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Abstract Recent years have seen a surge of interest in Statistical Relational Learning (SRL)
models that combine logic with probabilities. One prominent and highly expressive SRL
model is Markov Logic Networks (MLNs), but the expressivity comes at the cost of learning
complexity. Most of the current methods for learning MLN structure follow a two-step
approach where first they search through the space of possible clauses (i.e. structures) and
then learn weights via gradient descent for these clauses. We present a functional-gradient
boosting algorithm to learn both the weights (in closed form) and the structure of the MLN
simultaneously. Moreover most of the learning approaches for SRL apply the closed-world
assumption, i.e., whatever is not observed is assumed to be false in the world. We attempt
to open this assumption. We extend our algorithm for MLN structure learning to handle
missing data by using an EM-based approach and show this algorithm can also be used to
learn Relational Dependency Networks and relational policies. Our results in many domains
demonstrate that our approach can effectively learn MLNs even in the presence of missing
data.
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1 Introduction

Probabilistic graphical models such as Markov Networks and Bayesian Networks have been
applied to many real-world problems such as diagnosis, forecasting, automated vision, and
manufacturing control. A limitation of these models is that they assume that the world can
be described in terms of a fixed set of features. The world on the other hand, is made up of
objects with different feature sets and relationships between the objects. Recently, there has
been an increasing interest in addressing challenging problems that involve rich relational
and noisy data. Consequently, several Statistical Relational Learning (SRL) methods (Getoor
and Taskar 2007) have been proposed that combine the expressiveness and compactness of
first-order logic and the ability of probability theory to handle uncertainty.

While thesemodels (Getoor et al. 2001;Kersting andDeRaedt 2007;Domingos and Lowd
2009) are highly attractive due to their compactness and comprehensibility, the problem of
learning thesemodels is computationally intensive. This is particularly true forMarkov Logic
Networks (MLNs) (Domingos and Lowd 2009) that extend Markov networks to relational
settings by encoding the model as a set of weighted logic formulas. The task of learning
the rules is an important and challenging task and has received much attention lately (Biba
et al. 2008; Mihalkova and Mooney 2007; Kok and Domingos 2009, 2010). Most of these
approaches, similar to propositional methods, generate candidate structures and pick the
highest scoring structure. Unfortunately to score a candidate MLN structure, the weights for
all the MLN rules need to be relearned. So the first problem with the existing approaches is
the computational time needed for learning the structure due to repeated weight learning. The
second problem is (as a consequence of the computational complexity) is that these methods
learn very few (potentially long) rules limited to a reasonable amount of time.

The first goal of our work is to build upon our successful structure learning approach for
learning Relational Dependency Networks (Natarajan et al. 2012) and present our learning
approach for MLNs that learns the weights and the clauses simultaneously. Specifically, we
turn the problem of learning MLNs into a series of relational regression problems by using
Friedman’s functional gradient boosting algorithm (Friedman 2001). The key idea in this
algorithm is to represent the target potential function as a series of regression trees learned in
a stage-wisemanner. Our proposedmethod greedily grows the structurewithout requiring any
relearning of the weights, thereby drastically reducing the computation time. Hence the first
problem with previous approaches is addressed by simultaneous weight and rule learning.
Due to the computational efficiency and the fact that we learn shorter rules, our approach
can learn many more rules in a fraction of time, thus addressing the second problem with
previous approaches.

The second goal of this paper is to investigate the problem of learning the structure of
SRLmodels in the presence of hidden (unobserved) data. Most structure learning approaches
(including our previous work Natarajan et al. 2012; Khot et al. 2011) make the closed world
assumption, i.e. whatever is unobserved in the world is considered to be false. Research with
missing data in SRLhasmainly focused on learning the parameterswhere algorithmsbased on
classical EM (Dempster et al. 1977) have been developed (Natarajan et al. 2008; Jaeger 2007;
Xiang and Neville 2008; Kameya and Sato 2000; Gutmann et al. 2011; Bellodi and Riguzzi
2013, 2012). There has also been somework on learning structure of SRLmodels fromhidden
data (Li and Zhou 2007; Kersting and Raiko 2005). These approaches, similar to Friedman’s
structural EM approach for Bayesian networks (Friedman 1998), compute the sufficient sta-
tistics over the hidden states and perform a greedy hill-climbing search over the clauses.
However, as with the fully observed case, these methods suffer from the dual problems
of repeated search and computational cost. Instead, we propose to exploit the ability of our
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approach to learn structure and weights simultaneously by developing an EM-based boosting
algorithm for MLNs. One of the key features of our algorithm is that we consider the prob-
ability distribution to be a product of potentials and this allows us to extend this approach to
Relational Dependency Networks (RDN) and relational policies. We also show how to adopt
the standard approach of approximating the full likelihood by theMAP states (i.e., hard EM).

This paper makes several key contributions: (1) we propose and evaluate an algorithm that
learns the structure and parameters of MLNs simultaneously (2) we propose and evaluate an
algorithm to learnMLNs, RDNs and relational policies in presence ofmissing data and (3) the
algorithm is based on two different successful methods—EM for learning with hidden data
and functional-gradient boosting for SRLmodels—and hence is theoretically interesting. The
present paper is a significant extension of our ICDM2011 (Khot et al. 2011) paper. It provides
the first coherent functional gradient boosting based learning for MLNs and presents an uni-
fied view of structure learning inMLNs in the presence of fully and partially observable data.

In the next section, we will give a brief introduction toMarkov Logic Networks and Func-
tionalGradient Boosting. In Sect. 3, we describe our approach to performboosting onMarkov
Logic Networks. In Sect. 4, we extend this approach to handle missing data. We present the
experimental results in Sect. 5, starting with the experiments for boosted MLNs for fully
observed data, followed by the experiments for learning RDNs, MLNs and relational poli-
cies with partially observed data. Finally, we conclude with the future extensions of our work.

2 Background

We first define some notations that will be used in this work. We use capital letters such as
X, Y, and Z to represent random variables (atoms in our formalism). However, when writing
sentences in first-order predicate calculus, we use sans-serif capital letters X, Y, and Z to
represent logical variables. All logical variables are implicitly universally quantified (i.e. ∀)
unless we explicitly existentially quantify them. We use small letters such as x, y, and z to
represent values taken by the variables (and x, y and z to represent values taken by logical
variables i.e. objects in the domain). We use bold-faced letters to represents sets. Letters such
asX, Y, Z represent sets of variables and x, y, z represent sets of values. We use z−z to denote
z\z and x−i to represent x\xi .

2.1 Markov logic networks

A popular SRL representation is Markov Logic Networks (MLNs) (Domingos and Lowd
2009). AnMLN consists of a set of formulas in first-order logic and their real-valued weights,
{(wi , fi )}. Higher the weight of the rule, more likely it is to be true in the world.

Together with a set of constants, we can instantiate an MLN as a Markov network with
a variable node for each ground predicate and a factor for each ground formula. All factors
corresponding to the groundings of the same formula are assigned the same potential function
(exp(wi )), leading to the following joint probability distribution over all atoms:

P(X = x) = 1

Z
exp

(∑
i

wi ni (x)

)
(1)

where ni (x) is the number of times the i th formula is satisfied by the instantiation of the
variable nodes, x and Z is a normalization constant (as in Markov networks). Intuitively, an
instantiation where formula fi is true one more time than a different possible instantiation is
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ewi times as probable, all other things being equal. For a detailed description of MLNs, we
refer to the book (Domingos and Lowd 2009).

We consider the problem of structure learning where the goal is to learn the weighted
clauses given data. Bottom-up structure learning (Mihalkova andMooney 2007) uses a propo-
sitional Markov network learning algorithm to identify paths of ground atoms. These paths
form the templates that are generalized into first-order formulas. Hypergraph lifting (Kok
and Domingos 2009) clusters the constants and true atoms to construct a lifted (first-order)
graph. Relational path-finding on this hypergraph is used to obtain the MLN clauses. Struc-
tural motif learning (Kok and Domingos 2010) uses random walks on the ground network to
find symmetrical paths and cluster nodes with similar path distributions. These methods rely
on variations of path finding approaches to reduce the space of possible structures. As a result
if a relevant path ismissed, it would not be considered as a candidate structure. Discriminative
structure learner (Biba et al. 2008) performs local search over the space of first-order logic
clauses using perturbation operators (add, remove, flip). The candidate structures are not
constrained by any relational paths but scoring each structure is computationally intensive.

These methods obtain the candidate rules first, learn the weights and update the structure
by scoring the candidate structures. For every candidate, the weights of the rules need to be
learned which can not be calculated in closed-form. Consequently, most of these methods are
slow and learn a small set of rules. As mentioned earlier, our algorithm learns the structure
and parameters simultaneously.

2.2 Functional gradient boosting

Consider the standard method of supervised parameter learning using gradient-descent.
The learning algorithm starts with initial parameters θ0 and computes the gradient of the
log-likelihood function (Δ1 = ∂

∂θ
log P(X; θ0)). Friedman (2001) developed an alternate

approach to perform gradient descent where the log-likelihood function is represented using
a regression function ψ : x → R over the example space x (feature vectors in propositional
domains) and the gradients are performed with respect to ψ(x). For example, the likelihood
of x being true can be represented as P(x;ψ) = sigmoid(ψ(x))1 and gradients can be
calculated as Δ(x) = ∂

∂ψ(x)

∑x
x log P(x;ψ).

Similar to parametric gradients, functional gradient descent starts with an initial function
ψ0 and iteratively adds gradients Δm . Each gradient term (Δm) is a regression function over
the entire example space. Since the space of examples can be very large, the gradients are com-
puted for only the training examples. So the gradients at themth iteration can be represented as
〈xi ,Δm(xi )〉where xi ∈ training examples.Also rather than directly using 〈xi ,Δm(xi )〉 as the
gradient function, functional gradient boosting generalizes by fitting a regression function ψ̂m

(generally regression trees) to the gradientsΔm (e.g. ψ̂m = argminψ

∑
x [ψ(x)−Δm(x)]2).

Thus, each gradient step (ψ̂m) is a regression tree and the finalmodelψm = ψ0+ψ̂1+· · ·+ψ̂m

is a sum over these regression trees.

2.3 Relational functional gradient

Functional gradient boosting has been applied to various relational models for learning the
structure (Natarajan et al. 2012; Karwath et al. 2008; Kersting and Driessens 2008; Natarajan
et al. 2011). Similar to propositional approaches, relational approaches define the probability
function to be a sigmoid function over theψ function. The examples are ground atoms of the

1 sigmoid(x) = 1
1+e−x .
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target predicate such as advisedBy (anna, bob). But since these are relational models, the
ψ function depends on all the ground atoms and not just the attributes of a given example.
The ψ function is represented using relational regression trees (RRT) (Blockeel and De
Raedt 1998). For example, the probability function used by Natarajan et al. (2012) to learn
the structure of Relational Dependency Networks was: P(xi ) = sigmoid(ψ(xi ; Pa(xi )))

where Pa(xi ) are all the relational/first-order logic facts that are used in the RRTs learned for
xi . They showed that the functional gradient of likelihood for RDNs as ∂ P(X=x)

∂ψ(Xi )
= I (xi =

1) − P(Xi = 1; Pa(Xi )) which is the difference between the true distribution (I is the
indicator function) and the current predicted distribution. For positive examples, the gradient
is always positive and pushes the ψ function value (ψ0 + Δ1 + · · · + Δm) closer to ∞ and
the probability value closer to 1. Similarly the gradients for negative examples is negative
and hence the ψ function is pushed closer to −∞ and probability closer to 0. Most objective
functions in propositional and relational models result in this gradient function. However,
due to difference in semantics of MLNs, we derive a new scoring function (particularly in
the case of hidden data).

3 MLN structure learning with fully observed data

Maximizing the likelihood of the training data is the most common approach taken for learn-
ingmanyprobabilisticmodels.However, in the case ofMarkovnetworks andMLNs, it is com-
putationally infeasible to maximize this likelihood (given in Eq. 1) due to the normalization
constant. Hence, we follow the popular approach of maximizing the pseudo-likelihood (PL)
(Besag 1975) given by, P L(X = x) = ∏

xi ∈x P(xi |MB(xi )) where MB(xi ) is the Markov
blanket of xi . The Markov blanket in MLNs are the neighbors of xi in the grounded network.
Recall the probability distribution of MLNs is defined as P(X = x) = 1

Z exp
(∑

i wi ni (x)
)
.

Given this definition, the conditional probability P(xi |MB(xi )) can be represented as

P(xi = 1|MB(xi )) = P(xi = 1,MB(xi ))∑
x ′∈{0,1} P(xi = x ′,MB(xi ))

// We assume boolean variables

=
exp

(∑
j w j nt j (xi ;MB(xi ))

)
exp

(∑
j w j nt j (xi ;MB(xi ))

)
+ 1

// On dividing by exp

⎛
⎝∑

j

w j n j (xi = 0, M B(xi ))

⎞
⎠ (2)

where nt j (xi ;MB(xi )) = n j (xi = 1,MB(xi )) − n j (xi = 0,MB(xi )) (3)

n j (x) is the number of groundings of rule C j given the instantiation x. nt j (xi ;MB(xi ))

corresponds to the non-trivial groundings (Shavlik and Natarajan 2009) of an example xi

given its Markov blanket (we explain non-trivial groundings later). We define the potential
function as ψ(xi ;MB(xi )) = ∑

j w j nt j (xi ;MB(xi )). As a result Eq. 2 for probability of
an example being true can be rewritten as

P(xi = 1|MB(xi )) = exp (ψ(xi ;MB(xi )))

exp (ψ(xi ;MB(xi ))) + 1
(4)

⇒ P(xi |MB(xi )) = exp (ψ(xi ;MB(xi )) × I (xi = 1))

exp (ψ(xi ;MB(xi ))) + 1
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where I (xi = 1) returns 1, if xi is true and returns 0 otherwise. Now,

P L L(X = x) =
∑
xi ∈x

log P(xi |MB(xi ))

=
∑
xi ∈x

[
ψ(xi ;MB(xi )) × I (xi = 1) − log (exp (ψ(xi ;MB(xi ))) + 1)

]
∂ P L L(X = x)
∂ψ(xi ;MB(xi ))

= ∂ log P(xi ;MB(xi ))

∂ψ(xi ;MB(xi ))

= ∂
[
ψ(xi ;MB(xi )) × I (xi = 1) − log (exp (ψ(xi ;MB(xi ))) + 1)

]
∂ψ(xi ;MB(xi ))

= I (xi = 1) − ∂ log (exp (ψ(xi ;MB(xi ))) + 1)

∂ψ(xi ;MB(xi ))

= I (xi = 1) − exp (ψ(xi ;MB(xi )))

exp (ψ(xi ;MB(xi ))) + 1

Δ(xi ) = I (xi = 1) − P(xi = 1;MB(xi )) (5)

The gradient (Δ(xi )) at each example xi is now simply the adjustment required for the
probabilities to match the observed value for that example. This gradient serves as the value
of the target function for the current regression example at the next training episode. The
expression in Eq. 5 is very similar to the one derived for previous functional gradient boosting
methods (Dietterich et al. 2008; Kersting and Driessens 2008; Natarajan et al. 2012; Karwath
et al. 2008). The key feature of the above expression is that the functional gradient for each
example is dependent on the observed value. If the example is positive, the gradient (I − P)

is positive indicating that the model should increase the probability of the ground predicate
being true. If the example is negative, the gradient is negative, implying that it will push the
probability towards 0.

We now explain the notion of non-trivial groundings (nt j (xi )) described in Eq. 3. Consider
the horn clause, p1(X1) ∧ · · · ∧ pc(Xc) → target(X′). We will represent the clause as
∧k pk(Xk) → target(X′) where Xk are the arguments for pk and X′ ⊆ ∪kXk . Groundings
of C j that remain true irrespective of the truth value of a ground atom xi (say target(x))
are defined as the trivial groundings, while others are called as the non-trivial groundings.
The clause ∧k pk(Xk) → target(X′), i.e. ∨k¬pk(Xk) ∨ target(X′) is true irrespective of
the value of target(X′) when ∨k¬pk(Xk) = true. These groundings correspond to the
trivial groundings and therefore the non-trivial groundings correspond to ∨k¬pk(Xk) =
f alse, i.e. ∧pk(Xk) = true. Hence, the non-trivial groundings of the clause ∧k pk(Xk) →
target(X′) would correspond to the groundings for ∪kXk that satisfy the body of the clause,
i.e. ∧k pk(xk) = true. Since we only need to consider the groundings of the clause that
contain the ground atom xi , we check for ∧k pk(Xk) = true after unifying the head of
the clause (target(X′)) with the ground atom, xi . For example, the non-trivial groundings
of p(X) ∧ q(X, Y) → target(X) for the example target(x1) correspond to the groundings
{Y|p(x1) ∧ q(x1, Y) = true}. For a more detailed discussion of non-trivial groundings, see
Shavlik and Natarajan (2009).

3.1 Representation of functional gradients for MLNs

Given the gradients for each example (Eq. 5), our next goal is to find the potential function
ψ̂ such that the squared error between ψ̂ and the functional gradient is minimized. We use
two representations of ψ̂s: trees and clauses.
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Fig. 1 Example tree for target(X)

3.1.1 Tree representation

Following prior work (Natarajan et al. 2012), we use a relational regression tree learner (mod-
ified from TILDE (Blockeel and De Raedt 1998)) to model the functional gradients. Hence,
the final potential function corresponds to the set of RRTs learned from data. Every path from
the root to a leaf is a clause and the value of the leaf corresponds to the weight of the clause.
For example, the regression tree in Fig. 1 can be represented with the following clauses:

w1 : p(X) ∧ q(X, Y) → target(X), w2 : p(X) ∧ ¬∃Y q(X, Y) → target(X), and

w3 : ¬p(X) → target(X)

The MLN corresponding to these weighted clauses matches the model represented using
our trees. Hence these rules can now be used with any other MLN inference engine. Note
that TILDE trees (Blockeel and De Raedt 1998) employ weighted variance as the splitting
criterion at every node and it ignores the number of groundings for a predicate. On the other
hand MLN semantics require counting of the number of non-trivial groundings and hence
we modify the splitting criterion at every node. As an example, let us consider building the
tree presented in Fig. 1. Assume that we already have determined p(X) as the root and now
we consider adding q(X, Y) to node N (at left branch). So adding q(X, Y) would result in
two clauses,

C1 : p(X) ∧ q(X, Y) → target(X) and

C2 : p(X) ∧ ¬∃Y q(X, Y) → target(X).

For all the examples that reach the node N , assume I to be the set of examples that satisfy
q(X, Y) and J be the ones that do not. Let w1 and w2 be the regression values that would be
assigned toC1 andC2 respectively. Let nx,1 and nx,2 be the number of non-trivial groundings
for an example x with clausesC1 andC2. The regression value returned for an example would
depend on whether it belongs to I or J . Hence the regression value returned by this tree for
x is

ψ̂(xi ) = nxi ,1 · w1 · I (xi ∈ I) + nxi ,2 · w2 · I (xi ∈ J ) (6)

and the squared error is used to compute the gradients.

SE =
∑
x∈I

[
nx,1 · w1 − Δ(x)

]2 +
∑
x∈J

[
nx,2 · w2 − Δ(x)

]2
∂

∂w1
SE =

∑
x∈I

2 · [
nx,1 · w1 − Δ(x)

] · nx,1 + 0 = 0 �⇒ w1 =
∑

x∈I Δ(x) · nx,1∑
x∈I n2

x,1

∂

∂w2
SE = 0 +

∑
x∈J

2 · [
nx,2 · w2 − Δ(x)

] · nx,2 = 0 �⇒ w2 =
∑

x∈J Δ(x) · nx,2∑
x∈J n2

x,2
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For every potential split, we can calculate the weights using these equations and use these
weights to calculate the squared error. We greedily select the literal at each node that mini-
mizes this squared error.

Generally, the false branch at every node with condition C(X), would be converted to
∀X f ,¬C(X) which in its CNF form becomes ¬∃X f , C(X), where X f ⊂ X are the free
variables in C(X). Existentially defined variables can result in a large clique in the ground
Markov Network. To avoid this, we maintain an ordered list of clauses (Blockeel and De
Raedt 1998) and return the weight of the first clause that has at least one true grounding
for a given example. We can then ignore the condition in a given node for the false branch
to the leaf. It is worth noting that C(X) maybe a conjunction of literals depending on the
maximum number of literals allowed at an inner node. Following TILDE semantics, we can
also allow aggregation functions inside the node where the evaluation will always result in a
single grounding of the aggregation predicate.

Figure 1 gives an example regression tree for target(X). If we are scoring the node q(X, Y),
we split all the examples that satisfy p(X) into two sets I and J . I contains all examples that
have at least one grounding for q(X, Y) and J contains the rest; target(x1) would be in I if
p(x1)∧q(x1, Y) is true and target(x2)would be inJ , if p(x2)∧(∀Y,¬q(x2, Y)) is true. The
parameter nx1,1 corresponds to the number of groundings of p(x1) ∧ q(x1, Y), while nx2,2
corresponds to the number of groundings of p(x2) ∧ (∀Y,¬q(X2, Y). The corresponding
ordered list ofMLNrules is:w1 : p(X), q(X, Y) → target(X), w2 : p(X) → target(X), w3 :
target(X).

3.1.2 Clause representation

We also learn Horn clauses directly instead of trees by using a beam search that adds literals
to clauses that reduce the squared error. We maintain a (beam-size limited) list of clauses
ordered by their squared error and keep expanding clauses from the top of the list. We add
clauses as long as their lengths do not exceed a threshold and the beam still contains clauses.
We recommend using clauses when the negation-by-failures introduced by the trees can
render inference using standard MLN software (since they can not handle ordered decision
lists) computationally intensive. Essentially, we replace the tree with a set of clauses learned
independently at each gradient-step. Sincewe only have the true branchwhen a new condition
is added, the error function becomes:

SE = ∑
x∈I

[
nx,1 · w − Δx

]2 + ∑
x∈J Δ2

x �⇒ w =
∑

x∈I Δx · nx,1∑
x∈I n2

x,1

Note that the key change is that we do not split the nodes and instead just search for new
literals to add to the current set of clauses. Hence, instead of a RRT for each gradient step,
we learn a pre-set number of clauses (C). We use a similar parameter for the RRT learner
as well with a maximum number of allowed leaves (L). The values of C and L are fixed at
3 and 8 respectively for all our experiments. Hence, the depth of tree is small and so is the
number of clauses per gradient-step.

3.2 Algorithm for learning MLNs

Before presenting the algorithm, we summarize the strengths of our approach. Apart from
learning the structure andweight simultaneously, this approach has two other key advantages.
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Algorithm 1MLN-Boost: FGB for MLNs
1: function TreeBoostForMLNs(Data)
2: F0 := Initial Model
3: for 1 ≤ m ≤ M do � M gradient steps
4: Fm := Fm−1
5: for P in T do � Iterate through target predicates
6: S := GenExamples(Data; Fm−1, P) � Generate examples
7: Δm := Fit Rel RegressionT ree(S, P, L) � Fit trees to gradients
8: Fm := Fm + Δm � Update model
9: end for
10: end for
11: P(xi |MB(xi )) ∝ Fm(xi ) � Obtained by grounding FM
12: end function

Algorithm 2 Tree Learning for MLNs
1: function FitRelRegressionTree(S, P, L)
2: Tree := createTree(P(X))
3: Beam := {root(Tree)}
4: while numLeaves(T ree) ≤ L do
5: Node := popBack(Beam) � Expand leaf node with worst score
6: C := createChildren(Node) � Create possible children
7: BN := popFront(Sort(C)) � Pick node with best score
8: addNode(Tree, Node, BN) � Replace leaf node with BN
9: insert(Beam, BN.left, BN.left.score)
10: insert(Beam, BN.right, BN.right.score)
11: end while
12: return Tree
13: end function

One, the models are essentially weighted Horn clauses. This makes the inference process
easier, especially given that we use the procedure presented in Shavlik and Natarajan (2009)
to keep track of the non-trivial groundings for a clause/predicate. Secondly, our learning
algorithms can use prior knowledge as an initial set of MLN clauses and learn more clauses
as needed.

Algorithm 1 presents functional gradient boosting of MLNs with both the tree and the
clause learner. In TreeBoostForMLNs, we iterate through M gradient steps and in each gra-
dient step learn a regression tree for the target predicates one at a time. We create examples
for the regression learner for a given predicate, P using the GenExamples method. We use
the function FitRelRegressionTree(S, P, L) to learn a tree that best fits these examples. We
limit our trees to have maximum L leaves and greedily pick the best node to expand. We set
L = 8 and M = 20.

FitRelRegressionClause(S, P, N, B) can be called here to learn clauses instead.
N is the maximum length of the clause and B is the maximum beam size. In
FitRelRegressionTree, we begin with an empty tree that returns a constant value. We use
the background predicate definitions (mode specifications) to create the potential literals that
can be added (createChildren). We pick the best scoring node (based on square error) and
replace the current leaf nodewith the newnode (addNode). Then both the left and right branch
of the new node are added to the potential list of nodes to expand. To avoid overfitting, we
only insert and hence expand nodes that have at least 6 examples. We pick the node with the
worst score and repeat the process.

The function for learning clauses is shown as FitRelRegressionClause which takes the
maximum clause length as the parameter, N (we set this to 3) and beam size, B (we set this
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Algorithm 3 Clause learning for MLNs
1: function FitRelRegressionClause(S, P, N , B)
2: Beam := {P(X)}
3: BC := P(X)
4: while ¬empty(Beam) do
5: Clause := popFront(Beam) � Best scoring clause
6: if length(Clause) ≥ N then
7: continue � Clause cannot be expanded
8: end if
9: C := addLiterals(Clause)
10: for c ∈ C do
11: c.score = SE(c) � Squared error
12: if c.score ≥ Clause.score then � If the new clause has a better score
13: insert(Beam, c, c.score) � Add new clause to beam
14: end if
15: if c.score ≥ BC.score then
16: BC := c � Update best clause
17: end if
18: end for
19: while length(Beam) ≥ B do � Remove low scoring clauses
20: popBack(Beam)
21: end while
22: end while
23: return BC
24: end function

to 10). It greedily tries to find the best scoring clause (BC) with length ≤ N . This method
only learns one clause at a time. Hence for learning multiple clauses, we call this function
multiple times (thrice in our experiments) during one step and update the gradients for each
example before each call.

3.3 Learning joint models

To handle multiple target predicates, we learn a joint model by learning tree/clauses for each
predicate in turn.We use theMLN’s learned for all the predicates prior to the current iteration
to calculate the regression value for the examples. We implement this by learning one tree
for every target predicate in line 4 in Algorithm 1. For efficiency, while learning a tree for
one target predicate, we do not consider the influence of that tree on other predicates.

Since we use the clauses learned for other predicates to compute the regression value for
an example, we have to handle cases where the examples unify with a literal in the body
of the clause. Consider the clause, C j : p(X), q(X, Y) → target(X). If we learn a joint
model over target and p, this clause will be used to compute the regression value for p(X)

in the next iteration. In such a case, the number of non-trivial groundings corresponding to
an example, say p(x) for a given grounding (X = x) and the given clause would be the
number of groundings of q(x, Y)∧¬target(x). Since p(x) appears in the body of the clause,
the difference nt j (p(x)) = [

n j (p(x) = 1) − n j (p(x) = 0)
]
would be negative. nt j (p(x)) is

simply the negative of number of non-trivial groundings of p(x) (or non-trivial groundings
of ¬p(x)) for the above clause. Computing nt j (xi ) this way allows us to compute the ψ̂

values for every example quickly without grounding the entire MLN at every iteration as
the number of groundings can be simply negated in some cases. We incrementally calculate
the number of groundings for every clause (one literal at a time) and store the groundings at
every node to prevent repeated computations.

123



Mach Learn (2015) 100:75–100 85

Fig. 2 RFGB-EM in action.
Shaded nodes indicate variables
with unknown assignments, while
the white (or black) nodes are
assigned true (or false) values.
The input data has observed
(indicated by X) and hidden
(indicated by Y) groundings. We
sample |W | assignments of the
hidden groundings using the
current model ψt . We create
regression examples based on
these samples, which are used to
learn T relational regression
trees. The learned trees are added
to the current model and the
process is repeated

4 Handling missing data

We presented our approach to learn structure for MLNs for fully observed data where we
made the closed world assumption for hidden data. We now aim to relax this assumption by
extending the functional gradient boosting to perform iterative learning similar to the EM
algorithm. As with EM, the iterative approach has two steps the first of which computes the
expected value of the hidden predicates and the second maximizes the likelihood of the data
given the current expected values.

Before deriving the E and M steps, we present the high-level overview of our RFGB-EM
(Relational Functional Gradient Boosting—EM) approach in Fig. 2. Similar to other EM
approaches, we sample the states for the hidden groundings based on our current model in
the E-step and use the sampled states to update our model in the M-step. ψt represents the
model in the t th iteration. The initial model, ψ0 can be as simple as a uniform probability
for all examples or could be a model specified by an expert. We sample certain number of
assignments of the hidden groundings (denoted as |W |) using the current model ψt . Based
on these samples, we create regression examples which are then used to learn T relational
regression trees as presented in the previous section. The learned regression trees are added to
the current model and the process is repeated. To perform the M-step, we update the current
model using functional gradients.

4.1 Derivation for M-step

As mentioned before, we again use upper case letter as random variables, lower case letters
as variable assignments and bold face letters for sets. For ease of explanation, let X be all the
observed predicates and Y be all the hidden predicates (their corresponding groundings are
x and y). Since Y is unobserved, it can have multiple possible assignments denoted by Y and
y ∈ Y represents one such hidden state assignment. We assume that some of the groundings
of the hidden predicates are always observed. Unlike parameter learning approaches where a
latent predicate (with all groundings missing) would be part of the model, a structure learning
approach will not even use a latent predicate in its model. We also assume that true atoms
and hidden atoms are provided for the hidden predicates and the remaining ground atoms are
known to be false.

Traditionally, EM approaches for parameter learning find θ that maximize the Q(θ |θt )

function. The Q(θ |θt ) function is defined as the expected log-likelihood of missing and
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observed data (based on θ )where the expectation ismeasured based on the current distribution
(θt ) for the missing data, i.e.

Q(θ |θt ) =
∑
y∈Y

P(y|x; θt ) log P(x, y|θ)

We are not just interested in estimating only the parameters but also the structure of MLNs.
Note that our approach for learning the structure is non-parametric, i.e. we do not have a fixed
set of parameters θ but instead use a regression function ψ . This is a subtle yet important
distinction to theEM learningmethods for SRL (Natarajan et al. 2008; Jaeger 2007;Xiang and
Neville 2008) that estimate the parameters given a fixed structure. The relational regression
trees of our models define the structure of the potential function and the leaves represent the
parameters of these potentials.

We sum the likelihood function over all possible hidden groundings to compute the mar-
ginal probabilities of the observed ones.

�(ψ) ≡ log
∑
y∈Y

P(x; y|ψ) = log
∑
y∈Y

{
P(y|x;ψt )

P(x; y|ψ)

P(y|x;ψt )

}

Similar to the fully observed case, ψ is the regression function that is used to calculate
P(X = x |MB(x)) (see Eq. 4). After t iterations of the EM steps, ψt represents the current
model and we must update this model by finding a ψ that maximizes the log-likelihood.
Unfortunately maximizing the �(ψ) function directly is not feasible and hence we find a
lower bound on �(ψ). Applying Jensen’s inequality on the loglikelihood defined above,

�(ψ) ≥
∑
y∈Y

P(y|x;ψt ) log
P(x; y|ψ)

P(y|x;ψt )
=

∑
y∈Y

P(y|x;ψt ) log
P(x; y|ψ)P(x|ψt )

P(x; y|ψt )

=
∑
y∈Y

P(y|x;ψt ) log P(x; y|ψ) −
∑
y∈Y

P(y|x;ψt ) log P(x; y|ψt )

+ log P(x;ψt )
∑
y∈Y

P(y|x;ψt )

= Q(ψ;ψt ) − Q(ψt ;ψt ) + �(ψt )

where Q(ψ;ψt ) ≡ ∑
y∈Y P(y|x;ψt ) log P(x; y|ψ). Instead of finding ψ that would maxi-

mize �(ψ), it would be easier to find the ψ that would maximize this lower bound. Since ψt

is constant with respect to the parameter ψ , we only need to find the ψ that would maximize
Q(ψ;ψt ). However, in many situations, finding a ψ that improves over Q(ψ;ψt ) could
suffice as shown next in the theorem.
Theorem
Any approach that finds ψ which improves over Q(ψ;ψt ) guarantees a monotonic increase
in the log-likelihood of the observed data.
Proof Sketch
Consider ψt+1 obtained in the (t + 1)th iteration that improves over ψt , i.e.

Q(ψt+1;ψt ) ≥ Q(ψt ;ψt ) ⇒ Q(ψt+1;ψt ) − Q(ψt ;ψt ) ≥ 0

⇒ Q(ψt+1;ψt ) − Q(ψt ;ψt ) + �(ψt ) ≥ �(ψt )

Since �(ψt+1) is lower bounded by Q(ψt+1;ψt ) − Q(ψt ;ψt ) + �(ψt ),

�(ψt+1) ≥ Q(ψt+1;ψt ) − Q(ψt ;ψt ) + �(ψt )
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Algorithm 4 updateModel(W, ψ)
1: S := 2 � Number of trees learned in M-step
2: for i ≤ S do � Iterate over target and hidden predicates, P
3: for p ∈ P do � E p := Downsampled groundings of p
4: Dp := build Dataset (E p, W, ψ)

5: Tp := learnT ree(Dp)

6: ψ = ψ + Tp
7: end for
8: end for
9: return ψ

Combining these two equations, we get

�(ψt+1) ≥ Q(ψt+1;ψt ) − Q(ψt ;ψt ) + �(ψt ) ≥ �(ψt )

Hence the log-likelihood value increases or stays the same after every M step. �
Recall that as we use the pseudo-loglikelihood in Q(ψ;ψt ), we rewrite P(x; y|ψ) as∏

z∈x;y P(z|z−z;ψ). We define Z as the union of all the predicates, i.e. Z = X ∪ Y. We use
z−z to denote z\z and Y−i to represent the world states for the set of groundings y−yi (i.e.
y\yi ). Hence we can rewrite Q(ψ;ψt )

Q(ψ;ψt ) =
∑
y∈Y

P(y|x;ψt )
∑

z∈x∪y
log P(z|z−z;ψ)

Since we do not have a closed form solution for ψ , we use functional gradient descent. Fol-
lowing generalized EM algorithms (Dempster et al. 1977) rather than finding the maximum,
we take S gradient steps in the M-step. This allows us to amortize the cost of sampling the
states and run enough iterations in reasonable time without making the model too large.
While learning MLNs, each gradient step was approximated by a single tree. Thus, we learn
S trees in every M-step.

We present our proposed approach for updating the model in Algorithm 4. We iterate
through all the query and hidden predicates and learn one tree for each predicate.We compute
the gradients for the groundings of predicate p given by E p , using the world states W and
current model ψ . We then learn a relational regression tree using this dataset and add it to
our current model. The learnTree function uses different scoring functions depending on the
model as we show later. The set E p may not contain all the groundings of the predicate p,
since we downsample the negative examples during every iteration by randomly selecting the
negatives so that there are twice as many negative as positive examples. Relational datasets
generally have many more negatives than positives and learning methods perform better if
the majority class is downsampled (Chan and Stolfo 1998).

Next, we need to compute the gradients for each example (i.e. hidden and observed
groundings of the target and hidden predicates) whichwill be used to learn the next regression
tree (Tp). The value returned by the ψ function also depends on other ground literals, since
their values will influence the path taken in the regression tree. In the previous section, we
included them as arguments to the function definition, i.e. ψ(x;MB(x)). But MB(x) is
observed and has the same values across all examples (the blanket varies across examples
but the ground literal values are the same) and so the function can be simplified to ψ(x).
However, with missing data, the assignment to the hidden variables y is not constant as each
assignment to y may return a different value for a given example (due to different paths).
Hence, we include the assignment to the hidden variables in our function (ψ(x; y)) and
compute the gradients for an example and hidden state assignment.
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4.2 Gradients for hidden groundings

We now derive the gradients of Q w.r.t the hidden groundings by taking partial derivatives
of Q w.r.t ψ(yi ; y−i ) where yi is a hidden grounding. The value of ψ(yi ; y−i ) is only used
to calculate P(yi |x, y−i ;ψ) for two world states: where yi is true and where yi is false. So
the gradient w.r.t. ψ(yi ; y−i ) can be calculated as

∂Q(ψ;ψt )

∂ψ(yi ; y−i )
= P(yi = 1, y−i |x;ψt )

∂ log P(yi = 1|x, y−i ;ψ)

∂ψ(yi ; y−i )

+ P(yi = 0, y−i |x;ψt )
∂ log P(yi = 0|x, y−i ;ψ)

∂ψ(yi ; y−i )

As shown before, the gradients correspond to the difference between the true value of yi

and the current predicted probability of yi (i.e. I (yi = y) − P(yi = y)). As we have terms
involving P(yi ) for each value of yi , we get two gradient terms.

P(yi = 1, y−i |x;ψt )(1 − P(yi = 1|x, y−i ;ψ))

+ P(yi = 0, y−i |x;ψt )(0 − P(yi = 1|x, y−i ;ψ))

= P(yi = 1, y−i |x;ψt ) − P(y−i |x;ψt )P(yi = 1|x, y−i ;ψ)) (7)

With the PLLassumption, the gradients can bewritten as
∏

j �=i P(y j |x, y− j ;ψt )
[
P(yi =1|x,

y−i ;ψt ) − P(yi = 1|x, y−i ;ψ)
]
. Intuitively, the gradients correspond to the difference

between the probability predictions weighted by the probability of the hidden state assign-
ment.

4.3 Gradients for observed groundings

To compute the gradients for the observed groundings, we take partial derivatives of Q with
respect to ψ(xi ; y) where xi is observed in the data. Similar to the gradients for hidden
groundings, we use y as an argument in the ψ function and only consider the world states
that matches with the given argument. The gradient w.r.t. ψ(xi ; y) can be calculated as

∂Q(ψ;ψt )

∂ψ(xi ; y) = P(y|x;ψt )
∂ log P(xi |x−i , y;ψ)

∂ψ(xi ; y) (8)

= P(y|x;ψt )[I (xi ) − P(xi = 1|z−xi ;ψ)] (9)

Similar to the hidden groundings, the gradients correspond to the difference between the
predictions weighted by the probability of the hidden state assignment.

4.4 Regression tree learning

The input examples to our regression tree learner are of the form < (z; y),Δ >. For every
ground literal z ∈ x∪y, we calculate the gradients for an assignment to the hidden variables.
Algorithm 5 describes the buildDataset function used to generate these examples. For every
ground literal e and every world state w (i.e., y), we compute the gradient of the example
(gradient(e, w)). For examples that are observed,we use Eq. 9 to compute gradient(e, w) and
for examples that are hidden, we use Eq. 7. Similar to our structure learning approach, we use
only a subset of the examples for learning the regression function. Apart from subsampling
the ground literals, we also pick |W | hidden state assignments from Y . Since our gradients
are weighted by the probability of the hidden state assignment y, an unlikely assignment will
result in small gradients and thereby have little influence on the learned tree. Hence, we use
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Algorithm 5 buildDataset(E p, W, ψ)
1: Dp := ∅
2: for e ∈ E p do
3: for w ∈ W do
4: Δe := gradient (e, w)

5: Dp := Dp∪ < (e; w),Δe >

6: end for
7: end for
8: return Dp

Gibbs sampling to sample the most likely hidden state assignments. Also we approximate the
joint probability of an hidden state assignment with the pseudo-likelihood, i.e. P(y|x;ψt ) =∏

i P(yi |x, y−i ;ψt ).
To summarize, we learn RRTs for the gradients presented with the modified scoring

function. To compute the marginal probability of any example, trees for all the predicates
would be used. Hence while learning, a single tree is learned for each predicate and the
gradients are computed based on the trees learned till the current iteration. We resample the
hidden states after two such iterations over the target and hidden predicates.

4.5 Adapting RFGB-EM for other SRL models

Natarajan et al. (2012) describe learning RDNs using functional-gradient boosting where all
the trees are learned for a target predicate before the next predicate. Since the gradients for
each predicate are independent of the model for other predicates, one can learn all the trees
independently.We, on the other hand, update the hiddenworld states after every two iterations
(note S = 2) and hence for every predicate we learn two trees at a time.We then resample the
hidden states and use the sampled states for the next two iterations. Unlike RFGB for MLNs
presented before, we use RRTs with the weighted variance scoring function for fitting the
gradients for each example. The learnTree function in Algorithm 4 can use any off-the-shelf
learner. The key difference to the approach by Natarajan et al. (2012) is that we learn only
two trees at a time and iterate through all the predicates.

For imitation learning, similar to the RDN case, we are learning the distribution over
the actions for every state using the training trajectories provided. The set of predicates, P
contains all the action predicates and the hidden predicates.We can then learn RRTs to predict
each action while updating the hidden values. Natarajan et al. (2011) learned all the trees for
each action independently whereas we learn two trees for every predicate before resampling
the hidden ones.

5 Experimental results

We now present the results of experiments in two settings (1) RFGB for MLNs with no
hidden data and (2) RFGB-EM for MLNs, RDN and imitation learning in the presence of
hidden data.2 For measuring performance across multiple approaches and multiple data sets,
generally we use the AUC-PR (Area under the Precision-Recall curve) and CLL (Conditional
log-likelihood) values. A major strength of PR curves is that they ignore the impact of
correctly labeling negative examples and instead focus on the typically rarer and yet more
important, positive examples. Hence, we not only present the CLL values, but also the AUC-

2 Software and datasets available at http://pages.cs.wisc.edu/~tushar/Boostr/.
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PR values that are shown to be more conservative estimate of the performance compared to
AUC-ROC (Davis and Goadrich 2006).

In all our experiments, we present the numbers in bold whenever they are statistically
significantly better than the baseline approaches.Weused the paired t testwith p value = 0.05
for determining statistical significance. Additional details specific to individual experiments
are described in the respective subsections.

5.1 Experimental results: fully observable case

We compare our two boosting algorithms-tree-based (MLN-BT) and clause-based (MLN-
BC) to four state-of-the-art MLN structure learning methods: LHL (Kok and Domingos
2009), BUSL (Mihalkova and Mooney 2007), Motif-S (short rules) and Motif-L (long rules)
(Kok and Domingos 2010) on three datasets. Additional experiments on Cora dataset can be
found in our previous paper (Khot et al. 2011). We employed the default settings of Alchemy
(Kok et al. 2010) for weight learning on all the datasets, unless mentioned otherwise. We
set the multipleDatabases flag to true for weight learning. For inference, we used MC-SAT
samplingwith 1million sampling steps or 24hwhichever occurs earlier. For learning structure
using motifs, we used the settings provided by Kok and Domingos (Kok and Domingos
2010). While employing LHL and BUSL for structure learning, we used the default settings
in Alchemy. We set the maximum number of leaves in MLN-BT to 8 and maximum number
of clauses to 3 in MLN-BC. The beam-width was set to 10 and maximum clause length was
set to 3 for MLN-BC.We used 20 gradient steps on all the boosting approaches. Since we ran
the experiments on a heterogenous cluster of machines, we do not report the learning time
for the larger IMDB dataset. For the Alchemy-based structure-learning algorithms, we tried
several different weight learning methods such as conjugate gradient and voted perceptron.
We then present the ones with the best results.

5.1.1 UW-CSE dataset

The goal in the UW data set (Richardson and Domingos 2006) is to predict the advisedBy
relationship between a student and a professor. The data set consists of details of professors,
students and courses from five different sub-areas of computer science (AI, programming
languages, theory, system and graphics). Predicates include professor, student,
publication, advisedBy, hasPosition, projectMember, yearsIn
Program, courseLevel, taughtBy and teachingAssistant. Our task is to
learn using the other predicates, to predict the advisedBy relation. We employ fivefold
cross validation where we learn from four areas and predict on the other area. We also
compared against the handcoded MLN available on Alchemy’s website with discriminative
weight learning (shown as Alchemy-D in the tables). We were unable to get BUSL to run due
to segmentation fault issues.

Table 1 presents the AUC and CLL values, along with the training time taken by each
method averaged over fivefolds. The training time does not change for the different test-sets.
As can be seen, for the complete dataset both boosting approaches (MLN-BT andMLN-BC)
perform better than other MLN learning techniques on the AUC-PR values. Current MLN
learning algorithms on the other hand are able to achieve lower CLL values over the complete
dataset by pushing the probabilities to 0, but are not able to differentiate between positive
and negative examples as shown by the low AUC-PR values.

When we reduce the negatives in the test set to twice the number of positives, the boosting
techniques dominate on both the AUC-PR and CLL values, while the other techniques, which
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Table 1 Results on UW data set

Algorithm 2X negatives All negatives Training time

AUC-PR CLL AUC-PR CLL

MLN-BT 0.94 ± 0.06 −0.52 ± 0.45 0.21 ± 0.17 −0.46 ± 0.36 18.4 s

MLN-BC 0.95 ± 0.05 −0.30 ± 0.06 0.22 ± 0.17 −0.47 ± 0.14 33.3 s

Motif-S 0.43 ± 0.03 −3.23 ± 0.78 0.01 ± 0.00 −0.06 ± 0.03 1.8 h

Motif-L 0.27 ± 0.06 −3.60 ± 0.56 0.01 ± 0.00 −0.07 ± 0.02 10.1 h

Alchemy-D 0.31 ± 0.10 −3.90 ± 0.41 0.01 ± 0.00 −0.08 ± 0.02 7.1 h

LHL 0.42 ± 0.10 −2.94 ± 0.31 0.01 ± 0.01 −0.06 ± 0.02 37.2 s

Results in bold are statistically significant (at p = 0.05) better than experimental controls
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cannot differentiate between the examples, have poor CLLvalues. Also, there is no significant
difference between learning the trees or the clauses in the case of boosting MLNs. On this
domain, RDNs are able to model the data better than MLNs. Boosted RDNs achieve an
AUC-PR of 0.95± 0.03 and CLL of −0.17± 0.03 for 2X negatives (Natarajan et al. 2012).

We performed additional experiments on this data set to understand the impact of number
of trees on the predictive performance. Figures 3 and 4 present the CLL and AUC-PR values
averagedover 30 runs as a function of the number of trees.As canbe seen,CLLvalues improve
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Table 2 Results on IMDB data set

Algorithm AUC-PR CLL

workedUnder genre gender workedUnder genre gender

MLN-BT 0.90 ± 0.07 0.94 ± 0.08 0.45 ± 0.06 −0.18 ± 0.06 −0.20 ± 0.09 −0.62 ± 0.05

MLN-BC 1.00 ± 0.00 1.00 ± 0.00 0.39 ± 0.07 −0.11 ± 0.04 −0.12 ± 0.08 −0.84 ± 0.21

RDN-B 0.99 ± 0.02 0.91 ± 0.12 0.46 ± 0.18 −0.88 ± 0.20 −0.25 ± 0.22 −0.76 ± 0.16

BUSL 0.89 ± 0.11 0.94 ± 0.08 0.44 ± 0.08 −0.56 ± 0.05 −0.27 ± 0.09 −0.69 ± 0.01

LHL 1.00 ± 0.00 0.37 ± 0.09 0.39 ± 0.12 −0.02 ± 0.01 −1.13 ± 0.23 −0.73 ± 0.05

Motif-S 0.56 ± 0.16 0.52 ± 0.29 0.48 ± 0.08 −2.73 ± 1.66 −3.99 ± 2.70 −0.71 ± 0.08

Motif-L 0.48 ± 0.27 0.39 ± 0.03 0.46 ± 0.08 −2.30 ± 1.16 −2.32 ± 1.15 −0.69 ± 0.06

as the number of trees increase. This is due to the fact that adding more trees amounts to
moving the likelihood of the examples towards 1. On the other hand, the AUC-PR values
increase for the first few trees. After a small amount of trees (in this case around 6), the value
has plateaued. In all our experiments, we observed that increasing the number of trees beyond
20 had no significant impact in AUC-PR values. Our results show that with a small number
of trees, the boosting-based methods are able to achieve reasonable predictive performance.

5.1.2 IMDB dataset

The IMDB dataset was first used by Mihalkova and Mooney (2007) and contains five pred-
icates: actor, director, genre, gender and workedUnder. We do not eval-
uate the actor and director predicates as they are mutually exclusive facts in this
dataset and easy to learn for all the methods. Also since gender can take only two val-
ues, we convert the gender(person,gender) predicate to a single argument predicate
female_gender(person). Following Kok and Domingos (2009), we omitted the four
equality predicates. Our goal was to predict workedUnder, genre and gender given
all the other predicates as evidence. We conducted fivefold cross-validation and averaged
the results across all the folds. We perform inference over every predicate given all other
predicates as evidence.

Table 2 shows the AUC values for the three predicates: workedUnder, genre and
gender. The boosting approaches perform better on average, on both the AUC and CLL
values, than the other methods. The BUSL method seems to exhibit the best performance
of the prior structure-learning methods in this domain. Our boosting algorithms seem to be
comparable or better than BUSL on all the predicates. For workedUnder, LHL has compa-
rable AUC values to the boosting approaches, while it is clearly worse on the other predicates.
There is no significant difference between the two versions of the boosting algorithms.

The other question that we consider in this domain is: how do boosted MLNs compare
against boosted RDNs (Natarajan et al. 2012)? To answer this question, we compared our
proposed methods against boosted RDNs (RDN-B). As can be seen from Table 2, the MLN-
based methods are marginally better than the boosted RDNs for predicting workedUnder
predicate, while comparable for others.

5.1.3 WebKB dataset

The WebKB dataset was first created by Craven et al. (1998) and contains information about
department webpages and the links between them. It also contains the categories for each
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Table 3 Results on the WebKB data set with all negatives

AUC-PR CLL

CourseTA CourseProf CourseTA CourseProf

MLN-BT 0.005 ± 0.003 0.029 ± 0.005 −0.359 ± 0.041 −0.334 ± 0.068

MLN-BC 0.004 ± 0.002 0.027 ± 0.007 −0.479 ± 0.041 −0.304 ± 0.010

LHL 0.004 ± 0.002 0.007 ± 0.002 −0.023 ± 0.011 −0.029 ± 0.005

Motif-L 0.003 ± 0.002 0.017 ± 0.009 −0.024 ± 0.011 −0.029 ± 0.005

Results in bold are statistically significant (at p = 0.05) better than experimental controls

Table 4 Results on the WebKB data set with 2x negatives

AUC-PR CLL

CourseTA CourseProf CourseTA CourseProf

MLN-BT 0.426 ± 0.027 0.738 ± 0.034 −0.603 ± 0.057 −0.406 ± 0.050

MLN-BC 0.379 ± 0.031 0.750 ± 0.110 −0.656 ± 0.012 −0.357 ± 0.045

LHL 0.350 ± 0.046 0.460 ± 0.036 −2.274 ± 0.102 −2.243 ± 0.104

Motif-L 0.332 ± 0.014 0.637 ± 0.219 −2.282 ± 0.110 −2.198 ± 0.105

webpage and the words within each page. This dataset was converted by Mihalkova and
Mooney (2007) to contain only the category of each webpage and links between these pages.
They created the following predicates: Student(A), Faculty(A), CourseTA(C,
A), CourseProf(C, A), Project(P, A) and SamePerson(A, B) from these
webpages. The textual information was ignored. We removed the SamePerson(A, B)
predicate as it only had groundings with both the arguments being exactly same (i.e.,
SamePerson(A,A)).

We evaluated all the methods over the CourseProf and CourseTA predicates since
all other predicates had trivial rules such as CourseTA(C,A) → Student(A). We per-
formed fourfold cross-validation where each fold corresponds to one university. We do not
present the performance of BUSL and Motif-S because the algorithms were unable to learn
any useful rules and had a AUC-PR value of 0.

Table 3 and 4 presents the results of the different algorithms in this domain. As with UW
data set we present two different cases here. Table 3 uses the data set with all the negative
examples in the test set and Table 4 uses the data set with twice the number of negatives as
positives. Similar to the earlier case, in the test set with all negatives, current MLN methods
such as LHL and Motifs exhibit good performance for the CLL evaluation measure for
both the CourseTA and CourseProf predicates. On the other hand, the AUC-PR values
are lower than that of our boosting-based methods. This difference is magnified when we
limit the number of negatives to twice the number of positives. In the latter case, even the
CLL for the current MLN structure learning algorithms are significantly worse than our
boosting methods. There is no statistically significant difference between the performance of
the boosting methods. Our current results show that employing a test set with a reasonable
distribution of the classes yields a better insight into the difference in the performance of the
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Fig. 5 PR Curves for some domain—predicate pairs. (a) UW—advisedBy, (b) WebKB—CourseTA, (c)
IMDB—WorkedUnder

learning algorithms. In terms of average learning time for these approaches, MLN-BC takes
22s, MLN-BT takes 47.5 s and LHL (fastest baseline in UW-CSE) takes 60.5 s.

Precision–Recall curves We also present the PR curves for the first fold on the advisedBy
predicate in UW in Fig. 5a, the CourseTA predicate in Web-KB in Fig. 5b, and
workedUnderpredicate in IMDBinFig. 5c.Weonly show the curves for the best previously
published structure-learning methods. Our algorithms exhibit a clear superior performance
especially in the high-recall regions.

5.2 Experimental results: hidden data case

We now present the results of our EM approach on four different problems for the partially
observable data case. We present results for structural EM (SEM) with a suffix to indicate the
number of hidden state samples used, i.e. |W |mentioned in the Sect. 4 (e.g. SEM-10 uses ten
samples while SEM-1 uses the single MAP estimate). SEM-10 corresponds to the soft-EM
approach whereas SEM-1 corresponds to the hard-EM approach. We also present the results
of using RFGB without using EM while setting all hidden groundings to false, i.e. using the
closed world assumption (denoted as CWA). These methods are essentially the prior work on
RDNs (Natarajan et al. 2012), MLNs (Sect. 3) and imitation learning (Natarajan et al. 2011).
Each of these methods were run for 10 gradient iterations. In these experiments we attempt
to empirically investigate the following questions:

Q1: Can removing CWA for relational structure learning improve the performance?
Q2: Can soft-EM outperform hard-EM in relational domains?

5.2.1 Disjunctive dataset

We generated a simple synthetic dataset to compare SEM against CWA using RDNs as
the base model. We used three predicates q(X,Y), r(X,Y) and s(X). The range of X was
1, . . . , 100, and varied Y to have four different values |Y | ∈ {1, 3, 5, 10} as shown in
Fig. 6. We treated the predicate r as hidden and the goal was to predict s. To gen-
erate the training data, we used a distribution P(r |q). We then combine r(X,Y) for
different values of Y using an OR condition to generate s(X). Hence s(X) given
r(X,Y) is a deterministic rule where s(X) is true if for some Y, r(X,Y) is true.
We generated 10 synthetic datasets with randomly sampled hidden data, trained one
model on each dataset and evaluated each model on the other nine datasets. We aver-
age the results from all these runs. We used this synthetic dataset as it allows us
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Fig. 6 Results on the Disjunctive dataset. (a) 20%missing data, (b) 40%missing data, (c) Avg.learning time

to evaluate approaches against varying importance of accurately predicting the missing
data.

The results on this domain are presented in Fig. 6 (higher is better). We hide 20 and
40% of the groundings of the hidden predicates to simulate different levels of missing
data. We only present the CLL values since the AUC-PR values are nearly equal for all
the approaches. The EM approaches outperform CWA in all scenarios thereby affirma-
tively answering Q1 for this domain. SEM-10 outperforms both SEM-1 and CWA meth-
ods on this dataset for |Y | = 1 and |Y | = 3, whereas SEM-1 outperforms the oth-
ers for |Y | = 10. Although the difference is very small in some cases, it is statisti-
cally significant (except for |Y | = 5 where SEM-10 has similar performance to SEM-
1).

As we increase the number of values that can be taken by Y , we increase the num-
ber of possible hidden states. With just 10 samples, SEM-10 is able to capture a relatively
large space of the possible assignments to the hidden states for Y = 1 and Y = 3. On
the other hand for Y = 10, both SEM-10 and SEM-1 capture a very small number of hid-
den state assignments compared to the total number of possible assignments. As a result,
the simpler SEM-1 is able to perform better when |Y | = 10. Increasing the number of
sampled states for soft-EM would improve the performance but at the cost of learning
time. We also present the change in learning time of the various approaches with increas-
ing missing data (by varying the |Y | values) in Fig. 6c. We averaged the learning times
across the tenfolds for 20% missing data. Both SEM-1 and CWA have similar learning
times showing that the sampling step for this dataset is not computationally intensive. Since
we used a heterogeneous cluster of machines, a slower machine may introduce a small
bump, viz. at |Y | = 3. On the other hand, learning time for SEM-10 increases exponen-
tially with increase in the number of missing values. This is primarily due to the fact that
every node in the tree has to be scored for every sampled world state in W (by adding and
removing the required facts every time). As the number of hidden groundings increase,
the size of each sampled state increases requiring more operations during the learning
phase. Increasing |W | would further increase the learning time but could improve the accu-
racy.

5.2.2 Cancer dataset: MLN structure learning

The cancer MLN is a popular synthetic data set (Kersting et al. 2009; Domingos and Lowd
2009).We created a friend network using a symmetric predicate,friends(X,Y). Each per-
son has three attributes: stress(X), cancer(X) and smokes(X). The stress attribute
for each person is set using a Bernoulli distribution. A person is more likely to smoke if he is
stressed (set using aBernoulli distribution) or has friendswho smoke (set using an exponential
distribution). Similarly, a person is likely to have cancer if he smokes (set using a Bernoulli
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Table 5 Results on cancer
dataset

Results in bold are statistically
significant (at p = 0.05) better
than experimental controls

Hidden % 20% 40%

Algorithm CLL AUC-PR CLL AUC-PR

SEM-10 −1.445 0.482 −1.315 0.510

SEM-1 −1.648 0.483 −1.586 0.500

CWA −1.629 0.478 −1.693 0.488

Table 6 CLL values for
UW-CSE

Results in bold are statistically
significant (at p = 0.05) better
than experimental controls

Hidden % 20% 40%

SEM-10 −0.168 −0.170

SEM-1 −0.150 −0.151

CWA −0.187 −0.192

distribution) or he has a lot of friends who smoke (set using an exponential distribution).
The more smoker friends a person has, the more likely he is to get cancer. Such rules can be
captured by MLNs since the probabilities are proportional to the number of groundings of
a clause (e.g. smokes(y) ∧ f r iend(x, y) → smokes(x)). The target predicate is cancer
while smokes has somemissing groundings. We trained the model on 10 generated datasets
with randomly sampled hidden data and evaluated each model on other nine datasets and
present the average results.

As seen in Table 5, SEM-10 mostly outperforms the other approaches both in terms of CLL
and AUC-PR. For 20% missing data, there is no statistically significant difference between
the two EM approaches but both methods outperform CWA. Unlike the previous domains,
SEM-10 is at least as good as or better than SEM-1 in this domain. Hence for this domain,
we can affirmatively answer both Q1 and Q2. Since Alchemy does not have a mechanism to
handle missing data for structure learning, we ran weight learning (generative with 10,000
iterations and 1e-5 threshold) on hand-written rules and learned theweights using themissing
data weight learning approach of Alchemy. The AUC PR values were around 0.6. This shows
that simply learning the parameters is reasonably comparable to our models that learn both
the structure and parameters with hidden data.

5.2.3 UW-CSE dataset: RDN structure learning

We use the UW-CSE dataset described before in Sect. 5.1.1 to evaluate the EM approach
for learning RDNs. We randomly hid groundings of the tempAdvisedby, inPhase and
hasPosition predicates during training. Due to these hidden groundings and the different
type of SRLmodel being learned, our numbers are not exactly comparable to the ones reported
in Sect. 5.1. We performed fivefold cross-validation and present the CLL values in Table 6.
We do not present the AUC PR values since the difference is not statistically significant. We
also varied the amount of hidden data in our experiments (“Hidden %” in the table indicates
the percentage of the groundings being hidden).

In general, the EMmethods perform statistically significantly (with p value<0.05) better
than the closed world assumption. Hence, we can answer Q1 affirmatively in this real world
domain too. It appears that in this domain, using a single sample for the hidden state has
the same performance as that of using 10 samples. This is in line with most EM algorithms
where using a single state (MAP) approximation generally suffices (negatively answering
Q2 in this domain).
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Table 7 CLL values for IMDB

Results in bold are statistically
significant (at p = 0.05) better
than experimental controls

Hidden % 10% 20%

SEM-10 −0.501 −0.551

SEM-1 −0.423 −0.467

CWA −0.586 −0.80

Fig. 7 Wumpus world. W is the
wumpus, S is the stench and A is
the agent (Russell and Norvig
2003)

5.2.4 IMDB dataset: RDN structure learning

We also use the IMDB dataset described before (Sect. 5.1.2) to evaluate the EM approach.
We predicted the gender predicate given all the other predicates. We randomly hid the
groundings of actor and workedUnder predicates during learning and inference. Again
due to these hidden predicates, our numbers are not comparable to the ones reported earlier.
We performed fivefold cross-validation.

We present the CLL values for hiding 10 and 20% of the groundings of the two hidden
predicates in Table 7. Similar to the disjunctive dataset, there is no statistically significant
difference between the three methods in the AUC-PR values and hence are not reported
here. In general, the EM methods perform statistically significantly (with p value <0.05)
better than the closed world assumption. Hence we can again affirmatively answer Q1 in
this domain. Between the two EM methods, using one sample is sufficient to capture the
underlying distribution and hence the simpler SEM-1 has a higher CLL value than SEM-10.

5.2.5 Wumpus world: relational imitation learning

We also performed imitation learning in a partially observed relational domain where we
created a simple version of the Wumpus task. The location of wumpus is partially observed.
We used a 5 × 5 grid with the wumpus placed at a random location. The wumpus is always
surrounded by stench on all four sides.

Figure 7 shows one instantiation of the initial grid locations. The agent can perform 8
possible actions: 4 move actions in each direction and 4 shoot actions in each direction.
The agent’s task is to move to a cell such that he can fire an arrow to kill the wumpus. The
dataset contains predicates for each cell such as cellAt, cellRight and cellAbove
and obstacle locations such as wumpus and stench. The wumpus is not observed in all
the trajectories although the stench is always observed. Trajectories were created by human
users whose policy generally is to move towards the wumpus’ row or column and shoot
accordingly.

The EM approaches (using the trajectories where wumpus is observed) learn that wumpus
is surrounded by stench and fill the missing values in other trajectories. The CWA approach
(Natarajan et al. 2011) on the other hand assumes that the wumpus is not present and relies
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Table 8 Results for Wumpus
dataset

Hidden % 20% 40%

Algorithm CLL AUC-PR CLL AUC-PR

SEM-10 −0.245 0.857 −0.261 0.853

SEM-1 −0.278 0.845 −0.283 0.839

CWA −0.282 0.826 −0.270 0.826

on the stench to guess the action to be performed. The results are presented in Table 8. From
the results, it can be easily observed that the EM methods are superior to that of the prior
work on imitation learning. Moreover, SEM-10 which uses multiple samples outperforms
the single-sample SEM-1 approach. This domain clearly shows that the previous method of
boosting in imitation learning is not sufficient in problems with partial observability and it
is imperative to employ methods that do not assume closed-world. Similar to the Cancer
domain, we can affirmatively answer Q1 and Q2.

In conclusion, our experiments have shown that opening the closed-world assumption
definitely results in an improvement in the performance. Between the two EM approaches,
we have shown empirically that for certain domains (e.g. UW, IMDB) a single sample (hard-
EM)might be sufficient, whereas in certain domains (e.g. Cancer,Wumpus)multiple samples
(soft-EM) are needed to capture the true distribution. Thus, both the questions can generally
be answered affirmatively (where answer to Q2 depends on the domain).

But these improvements come at the cost of increased learning time where SEM-10 can
be comparatively much slower than SEM-1. SEM-10 can take from 15h (Wumpus) to 22
min (UW-CSE) where SEM-1 takes 3 min on both of these datasets. Comparatively the CWA
approaches take 1 min to learn the model on all of these datasets. Since the gradients are
computed for every example and hidden state in SEM-10, the number of examples grow to
n × 10 where n is the number of examples in CWA. Moreover we need to manipulates the
facts based on every hidden state for every candidate node during tree learning.

6 Discussion and future work

Due to the ability to write rules easily whose weights can be learned with efficent algorithms
and the presence of convergent inference approaches (Singla and Domingos 2008), MLNs
are popular. But learning the structure of MLNs remains one of the hardest and challenging
problems. We address this problem by using gradient-boosting with the added benefit of
learningweights simultaneously. Building upon the success of pseudo-likelihoodmethods for
MLNs, we derived tree-based and clause-based gradient boosting algorithms. We evaluated
the algorithms on four standard datasets and established the superior performance of the
boosting method across all the domains and all the predicates.

One future direction for the structure learning approach is to derive the functional gradients
for the full likelihood instead of the pseudo-likelihood and learn the trees/clauses for jointly
predicting several predicates. Another direction is to induce a simplerMLN that approximates
the learned set of clauses/trees; this will ensure that the learnedmodel is interpretable as well.
Another important direction is to evaluate the scaling properties of the algorithm in large data
sets.

We also addressed the challenging problem of learning SRL models in the presence of
hidden data. We developed an EM-based algorithm for functional-gradient boosting. We
derived the gradients for the M-step by maximizing the lower bound of the gradient and
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showed how to approximate the E-step. We evaluated the algorithm on three different types
of relational learning problems: RDNs, MLNs and imitation learning. Our results indicate
that the proposed algorithms outperform the respective algorithms that make closed-world
assumptions.

Our approach to handle missing data can also be extended in various directions. Exploring
alternative efficient methods for computing the gradients is one such direction. Adapting the
different EM heuristics such as random restarts is another interesting direction. We could
also calculate the marginal probabilities of each hidden grounding and use them as proba-
bilistic facts to learn the trees. Our approach can handle bidirected and undirected models
but extending it to an acyclic directed model is an interesting avenue for future research.
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