Mach Learn (2015) 100:217-254 @ CrossMark
DOI 10.1007/510994-015-5483-2

Learning relational dependency networks in hybrid
domains

Irma Ravkic! - Jan Ramon! - Jesse Davis!

Received: 27 April 2014 / Accepted: 22 January 2015 / Published online: 5 May 2015
© The Author(s) 2015

Abstract Statistical relational learning (SRL) is concerned with developing formalisms for
representing and learning from data that exhibit both uncertainty and complex, relational
structure. Most of the work in SRL has focused on modeling and learning from data that only
contain discrete variables. As many important problems are characterized by the presence
of both continuous and discrete variables, there has been a growing interest in developing
hybrid SRL formalisms. Most of these formalisms focus on reasoning and representational
issues and, in some cases, parameter learning. What has received little attention is learning
the structure of a hybrid SRL model from data. In this paper, we fill that gap and make the
following contributions. First, we propose hybrid relational dependency networks (HRDNs),
an extension to relational dependency networks that are able to model continuous variables.
Second, we propose an algorithm for learning both the structure and parameters of an HRDN
from data. Third, we provide an empirical evaluation that demonstrates that explicitly mod-
eling continuous variables results in more accurate learned models than discretizing them
prior to learning.

Keywords Statistical relational learning - Hybrid domains - Structure learning

Editors: Toon Calders, Rosa Meo, Floriana Esposito, and Eyke Hiillermeier.

B< Irma Ravkic
Irma.Ravkic @cs.kuleuven.be

Jan Ramon
Jan.Ramon @cs.kuleuven.be

Jesse Davis
Jesse.Davis @cs.kuleuven.be

Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-015-5483-2&domain=pdf

218 Mach Learn (2015) 100:217-254

1 Introduction

Statistical relational learning (SRL) (Getoor and Taskar 2007) studies formalisms that
combine relational representations such as first-order logic with models for capturing uncer-
tainty. The motivation underlying SRL is that real-world domains such as patient clinical
histories, molecular structures, and social networks are characterized by the presence of
data that are complex, highly structured and uncertain. Many real-world problems are
also hybrid in that they contain both discrete and continuous variables. Examples of such
domains include robotics, where a robot’s location is described by continuous variables
and properties of encountered objects can be described by discrete variables; clinical his-
tories, where a patient’s temperature and blood pressure represent continuous variables
while their gender and diagnoses are discrete variables; and biology, where spatial rela-
tionships between molecules are modelled as continuous variables and atom types and
amino acid types are discrete properties. Unfortunately, few formalisms can cope with
structured and uncertain data that contain both continuous and discrete variables. On the
one hand, hybrid Bayesian networks (Murphy 1998) model uncertainty for both contin-
uous and discrete variables, but not relations. On the other hand, SRL approaches such
as logical Bayesian networks (LBNs) (Fierens et al. 2005), probabilistic relational mod-
els (Getoor et al. 2001), and relational dependency networks (Neville and Jensen 2007)
capture both structure and uncertainty in problems but are generally restricted to discrete
data.

To address this shortcoming, there has recently been increased interest in design-
ing hybrid SRL formalisms such as Hybrid Markov Logic Networks (HMLNs) (Wang
and Domingos 2008), Hybrid ProbLog (HProbLog) (Gutmann et al. 2011), Continuous
Bayesian Logic Programs (CBLPs) (Kersting and De Raedt 2001), Learning Modulo Theories
(LMT) (Teso et al. 2013) and Hybrid Probabilistic Relational Models (HPRMs) (Nar-
man et al. 2010). The vast majority of the work on hybrid SRL has focused on two
issues. The first is building up the machinery needed to represent continuous vari-
ables within the various SRL formalisms. The second is adapting inference procedures
such that they work for hybrid domains. Some formalisms provide support for learning
the parameters of a handcrafted structure from data. What has received little atten-
tion to date is designing algorithms that are able to learn the structure of a hybrid
SRL model (i.e., the dependencies among the variables and relations in a domain) from
data.

In this paper we fill that gap by exploring structure learning within a hybrid SRL con-
text. First, we describe hybrid relational dependency networks (HRDNs) a novel formalism
which extends RDNs to handle continuous variables. HRDNs approximate a joint prob-
ability distribution with a set of conditional probability distributions (CPDs). We discuss
several local conditional probability distributions that are adept at modeling continuous vari-
ables. Second, we present an algorithm that is able to learn the structure of an HRDN from
data.! To the best of our knowledge, this is the first attempt to perform structure learn-
ing in the hybrid SRL setting. Third, we empirically evaluate our proposed algorithm on
one synthetic and one real-world data set. We find that applying our approach to the orig-
inal hybrid data results in more accurate learned models than discretizing the data prior to
learning.

LA publicly available implementation of our algorithm can be found on http://dtai.cs.kuleuven.be/ml/systems/
Ilm.

@ Springer

http://dtai.cs.kuleuven.be/ml/systems/llm
http://dtai.cs.kuleuven.be/ml/systems/llm

Mach Learn (2015) 100:217-254 219

2 Background

We will review both propositional and relational dependency networks. First, we will intro-
duce some general definitions and notational conventions used throughout the paper.

We consider two types of variables. First, a random variable, called a randvar, is a variable
that has an associated range of values it can take based on a probability distribution. Second, a
logical variable, called a logvar, is a variable that has a finite domain of possible values it can
take. A logvar is a placeholder for objects such as students or courses. We denote variables
with uppercase letters and specific values with lowercase letters. Given a set of variables X',
a boldface lowercase letter, such as x, represents an assignment of a value to each variable
in the set.

2.1 Propositional dependency networks

A dependency network (DN) (Heckerman et al. 2001) is a (cyclic) directed probabilistic
model that approximates a joint probability distribution over a set of random variables
with a set of conditional probability distributions (CPDs). A DN is a tuple (X, dep)
where X is a set of randvars and dep is a function that maps each randvar X € X
to a conditional probability distribution p(X | Parents(X)), where Parents(X) <
X \ {X}. The CPD quantifies how X depends on the variables in Parents(X). A DN
can be represented visually as a directed graph G = (V, E), containing one vertex Vx
for each randvar X € X and a directed arc from vertex Vy to vertex Vy iff X €
Parents(Y).

Learning the structure of a DN from data requires determining Parents(X) for
each X € X (i.e., the dependency structure) and the parameters of the CPD for X.
Even though the parameters of CPDs can be estimated by using a variety of regres-
sion or classification techniques, the standard method is to use probabilistic decision
trees. One scoring function that is often used when learning DNs (and other prob-
abilistic graphical models) is pseudo-loglikelihood (PLL) (Besag 1974). Optimizing
the PLL has the advantages that it can be decomposed into maximizing the log-
likelihood for each variable independently and calculating it does not require com-
puting the partition function (that is, summing over all possible configurations of
the randvars). The PLL of an assignment x to randvars X of a DN is calculated
as:

PLL(x) = Zlog [p(X; = x;i|Parents(X;))]. (1)

i=1

Learning each CPD independently could result in an inconsistent model. That is, there
may be no joint probability distribution such that it is possible to apply the rules of probability
to the joint distribution in order to derive each learned CPD.

Regardless of whether a DN is consistent, applying an ordered Gibbs sampler to the DN’s
CPDs results in a unique distribution, given that each variable in the DN is discrete and
each CPD in the DN is positive (Heckerman et al. 2001). Ordered Gibbs sampling randomly
selects the initial value for each random variable, and then in each Gibbs sweep iterates over
the variables in a fixed order and resamples the value of each X; from its local distribution
p(Xi|Parents(X;)).If the DN is consistent, it generates the joint probability distribution. If
the DN is inconsistent, this procedure is called an ordered pseudo-Gibbs sampler (Heckerman
et al. 2001).

@ Springer

220 Mach Learn (2015) 100:217-254

2.2 Relational dependency networks

Next, we review relational dependency networks (RDNs) (Neville and Jensen 2007). There
are several ways to define RDNs, but we use a definition that uses first-order logic as a template
language for constructing propositional dependency networks. We first briefly review the
relevant concepts from first-order logic, then we define RDNs. Throughout the discussion,
we will use a slightly modified version of the popular university model (Getoor et al. 2001)
as a running example.

We use the datalog subset of first-order logic. The alphabet consists of three types of
symbols: constants, logical variables, and predicates. A constant represents a specific object
and is denoted with a lower-case letter (e.g., pete). A logical variable (logvar) X is a variable
ranging over the objects in the domain. Logical variables may be fyped in which case they
represent placeholders for a specific subset of objects in the domain. Predicate symbols P/n,
where n > 0 is the arity of the predicate, represent properties of objects or relations among
objects. We use a typed language, that is, every argument position of a predicate has a type.
Each predicate P has a finite range, denoted range(P). In contrast to traditional logic, we do
not restrict the range of a predicate to { false, true}. For example, the range of a student’s
intelligence could be {1ow, med, high}. An atom is of the form P(t1, ..., ty) where P/n
is a predicate and each t; is an object or a logvar. The range of an atom is the range of
its predicate. A literal is an atom or its negation. An atom is ground if all its arguments are
constants. A substitution, denoted {X;/t1, ..., X,/ty}, maps each logvar X; to t;, where
t; is a logvar or a constant. A grounding substitution 6 for an expression (e.g., an atom or
a set of logvars) maps each logvar occurring in that expression to a constant. The set of all
grounding substitutions for an expression E is denoted grsub(E). The result of applying a
substitution to an atom a is denoted af.

Similar to LBNs (Fierens et al. 2005), we use a set of statements to define the random
variables in a domain:

random(H) < Iy, ...,1,

where H is an atom, and /1, . . ., [,, is a conjunction of literals. Given a set of random variable
declarations RV D, the set of random variables @ is the set of all ground atoms A6 for which
there is a random variable declaration random () < [y, ...,[, in RV D and a substitution
0 such that 110, ..., [,0 is true given the background knowledge (amongst others specifying
which ground atoms of the predicates in the body of the random variable declaration rules
are true). For example, the random variable declaration for the atom takes (S, C)

random(takes (S,C)) < student (S), course(C) 2)

creates one randvar for each student S and course C in the domain.

It must always be possible to evaluate the conjunction in the right-hand side of a ran-
dom variable declaration, and we will use a closed-world assumption to guarantee this. As
is common practice in many other probabilistic logical model frameworks (Fierens et al.
2005; Richardson and Domingos 2006; Getoor et al. 2001), our random variable declarations
specify all random variables that are potentially of interest. For example, the random variable
declaration

random(grade (S, C)) < student (S), course (C) 3)

specifies that every student gets a grade for every course, even though a precondition for
obtaining a grade is that student S must take course C. In this case, grade (S, C) would have
a special value not_relevant in its domain, and we would have the background knowledge

@ Springer

Mach Learn (2015) 100:217-254 221

grade (S, C) = not_relevant < takes (S,C) = false 4)

We refer to these statements as relevancy conditions. Later, when learning the conditional
dependency for grade (S, C) on takes (S, C) and other random variables, we can easily
use such hard background knowledge and reduce the learning problem to the subspace of the
values of the parent random variables for which the dependent random variable is relevant.

Let hé be a random variable. Given background knowledge, an interpretation / assigns
a value to hé from its range or it assigns the special value not_relevant iff there exists a
relevancy condition h6 < ¢ in the background knowledge and ¢8 is true in /. The set of all
groundings of a predicate P that have an assigned value v # not_relevant in interpretation
I is denoted as gr(P)!. We refer to the randvars in gr (P)! as P’s relevant randvars.

Now, we will introduce relational features. For this, we first need to define aggregation
functions.

Definition 1 (Aggregation function) An aggregation function for a domain D is a function
that maps every finite multiset of elements from D to a single value from a range R.

For example, mode is an aggregation function that maps a multiset of values from D to
the most frequently occurring value in the multiset.

Definition 2 (Discrete relational feature) Let L be a set of logvars, C be a conjunction of
randvar-value tests of the form G = v where G is an atom and v € range(G), A be an
atom, and « be an aggregation function taking as input multisets of elements of range(A).
Assume the ranges of A, all atoms in C and « are discrete. Then, a discrete relational feature
FL:C.A.« 1s a function that maps any 6 € grsub(L) and interpretation / to

Frc,aa®, 1) =a ({I(A00") | 0" € grsub(A0, CO) and COO' holds in I })
where we say C06’ holds in I iff V(G = v) € C, 1(G60") = v.

A feature’s range is the range of its aggregation function «. The length of a feature is equal
to the number of randvar-value tests in C plus one (for A).
There are two cases for grounding a relational feature that warrant mention:

(a) |{1(A00") | 0" € grsub(AO, CO) and COO’ holds in I }| = 1, for all 0 € grsub(L)
(b) {I1(AOO") |0 € grsub(A0, CO) and COO' holds in I }| =0, for all @ € grsub(L)

The first case uses value to denote the identity function which returns 7 (A86). For exam-
ple, if each student S has exactly one value for intelligence, then the relational feature
Fisy#, intelligence(s),value Simply returns the value taken by the randvar
intelligence(S), whichrepresentsthe intelligence of astudent S, in interpretation
1. The second case requires applying an aggregation function to the empty set. Some aggre-
gation functions (e.g., mode) are not defined on the empty set, and in this case Fr.c 4.« (0, I)
returns the value undefined.

Example 1 Consider the following relational feature:

f{s]:grade(s, C)=low,difficulty (C),mode

where C is a logvar denoting courses and S is a logvar denoting students. This feature
calculates the mode of the difficulties for the courses where a student received a low grade.
If a student has taken no courses or received no low grades, then, as discussed above, mode
would return the value undefined.

@ Springer

222 Mach Learn (2015) 100:217-254

Definition 3 (Discrete dependency statement) A discrete dependency statement is of the
form G | Parents(G). G is the target atom that has a discrete range and whose arguments
are all logvars. Parents(G) is a set of discrete relational features, where for each Fr.c 4.« €
Parents(G), L is a subset of the logvars in G. Each dependency statement has an associated
conditional probability distribution (CPD) which quantifies how the target atom depends on
its parent set.

Example 2 An example of a discrete dependency statement is:

intelligence(S) | f{s}:takes(S,C) =true,grade (S, C),mode

which states that a student’s intelligence depends on the mode of grades received across all
courses the student has taken. As each student can take a varying number of courses, an
aggregation function, such as mode in this example, is needed to combine the values from
the varying number of parents into a single value.

We are now ready to formally define an RDN:

Definition 4 (RDN) An RDN s atuple (P, RV D, dep), where P is a set of predicates, each
with a discrete range, RV D is a set of randvar declarations, and dep is a function that maps
each P € P to a discrete dependency statement.

An RDN (P, RV D, dep) is a template for constructing propositional DNs. Given the
background knowledge and a set of randvar declarations RV D, an induced DN has a node
for each randvar GO € @.

The parent set of a ground atom G6 in a dependency network is defined as

Parents(GO) = Parentss(GO) U Parentsc(GO)
where
Parentsy(GO) = {A00" | AF .c.a.o € Parents(G) : 0" € grsub((CO, A9))}
Parentsc(GO) = U{CO00' | 3FL.c.a.« € Parents(G) : 6" € grsub((CH, A))} (5)
There is an arc between two ground atoms GO and G'0, if G'0 € Parents(GO). The CPDs
are shared across all randvars that originate from the same predicate.

The pseudo-loglikelihood of an RDN M for an interpretation / involves only the relevant
randvars and it is calculated as:

PLL(M; I) = Z Z log [p(I1(g9) | I(Parents(g))]. (6)
PP gegr(p)!

Example 3 Consider the following simple RDN for a domain with the following randvar
declarations:
random(intelligence(S)) < student(S)
random(takes(S, C)) < student(S), course(C)
random(grade(S, C)) < student(S), course(C)
random(difficulty(C)) < course(C)

where each predicate has a discrete range and the following dependency statement:

f{s}:ﬂ, intelligence(S),values

grade (S, C)
]:{C}:V),difficulty(C),value

@ Springer

Mach Learn (2015) 100:217-254 223

takes(bob,bio) takes(ann,bio)

N -
.

‘\1 grade(bob,bio) grade(ann, bio) F’:
aresetoonmem K\ [Asrsseorn mar]
takes(bob, math) Iintelligence(bob) ” intelligence(ann) I ‘takes(ann,math)

Fig. 1 The DN induced by grounding the RDN specified in Example 3. The dashed arrows specify the
relevancy condition on grade/2

difficulty(bio)

difficulty(math)

7
N

.

The dependency states that a student’s grade in a course depends on the student’s intelligence
and the difficulty of the course. Note that this statement says that all ways of instantiating
the logvars S and C have an identical probabilistic relationship with S’s intelligence and C’s
difficulty. Figure 1 shows an induced propositional DN for this RDN given the relevancy
condition on grade/ 2 specified in (4), and a domain with two students bob and ann, and
two courses math and bio (short for biology). The dashed arrows denote the relevancy
conditions for the grade /2 randvars.

Given that RDNs are templates for constructing DNs, they inherent the semantics of
DNs (Neville and Jensen 2007). Namely, a consistent RDN specifies a joint probability
distribution over the randvars of a relational data set. Similarly, a unique joint probability
distribution for an RDN can be obtained by grounding out the model to obtain a DN and then
running an ordered pseudo-Gibbs sampler on the DN. Again, this can be done regardless of
whether the model is consistent. The distribution of an inconsistent RDN is the stationary
distribution of an ordered pseudo-Gibbs sampler (if it exists) applied to the model.

Learning the structure of an RDN follows the same paradigm as in the propositional case:
the CPD for each predicate is learned in turn. Normally, this is done by learning a relational
probability tree for each predicate (Neville and Jensen 2007; Natarajan et al. 2012). Section 6
provides a more in-depth discussion of existing RDN structure learning algorithms.

3 Hybrid relational dependency networks

We now describe HRDNSs, our proposed extension to RDNs for hybrid domains. First, we
describe how to incorporate continuous variables. Second, we describe how to represent the
CPDs. Third, we briefly describe how to perform inference in HRDNS.

3.1 Representation

It is relatively natural to extend RDNs to incorporate continuous random variables. It requires
modifying the definitions presented in Sect. 2.2.

First, to introduce continuous variables, it suffices to declare the range of a predicate to
be an interval of the real numbers. Each continuous randvar associated with such a predicate
can then take on any value from this interval. For example, we could define a predicate
numHours/1 with the following random variable declaration:

random(numHours(C)) < course(C)

that represents the number of hours needed to study for a course C. The range of this predicate
can be the following interval:

@ Springer

224 Mach Learn (2015) 100:217-254

range(numHours(C)) = [20.0,180.0]

Second, we need to modify the definition of a relational feature to account for the fact that
both atoms and aggregation functions can have continuous ranges.

Definition 5 (Numeric relational feature) A numeric relational feature has the same form,
FL:C.A.a> as a discrete relational feature. In contrast to a discrete relational feature, one or
both of A and « in a numeric relational feature must have a continuous range.

Example 4 Consider the following numeric relational feature:

-7:{8}:takes(S,C):true,numHours(C),average

This feature computes the average number of hours a student spends studying for all taken
classes.

Third, we need to extend the definition of a dependency statement to incorporate numeric
relational features.

Definition 6 (Hybrid dependency statement) A hybrid dependency statement is of the form
G | Parents(G) where G’s range may be discrete or continuous and Parents(G) is a set
of discrete and/or numeric relational features. Each hybrid dependency statement has an
associated CPD.

Note that the type of a CPD for each hybrid dependency is determined according to G’s range:
for a discrete range it is a probability mass function, and for a continuous range it is a density
function.

Now we are ready to formally define an HRDN:

Definition 7 (HRDN) An HRDN is a tuple (P, RV D, dep), where P is a set of predicates,
whose ranges may be discrete or continuous, RV D is a set of randvar declarations and dep
is a function mapping each P € P to a hybrid dependency statement.

Analogous to an RDN, an HRDN can be viewed as a template for constructing a hybrid
dependency network in the following way. The set of predicates P in an HRDN is split into
the set of predicates with discrete range Pp and the set of predicates with continuous range
Pc. Given a set of random variable declarations RV D for all predicates in 7 and a set of
constants, the set of randvars is @ = ®@p | J &¢ where @ p denotes all randvars with discrete
ranges and @ ¢ denotes all randvars with continuous ranges. The induced hybrid DN will have
a node for each randvar in @ and the parent set of a node is determined in the same manner
as described previously for discrete DNs. Each discrete randvar of a predicate P; € Pp will
obtain its own copy of the discrete CPD associated with P; and each continuous randvar of
a predicate P, € P¢ will obtain its own copy of the continuous CPD associated with P..

A consistent HRDN specifies the joint distribution over the randvars in its corresponding
hybrid dependency network. In parallel with the claims of Neville and Jensen (2007), there
is a direct correspondence between consistent HRDNs and hybrid Markov logic networks
(HMLN) in that the set of distributions that can be encoded by a consistent HRDN is equal to
the set of positive distributions that can be encoded with an HMLN with the same adjacencies
provided they use the same aggregate functions. If an HRDN induces a hybrid DN that does
not contain cycles, then its semantics corresponds to those of a hybrid Bayesian network. Our
work primarily considers inconsistent HRDN. In this case, if there is a stationary distribution
of an ordered pseudo-Gibbs sampler applied to an HRDN model, we refer to this distribution
as the one represented by the model.

@ Springer

Mach Learn (2015) 100:217-254 225

CumHours(BieD

takes(bob,bio) difficulty(bio)

takes(ann,bio)

grade(ann,bio)
f grade(ann,math)
takes(bob,math) l intelligence(bob) ” intelligence(ann) I takes(ann,math)

Fig.2 The ground HRDN specified in Example 5. Squares represent randvars with a discrete range, and ovals
represent randvars with a continuous range. The dashed arrows specify the relevancy condition on grade /2

The pseudo-loglikelihood of an HRDN is computed as follows:

PLL(M; =Y > loglp(I(a) | I(Parents()))]

PyEPD gegr(Pg)!

+ > > loglp((g) | I(Parents(g)))].)

P.€Pc gegr(pe)!

where the first summation goes over the predicates with a discrete range, and the second goes
over the predicates with a continuous range.

Example 5 To illustrate an HRDN, we could extend Example 3 with the numHours/1
predicate and add the following hybrid dependency statement:

numHours(C) | }-{C}:(ﬂ,difficulty(C),value

which states that the number of hours spent studying for a class depends on its difficulty.
Figure 2 shows the ground hybrid DN for Example 5. Squares denote randvars with a discrete
range and ovals denote randvars with a continuous range.

3.2 Local distributions

Each dependency statement G | Parents(G) has an associated CPD. The type of model used
for a CPD depends on both the range of the target atom G and whether Parents(G) contains
discrete or numeric features.

In this work, we use a parametric approach to density estimation and focus only on variants
of Gaussian distributions to model continuous variables. Specifically, we use the following
models:

Multinomial If G has a discrete range and its parent set is empty, the CPD is modeled by
a multinomial distribution.

Gaussian If G has a continuous range and its parent set is empty, the CPD is modeled by
a Gaussian distribution.

Logistic Regression (LR) This CPD is used when the target atom has a discrete range
as it facilitates incorporating both discrete and continuous parents (Bishop 1995). Given
range(G) = {y1, y2, ..., ym}, the conditional distribution for the first (m — 1) values for
a specific grounding G# is:

@ Springer

226 Mach Learn (2015) 100:217-254

exp (wk*o + z]—'eParents(G) Wi, F + -7:(0))
-1
I+ z;r;l exp (wj,O + Z}'EParents(G) wjF -]:(9))

The distribution for the mth value is:

p(GO = yi | Parents(GO)) =

1

1+ Z?;ll exp (quo + Z}'EParents(G) wj,F - ‘7_—(9))
(3)
In both equations, F is a relational feature, w; # are the weights associated with F for
value y;, and wj o is y;’s bias term.
Linear Gaussian (LG) A linear Gaussian CPD is used when G’s range is continuous and
all the features in the parent set are numeric (Lauritzen 1992; Koller et al. 1999). An
LG is a Gaussian distribution that models x as a linear combination of the values of the
features in the parent set, but assumes a fixed variance 2. The distribution is given as:

p(GO = y,, | Parents(GO)) =

p(GO | Parents(G0)) =N [wo+ D wr-F(0).05)
JFeParents(G)

where F is a numeric feature and wr is the weight associated with F.

Conditional Linear Gaussian (CLG) A conditional linear Gaussian (CLG) is used if G’s
range is continuous and its parents set contains a mix of discrete and numeric features.
There is a separate linear Gaussian model for every instantiation of the discrete parents.
More formally, consider partitioning the parent set of a predicate into the discrete features,
Fdiscrete, and the numeric features, Feontinuous and let D be the Cartesian product of
ranges of all features in Fyiscrere- Then, the CPD consists of one LG model for each
deD:

P(GO | Feontinuous>d) = N wo, + Z Wr, - F(©), 0'5 (10)

FeFcontinuous

Note that because there is a separate LG for each d, each one has an associated variance
05. A conditional Gaussian is a special case of a CLG where the parent set only contains
discrete features. Here, a separate Gaussian (mean and variance) is learned for each
possible configuration of the parents.

As in the discrete case, it is possible that a feature does not have any groundings. If this
occurs and the aggregation function of the feature is not defined on the empty set, then we
again return the value undefined.

3.3 Inference

Similar to RDNs, inference in HRDNs can be performed by using an ordered pseudo-Gibbs
sampler. The difference lies in the fact that HRDNSs contain both conditional density functions
and probability distributions. Given an HRDN, a set of constants for each type, and possibly
a set of relevance conditions, inference is performed as follows.

First, the model is grounded to create the corresponding propositional hybrid dependency
network. Second, each randvar gets its own copy of a CPD associated to its predicate. Third,
an ordering over the atoms is determined based on the relevance conditions, if specified.
This ordering has to ensure that when performing sampling for an atom A we first sample

@ Springer

Mach Learn (2015) 100:217-254 227

the values of the atoms in / of the relevance condition A < [. For example, consider the
relevance condition (4). In each Gibbs sweep, before we sample values for grade/2 we
make sure that the values for takes/2 are sampled.

Finally, in each Gibbs sweep we visit each ground atom in order and resample its value
according to its probability distribution or density function. A randvar is assigned a value
from its range or obtains the value not_relevant if there exists a relevance condition that is
satisfied in the sweep. Each sweep results in an interpretation / and a sample corresponds to
only the relevant randvars in /.

4 Structure learning

In this section we present our algorithm for learning the structure of an HRDN. This requires
learning a dependency statement and CPD for each predicate in the domain. It is possible to
use a decomposable score function to evaluate candidate structures. Thus the problem can
be tackled by independently learning a locally optimal CPD for each predicate. Therefore,
we refer to our approach as the Learner of Local Models (LLM). When learning the CPD for
each predicate, we define a space of candidate features and then greedily select those that
improve the score.

Next, we will describe in more detail the key elements of our algorithm, which are (1) its
high-level control structure, (2) how to learn a CPD for a single predicate, and (3) how to
score the candidate CPDs.

4.1 High-level control structure

Algorithm 1 outlines LLM and it receives as input a set of predicates P, a set of training
interpretations D, and a set of validation interpretations V. LLM assumes fully-observed
data. At a high level, the algorithm is quite simple. For each predicate P € P, it invokes
the LearnOneModel function to learn a local distribution that models P using P. By using a
decomposable score function, such as pseudo-loglikelihood, the global score can be optimized
by independently finding the best local distribution for each predicate.” The final model M
is obtained by conjoining all learned local distributions.

Note that this algorithm has the same high-level control structure as existing approaches
for learning RDNSs. There are two important differences with existing approaches. The first is
that the data may contain continuous variables. The second is that, in order to accommodate
dependencies on continuous variables, the local distributions are represented via a logistic
regression or a (conditional) linear Gaussian as opposed to a relational probability tree.

Next, we describe in detail how to learn and evaluate local distributions.

Algorithm 1: LLM(Predicates P, Training data D, Validation data V)

M={}

for all P € P do
CPDp = LearnOneModel(P, P, D, V)
M =MU{(P,CPDp)}

end for

return: (P, M)

2 Note that because we use greedy search the learned structure is a local and not a global maximum.

@ Springer

228 Mach Learn (2015) 100:217-254

4.2 Learning local distributions

Each learned CPD, regardless of its form, in an HRDN is parameterized by a set of features.
Learning the structure of the CPD requires determining which features should appear in the
parent set. This can be posed as the problem of searching through the space of candidate
features. We adopt a greedy approach that selects one feature at a time to add to the parent
set until no inclusion improves the score. Thus, in each iteration, the central procedure is
finding the single best feature and adding it to the parent set.

We construct candidate features in the following way. First, let H = P(Vy, ..., V,), where
each V; is a unique logvar, and let L = {Vy, ..., V,}. Next, we construct all A such that A
is different from H. Then, given a user-defined parameter N, for each A all conjunctions of
k < N randvar-value tests C = {(G| = v1), ..., (Gx = vi)} are exhaustively enumerated
such that (1) all atoms G; have a discrete range, (2) no atom G; is identical to H or A,
(3)theset Q = {H, Gy, ...,Gg, A} is connected.? These restrictions ensure that the set of
candidate features is finite. For each constructed C and A one candidate feature Fy.c 4, for
each aggregation function « applicable to range(A) is generated. We consider the following
aggregation functions:

If no aggregation is needed, we use value,

If range(A) is discrete and not {¢true, false}, we use mode,

If range(A) is discrete and {true, false}, we use proportion and exist,
If range(A) is continuous, we use average, maximum, and minimum.

The aggregation function proportion computes the proportion of a feature’s possible ground-
ings that are true. The other functions take on their traditional meanings.

Algorithm 2 outlines our procedure for learning the dependency for a predicate P. As input,
it receives the target predicate P, the full set of predicates P for the domain, a training set D,
and a validation set V. First, the algorithm starts by constructing the set of candidate features
for P. Second, it repeatedly iterates through the set of candidate features and evaluates the
utility of adding each feature to the parent set. Each feature addition is followed by learning
the CPD on the training data D and then scoring it on the validation data V. In each iteration,
the single best feature is added to the parent set. If no feature improves the score, the procedure
terminates. Note that the form of the CPD depends on both P and the features in the parent
set. If P’s range is discrete, then the CPD is represented via logistic regression. If P’s range
is continuous, we use linear Gaussians if the parents only contain numeric features and
conditional linear Gaussians when the parent set contains both numeric and discrete features.

The two following subsections explain how we estimate the parameters of the CPDs using
the training data and how we evaluate the local models.

4.3 Estimating the parameters for candidate CPDs

Next, we briefly describe how to estimate the parameters for the CPDs for the different types
of dependency statements that may appear in a learned HRDN.

Multinomial The maximum likelihood parameters of the multinomial are learned from
the data.

Gaussian The maximum likelihood estimates of the Gaussian’s mean and the variance
are learned from the data.

3 Here, we mean connected in the sense that the graph (Q, E) is connected with E = {{u, v} | u,v €
Q A u and v share variables}.

@ Springer

Mach Learn (2015) 100:217-254 229

Algorithm 2: LearnOneModel(Target Predicate P, All Predicates P, Training Data D, Vali-
dation Data V)

Parents(P) =0

C P Dp = learnCPD(Parents(P), D)

F S = GenerateCandidateFeatures(P, P)

repeat

Fpest = null
CPDpesy = CPDp

for F in F S do
C P Dtemp =learnCPD(Parents(P) U {F}, D)
if score(C P Dtemp, V) > score(CP Dpest, V) then
CPDpest = CPDtemp
Fpest = F
end if
end for

if Fpegy # null then
Parents(P) = Parents(P) U {Fpest}
CPDp = CPDpeyt
FS=FS\ {Fpes}

end if
until Fpo5; = null
return: C P Dp

Logistic regression Parameter estimation requires learning the weight vectors for the
logistic regression model. We follow the standard approach and take the (partial) deriva-
tive of the conditional loglikelihood of the data and perform gradient ascent to estimate
the weights (Mitchell 1997).

Linear Gaussian Parameter learning requires estimating the weight vector for the linear
regression model. This can be done via standard techniques for training a linear regressor
and we use ridge regression (Bishop 1995). We estimate the variance by computing
the expected value of the squared difference between the actual value and the model’s
predicted value.

Conditional linear Gaussian In CLGs, each configuration of the discrete parents has an
associated LG model. The parameters for each LG model are learned as described above.

4.4 Evaluating candidate models

Traditionally, a candidate model is evaluated using a score function that trades off the model’s
fit to the data versus some penalty term based on the model’s complexity to avoid overfitting.
For a candidate model M, we use the following score function, which is based on the Minimum
Description Length (MDL) (Schwarz 1978):

MDL(M, D) = PLL(M, D) — Penalty(M, D) (11)

where PLL(M, D) is computed using Eq. (6) and Penalty(M, D) is the following penalty
term:

1
Penalty(M, D) = 5 E E loga(|gr(®)|") - Bo - K
IeD pPeP

@ Springer

230 Mach Learn (2015) 100:217-254

where |gr(P)| is the number of relevant randvars of predicate P in interpretation /, Bp is the
number of free parameters in P’s CPD and K is the size of P’s CPD.* Next, we will explain
in more detail how Bp and K are calculated.

When the CPD for P is represented by a logistic regression model (see Eq. 8), the number
of free parameters is:

Bp = (Jrange(P)| — 1) - (1 4+ |Parents(P)|)

where (1 + |Parents(P)|) is the number of weights that must be learned to parameterize
the model (i.e., one for each feature plus the intercept). For continuous CPDs, this is slightly
more involved to compute. For an LG, the number of free parameters is:

Bp =1+ (1 + |Parents(P)|)

where the first 1 is for the variance o2 and (1 + | Parents(P)|) is the number of weights that
must be learned to parameterize the model (i.e., one for each feature in the parent set plus
the intercept). Recall that in a CLG, one LG model is learned for each possible instantiation
of the discrete parents. Thus the number of free parameters for a CLG is:

Bp=d-(1+ (14 |Parentsc(P)|))

where d is the number of elements in the Cartesian product of the ranges of the discrete
parents, Parentsc(P) denotes only numeric features in the parent set of P and (1 + (1 +
|Parentsc(P)|)) is the number of parameters needed to model each LG.

The size K of P’s CPD is the sum of the feature lengths in the parent set:

K= > |Frcadl (12)
FeParents(P)

where |Fr.c. 4.« = |C| + 1 is the length of a feature.

S Experiments

This section empirically evaluates our HRDN structure learning algorithm LLM. Specifically,
we want to answer the following questions:

1. How does varying the amount of training data affect the quality of the learned model and
the run time of the learning algorithm?

2. Do we learn more accurate models by learning a hybrid model (i.e., explicitly modeling
continuous variables) or by discretizing all continuous variables prior to learning?

3. How does our approach compare to MLN (Richardson and Domingos 2006) structure
learning?

All our code, data and models are publicly available.” We first describe the data sets we will
use and then explain the experimental setup. Finally, we present and discuss the results.

5.1 Data sets

We use one synthetic and one real-world data set to answer these questions.

4 Because we assume that all variables are observed, we do not need to run Gibbs sampling to compute the
PLL.

5 http://dtai.cs.kuleuven.be/ml/systems/1lm.

@ Springer

http://dtai.cs.kuleuven.be/ml/systems/llm

Mach Learn (2015) 100:217-254 231

Table 1 Data set characteristics for the synthetic data when varying the number of interpretations used for
learning

#Interpretations Average Sum of
#Randvars

19,627
39,308
79,027
157,959
16 315,334

[S

#Interpretations is the number of training interpretations. Average Sum #Randvars is the number of randvars
summed across all training interpretations averaged over the ten generated data sets. Each interpretation has
100 students, 50 courses and 50 professors objects

Table 2 Data set characteristics for the synthetic data when varying the domain size of each object type in
the training interpretation

#Students #Courses #Professors Average
#Randvars

100 50 50 19,548

200 75 75 66,577

400 100 100 226,679

800 125 125 796,328

#Students, #Courses, and #Prof essors report the number of each type of object. Average #Randvars is
the number of randvars averaged over the ten data sets generated for each domain size

Synthetic university data We used a modified version of the well-known university
model (Getoor et al. 2001) to generate synthetic data. We made the following alterations.
First, we switched the range of intelligence/1 from discrete to continuous. Second,
we added two predicates with continuous ranges: numHours/1, which is the estimated
number of hours a student needs to study for a course, and ability /1, which is the ability
of a professor. Finally, we added a Boolean predicate £riend/2, which denotes whether
two students are friends. Appendix 1 contains a complete description of the model.

We generate synthetic data in two ways. First, we fix the domain size of each type within
an interpretation and vary the number of training interpretations. We learn models by using
one, two, four, eight and 16 interpretations. We use one validation and one test interpretation.
Second, we fix the number of training and validation interpretations to one and vary the
domain size of each object. The learned models in this setup are evaluated on a test interpre-
tation consisting of 800 students, 125 courses and 125 professors. Tables 1 and 2 show the
characteristics of the domains for the first and second synthetic setup, respectively.

For each experimental condition, we repeat the following process ten times. We gener-
ate the appropriate number of interpretations, where each interpretation is constructed by
performing 2000 iterations of the ordered pseudo-Gibbs sampling (see Sect. 3.3) using the
handcrafted model and the specified number of constants.

For each generated data set, we also create a corresponding discretized version by binning
each continuous randvar into a number of equal-size intervals. We used 2, 4, 6 and 8 bins.

Real-world PKDD’99 financial data set Our real-world domain is the financial data set
from the PKDD’99 Discovery Challenge (Berka 1999). It consists of services one bank offers
its clients such as loans, accounts, and credit cards among others. In the original data, the

@ Springer

232 Mach Learn (2015) 100:217-254

Table 3 Characteristics of the PKDD’99 financial data set

#Account #Loan #Client #District #Randvars

4,490 680 5,358 71 3,157,657

#Account, #Loan, #Client, and #District report the number of objects of each type and #Randvars is the
number of randvars in the data set

transaction table contains more than one million transactions. Therefore, we introduced
several predicates (e.g., average of monthly withdrawals for an account) to summarize the
information contained in this table. This results in 16 predicates® about four types of objects:
clients, accounts, loans and districts. Ten predicates have a continuous range and six
have a discrete range.

We consider account to be the central object type in the PKDD’99 financial data set.
The original data set consists of 4500 accounts, but we omit ten accounts that have missing
data. We then split the data associated with these accounts into tenfolds. To avoid leakage of
information, all information about clients, loans and districts related to one account appear
in the same fold. We used sixfolds for training, threefolds for validation and one for testing.
Table 3 reports the characteristics of this data set.

Again, we create a discretized version of the data by binning each continuous randvar into
a number of equal-size intervals and used 2, 4, 6 and 8 bins.

5.2 Methodology

We compare the following four learners on all experiments:

LLM-H This corresponds to learning a model using our LLM algorithm on the data
containing both continuous and discrete variables.

LLM-D This corresponds to learning a model using our LLM algorithm on the discretized
data. Thus each learned local distribution is modeled using a logistic regression CPD.
LSM This corresponds to learning a model using the publicly available implementation
of LSM (Kok and Domingos 2010) on the discretized data. LSM is the state-of-the-art
Markov logic network structure learning algorithm.

Independent This learner constructs a model on the hybrid data such that all randvars are
independent. Thatis, it models the joint distribution as a product of marginal distributions.

On the experiments involving the PKDD’99 financial data set, we include an additional
baseline: a handcrafted model. We built a local model to predict each predicate by a set of
handcrafted non-relational features. These features are used to predict a property of an object
by means of some other properties of that object. The features can be found in Appendix 4.
For predicates with a discrete range, we used logistic regression. For predicates with a con-
tinuous range, we used both linear regression and MP5 (a regression tree) as implemented
in Weka (Hall et al. 2009).

Experimental details LLM is implemented as a combination of Java and Prolog. Java is
used for performing the learning and Prolog is used to compute the value of a feature. When
generating features, we set the length of the features to be at most N = 3. Usually, in relational
domains, only a small fraction of the Boolean atoms is true (e.g., the number of people who
are friends is quite sparse compared to the number of possible friendships). Therefore, for

6 Table 11 in “Appendix 2” describes the predicates.

@ Springer

Mach Learn (2015) 100:217-254 233

efficiency reasons, we subsample the false Boolean atoms during learning (Natarajan et al.
2012) to achieve a 1:1 ratio of true to false groundings in all experiments.

For LSM, we contacted the authors in order to know what the most important parameters
were to tune. Then, we tried several parameter combinations, and used the validation data to
select appropriate ones for each data set.

Evaluation metrics We evaluate the quality of the learned models using several metrics.
First, to measure the quality of the probability estimates, we report the weighted pseudo-
loglikelihood (WPLL) (Kok and Domingos 2005). This corresponds to calculating the PLL
of an interpretation as the sum of PLLs for each predicate divided by the number of groundings
of that predicate in the interpretation.

Second, to measure the predictive performance, we report the area under the ROC curve
(AUC-ROC) for discrete predicates and the normalized root-mean-square error (NRMSE)
for continuous predicates. Because we have multi-class categorical variables in our domains,
we calculate the multi-class AUC-ROC (Domingos and Provost 2000), which we denote as
AU Ciptq1- The NRMSE for a predicate ranges from zero to one and is calculated by dividing
RMSE by the predicate’s range.

Additionally, since we know the model structure for the synthetic data, we compare how
closely the learned model reflects the handcrafted structure using the following edit distance.
For each predicate, we compare the true parent set to the learned parent set. For each feature
in the true parent set, we find its closest feature in the learned parent set according to the fol-
lowing distance metric. The distance A between two features, F1.,.c,, 4,,c; a0d F1,:C5, Ar,005
is calculated as:

A(F1, F2) = |CI\C2| + |C2\Ci| + 84,4, + bay,00

where 84, 4, equals zero if the two atoms A1 and A, originate from the same predicate and
their logvars are equivalent, otherwise it equals one. Similarly, 84, «, €quals zero if o and
oy represent the same aggregation function, otherwise it equals one. When the best match is
found, both the true and the learned feature are excluded from further comparisons, and the
edit distance is incremented by the distance between them. Furthermore, the final distance is
incremented by the length of each feature that must be added or removed from the learned
dependency parent set.

We use a one-tailed paired ¢ test to assess the significance of the results obtained through
ten independent runs for the synthetic experimental setup and tenfolds for the real-world
data set. The null hypothesis states that there is no difference between two approaches and
we reject it when p<0.01. For all metrics, we report the metric itself along with its standard
deviation.

5.3 Results and discussion

We now present experimental results for the synthetic and real-world data sets.

Results on synthetic data Table 4 shows how the WPLL of each approach varies as a
function of the number of training interpretations. Learning from the hybrid data results in a
significantly more accurate learned model than learning from the discretized data in all cases
except for one in which we have one training interpretation and six discretizing bins. When
using the same number of bins for discretization, LLM-D learns more accurate models than
LSM on all settings. Note that LSM ran out of memory on all runs when training on eight
and 16 interpretations. Finally, all learning approaches always outperform the no-learning
baseline.

@ Springer

234 Mach Learn (2015) 100:217-254

Table 4 The WPLL on the synthetic data as a function of the number of training interpretations

Nr. training interpretations

1 2 4 8 16

LLM-H —18.224+0.5 —18.16 = 0.5 —17.89+0.2 —17.87+02 —-1783+0.3

LLM-D(#bins=2) —21.33 £0.3* -21.10£0.3* -21.06+£0.3* —21.06+0.3* —21.05+0.2*
LLM-D(#bins=4) —19.53 +£0.6* —19.27+0.3* —19.20+0.3* —19.12+0.3* —19.04 +£0.3*

LLM-D(#bins=6) —19.34 +0.9 —18.77+0.4* —18.56+0.3* —18.55+0.3* —18.52+0.3*
LLM-D(#bins=8) —20.03 £1.0* —19.11+0.8* —18.64+£0.5* —18.62+0.5% —18.30+0.3*
LSM(#bins=2) —23.33+0.2%F —23.28+£0.2*%F —22.86+0.8*} OoM OoM
LSM(#bins=4) —23.00 £0.3*F —22.86 +0.4*F —21.65+ 1.3*} OoM OoM
LSM(#bins=6) —22.79 £0.4%F —22.67 £0.4*F —22.00+ 1.3*F OoM OoM
LSM(#bins=8) —22.62£0.3%F —22.62+0.9%F —21.27+ 1.4*} OoM OoM
Independent —23.68+£0.4* —23.63+0.4* —2353+0.4* —23.54+04% -—23.52+04*

The best WPLLs are in bold, an asterisk (*) denotes significantly worse results for p<0.01 compared to
LLM-H. A dagger () denotes when LSM performs significantly worse than LLM-D for p<0.01 on the data
discretized with the same number of bins. OoM denotes out of memory

Table 5 The run times in minutes on the synthetic data as a function of the number of training interpretations

Nr. training interpretations

1 2 4 8 16

LLM-H 1558 £1.8 18.72£223 28.53 £2.7 48.16 £ 3.2 76.51 +3.51

LLM-D(#bins=2) 21.82+4.3 3048 £5.5 53.03 £13.7 85.74 £10.5 140.62 £ 19.2
LLM-D(#bins=4) 28.71 £5.7 40.24£723 70.54 £17.5 109.80 £21.0 162.13 £41.0
LLM-D(#bins=6) 35.69+£7.1 49.84 £9.6 83.34 £24.0 135.73 £13.1 201.40 £139.2
LLM-D(#bins=8) 42.70 £ 8.5 57.63 £ 144 98.33 £29.1 166.11 £ 38.4 255.90 £ 46.7

LSM(#bins=2) 3.73+£0.1 6.70 £ 0.0 748 £0.1 OoM OoM
LSM(#bins=4) 3.44+£0.1 6.22+0.1 8.49+0.0 OoM OoM
LSM(#bins=6) 322400 6.23£0.0 12.65 £ 0.0 OoM OoM
LSM(#bins=8) 4.34£0.1 6.27+0.1 13.33 £0.1 OoM OoM

The best run times are in bold and OoM denotes out of memory

Table 5 presents the run times for all algorithms as a function of increasing the number
of training interpretations. LSM is the fastest learner, but it produces lower-quality models.
For all approaches, the run time scales linearly with the number of interpretations. Learning
an HRDN is always faster than learning an RDN. When discretizing the data, the run time
is influenced by the number of bins used: the more bins there are, the slower the discrete
learner is. This occurs because adding more bins increases the size of the search space.

Finally, Fig. 3 shows how the edit distance varies as a function of the number of training
interpretations. As expected, the edit distance decreases as more training data are used.

Table 6 shows the WPLLs of all learners as a function of increasing the domain size for
each object. To encapsulate the effect of domain size changes in a single number, we use the
number of randvars in an interpretation. Again, we see that all the learners outperform the

@ Springer

Mach Learn (2015) 100:217-254 235

25 ¢
200 T
§ I I -T
S 1 = i 1
8
o
©
ke
w 15
10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16

Number of training interpretations

Fig.3 The effect of the number of training interpretations on the average edit distance between the handcrafted
HRDN model and the hybrid model learned with LLM-H

Table 6 The WPLL on the synthetic data as a function of the domain size

Domain size (#students x #courses x #professors)

100x50x450 200x75x75 400x100x 100 800x125x125
LLM-H —18.11+0.3 —17.84+0.2 —17.78 £ 0.2 —-17.72+0.3
LLM-D(#bins=2) —20.56 £0.5* —20.47 £0.2* —20.42 £0.2* —20.54 £0.2*
LLM-D(#bins=4) —18.95 £0.8* —18.50 £0.2* —18.48 £0.2* —18.60 £0.3*
LLM-D(#bins=6) —18.62 +0.9* —18.224+0.6 —17.86 £0.2 —-17.87+0.2
LLM-D(#bins=8) —19.39 +0.8* —18.17+0.6 —18.05+0.6 —17.86 £0.4
LSM(#bins=2) —24.45 £0.2%F —22.58 £0.1%F —22.53 £0.2%F —22.72 £0.2%%
LSM(#bins=4) —23.00 £ 0.3*F —23.15+£0.5%F —22.20 £0.2%7F —21.83 £0.2*F
LSM(#bins=6) —22.79 £ 0.4%%F —25.55+£0.3*F —21.83 £0.2*F —21.92 £0.2*F
LSM(#bins=8) —22.62 £0.3%F —25.64 £0.1*F —21.71 £0.2%%F —21.79 £ 0.2*%
Independent —23.55+0.1* —23.48+0.1* —23.46 £0.1* —23.42+£0.1*

The best WPLLs are in bold, an asterisk (*) denotes significantly worse results for p <0.01 compared to
LLM-H. A dagger () denotes when LSM performs significantly worse than LLM-D for p <0.01 on the data
discretized with the same number of bins

independent model. LLM-H always learns significantly more accurate models than LSM.
LLM-H learns a significantly more accurate model than LLM-D except when discretizing
the data into 6 or 8 bins on the data sets with 200, 400 and 800 students.

Table 7 shows the run time of all approaches as a function of increasing domain size.
Similar to the previous setup, LSM exhibits better run times than either LLM-H or LLM-D,
but it produces lower-quality models. As expected, both LLM-H and LLM-D run time varies
quadratically with the increase in domain size. LSM’s run time seems to vary linearly, which
probably occurs due to its random-walk style search for patterns, which does not necessarily
examine all the variables in the training database. When learning (H)RDNs, LLM-H is faster
than LLM-D. Again, in general, increasing the number of bins increases the training time.

Figure 4 shows that the edit distance between LLM-H’s learned model and the handcrafted
model decreases as the number of randvars in the training interpretation increases. More

@ Springer

236

Mach Learn (2015) 100:217-254

Table 7 The run times in minutes on the synthetic data as a function of the domain size for all the learners

Domain size (#students x #courses x #professors)

100x50%50 200x75x75 400x 100x 100 800x 125x125
LLM-H 1558+ 1.8 54.61 +3.2 171.82 £21.5 2171.05 £ 306.3
LLM-D(#bins=2) 21.82+43 98.68 5.0 270.81 £ 38.7 2164.11 +154.6
LLM-D(#bins=4) 28.71 £5.7 128.51 £ 8.6 341.76 £40.7 3026.22 +317.4
LLM-D(#bins=6) 35.69+7.1 156.98 £ 8.1 476.16 +50.8 2923.45 + 150.7
LLM-D(#bins=8) 4271 £8.5 182.18 £5.8 700.07 £+ 80.8 4119.31 +387.3
LSM(#bins=2) 3.73+0.1 6.134+0.1 11.85£0.1 18.34 £ 0.3
LSM(#bins=4) 34440.1 5.18+0.1 10.32 +0.1 19.72 £ 0.2
LSM(#bins=6) 3.22+0.0 5.74+0.1 11.80 £ 0.1 19.68 £ 0.2
LSM(#bins=8) 4.34+0.0 5.71+£0.1 11.33 £0.1 20.68 £0.2
The best run times are in bold
30
25
8 20
] r
% 15 ¢ j
%
Woot
51
0
0 1 2 3 4 5 6 7 8
Number of randvars x10°

Fig. 4 The effect of increasing the domain size of each object type on the average edit distance between the
handcrafted HRDN model and the hybrid model learned with LLM-H. We summarize the effect of changing
the domain sizes by showing the number of randvars in the training interpretation

(observed) random variables equates to more training data, and, as expected, more data
allows us to learn more accurate models.

In both synthetic setups, we noticed that in the learned model difficulty (C) depends
on nrhours (C). This dependency is not encoded explicitly in the handcrafted model.
However, nrhours (C) does depend on difficulty (C) in the original model. In both
cases, this contributes to the edit distance.

More detailed results for both synthetic setups can be found in Appendix 3.

Results on the PKDD’99 financial data set Figure 5 shows the WPLL for all approaches
on the PKDD’99 financial data set as a function of the number of bins used for discretization.
For the handcrafted models, we denote the combination of logistic regression and linear
regression as LR+LinR, and the combination of logistic regression and MP5 regression trees
with LR+MPS5. In the figure, the lines for LLM-H, LR+LinR, LR+MPS5 and the independent
model are straight because these approaches operate directly on the hybrid data and hence
do not perform discretization. We see a clear ranking between the approaches: LLM-H >
LR+LinR > LR+MP5 > LLM-D > LSM > independent.

@ Springer

Mach Learn (2015) 100:217-254 237

-116

-118 |
ol Y PPy
|
-122 —
B .
= . §
=
| —f— L LM-H
-126 safd== LMD
- == LSM
_128 b =m == LR+LinR
LR+MP5
130 | imim9¢imim Independent
-132 - : - X . . :
1 3 4 5 6 7 8 9

Number of bins

Fig. 5 The WPLL for each approach on the PKDD’99 financial data set as a function of the number of bins
used for discretization. Note that the results for LLM-H, LR+LinR, LR+MP5 and the independent model do
not depend on the number of bins used for discretization

Table 8 The performance of the two variants of the handcrafted models, LR+LinR and LR+MP5, compared
to LLM-H on the hybrid data for the PKDD’99 financial data set

Evaluation Predicate LR+LinR LR+MP5 LLM-H

AUCyptal clientDistrict/2 0.59 +0.02* 0.59 + 0.02* 0.64 £ 0.02
gender/1 0.50 £ 0.01 0.50 £ 0.01 0.50 £ 0.01
hasAccount/2 0.50 +£0.01* 0.50 +0.01* 0.56 £ 0.01
freqg/1 0.86 £ 0.01 0.86 £ 0.01 0.82 £0.01*
hasLoan/2 0.76 +£0.01* 0.76 +0.01* 1.00 +0.01
loanStatus/1 0.79 £ 0.03 0.79 £ 0.03 0.66 £ 0.04*

NRMSE clientAge/2 0.28 £0.03 0.28 £ 0.01 0.28 £0.02
avgSalary/1 0.13£0.01* 0.11 £0.01 0.13 £0.02*
ratUrbInhab/1 0.20 +£0.01* 0.15+0.00 0.20 £ 0.00*
avgSumOfw/1 0.02 £+ 0.00 0.03 £+ 0.00* 0.02 £ 0.00
avgSumOfCred/1 0.02 £0.01 0.03 £+ 0.00* 0.02 £ 0.00
stdofw/1 0.05 £0.01 0.05 £ 0.00 0.05 £0.01
stdOofCred/1 0.05 £0.01 0.04 £0.01 0.05 £0.01
avgNriWith/1 0.12 £ 0.02* 0.10 £ 0.00 0.15+0.01*
loanAmount/1 0.15+£0.02 0.15+0.01 0.16 £0.02
monthlyPayments/1 0.17 £ 0.02 0.17 £ 0.01 0.18 £0.02

LR+LinR uses logistic regression for discrete predicates and linear regression for continuous predicates, and
LR+MP5 uses logistic regression for discrete predicates and regression trees for continuous predicates. The
best results are in bold and an asterisk (*) denotes the result that is significantly worse (p <0.01) than the best
result

Table 8 shows the (multi-class) AUCs and NRMSE for LLM-H and the handcrafted
models. All three approaches tend to have similar results on most predicates. Note that the
handcrafted features used to propositionalize the data are all features that LLM-H is able to
learn automatically.

Table 9 reports the AUC;y1q for LLM-H, LLM-D and LSM. Out of the six discrete
predicates, LLM-H has a higher AU C;,;4; on one predicate, the same on two and worse on

@ Springer

Mach Learn (2015) 100:217-254

238

PIOq UI I S)[NSaI 353q Y,

000 F 00 €0'0F €9°0
PE0F8L0 LO'OF IS0
000 F 050 €0'0F SS°0
000 F 050 100+ 00T
8I'0F 650 100 F IS0
0I'0F+98°0 €0°0F 950
100F L6°0 ¥0'0 F+¥9°0
100+ S6°0 10°'0F 090
00°0F 660 60°0 F99°0
100 F 660 200+ €90
000+ 050 000 F IS0
000 F6v°0 000+ 950
000 F0<°0 1000 F 950
000 F0s0 000 F 050
000 F 050 1000 F 950
000 F 050 100 F0S°0

90'0 F¢S°0 €0'0F 990
€E0FCLO S0'0F 90
61'0FL90 ¥0°0 F £5°0
000 F 050 100 F 00T
110 F 650 00F 670
01’0 +880 €0°0F LSO
100 +860 10°0+89°0
100 F L6°0 S0'0F 90
000 F 660 90°0 +08°0
000+ 660 000 F ¥9°0
000 F 050 000 F IS0
000+ 00T 000 F 650
000 F 050 100 F 950
100 F 050 10°0 F 050
000 F 050 100 F SS°0
000 F 050 £€0°0 F 61°0

61'0F89°0 €0'0F 990
€E0FSLO 90°0 F 650
SCOF 90 00FCLo
000 F 050 100+ 00T
00+ L90 €0°0F 950
SI'0OF8L0 SO'0F 650
€0'0F 960 ¥0°0 F 18°0
100 F L6°0 90°0 F 88°0
000 F 660 1000+ 960
000+ 660 200 F 80
000 F 050 000+ ¢SS0
100+ 001 000+ L9°0
000 F 050 100 F 950
000 F0s0 000+ 050
000 F 050 1000 F95°0
000 F 050 Y00 F IS0

TTOFLLO 90°0 F L9°0
SCOFO0L0 SO'0F 950
I€0F8L0 €00 F980
000 F 050 100 F 00T
9¢'0 F+8S°0 €00 F LSO
LT'0F98°0 €00 F¥9°0
900 F96°0 ¥0'0F 1670
100 + 860 200 F 060
000 F 660 10°0 F 660
000+ 660 100 F 660
000+ 090 000+ 090
000+ 00T 000+ L8O
000 F 050 100 F95°0
000 F 050 000 F0s0
000 F 050 100 F95°0
000 F 050 ¥0°0 F 6¥°0

00 +99°0

100+ 00T

100+ 280

1000 F 950
100 F 050
W00F 90

T/s3uswiedATyiuou
T/Sn3e3sueotl
T/3UNOWYUROT

z/ueorIsey
T/YaTMINGA®
T/baxg
T/P231D30P3s
T/MI0OP3sS
T/paapFoumsbae
T/MFownsbae
T/qequriqiniex
T/KxeTesbae
Z/23Uunoooysey
1/xopUush
C/3PTAISTAIUSTTO

Z/°byausTIo

INST d-IWTI1

INST d-IWTI1

NST d-IWTI1

INST d-IWT1

SuIq § OJUT PAZNAIOSI

SUIq 9 OJUT PAZNIOSI

SUIq § OJUT PAZNIOSI

SUIq 7 0JUT PAZNIOSIJ

H-INTI1

edIpaId

105 BIEp [BIOURUY 66, A U} UT $a1edIpaId 91010SIP XIS oY) U0 NS Pue (-INTT ‘H-IWTT 10§ sinsa1 79750y 6 d1qe,

pringer

as

Mach Learn (2015) 100:217-254 239

4

10

— PP < LTI

2 wp O

E

p R -

£ - ol

o P A

£ , “_.-"E_ —— LLM-H

ERE . =@-- UMD

==@== LSM

10

2 3 4 5 6 7 8 9
Number of bins

Fig. 6 The run time of each approach on the PKDD’99 financial data set as a function of the number of bins
used for discretization. The y-axis (run time) is on a log scale. Note that LLM-H’s results do not depend on
the number of bins used for discretization

three compared to LLM-D. Compared to LSM, it wins on three predicates, loses on two and
draws on one.

Figure 6 shows the run times for this data set as a function of the number of bins used for
discretization. LLM-H exhibits better run times than both LLM-D and LSM. LSM is faster
than LLM-D except when discretizing the data into two bins.

When we inspected the models learned on the PKDD’99 financial data set, we found a
considerable number of bi-directional dependencies. This means that our algorithm succeeded
in learning a model that is mostly structurally consistent. For example, it learned that the
monthly payment amount for a loan depends on the loan amount, and vice versa. The same
holds for the average salary and the ratio of urban inhabitants in a district, the average
amount withdrawn from an account and the average amount credited to an account, the
average amount withdrawn from an account and the average number of withdrawals for an
account, among others.

More detailed results for the PKDD’99 financial data set can be found in Appendix 3.

Discussion Now we can revisit and answer the three experimental questions posed at the
beginning of this section. To address the first question, we used the synthetic data to explore
the scaling behavior of our algorithm. We found that as the amount of training data increases
both the accuracy of the learned models and their faithfulness to the ground truth model
slightly improve.

The second question revolves around whether it is better to learn from hybrid data or
discretized data. On all experiments, we have seen that learning from the hybrid data directly
consistently results in significantly more accurate learned models (according to WPLL) than
discretizing the data prior to learning. Finally, we wanted to compare our proposed learning
algorithm to the state-of-the-art MLN learner. The results show that on both hybrid and
discrete data LLM learns more accurate models than LSM.

6 Related work

On the propositional level, researchers have considered extending formalisms such as
Bayesian networks and dependency networks to model both discrete and continuous

@ Springer

240 Mach Learn (2015) 100:217-254

distributions. In terms of hybrid Bayesian networks, most of the work has focused on infer-
ence (Koller et al. 1999; Yuan and Druzdzel 2007; Murphy 1998; Moral et al. 2001; Lauritzen
and Jensen 2001). There have also been some initial attempts for parameter learning (Mur-
phy 1998) and structure learning (Romero et al. 2006). Cobb et al. (2007) provides a more
detailed overview of work on hybrid Bayesian networks.

There has been some work on structure learning for hybrid dependency networks. Dobra
(2009) has proposed bounded stohastic search for variable selection (structure learning)
for sparse genetic dependency networks that contain both discrete and continuous variables.
Meinshausen and Biihlmann (2006) use neighbourhood selection with the Lasso for structure
learning as a computationally attractive alternative to standard covariance selection methods
for multivariate normal distributions. Guo and Gu (2011) use dependency networks for multi-
label classification where each CPD represents a probabilistic or non-probabilistic binary
classifier that can have both discrete and continuous predictors.

Our work represents a relational approach and builds off of two lines of research: struc-
ture learning for RDNs and hybrid relational probabilistic models. There are two existing
structure learning approaches for RDNs (Neville and Jensen 2007; Natarajan et al. 2012).
Both approaches perform structure learning by finding the best conditional distribution inde-
pendently for each predicate. They slightly differ in how they represent the CPDs. Neville
and Jensen (2007) learn a single relational probability tree (Neville et al. 2003) for each
predicate. Natarajan et al. (2012) represent individual conditional distributions as a weighted
sum of relational regression trees (Blockeel and De Raedt 1998), which are learned by a
stage-wise optimization procedure. However, these approaches do not explicitly model con-
tinuous distributions and instead require them to be discretized. In contrast, our approach
is able to directly encode dependencies between discrete and continuous random variables
without discretization. Doing so necessitates representing the CPDs with logistic regression
or conditional (linear) Gaussian model as opposed to a relational probability tree.

There are several formalisms that can represent hybrid relational domains including
Hybrid Markov Logic Networks (HMLNs) (Wang and Domingos 2008), Hybrid Problog
(HProblog) (Gutmann et al. 2011), Continuous Bayesian Logic Programs (CBLPs) (Kersting
and De Raedt 2001), Learning Modulo Theories (LMT) (Teso et al. 2013) and Hybrid Proba-
bilistic Relational Models (HPRMs) (Narman et al. 2010). Additionally, formalisms such as
Relational Continuous Models (RCMs) (Choi et al. 2010) and Gaussian Logic (Kuzelka et al.
2011) can model domains that exclusively contain continuous variables. The latter formalism
also provides support for structure learning. Most of these formalisms focus on representation
and reasoning issues in hybrid relational domains. HMLNs, CBLPs and LMTs also provide
support for learning the parameters of a given model from data. Next, we provide a more
detailed comparison between our approach and HMLNs, HProblog and CBLPs.

Representationally, HMLNs, CBLPs and HRDNs all serve as template languages for con-
structing a different type of propositional graphical model. Hence, each formalism inherits
the strengths and weaknesses of the underlying formalism. In contrast, HProblog is a proba-
bilistic extension of Prolog. There are differences in how each formalism models continuous
variables. HRDNs, HProblog and CBLPs explicitly state the form of the distribution (e.g.,
a Gaussian) and its parameters (e.g., the mean and variance). In contrast, HMLNs express
numeric variables through a set of soft constraints with a Gaussian penalty for diverging
values. One notable difference between HRDNs and CBLPs is that CBLPs do not permit a
discrete variable to have a continuous parent, whereas this is possible in HRDNs.

In terms of reasoning, HMLNs and HRDNs use approximate inference. Currently,
HProblog only supports an exact inference procedure which involves partitioning the contin-
uous probabilistic facts into admissible intervals. Scaling HProblog to large domains would

@ Springer

Mach Learn (2015) 100:217-254 241

require the development of a suitable approximate inference algorithm. Inference in CBLPs
can be split in two parts: logical inference and probabilistic inference. The former computes
the support network for a query (i.e., a Bayesian network containing all relevant variables
for the query). The latter applies off-the-shelf Bayesian network inference methods to the
resulting support network.

There are significant differences in the level of support for learning in each formalism.
Out of the four formalisms, HRDNs are the only one that support structure learning in
hybrid domains. Like HRDNs, HMLNs and CBLPs have algorithms for parameter learning.
Currently, HProblog does not support parameter learning.

7 Conclusions and future work

This paper addressed the problem of learning models from structured, relational data that
contain both discrete and continuous variables. To the best of our knowledge, this is the first
attempt to perform structure learning in a hybrid SRL setting. We introduced Hybrid Rela-
tional Dependency Networks (HRDNs), a novel extension of relational dependency networks
that accommodate continuous variables and proposed an algorithm that automatically learns
the structure of an HRDN from data. Empirically, we evaluated the benefit of incorporating
continuous variables in a learned model on one synthetic and one real-world data set by
considering two versions of each data set: one that contains both continuous and discrete
variables, and one where each continuous variable is discretized prior to learning. We com-
pared our proposed algorithm to two learners that work only on discrete data: a variant of
our algorithm and LSM, the state-of-the-art MLN structure learner. We found that learning
directly from the hybrid data resulted in more accurate learned models than learning from
the discretized data.

One interesting direction for future work is to explore the suitability of modeling other
continuous conditional distributions, next to the Gaussians considered in this paper. In princi-
ple, other density functions can be used given that we can calculate the value of the function at
apoint and that we can sample a value for a variable given the assignment to its parents. How-
ever, it is unclear how easy this is in practice for complex distributions, and whether issues
could arise with sampling inconsistent HRDNs containing relational conditional dependen-
cies. We would also like to extend our learning algorithm such that it could cope with missing
data and model latent variables. Additionally, we would like to explore other penalty terms
in the objective function such as a L1 penalty that has been used for learning propositional
DNs (Dobra 2009; Meinshausen and Biihlmann 2006). Finally, we would like to evaluate
our approach on more real-world domains.

Acknowledgments We would like to thank the anonymous reviewers and Guy Van den Broeck for their
very helpful comments. Irma Ravkic is supported by the Research Fund KU Leuven (OT/11/051). Jan Ramon
is supported by ERC-StG 240186, and the Research Fund KU Leuven (OT/11/051). Jesse Davis is partially
supported by the Research Fund KU Leuven (OT/11/051), EU FP7 Marie Curie Career Integration Grant
(#294068) and FWO-Vlaanderen (G.0356.12).

Appendix 1: Handcrafted model and learned hybrid models for the synthetic
data

In this Appendix we compare the handcrafted and learned hybrid models for the syn-
thetic data set. We present the learned dependencies for both setups: fixed domain size and

@ Springer

242 Mach Learn (2015) 100:217-254

increasing domain size. For the former we show the learned dependencies when training
on 16 interpretations, and for the latter we present the learned dependencies for the largest
domain size (800 students, 125 courses and 125 professors).

Predicate declarations

range(difficulty (C)) = {easy, med, hard}
range(satisfaction(S,C)) = {low, med, high}
range(grade (S, C)) = {low, med, high}
range(takes (S, C)) = {true, false}
range(teaches (P, C)) = {true, false}
range(friend (S, S1)) = {true, false}
range(nrhours (C)) = [20.0, 180.0]
range(intelligence (S)) = [50.0, 180.0]
range(ability (P)) = [20.0, 100.0]

Handcrafted model
Below is the model we used to generate the synthetic data.

difficulty(C) \

F1S,C)0,grade(S,C),values

satisfaction(s,C)
f[C}:teaches(P,C),ability(P),value

f{S}:(?l,imelligence(S),value,

grade (S, C)
Fieyo,difficulty(C),value

F{S}:(ZJ,intelligence(S),value’

takes(S,C)
FiCyd.difficulty(C),value

f{P}:Q,ability(P),value»

teaches (P, C)
Fieyo,difficulty(C),value

friend (S, S1) \ F(8,81):{takes(S,C),takes(S1,C)}.8, proportion
nrhours (C) \ FiCyd.difficulty(C),value
intelligence (S) \ F($}:0.grade(S,C).mode

ability (P) \

@ Springer

Mach Learn (2015) 100:217-254 243

Table 10 Local distributions used for the handcrafted model

Predicate Local Distribution Parameters
difficulty/1 Multinomial 0.2,0.4,0.4)
satisfaction/2 Logistic Regression satisfaction (s, C)=low —(-1.28,-0.07,0.028)
satisfaction (S, C)=med—(0.5,-0.4,0.009)
grade/2 Logistic Regression grade (S, C)=low —(-1.77,-0.04,1.75)
grade (S, C)=med —(-2.18,0.003,0.75)
takes/2 Logistic Regression takes (S, C) =true —(0.4,0.009,-0.607)
teaches/2 Logistic Regression teaches (P, C) =true —(-0.089,-0.012,0.305)
friend/2 Logistic Regression friend (s, s1)=true —(-0.08,1.5)
nrhours/1 Conditional Gaussian difficulty (C)=easy — N(20,6)

difficulty (C)=med — N(50,5)

difficulty (C)=hard — N(80,6)
intelligence/1 Conditional Gaussian grade (S, C) =low — N(60,5)

grade (S, C) =med — N(90,7)

grade (S, C)=high — N(110,5)
ability/1 Gaussian N(70,10)

For reasons of reproducibility, we also provide the parameters for the dependencies for
our handcrafted model. We will not do this for the learned models as there the parameters are
of less interest. The parameters for the dependencies are given in Table 10. The probabilities
of multinomial values are to be read in the order given in the predicate declaration. For
the logistic regression of a dependency P | Parents(P), we use the notation P = k —
(W0, Wk, 7y - - - » Wk, F,) Where wy o represents the bias term, and wy, 7, represents the ith
feature’s weight. The order of the feature parameters follows the order of the features in the
dependencies. The parameters of conditional Gaussians are of the form d — N (ug, 04),
where d represents an instantiation of discrete parents, and N (u4, o4) gives the Gaussian
distribution for that instantiation.

Learned model for a fixed domain size (16 training interpretations)

difficulty(C) ‘]:{C}:(/),nrhours(C),value

satisfaction(S,C) ‘

~7:{S}:ﬂ,intelligence(S),value:

grade (S, C)
Fieyo,difficulty(C),value

takes (S, C) |]:{S,C}:satisfaction(S,C):l()w,[/},proportiony

-7'—{S,C}:@,satisfaction(S,C),Ualue

teaches (P, C) ‘

@ Springer

244 Mach Learn (2015) 100:217-254

friend(S, S1) \ F{SYitakes(S,C). 0, proportion
nrhours (C) \ F(Cy:.difficulty(C),value
intelligence (S) ‘ F(Sy:0,grade(S,C),mode
ability(P) \

Learned model for a domain size of 800 students, 125 courses and 125 professors

difficulty(C) ‘ F{C}:takex(S,C),(/J,proportion

F1S,C)0,grade(S,C), value>

satisfaction (S, C)
]:{C}:teaches(P,C),ability(P),value

-7:{S}:(ZJ,intelligence(S),values
grade (S, C) FiCy:0, difficulty(C),values
]:{S,C}:V),sati‘;factian(S,C),value

takes (S, C) \ F1S,Ch:dsatisfaction(S,C)=mid friend (S, S1) takes(S1,C)}, ¥, proportion
teaches (P, C) \ FPY:0,ability(P),value

friend(S, S1) \ F(Sy:(satisfaction(S.C)=low.grade(S.C)=high.takes(S.C)}.,proportion
nrhours (C) \ FiCy:0, difficulty(C),value

intelligence (S) \ F18y:0,grade(S,C),mode

ability(P) \

@ Springer

Mach Learn (2015) 100:217-254 245

Appendix 2: PKDD’99 real-world financial data set

Table 11 Description of the predicates in the PKDD’99 financial data set

Predicate name Description Range
clientAge(C, L) The age of client C at the moment of loan L origination R
clientDistrict (C,D) Client C lives in district D Boolean
gender (C) The gender of client C {m,f}
hasAccount (C, A) Client C has an account A Boolean
avgSalary (D) The average salary in district D R
ratUrbInhab (D) The ratio of urban inhabitants in district D R
avgSumofW (A) The average sum of monthly withdrawals for account A R
avgSumofCred (A) The average sum of monthly credits for account A R
stdOfw(a) The standard deviation of monthly withdrawals for account A R
stdofCred(a) The standard deviation of monthly credits for account 2 R
freqg(a) The frequency of statement issuance for account A {i,d,m}
avgNrW (A) The average number of withdrawals per a month for account A

hasLoan (A, L) Account A has loan L Boolean
loanAmount (L) The amount of loan L R
loanStatus (L) The status of loan L {a,b,c,d}
monthlyPayments (L) The monthly payment amount for loan L R

Appendix 3: Detailed results for all domains

In this Appendix we present detailed results on per predicate WPLLs for all domains used
in our experiments.

Results on synthetic data
Tables 12,13, 14, 15 and 16 show the test set per randvar WPLLs for each predicate when
varying the number of training interpretations. Tables 17, 18, 19 and 20 show the test set per

randvar WPLLs for each predicate when varying the domain size of the training interpreta-
tions. In both cases, the WPLLs are averaged over all ten runs.

Results on the PKDD’99 financial data set

Tables 21 and 22 contain per randvar WPLLs for all learners applied on the PKDD’99
financial data set. All the WPLLs represent an average value over ten-fold cross-validation.

@ Springer

246 Mach Learn (2015) 100:217-254

Table 12 The per randvar WPLL for each predicate on the synthetic data when training on one interpretation

Hybrid Discretized Discretized Discretized Discretized

into 2 bins into 4 bins into 6 bins into 8 bins
Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 —457 -546 —-630 —490 -625 —481 -6.11 541 —6.05
difficulty/1 —-0.06 -0.83 -—-159 -027 -159 —-028 —-159 —0.17 —1.59
ability/1 —534 595 -595 =570 =570 =571 =572 =572 —5.67
intelligence/1 —-489 -571 -724 -534 -6.09 -521 -6.01 —-539 -594
grade/2 -149 -151 —-153 —-148 —-153 —-148 —1.53 148 —1.53
satisfaction/2 —-1.55 —-1.55 -154 —-156 -154 —-156 -154 —-155 -1.54
takes/2 -0.00 —-000 —-000 —-000 -000 —0.00 —-0.00 —0.00 —0.00
friend/2 -014 -014 -0.15 -0.15 -0.15 -0.15 -0.15 —-0.15 —-0.15
teaches/2 -0.14 -014 -014 —-0.14 -014 -0.14 -0.14 —-0.14 -0.14
Total WPLL —18.22 —21.33 —-2445 —-19.53 —-23.00 —-19.34 —22.79 —-20.03 —22.62

The best results are in bold

Table 13 The per randvar WPLL for each predicate on the synthetic data when training on two interpretations

Hybrid Discretized Discretized Discretized Discretized

into 2 bins into 4 bins into 6 bins into 8 bins
Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 —443 541 —-627 —482 -620 —461 -6.09 501 —6.14
difficulty/1 -0.18 -0.69 -1.56 —-028 -156 —-0.08 -1.56 —0.10 —1.44
ability/1 -533 -593 -59 566 -566 567 567 566 572
intelligence/1 -487 -571 -7.18 =521 -6.08 -509 -599 —-5.01 -596
grade/2 -1.50 —-1.51 —1.53 —-146 —-153 —148 —-153 —147 —1.53
satisfaction/2 —1.55 —-155 —-154 —-155 -154 —-155 -154 —-155 -154
takes/2 —-0.00 —-0.00 —0.00 —-0.00 —-0.00 —0.00 -0.00 —0.00 —0.00
friend/2 -015s -0.16 —-015 -015 -015 -015 -015 -0.15 -0.15
teaches/2 -014 -014 -014 -014 -014 -014 -014 —014 —0.14
Total WPLL —18.16 —21.10 —24.34 —19.27 —22.86 —18.77 —22.67 —19.11 —22.62

The best results are in bold

Table 14 The per randvar WPLL for each predicate on the synthetic data when training on four interpretations

Hybrid Discretized Discretized Discretized Discretized
into 2 bins into 4 bins into 6 bins into 8 bins
Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 —437 -541 —-6.07 —482 -562 —458 —-6.07 —473 544
difficulty/1 -0.01 -066 —-131 —-026 -095 —-0.06 —-0.90 —0.08 —0.85
ability/1 -531 -592 -592 564 564 565 —-568 564 —5.68

intelligence/1 —-485 -—-571 —-6.12 —-519 —-6.08 —498 —-598 —489 —-594

@ Springer

Mach Learn (2015) 100:217-254 247

Table 14 continued

Hybrid Discretized Discretized Discretized Discretized
into 2 bins into 4 bins into 6 bins into 8 bins
Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
grade/2 -150 -151 —-153 —-145 —-153 -—-145 -—-153 —146 —1.53
satisfaction/2 —-1.55 —-1.55 -154 —-155 -154 —-155 -154 —-155 -154
takes/2 -0.00 -000 —-000 —-0.00 —-000 —0.00 —-0.00 —0.00 —0.00
friend/2 -015 -015 -01s —-015 -015 -015 -015 —-015 -—-0.15
teaches/2 -010 -014 -014 -014 -010 -014 -0.14 014 -0.14
Total WPLL —17.89 —21.06 —20.52 —-19.20 —21.65 —18.56 —22.00 —18.64 —21.27

The best results are in bold

Table 15 The per randvar WPLL for each predicate on the synthetic data when training on eight interpretations

Hybrid Discretized Discretized Discretized Discretized
into 2 bins into 4 bins into 6 bins into 8 bins
Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 —435 —-541 OoM —4.82 OoM —4.58 OoM —4.73 OoM
difficulty/1 —0.02 -0.67 OoM —0.18 OoM —0.06 OoM —0.09 OoM
ability/1 —-531 -592 OoM —5.63 OoM —5.65 OoM —5.63 OoM
intelligence/l1 —4.86 —5.71 OoM —5.18 OoM —4.97 OoM —4.88 OoM
grade/2 —-1.49 —-151 OoM —1.46 OoM —1.46 OoM —1.45 OoM
satisfaction/2 —-1.55 —-1.55 OoM —1.55 OoM —1.55 OoM —1.55 OoM
takes/2 —-0.00 —0.00 OoM —0.00 OoM —0.00 OoM —0.00 OoM
friend/2 —-0.15 —-0.15 OoM —0.15 OoM —0.15 OoM —0.15 OoM
teaches/2 —-0.14 —-0.14 OoM —0.14 OoM —0.14 OoM —0.14 OoM
Total WPLL —17.87 —21.06 OoM —19.12 OoM —18.55 OoM —18.46 OoM

The best results are in bold, and OoM denotes out of memory

Table 16 The per randvar WPLL for each predicate on the synthetic data when training on 16 interpretations

Hybrid Discretized Discretized Discretized Discretized
into 2 bins into 4 bins into 6 bins into 8 bins
Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 —435 —-541 OoM —4.79 OoM —4.57 OoM —4.50 OoM
difficulty/1 —-0.02 —-0.66 OoM —0.15 OoM —0.05 OoM —0.04 OoM
ability/1 —-531 -591 OoM —5.63 OoM —5.64 OoM —5.61 OoM
intelligence/l1 —483 -5.71 OoM —5.18 OoM —4.96 OoM —4.87 OoM
grade/2 —-1.49 —-1.51 OoM —1.46 OoM —1.46 OoM —1.45 OoM
satisfaction/2 —-1.55 —1.55 OoM —1.55 OoM —1.55 OoM —1.55 OoM
takes/2 —-0.00 —-0.00 OoM —0.00 OoM —0.00 OoM —0.00 OoM
friend/2 —-0.15 —-0.15 OoM —0.15 OoM —0.15 OoM —0.15 OoM

@ Springer

248

Mach Learn (2015) 100:217-254

Table 16 continued
Hybrid Discretized Discretized Discretized Discretized
into 2 bins into 4 bins into 6 bins into 8 bins
Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
teaches/2 —0.14 —0.14 OoM —0.14 OoM —0.14 OoM —0.14 OoM
Total WPLL —17.85 —-21.05 OoM —19.04 OoM —18.52 OoM —18.30 OoM

The best results are in bold, and OoM denotes out of memory

Table 17 The per randvar WPLL for each predicate on the synthetic data consisting of 100 students, 50
courses and 50 professors

Hybrid Discretized Discretized Discretized Discretized

into 2 bins into 4 bins into 6 bins into 8 bins
Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 —4.66 —-535 —-630 —494 -625 504 -6.11 —-563 —6.05
difficulty/1 -0.07 -091 -159 -045 -159 —-028 —-159 —-0.34 —-1.59
ability/1 —-535 —-546 -595 521 -570 515 572 —5.18 —5.67
intelligence/1 —473 -—-554 -724 506 —-6.09 —-486 —6.01 —493 -594
grade/2 -151 -151 -153 -151 -153 -—-151 -153 —1.52 —1.53
satisfaction/2 —-1.55 -1.55 -154 —-155 -154 —155 -154 —-155 -154
takes/2 —-0.00 —-0.00 —-0.00 —-0.00 —-0.00 —0.00 -0.00 —0.00 —0.00
friend/2 -0.16 -0.16 -015 -0.16 -0.15 -0.16 -0.15 —-0.16 —0.15
teaches/2 -0.07 -0.07 -0.14 -0.07 -0.14 -0.07 -0.14 —-0.07 -0.14
Total WPLL —18.11 —20.56 —24.45 —18.95 —23.00 —18.62 —22.79 —19.39 —22.62

The best results are in bold

Table 18 The per randvar WPLL for each predicate on the synthetic data consisting of 200 students, 75
courses and 75 professors

Hybrid Discretized Discretized Discretized Discretized

into 2 bins into 4 bins into 6 bins into 8 bins
Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 —450 -528 —6.11 —4.69 —-6.08 —470 -6.11 —4.76 —6.13
difficulty/1 -005 -071 -157 -0.18 —-157 —-024 -159 —-0.14 -1.59
ability/1 —-534 -560 -560 —-529 -529 526 558 526 -—5.62
intelligence/1 —-4.70 -561 -6.00 —-5.11 -599 —-477 -6.11 —-477 -6.14
grade/2 —-148 —-150 —-154 —-146 —154 —-147 —-158 —147 —-1.59
satisfaction/2 —-1.55 -—-1.55 -154 —-1.55 -154 —-1.55 -159 —-1.55 -—1.59
takes/2 -0.00 -000 —-000 —-0.00 -000 -0.00 —-1.00 —0.00 —1.00
friend/2 -016 -016 —-016 —-016 -024 —-016 -1.00 —-0.16 —1.00
teaches/2 -0.07 -007 —-007 -007 -091 -0.08 -1.00 —0.07 -1.00
Total WPLL —17.84 —20.47 —22.25 —1850 —23.15 —18.22 —-2555 —18.17 —25.64

The best results are in bold

@ Springer

Mach Learn (2015) 100:217-254 249

Table 19 The per randvar WPLL for each predicate on the synthetic data consisting of 400 students, 100
courses and 100 professors

Hybrid Discretized Discretized Discretized Discretized

into 2 bins into 4 bins into 6 bins into 8 bins
Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 —452 -532 —-6.14 —472 —-6.09 —451 -596 —4.76 —5.89
difficulty/1 -0.02 -070 -155 -017 -155 -0.12 -1.55 —0.10 —1.55
ability/1 —-533 —-553 -—-553 528 —-528 521 -518 522 -5.19
intelligence/1 —4.67 -—-562 —-6.01 —-5.10 -598 —479 -584 —474 578
grade/2 —146 —-148 —153 —-145 —-154 —-145 —-154 —146 —1.53
satisfaction/2 -154 -154 -154 -154 -154 -154 -154 -154 -154
takes/2 -0.00 —-000 —-000 —-0.00 -000 —0.00 —-0.00 —0.00 —0.00
friend/2 -016 -016 —-016 -016 -016 —-016 -0.16 —0.16 -—0.16
teaches/2 -0.07 -007 —-007 -0.07 -007 -0.07 -0.07 —-0.07 -0.07
Total WPLL —17.78 —20.42 —22.53 —18.48 —2220 -—17.86 —21.83 —18.05 —21.71

The best results are in bold

Table 20 The per randvar WPLL for each predicate on the synthetic data consisting of 800 students, 125
courses and 125 professors

Hybrid Discretized Discretized Discretized Discretized

into 2 bins into 4 bins into 6 bins into 8 bins
Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 —448 —-533 —6.18 —4.78 —-596 —454 -—-599 —458 —-592
difficulty/1 -0.02 -0.66 -1.53 -0.17 -1.55 -0.09 -1.53 —-0.12 -—1.53
ability/1 -534 -567 -5.67 —-531 -—-5.18 526 —-526 524 524
intelligence/l1 —4.66 —-565 —-6.04 513 —-584 —-479 -584 —-473 =579
grade/2 —-145 —-147 —-154 —-144 —-154 —-144 -153 —-144 —-1.53
satisfaction/2 —1.54 —1.54 —-154 —1.54 —-154 —-153 -—-154 —-153 -1.54
takes/2 -0.00 —-000 —-000 —-0.00 —-000 —0.00 —-0.00 —0.00 —0.00
friend/2 -015 -015 -015 -0.15 -0.16 —-015 —-0.15 -0.16 —0.15
teaches/2 -0.07 —-0.07 -0.07 —-0.07 -0.07 -0.07 —-0.07 -—-0.07 —0.07
Total WPLL —17.72 —20.54 —-22.72 —18.60 —21.83 —17.87 —-21.92 —17.86 —21.79

The best results are in bold

@ Springer

Mach Learn (2015) 100:217-254

250

68'8CI— LI'0CI— €8’ scl— LTITl— ¢e9tl— 66'CCl— wecl— ¥9LTI— €6'LIT— TIdM [BI0L
99°61— Il'vi— 90°S1— wyl— 8I'Gl— (R4t 9¢°Cl— IS I18°€1— T/MI0P3IS
01'91— PEYI— 1$°61— LOYI— 1$°61— 86'71— 06'ST— Sosl— SOVYI— T/P91D30P3S
16°6— 6TS— 98'C— 0r'S— LL'S— 9¢°¢— £€6'6— £€8°6— YL'S— T/qeyqurginiex
SIel— 08'Cl— 60°cl— 16°Cl— 68°Cl— 69°CI— wel— 96'Cl— oLcl— T/s3uswiedgATyiuou
8V 1— 01— Sy 1— ov'i— e l— or'1— 8V 1— oWl (4> S T/sn3e3sueot
08'81— Se8I— 981 — 61'81— or'81— LT'SI— ye81— 8V'81— 9T 81— T/3unowyueo]
€0'0— elro— €0°0— 90°0— 00— L0°0— €0°0— 100— 10°0— g/ueor1sey
€0'0— 00— €0°0— 00— 00— 00— €0°0— 00— 00— ¢/3unoooysey
00°1— 00°T— 00'T— 00'T— 00°1— 00°T— 00°T— 00°T— 00 T— T/x°pUush
Svo— 6€0— 0S°0— 8€°0— wo— 6€0— Sv'0— 70— 8€°0— T/boa3
Sro— 60°0— cro— 60°0— 60°0— 60°0— 10— 60°0— 60°0— C/3DPTIISTAIUSTTD
eLS— 6S°S— LS 09°¢— 0L’ S— L9°G— IL°6— we— LL'S— ¢/°6Y3usTIo
18°91— ySel— 9C91— S8 Sl— 00°LT— PE91— evLl— wLl— 6E€YI— T/MFounsbae
88°91— 0L’ S1— Pe9l— 1091— 1rL1= ol— 8CL1I— 1€LT— PSYI— T/peadFoungbae
S 89°01— 6¢' 11— 801~ STl— 96°01— Pll— SETI— Y11= T/AxeTesbae
SO'S— 09— S8y— 9Sv— SLY— 97— €8 y— 18v— 09— T/Y3aTMINOA®

NST NAIH INST NAIH NST NAIH INST NAIH NAIH 9yedIpald

SuIq § OJUI PAZIRIdSI SuIq 9 OJul pAZNAIdSIJ SU1q 4 OJUI PAZIRIdSI SuIq 7 0JUI PAZNAIdSI pugAH

PIOq UI 21 SI[NSAI 15q A, 19S BIBP [BIOURUY 66.dd AU} U0 Aedorpaid yoea 10] T Teapuertod oy], T dqeL

pringer

as

Mach Learn (2015) 100:217-254 251

Table 22 The per randvar WPLL of the two variants of the handcrafted models, LR+LinR and LR+MPS5,
compared to LLM-H on the hybrid data for the PKDD’99 financial data set

Predicate LR+LinR LR+MP5 LLM-H
avgNrWith/1 —0.96 —0.96 —0.09
avgSalary/1 —1.00 —1.00 —1.00
avgSumofCred/1 —1.00 —1.00 —0.02
avgSumOfW/1 —0.36 —0.36 —0.38
clientAge/2 —0.89 —0.89 —0.01
clientDistrict/2 -1.17 -1.17 —1.32
freqg/1 —5.78 —-5.77 —5.77
gender/1 —11.18 —10.98 —11.24
hasAccount/2 —5.74 —5.74 —-5.74
hasLoan/2 —-14.35 —14.98 —14.39
loanAmount/1 —14.51 —15.08 —14.54
loanStatus/1 —13.81 —13.82 —13.81
monthlyPayments/1 —14.05 —13.89 —14.05
ratUrbInhab/1 —4.31 —4.10 —4.60
stdOofCred/1 —18.14 —18.15 —18.26
stdofw/1 —12.54 —12.61 —12.70
Total WPLL —119.79 —120.22 —117.93

LR+LinR uses logistic regression for discrete predicates and linear regression for continuous predicates, and
LR+MPS5 uses logistic regression for discrete predicates and regression trees for continuous predicates. The
best results are in bold

Appendix 4: Features used for propositional learners
In order to compare our structure learning algorithm to propositional learners on the PKDD’99

financial data set, we handcrafted a number of features for each of the 16 predicates. Each
feature predicts a property of an object by using some other properties of that object.

@ Springer

252

Mach Learn (2015) 100:217-254

Predicates with discrete range

clientDistrict(C,D)

f{c}:@,gender(c),value
f{C}:@,angal(u‘y(D),value
]:{C}:@,TatUrbInhab(D),value

gender (C)

‘ f{C}:&hasAccount(A,C’) ,exists

hasAccount (C,A)

]:{C}:(Z),gender(c'),value
]:{A}:(Z),hasLoan(A,L),ezists
f{A}:@,frcq(A),valuc
f{A}:@,avgNrWith(A),value
}-{A}:(Z),a'ugS'umOfW(A),value
f{A}:@,angumOfCred(A),value
F{A}:0,5¢dOfW (A),value
]:{A}:(Z),stdOfCred(A},value

freq(A)

f{A}:@,avgN’rWith(A),value
f{A}:@,angumOfW(A),value
]:{A}:(Z),a'ugS'umOfC'red(A),value
f{A}:@,stdOfW(A),value
F{A}:0,5tdOfCred(A) value

hasLoan(A,L)

]:{L}:(Z),loanAmcunt(L),value
f{L}:@,loanStatus(L),value
f{L}:(B,monthlyPayments(L),value
]:{A}:(Z),f'req(A),value
]:{A}:@,avgN’rWith(A),value
f{A}:(Z),angumOfW(A),value
f{A}:@,angumOfC'red(A),value
]:{A}:Q),stdOfW(A),value
F{A}:0,5tdOfCred(A) value

loanStatus(L)

]:{L}:(Zl,loanAmaunt(L),value
f{L}:@,loanStatus(L),value
f{L}:(D,monthlyPayments(L),value

Predicates with continuous range

The following are the features we used for predicates with a continuous range. Note that the
predicates avgSumOfw/1, avgSumOfCred/1, stdOfw/1 and stdOfCred/1 have
similar structure as the features for avgNrWith (A). To save space we will only show the
features we used for avgNrWith (A) . The full feature set is in the online appendix on http://
dtai.cs.kuleuven.be/ml/systems/llm.

@ Springer

http://dtai.cs.kuleuven.be/ml/systems/llm
http://dtai.cs.kuleuven.be/ml/systems/llm

Mach Learn (2015) 100:217-254 253

f{D}:U),clicntDistTict(C,D) ,proportion

avgSalary (D) F
{D}:0,ratUrbInhab(D),value

f{L}:@,loanStatus(L) ,value

loanAmount (L)
f{L}:@,monthlyPayments(L) ,value

}—{L}:Q),loa,nStatus(L) ,value

monthlyPayments (L)
f{L}:@,loanAmount(L),’value

‘F{A}:(D.,freq(A),value
]-—{A}:(D,angumOfW(A),va,lue
-7:{A}:(Z),a,ngunLOfCT'ed(A),’ualue
]:{A}:(D.,stdOfW(A),value
]-—{A}:(Z),.stdOfCrsd(A),value

avgNrWith(A)

ratUrbInhab (D) f{D}:Q,angalu'r'y(D),value
f{D}:V),clientDistrict(C,D) ,proportion

f{C}:@,gender(C),value

clientAge(C,L) -7:{L}:(D,loanAmount(L),vulue

‘F{L}:(D,lou,nStu,tus(L),'ualue
{L}:0,monthlyPayments(L),value

References

Berka, P. (1999). PKDD’99 Discovery challenge: http://lisp.vse.cz/pkdd99/Challenge/.

Besag,J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical
Society Series B (Methodological), 36, 192-236.

Bishop, C. M. (1995). Neural networks for pattern recognition. New York, NY, USA: Oxford University Press
Inc.

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first-order logical decision trees. Artificial
Intelligence, 101, 285-297.

Choi, J., Amir, E., Hill, D.J. (2010). Lifted inference for relational continuous models. In: UAI’ 10: Proceedings
of the twenty-sixth conference on uncertainty in artificial intelligence, pp. 126—134.

Cobb, B., Rumi, R., & Salmerdn, A. (2007). Bayesian network models with discrete and continuous variables.
Advances in probabilistic graphical models (Vol. 214, pp. 81-102). Berlin, Heidelberg: Springer.
Dobra, A. (2009). Variable selection and dependency networks for genomewide data. Biostatistics (Oxford,

England), 10, 621-639.

Domingos, P., & Provost, F. (2000). Well-trained PETs: Improving probability estimation trees. CDER Working
Paper, Stern School of Business. New York, NY: New York University.

Fierens, D., Blockeel, H., Bruynooghe, M., & Ramon, J. (2005). Logical Bayesian networks and their relation
to other probabilistic logical models. In: Proceedings of the 15th international conference on inductive
logic programming, (Vol. 3625, pp. 121-135) Berlin: Springer.

Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning. Cambridge: The MIT press.

Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001) Learning probabilistic relational models. In: Rela-
tional Data Mining. Springer, Berlin.

Guo, Y., & Gu, S. (2011). Multi-label classification using conditional dependency networks. In: Proceedings
of the twenty-second international joint conference on artificial intelligence, IICAT’11 (Vol. 2, pp.
1300-1305).

Gutmann, B., Jaeger, M., & De Raedt, L. (2011). Extending ProbLog with continuous distributions. In:
Inductive Logic Programming (pp. 76-91) Berlin: Springer.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA Data
Mining Software: An Update. SIGKDD Explorations, 11(1).

Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., & Kadie, C. (2001). Dependency networks for
inference, collaborative filtering, and data visualization. Journal ofMachine LearningResearch, 49-75.

@ Springer

http://lisp.vse.cz/pkdd99/Challenge/

254 Mach Learn (2015) 100:217-254

Kersting, K., & De Raedt, L. (2001). Adaptive Bayesian logic programs. In: Inductive Logic Programming
(pp- 104-117). Berlin: Springer.

Kok, S., & Domingos, P. (2005). Learning the Structure of Markov Logic Networks. In: Proceedings of the
22Nd international conference on machine learning, ICML *05, pp. 441-448.

Kok, S., & Domingos, P. (2010). Learning Markov logic networks using structural motifs. In: Proceedings of
the 27th international conference on machine learning (ICML-10), pp. 551-558.

Koller, D., Lerner, U., & Angelov, D. (1999). A general algorithm for approximate inference and its application
to hybrid Bayes nets. In: Proceedings of the fifteenth conference on uncertainty in artificial intelligence,
pp. 324-333.

Kuzelka, O., Szab6ovd, A., Holec, M., & Zelezn)’/, F. (2011). Gaussian logic for predictive classification.
Machine learning and knowledge discovery in databases, Lecture Notes in Computer Science (Vol.
6912, pp. 277-292). Berlin, Heidelberg: Springer.

Lauritzen, S. L. (1992). Propagation of probabilities, means and variances in mixed graphical association
models. Journal of the American Statistical Association, 87, 1098-1108.

Lauritzen, S. L., & Jensen, F. (2001). Stable local computation with conditional Gaussian distributions. Sta-
tistics and Computing, 11, 191-203.

Meinshausen, N., & Biihlmann, P. (2006). High dimensional graphs and variable selection with the Lasso.
Annals of statistics, 34, 1436-1462.

Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.

Moral, S., Rumi, R., & Salmerdn, A. (2001). Mixtures of truncated exponentials in hybrid Bayesian networks.
Symbolic and quantitative approaches to reasoning with uncertainty, Lecture Notes in Computer Science
(Vol. 2143, pp. 156-167). Berlin, Heidelberg: Springer.

Murphy, K.P. (1998). Inference and learning in hybrid Bayesian networks. Tech. Rept. UCB/CSD-98-990,
U.C. Berkeley, CA.

Narman, P., Buschle, M., Konig, J., & Johnson, P. (2010). Hybrid probabilistic relational models for sys-
tem quality analysis. In: Proceedings of the 2010 14th IEEE international enterprise distributed object
computing conference, pp. 57-60.

Natarajan, S., Khot, T., Kersting, K., Gutmann, B., & Shavlik, J. (2012). Gradient-based boosting for statistical
relational learning: The relational dependency network case. Machine Learning, 86, 25-56.

Neville, J., & Jensen, D. (2007). Relational dependency networks. Journal of Machine Learning Research.

Neville, J., Jensen, D., Friedland, L., & Hay, M. (2003). Learning relational probability trees. In: Proceedings
of the 9th ACM SIGKDD international conference on knowledge discovery and data mining, ACM Press,
pp. 625-630.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine learning, 62, 107-136.

Romero, V., Rumi, R., & Salmerdn, A. (2006). Learning hybrid Bayesian networks using mixtures of truncated
exponentials. International Journal of Approximate Reasoning, 42, 54—68.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 461-464.

Teso, S., Sebastiani, R., & Passerini, A. (2013). Hybrid SRL with optimization modulo theories. In 2013 NIPS
Workshop on Constructive Machine Learning. Lake Tahoe, Nevada, USA.

Wang, J., & Domingos, P. (2008). Hybrid Markov logic networks. In: Proceedings of the 23rd national
conference on Artificial intelligence, Vol. 2, pp. 1106-1111.

Yuan, C., & Druzdzel, M.J. (2007). Importance sampling for general hybrid Bayesian networks. In: Proceedings
of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS-07), Journal
of Machine Learning Research - Proceedings Track, vol 2, pp. 652—659.

@ Springer

	Learning relational dependency networks in hybrid domains
	Abstract
	1 Introduction
	2 Background
	2.1 Propositional dependency networks
	2.2 Relational dependency networks

	3 Hybrid relational dependency networks
	3.1 Representation
	3.2 Local distributions
	3.3 Inference

	4 Structure learning
	4.1 High-level control structure
	4.2 Learning local distributions
	4.3 Estimating the parameters for candidate CPDs
	4.4 Evaluating candidate models

	5 Experiments
	5.1 Data sets
	5.2 Methodology
	5.3 Results and discussion

	6 Related work
	7 Conclusions and future work
	Acknowledgments
	Appendix 1: Handcrafted model and learned hybrid models for the synthetic data
	Appendix 2: PKDD'99 real-world financial data set
	Appendix 3: Detailed results for all domains
	Results on synthetic data
	Results on the PKDD'99 financial data set

	Appendix 4: Features used for propositional learners
	Predicates with discrete range
	Predicates with continuous range

	References

