freq(A),value
F{A}:∅,avgNrWith(A),value
F{A}:∅,avgSumOfW (A),value
F{A}:∅,avgSumOfCred(A),value
F{A}:∅,stdOfW (A),value
F{A}:∅,stdOfCred(A),value

loanStatus(L)
F{L}:∅,loanAmount(L),value
F{L}:∅,loanStatus(L),value
F{L}:∅,monthlyPayments(L),value

Predicates with continuous range

The following are the features we used for predicates with a continuous range. Note that the
predicates avgSumOfW/1, avgSumOfCred/1, stdOfW/1 and stdOfCred/1 have
similar structure as the features for avgNrWith(A). To save space we will only show the
features we used for avgNrWith(A). The full feature set is in the online appendix on http://
dtai.cs.kuleuven.be/ml/systems/llm.
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avgSalary(D)
F{D}:∅,clientDistrict(C,D),proportion
F{D}:∅,ratUrbInhab(D),value

loanAmount(L)
F{L}:∅,loanStatus(L),value
F{L}:∅,monthlyPayments(L),value

monthlyPayments(L)
F{L}:∅,loanStatus(L),value
F{L}:∅,loanAmount(L),value

avgNrWith(A)

F{A}:∅,freq(A),value
F{A}:∅,avgSumOfW (A),value
F{A}:∅,avgSumOfCred(A),value
F{A}:∅,stdOfW (A),value
F{A}:∅,stdOfCred(A),value

ratUrbInhab(D)
F{D}:∅,avgSalary(D),value
F{D}:∅,clientDistrict(C,D),proportion

clientAge(C,L)

F{C}:∅,gender(C),value
F{L}:∅,loanAmount(L),value
F{L}:∅,loanStatus(L),value
F{L}:∅,monthlyPayments(L),value
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