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Abstract We develop an exact penalty approach for feature selection in machine learning
via the zero-norm �0-regularization problem. Using a new result on exact penalty techniques
we reformulate equivalently the original problem as a Difference of Convex (DC) functions
program. This approach permits us to consider all the existing convex and nonconvex approx-
imation approaches to treat the zero-norm in a unified view within DC programming and
DCA framework. An efficient DCA scheme is investigated for the resulting DC program.
The algorithm is implemented for feature selection in SVM, that requires solving one lin-
ear program at each iteration and enjoys interesting convergence properties. We perform
an empirical comparison with some nonconvex approximation approaches, and show using
several datasets from the UCI database/Challenging NIPS 2003 that the proposed algorithm
is efficient in both feature selection and classification.
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1 Introduction

Feature (or variable) selection, which consists of choosing a subset of available features
that capture the relevant properties of the data, is one of fundamental problems in machine
learning. Feature selection can help enhance accuracy in many machine learning problems,
it can also improve the efficiency of training. Features can be divided into three categories:
relevant, redundant and irrelevant features. An irrelevant feature does not apport any useful
information while a redundant feature adds no new information to learning procedures (i.e.
information already carried by other features). Ideally, the learning process should discard
irrelevant/redundant features and use only a subset of relevant features that leads to the best
performance.

Machine learning methods for feature selection can be divided into three classes (Rinaldi
2000): wrapper, filter, and embedded methods. Wrapper methods exploit a machine learning
algorithm to evaluate the usefulness of features. Filter methods rank the features according
to some discrimination measure and select features having higher ranks without using any
learning algorithm (it utilizes the underlying characteristics of the training data to evaluate the
relevance of the features or feature set by some independent measures such as distance mea-
sure, correlation measures, consistency measures (Chen et al. 2006). The wrapper approach
is generally considered to produce better feature subsets but runs much more slowly than
a filter. Embedded methods do not separate the learning from the feature selection part. It
integrates the selection of features in the model building.

This paper concerns with an embedded approach for feature selection inmachine learning.
For a vector x ∈ R

n , the support of x , denoted supp(x), is the set of the indices of the non-zero
components of x , say

supp(x) = {i ∈ {1, . . . , n} : xi �= 0} ,

and the zero-norm of x , denoted �0-norm is defined as

‖x‖0 :=cardinality of supp(x).

The useful notation |.|0 denoting the �0-norm on R, also called the step function (|x |0 = 1 if
x �= 0, 0 otherwise) allows for expressing the separability of ‖.‖0 on R

n

‖x‖0 =
n∑

i=1

|xi |0 . (1)

Given a training data {ϑi , δi }i=1,...,m where each ϑi ∈ R
n corresponds to the observed

value δi . Formally, a learning task can be defined as the following structural riskminimization
problem (for a given λ > 0)

min
x,y

m∑

i=1

L(ϑi , δi ; x, μ) + λΩ(x), (2)

where L is a loss function defined onRn×R
p andΩ(·) is the regularizer (or penalty) term. The

loss function L is the data fitting term measuring the discrepancy for all training examples
{ϑi , δi } between the predicted value and the observed value. The regularizer term Ω(·)
is a penalty providing regularization and controlling generalization ability through model
complexity.
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A natural way to deal with feature selection in machine learning is using �0-norm in the
regularization term that leads to the following problem:

min

{
m∑

i=1

L(ϑi , δi ; x, μ) + λ ‖x‖0 : (x, μ) ∈ R
n×R

p

}
. (3)

Let K be a bounded polyhedral convex set in R
n × R

p. We consider in this paper a so
called �0-regularizer problem that takes the form

min { f (x, μ) + λ ‖x‖0 : (x, μ) ∈ K } , (4)

where the function f corresponding to a given convex criterion is assumed to be convex
and the regularization parameter λ makes the trade-off between the criterion f and the
sparsity of x . Here μ is the variable that does not deal with the sparsity. This problem is a
common model that can be used in several learning contexts including feature selection in
classification, feature selection in linear regression, sparse Fisher linear discriminant analysis,
feature selection in learning to rank with sparse SVM, etc.

The function �0, apparently very simple, is lower-semicontinuous on R
n, but its disconti-

nuity at the origin makes nonconvex programs involving ‖.‖0 challenging, they are known to
be NP-hard (Amaldi and Kann 1998; Natarajan 1995) and actually intractable. To circumvent
the discontinuity, continuous approaches are developed since many years.

During the last two decades, research is very active in models and methods optimization
involving the zero-norm. Works can be divided into three categories according to the way to
treat the zero-norm: convex approximation, nonconvex approximation, and nonconvex exact
reformulation.

In the machine learning community, one of the best known approaches, belonging to
the group “convex approximation”, is the �1 regularization approach proposed in Tibshi-
rani (1996) in the context of linear regression, called least absolute shrinkage and selection
operator (LASSO), which consists in replacing the �0 term ‖x‖0 by ‖x‖1, the �1-norm of
the vector x . In Gribonval and Nielsen (2003), the authors have proven that, under suit-
able assumptions, a solution of the �0- regularizer problem over a polyhedral set can be
obtained by solving the �1- regularizer problem. However, these assumptions may not be
satisfied in many cases. Since its introduction, several works have been developed to study
the �1-regularization technique, from the theoretical point of view to efficient computational
methods (see Hastie et al. 2009, Chap. 18 for more discussions on �1-regularized methods).
Among the best approaches, it is worth to citing the Elastic net proposed by Zou and Hastie
(2005) for variable selection in regression which is a combination between the ridge (�2
norm) and the LASSO penalty. It has been shown that the elastic net not only dominates
the LASSO in terms of prediction accuracy but also is a better variable selection procedure
than the LASSO. The LASSO penalty has been shown to be, in certain cases, inconsistent
for variable selection and biased (Zou 2006). Hence, the Adaptive LASSO is introduced in
Zou (2006) in which adaptive weights are used for penalizing different coefficients in the
�1-penalty.

At the same time, nonconvex continuous approaches, belonging to the second group
“nonconvex approximation” (the �0 term ‖x‖0 is approximated by a nonconvex continu-
ous function) were extensively developed. The first was concave exponential approximation
with successive linear approximation (SLA) algorithm proposed in Bradley andMangasarian
(1998) for feature selection in SVM. Later, with the same approximation, an efficient Dif-
ference of Convex functions (DC) algorithm (DCA) was developed in Le Thi et al. (2008).
Various other nonconvex regularizations have been developed in several works in different
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contexts, most of them are for feature selection in SVM or feature selection in regression.
For example, hard-thresholding methods and/or DCA using the Smoothly Clipped Absolute
Deviation (SCAD) (Fan and Li 2001; Kim et al. 2008; Le Thi et al. 2009; Ong and Le Thi
2013; Zou and Li 2008), the log penalty method (Candes et al. 2008) via the logarithmic
approximation of Weston et al. (2003), the �q , 0 < q < 1 regularization with reweighted �2
and/or DCA (Chartrand and Yin 2008; Fu 1998; Gasso et al. 2009; Huang et al. 2008; Knight
and Fu 2000; Chen et al. 2010; Guan and Gray 2013; Gorodnitsky and Rao 1997; Rao and
Kreutz-Delgado 1999; Rao et al. 2003). The common properties of these approaches are that
the nonconvex regularization used for approximating the �0 norm is a DC function, and the
resulting optimization problem is a DC program for which DCA, an efficient approach in
nonconvex programming framework (see e.g. Le Thi and Pham Dinh 2005; Pham Dinh and
Le Thi 1998) has been investigated (Le Thi et al. 2008, 2009; Neumann et al. 2005; Ong and
Le Thi 2013; Collober et al. 2006; Candes et al. 2008; Gasso et al. 2009; Guan and Gray
2013) (note also that the SLA (Bradley and Mangasarian 1998), the adaptive LASSO (Zou
2006) are special cases of DCA). These DCA based algorithms solve iteratively a sequence of
convex programs (linear or quadratic programs in many cases) until the convergence and can
be viewed as sequences of reweighted �1 (see for example Candes et al. 2008) or reweighted
�2. For instance, Focal Underdetermined System Solver (FOCUSS) (Gorodnitsky and Rao
1997; Rao and Kreutz-Delgado 1999; Rao et al. 2003), Iteratively reweighted least squares
(IRLS) (Chartrand and Yin 2008) introduced in the context of compressed sensing, via the
�q -regularizer with 0 < q < 1, can be viewed as a reweighted �2 procedure. The Local
Quadratic Approximation (LQA) algorithm in Fan and Li (2001) and Zhang et al. (2006) can
be also regarded as reweighted �2 applied on SCAD penalty. Overall, we can say that most
of existing methods in nonconvex approximation approaches are DCA based algorithms.
Besides, the relaxed Lasso, a generalization of both soft and hard thresholding, introducing
a two-stage procedure has been proposed in Meinshausen (2007).

In the third category that we call nonconvex exact reformulation approaches, the �0-
regularized problem is reformulated as a continuous nonconvex program. There are few
works in this category. In Mangasarian (1996), the author reformulated the problem (4)
in the context of feature selection in SVM as a linear program with equilibrium constraints
(LPEC).However, this reformulation is generally intractable for large-scale datasets. In Thiao
et al. (2010) an exact penalty technique is used for Sparse Eigenvalue problem with �0-norm
in constraint functions

max{xT Ax : xT x = 1, ‖x‖0 ≤ k}, (5)

where A ∈ R
n×n is symmetric and k an integer, and a DCA based algorithm was investigated

for the resulting problem.
Convex regularization approaches involve convex optimization problems which are so far

“easy” to solve, but they does not attain the solution of the �0-regularizer problem.Nonconvex
approximations are, in general, deeper than convex relaxations, and then can produce good
sparsity, but the resulting optimization problems are still difficult since they are nonconvex
and there are many local minima which are not global. Moreover, the consistency between
the approximate problems and the original problem is an open question, i.e. it can not be
guaranteed. The exact reformulation approaches can overcome these drawbacks if efficient
methods for the reformulation problem are available.

Besides the three above categories, heuristic methods are developed to tackle directly the
original problem (4) by greedy based algorithms, e.g. matching pursuit, orthogonal matching
pursuit (Mallat and Zhang 1993; Bach et al. 2012), etc.
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Our contributions. The above arguments suggest us to develop in this paper an exact
reformulation approach for solving the original problem (4). Ourmainmotivation is to exploit
the efficiency of DCA to solve this hard problem in an equivalent formulation. A new result
on exact penalty techniques recently developed in Le Thi et al. (2012) supports this idea. The
�0-regularization problem is first equivalently formulated as a combinatorial optimization
problem by using the binary variables ui = 0 if xi = 0 and ui = 1 if xi �= 0, and then the
last problem is reformulated as a DC program via an exact penalty technique (Le Thi et al.
2012). These combinatorial and continuous formulations of (4) permit us to consider all the
above convex and nonconvex approaches to treat the zero-norm in a unified view within DC
programming and DCA framework. More precisely, we show that the �1-approach is nothing
else the linear relaxation of our combinatorial formulation of (4) while some nonconvex
approximations can be regarded as our exact penalty reformulation with suitable parameters.
This study is very useful to justify nonconvex approximation approaches. As an application
of the proposed approach, we consider the problem of feature selection in SVM.We perform
an empirical comparison with some nonconvex approximation approaches, and show using
several datasets from the UCI database that the proposed algorithm is efficient in both feature
selection and classification.

The rest of the paper is organized as follows. In the next sectionwepresent our exact penalty
technique to equivalently reformulate the problem (4) as a DC program and discuss about
the links between our approach with convex and/or nonconvex approximation approaches.
The solution methods based on DC programming and DCA are developed in Sect. 3 while
the implementation of the algorithm for feature selection in SVM and numerical experiments
are presented in Sect. 4. Finally, some conclusions are provided in Sect. 5. In the appendix
we describe the comparative DCA schemes considered in our experiments.

2 Exact penalty techniques related to the �0-norm

In this section, we first consider the two following problems (K being a bounded polyhedral
convex set in R

n × R
p, λ a positive parameter and k a positive integer)

α:= inf{ f (x, μ) + λ‖x‖0 : (x, μ) ∈ K }, (6)

α:= inf{ f (x, μ) : (x, μ) ∈ K , }, ‖x‖0 ≤ k} (7)

whose feasible sets are assumed to be nonempty.

2.1 Continuous reformulation via exact penalty techniques

We will present some main results concerning penalty techniques related to �0-norm allow-
ing for reformulation of (6 ) and (7) as nonconvex programs in the continuous framework,
especially DC programs, that can be treated by DC programming and DCA.

Denote by e the vector of ones in the appropriate vector space. We suppose that K is
bounded in the variable x,i.e. K ⊂ Πn

i=1[ai , bi ]×R
m where ai , bi ∈ R such that ai ≤ 0 < bi

for i = 1, . . . , n. Let ci :=max{|xi | : xi ∈ [ai , bi ]} = max{|ai | , |bi |} for i = 1, . . . , n.

Define the binary variable ui ∈ {0, 1} as

ui = |xi |0 =
{
1 if xi �= 0

0 if xi = 0,
∀i = 1 . . . n. (8)

Then (6) and (7) can be reformulated as
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α:= inf{ f (x, μ) + λeT u : (x, μ) ∈ K , u ∈ {0, 1}n, |xi | ≤ ci ui , i = 1, . . . , n}, (9)

and

α:= inf{ f (x, μ) : (x, μ) ∈ K , u ∈ {0, 1}n, |xi | ≤ ci ui , i = 1, . . . , n, eT u ≤ k }, (10)

respectively.
Let p(u) be the penalty function defined by

p(u):=
n∑

i=1

min{ui , 1 − ui } . (11)

Then (6) and (7) can be rewritten respectively as

α = inf{ f (x, μ) + λeT u : (x, μ) ∈ K , u ∈ [0, 1]n, |xi | ≤ ci ui , i = 1, . . . , n, p(u) ≤ 0},
(12)

and

α:= inf{ f (x, μ) : (x, μ) ∈ K , u ∈ [0, 1]n, |xi | ≤ ci ui , i = 1, . . . , n, eT u ≤ k, p(u) ≤ 0}.
(13)

It leads to the corresponding penalized problems (τ being the positive penalty parameter)

α(τ):= inf{ f (x, μ)+λeT u+τp(u) : (x, μ) ∈ K , u ∈ [0, 1]n, |xi | ≤ ci ui , i = 1, . . . , n},
(14)

and

α(τ):= inf{ f (x, μ)+τp(u) : (x, μ) ∈ K , u ∈ [0, 1]n, |xi | ≤ci ui , i = 1, . . . , n, eT u ≤ k}.
(15)

Proposition 1 There is τ0 ≥ 0 such that for every τ > τ0 problems (6) (resp. (7)) and
(14) (resp. (15)) are equivalent, in the sense that they have the same optimal value and
(x∗, μ∗) ∈ K is a solution of (6) (resp. (7)) iff there is u∗ ∈ {0, 1}n such that (x∗, μ∗, u∗) is
a solution of (14) (resp. (15)).

Proof Direct consequences of Theorem 8 in Le Thi et al. (2012).

It is clear that (14) and (15) are DC programs if the function f (x, y) is a DC function on
K .

Note that, in general, the minimal penalty parameter τ0, if any, is not computable. In
practice, upper bounds for τ0 can be calculated in some cases, e.g. sparse eigenvalue problems
(Thiao et al. 2010).

In the sequel, we will focus on the �0-regularizer problem (6) and its penalized problem
(14).

2.2 Link between (9) and the �1-regularization problem

It is easy to see that the linear relaxation of Problem (9) is a �1-regularization problem. Indeed,
the linear relaxation of Problem (9) (which is in fact the penalized problem (14) when τ = 0)
takes the form

inf{ f (x, μ) + λeT u : (x, μ) ∈ K , u ∈ [0, 1]n, |xi | ≤ ci ui , i = 1, . . . , n}. (16)
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Let M = max{ci : i = 1, . . . , n}, problem (16) becomes

inf{ f (x, μ) + λeT u : (x, μ) ∈ K , u ∈ [0, 1]n, |xi | ≤ Mui , i = 1, . . . , n}
which can be rewritten as

inf

{
f (x, μ) + λeT u : (x, μ) ∈ K , u ∈ [0, 1]n, |xi |

M
≤ ui ≤ 1, i = 1, . . . , n

}

or again

inf

{
f (x, μ) + λ

M

n∑

i=1

|xi | : (x, μ) ∈ K

}
= inf

{
f (x, μ) + λ

M
‖x‖1 : (x, y) ∈ K

}
.

2.3 Link between (14) and a nonconvex approximate problem

Most existing approximations of �0-norm are its DC minorants. We consider here the last (in
chronological order) introduced approximation (Peleg and Meir 2008) which is among the
best approximations of �0-norm (Ong and Le Thi 2013). It is defined by:

Ψθ (x):=
n∑

i=1

ψθ (xi ),∀x = (xi ) ∈ R
n, with ψθ(t):=min{θ |t | , 1}, t ∈ R. (17)

Sinceψθ(t) = θ |t |+1−max{θ |t | , 1} is a polyhedral DC function, we name this approxima-
tion as polyhedral DC approximation. We will show that the resulting approximate problem
of (4), namely

β(θ):= inf

{
f (x, μ) + λ

n∑

i=1

ψθ (xi ) : (x, μ) ∈ K

}
(18)

is equivalent to the penalized problem (14) with suitable values of parameters λ, τ and θ .
Consider the problem (14) in the form

α(τ):= inf{ f (x, μ) + λeT u + τp(u) : (x, μ) ∈ K , u ∈ [0, 1]n, |xi | ≤ Mui , i = 1, . . . , n}.
(19)

Let r : R → R be the function defined by r(t) = min{t, 1 − t}. Then p(u) = ∑n
i=1 r(ui )

and the problem (19) can be rewritten as

α(τ):= inf

{
f (x, μ) + λ

n∑

i=1

(
ui + τ

λ
r(ui )

)
: (x, μ) ∈ K ,

|xi |
M

≤ ui ≤ 1, i = 1, . . . , n

}
,

(20)
or again

α(τ):= inf

{
f (x, μ) + λ

n∑

i=1

π (ui ) : (x, μ) ∈ K ,
|xi |
M

≤ ui ≤ 1, i = 1, . . . , n

}
(21)

where π : R → R be the function defined by π(t):=t + τ
λ
r(t).

Proposition 2 Let θ := τ+λ
λM . For all τ ≥ λ problems (21) and (18) are equivalent in the

following sense:
(x∗, μ∗) is an optimal solution of (18) iff (x∗, μ∗, u∗) is an optimal solution of (21),

where u∗
i ∈

{ |x∗
i |
M , 1

}
such that π(u∗

i ) = ψθ(x∗
i ) for i = 1, . . . , n..

Moreover, α(τ) = β(θ).
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Proof If (x∗, μ∗, u∗) is an optimal solution of (21), then u∗
i is an optimal solution of the

following problem, for every i = 1, . . . , n

min

{
π(ui ) : |x∗

i |
M

≤ ui ≤ 1

}
. (22)

Since r is concave function, so is π. Consequently

min
{
π(ui ) : |x∗

i |
M ≤ ui ≤ 1

}
= min

{
π

( |x∗
i |
M

)
, π(1)

}

= min
{(
1 + τ

λ

) |x∗
i |
M , τ

λ
+ (

1 − τ
λ

) |x∗
i |
M , 1

}
.

If τ ≥ λ, then for any |t | ≤ M there holds

τ

λ
+

(
1 − τ

λ

) |t |
M

≥ 1.

Thus, for τ ≥ λ and |x∗
i | ≤ M , we have

π(u∗
i ) = min

{
π(ui ) : |x∗

i |
M

≤ ui ≤ 1

}
= min

{(
1 + τ

λ

) |x∗
i |
M

, 1

}
= ψθ(x

∗
i ). (23)

For an arbitrary (x, μ) ∈ K , we will show that

f (x∗, μ∗) + λ

n∑

i=1

ψθ(x
∗
i ) ≤ f (x, μ) + λ

n∑

i=1

ψθ(xi ). (24)

By the assumption that (x∗, μ∗, u∗) is an optimal solution of (21), we have

f (x∗, μ∗) + λ

n∑

i=1

π(u∗
i ) ≤ f (x, μ) + λ

n∑

i=1

π(ui ) (25)

for any feasible solution (x, μ, u) of (21). Let

uxi ∈ argmin

{
π(ξ) : ξ ∈

{ |xi |
M

, 1

}}
⊂ argmin

{
π(ξ) : |xi |

M
≤ ξ ≤ 1

}
,

for all i = 1, . . . , n. Then (x, μ, ux ) is a feasible solution of (19) and

π(uxi ) = min

{
π(ξ) : |xi |

M
≤ ξ ≤ 1

}
= ψθ(xi ), ∀i = 1, . . . , n.

Combining (25) in which ui is replaced by uxi and the last equationwe get (24), which implies
that (x∗, μ∗) is an optimal solution of (18).

Conversely, if (x∗, μ∗) is a solution of (18), and let u∗
i ∈

{ |x∗
i |
M , 1

}
such that π(u∗

i ):=u∗
i +

τ
λ
r(u∗

i ) = ψθ(x∗
i ) for i = 1, . . . , n. Then (x∗, μ∗, u∗) is a feasible solution of (21) and for

an arbitrary feasible solution (x, μ, u) of (21), we have

f (x, μ) + λ
∑n

i=1

(
ui + τ

λ
r(ui )

) ≥ f (x, μ) + λ
∑n

i=1 ψθ(xi ) ≥ f (x∗, μ∗)
+ λ

∑n
i=1 ψθ(x∗

i )

= f (x∗, μ∗) + λ
∑n

i=1

(
u∗
i + τ

λ
r(u∗

i )
)
.

Thus, (x∗, μ∗, u∗) is an optimal solution of (21). The equalityα(τ) = β(θ) is immediately
deduced from the equality π(u∗

i ) = ψθ(x∗
i ).
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From the two previous propositions we see that for τ > max{λ, τ0} and θ = τ+λ
λM , the

approximate problem (18) is equivalent to the original problem (6). This result evidences the
advantage of this polyhedral DC approximation of the zero-norm. It opens the door to other
nonconvex approximation approaches which are consistent with the original problem.

We are going now to show how to solve the continuous exact reformulation of the �0-
regularization (6), say the penalized problem (14), by DC programming and DCA.

3 Solving the continuous exact reformulation problem by DCA

For the reader’s convenience we first give an brief introduction of DC programming and
DCA.

3.1 Outline of DC programming and DCA

DC programming and DCA constitute the backbone of smooth/nonsmooth nonconvex pro-
gramming and global optimization. They address general DC programs of the form:

α = inf{ f (x):=g(x) − h(x) : x ∈ IRn} (Pdc)

where g, h ∈ �0(IRn), the convex cone of all lower semicontinuous proper convex functions
defined on IRn and taking values in IR ∪ {+∞}. Such a function f is called a DC function,
and g − h a DC decomposition of f while g and h are the DC components of f. The convex
constraint x ∈ C can be incorporated in the objective function of (Pdc) by using the indicator
function of C denoted by χC which is defined by χC (x) = 0 if x ∈ C , and +∞ otherwise :

inf{ f (x):=g(x) − h(x) : x ∈ C } = inf{χC (x) + g(x) − h(x) : x ∈ IRn}.
Polyhedral DC program is a DC program in which at least one of the functions g and h is
polyhedral convex. The function ϕ is polyhedral convex if it is a pointwise supremum of a
finite collection of affine functions. Polyhedral DC programming, which plays a central role
in nonconvex optimization and global optimization and is the foundation of DC programming
andDCA, has interesting properties (from both a theoretical and an algorithmic point of view)
on local optimality conditions and the finiteness of DCA’s convergence.

For a convex functionϕ, the subdifferential ofϕ at x0 ∈domϕ:={x ∈ IRn : θ(x0) < +∞},
denoted by ∂ϕ(x0), is defined by

∂ϕ(x0):={y ∈ IRn : ϕ(x) ≥ ϕ(x0) + 〈x − x0, y〉,∀x ∈ IRn}. (26)

The subdifferential ∂ϕ(x0) generalizes the derivative in the sense that ϕ is differentiable
at x0 if and only if ∂ϕ(x0) ≡ {�xϕ(x0)}.

The complexity ofDCprograms resides, of course, in the lack of practical optimal globality
conditions. Local optimality conditions are then useful in DC programming.

A point x∗ is said to be a local minimizer of g − h if g(x∗) − h(x∗) is finite and there
exists a neighborhood U of x∗ such that

g(x∗) − h(x∗) ≤ g(x) − h(x), ∀x ∈ U . (27)

The necessary local optimality condition for (primal) DC program (Pdc) is given by

∅ �= ∂h(x∗) ⊂ ∂g(x∗). (28)
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The condition (28) is also sufficient (for local optimality) in many important classes of
DC programs, for instance when (Pdc) is a polyhedral DC program with h being a convex
polyhedral function (see Le Thi and Pham Dinh 1997; 2005).

A point x∗ is said to be a critical point of g − h if

∂h(x∗) ∩ ∂g(x∗) �= ∅. (29)

The relation (29) is in fact the generalized Karush-Kuhn-Tucker (KTT) condition for (Pdc)
and x∗ is also called a generalized KKT point.
Philosophy of DCA: DCA is based on local optimality conditions and duality in DC pro-
gramming. The main idea of DCA is simple: each iteration l of DCA approximates the
concave part −h by its affine majorization (that corresponds to taking yl ∈ ∂h(xl)) and
minimizes the resulting convex function.

The generic DCA scheme can be described as follows:
DCA scheme
Initialization: Let x0 ∈ IRn be a guess, set l:=0.
Repeat

– Calculate some yl ∈ ∂h(xl)
– Calculate xl+1 ∈ argmin{g(x) − [h(xl) + 〈x − xl , yl〉] : x ∈ IRn} (Pl)
– Increase l by 1

Until convergence of {xl}.
Note that (Pl) is a convex optimization problem and is so far “easy” to solve.
Convergence properties of DCA and its theoretical basis can be found in (Le Thi 1997; Le
Thi and Pham Dinh 1997, 2005; Pham Dinh and Le Thi 1998). For instance it is important
to mention that (for the sake of simplicity we omit here the dual part of DCA).

– DCA is a descent method (the sequence {g(xl)−h(xl)} is decreasing) without linesearch
but with global convergence (i.e. convergence from every starting point).

– If g(xl+1) − h(xl+1) = g(xl) − h(xl), then xl is a critical point of g − h. In such a case,
DCA terminates at l-th iteration.

– If the optimal value α of problem (Pdc) is finite and the infinite sequence {xl}is bounded,
then every limit point x∗ of the sequence {xl} is a critical point of g − h.

– DCA has a linear convergence for DC programs.
– DCA has a finite convergence for polyhedral DC programs.

It is worth to noting that the construction of DCA involves DC components g and h but
not the function f itself. Hence, for a DC program, each DC decomposition corresponds to a
different version ofDCA.Since aDC function f has an infinite number ofDCdecompositions
which have crucial impacts on the qualities (speed of convergence, robustness, efficiency,
globality of computed solutions,…) of DCA, the search of a “good” DC decomposition is
important from an algorithmic point of view. How to develop an efficient algorithm based on
the generic DCA scheme for a practical problem is thus a sensitive question to be studied.
Generally, the answer depends on the specific structure of the problem being considered. The
solution of a nonconvex program (Pdc) by DCAmust be composed of two stages: the search
of an appropriate DC decomposition of f and that of a good initial point.

DCA has been successfully used for various nonconvex optimization models, in particular
those inmachine learning (see the list of references inLeThi’swebsite and (Krause andSinger
(2004); Le Thi et al. (2007); Liu et al. (2005)). It should be noted that

(i) the convex concave procedure (CCCP) for constructing discrete time dynamical systems
mentioned in Yuille and Rangarajan (2003) is a special case of DCA applied to smooth
optimization;
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(ii) the SLA (Successive Linear Approximation) algorithm developed in Bradley and Man-
gasarian (1998) is a version of DCA for concave minimization;

(iii) the EM algorithm, (Dempster et al. 1997) applied to the log-linear model is a special
case of DCA.

Last but not least, with appropriate DC decomposition in DC reformulations, DCA generates
most of standard algorithms in convex/nonconvex programming.

For a complete study of DC programming and DCA the reader is referred to (Le Thi 1997;
Le Thi and Pham Dinh 1997, 2005; Pham Dinh and Le Thi 1998) and the references therein.
We show below how the DCA can be applied on the penalized problem (12).

3.2 DCA for solving the continuous exact reformulation problem (14)

We consider in the sequel the problem with a sufficient large number τ > τ0 :
α(τ):= inf{ f (x, μ) + λeT u + τp(u) : (x, μ) ∈ K , u ∈ [0, 1]n, |xi | ≤ Mui , i = 1, . . . , n}.

(30)
LetΔ be the feasible set of Problem (12), i.e.Δ:={(x, μ, u) : (x, μ) ∈ K , u ∈ [0, 1]n, |xi | ≤
Mui , i = 1, . . . , n}. Since f is convex and p is concave, the following DC formulation of
(12) seems to be natural:

inf{g(x, μ, u) − h(x, μ, u) : (x, μ, u) ∈ R
n × R

p × R
n, (31)

where
g(x, μ, u):=χΔ(x, μ, u) + f (x, μ), h(x, μ, u):= − λeT u − τp(u)

are clearly convex functions. Moreover, since h is a polyhedral convex function, (31) is a
polyhedral DC program.

According to the general DCA scheme described above, applying DCA to (31) amounts
to computing two sequences {(xl , μl , ul)} and {(yl , υl , vl)} in the way that (zl , υl , vl) ∈
∂h(xl , μl , ul) and (xl+1, μl+1, ul+1) solves the convex program of the form (Pl). Since
(yl , υl , vl) ∈ ∂h(xl , μl , ul) ⇔ yl = 0, υl = 0 and

vli =
{

−λ + τ if uli ≥ 0.5

−λ − τ if uli < 0.5
, i = 1, . . . n,

the algorithm can be described as follow.
DCAEP (DCA applied on Exact Penalty problem (30))
Initialization: Let (x0, μ0, u0) ∈ IRn × IRp × [0, 1]n be a guess, set l:=0.
Repeat

– Set vl = (vli ) with vli = −λ + τ if uli ≥ 0.5, −λ − τ otherwise, for i = 1, . . . n.

– Solve the convex program

min{ f (x, μ) − 〈u, vl〉 : (x, μ, u) ∈ Δ} (32)

to obtain (xl+1, μl+1, ul+1).
– Increase l by 1.

Until convergence of {(xl , μl , ul)}.
Note that (32) is a linear (resp. convex quadratic) program with f is a linear (resp.

quadratic) function. Note also that DCAEP has a finite convergence because that (30) with
the DC decomposition (31) is a polyhedral DC program. The above exact penalty reformu-
lation technique holds with another penalty function p, say p(u):= ∑n

i=1 ui (1− ui ). In this
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case DCA doesn’t have the finite convergence (if f is not convex polyhedral function or Δ

is not a polytope) since this function p is not polyhedral.

4 Application to feature selection in classification

4.1 DC formulation via exact penalty technique and DCA based algorithm

Feature selection is often applied to high-dimensional data prior to classification learning.
Themain goal is to select a subset of features of a given data set while preserving or improving
the discriminative ability of the classifier.

Given a training data {ϑi , δi }i=1,...,m where eachϑi ∈ R
n is labeled by its class δi ∈ Y . The

goal of classification learning is to construct a classifier function that discriminates the data
points {ϑi }i=1,...,m with respect to their classes{δi }i=1,...,m . The embedded feature selection in
classification consists of determining a classifier which uses as few features as possible, that
leads to the following optimization problem like (4). In this section we focus on the context
of Support Vector Machines (SVMs) learning with two-class linear models (Cristianini and
Shawe-Taylor 2000). Generally, the problem can be formulated as follows.

Given two finite point sets A (with label +1) and B (with label −1) in R
n represented

by the matrices A ∈ R
m×n and B ∈ R

k×n , respectively, we seek to discriminate these sets
by a separating plane (x ∈ R

n, γ ∈ R)

P = {w ∈ R
n : wT x = γ } (33)

which uses as few features as possible. We adopt the notations introduced in Bradley and
Mangasarian (1998) and consider the optimization problem proposed in Bradley and Man-
gasarian (1998) that takes the form:

minx,γ,ξ,ζ (1 − λ)( 1
m eT ξ + 1

k e
T ζ ) + λ ‖x‖0

s.t. −Ax + eγ + e ≤ ξ, Bx − eγ + e ≤ ζ, ξ ≥ 0, ζ ≥ 0.
(34)

The nonnegative slack variables ξ j , j = 1, . . .m represent the errors of classification of
ϑ j ∈ A while ζ j , j = 1, . . . k represent the errors of classificationofϑ j ∈ B.More precisely,
each positive value of ξ j determines the distance between a point a j ∈ A lying on the wrong
side of the bounding plane wT x = γ + 1 for A . Similarly for ζ j , B and wT x = γ − 1.
The first term of the objective function of (34) is the average error of classification, and the
second term is the number of nonzero components of the vector x , each of which corresponds
to a representative feature. Further, if an element of x is zero, the corresponding feature is
removed from the dataset. Here λ is a control parameter of the trade-off between the training
error and the number of features.

Observe that the problem (34) is a special case of (4) where the function f is given by

f (x, γ, ξ, ζ ):=(1 − λ)

(
1

m
eT ξ + 1

k
eT ζ

)
(35)

and K is a polytope defined by

K :=
{
(x, γ, ξ, ζ ) ∈ R

n × R × R
m+ × R

k+ : Ax + eγ + e ≤ ξ, Bx − eγ + e ≤ ζ
}

. (36)

Applying the results developed in the previous section with f and K defined, respectively,
in (35) and (36) we get the following DC formulation of (34):

inf{g(x, γ, ξ, ζ, u) − h(x, γ, ξ, ζ, u) : (x, γ, ξ, ζ, u) ∈ R
n × R

1+m+k × R
n}, (37)
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where
g(x, γ, ξ, ζ, u):=χΔ(x, γ, ξ, ζ, u) + (1 − λ)( 1

m e
T ξ + 1

k e
T ζ ),

h(x, γ, ξ, ζ, u):= − λeT u − τp(u).

Since K is a polyhedral convex set, so is Δ, hence χΔ is a polyhedral convex function.
Therefore (37) is a polyhedral DC program with both polyhedral DC components g and h.
In the algorithm DCAEP, the convex program (32) becomes now a linear program.
DCAEP-SVM (DCA applied on Exact Penalty problem (37))
Initialization: Let (x0, γ 0, ξ0, ζ 0, u0) ∈ IRn ×R×R

m+ ×R
k+ × [0, 1]n be a guess, let ε > 0

be sufficiently small, set l:=0.
Repeat

– Set vl = (vli ) with vli = −λ + τ if uli ≥ 0.5, −λ − τ otherwise, for i = 1, . . . n.

– Solve the linear program

min{(1 − λ)(
1

m
eT ξ + 1

k
eT ζ ) − 〈u, vl〉 : (x, γ, ξ, ζ, u) ∈ Δ} (38)

to obtain (xl+1, γ l+1, ξ l+1, ζ l+1, ul+1)

– Increase l by 1

Until
∥∥(xl , γ l , ξ l , ζ l , ul) − (xl−1, γ l−1, ξ l−1, ζ l−1, ul−1)

∥∥ ≤ ε
∥∥(xl , γ l , ξ l , ζ l−1, ul)

∥∥ .

Thanks to the very special structure of (37) ( f is a linear function and Δ is a polytope),
DCAEP-SVM enjoys interesting convergence properties.

Theorem 1 (Convergence properties of DCAEP-SVM)

(i) DCAEP-SVM generates a sequence {(xl , γ l , ξ l , ζ l , ul)} contained in V (Δ) such that
the sequence { f (xl , γ l , ξ l , ζ l) + τp(ul)} is decreasing.

(ii) For a number τ sufficiently large, if at an iteration q we have uq ∈ {0, 1}n, then
ul ∈ {0, 1}n for all l ≥ q.

(iii) The sequence {(xl , γ l , ξ l , ζ l , ul)} converges to {(x∗, γ ∗, ξ∗, ζ ∗, u∗)} ∈ V (Δ) after a
finite number of iterations. The point (x∗, γ ∗, ξ∗, ζ ∗, u∗) is a critical point of Problem
(37). Moreover if u∗

i �= 1
2 for all i = 1 . . . n, then {(x∗, γ ∗, ξ∗, ζ ∗, u∗)} is a local

solution to (37).

Proof (i) is consequence of DCA’s convergence Theorem for a general DC program.

(ii) Let τ > τ1:=max
{

f (x,γ,ξ,ζ )+λeT u−η
δ

: (x, γ, ξ, ζ, u) ∈ V (Δ), p(u) ≤ 0
}

where

η:=min{ f (x, γ, ξ, ζ ) + λeT u : (x, γ, ξ, ζ, u) ∈ V (Δ)} and δ:=min{p(u) :
(x, γ, ξ, ζ, u) ∈ V (Δ)}. Let {(xl , γ l , ξ l , ζ l , ul)} ⊂ V (Δ) (l ≥ 1) be generated by
DCAEP-SVM. If V (Δ) ⊂ {Δ∩u ∈ {0, 1}n}, then the assertion is trivial. Otherwise, let
(xl , γ l , ξ l , ζ l , ul) ∈ {Δ ∩ u ∈ {0, 1}n} and (xl+1, γ l+1, ξ l+1, ζ l+1, ul+1) ∈ V (Δ) be
an optimal solution of the linear program ( 38). Then from (i) of this theorem we have

f (xl+1, γ l+1, ξ l+1, ζ l+1) + λeT ul+1 + tp(ul+1) ≤ f (xl , γ l , ξ l , ζ l) + λeT ul + tp(ul).

Since p(ul) = 0, it follows

τp(ul+1) ≤ f (xl , γ l , ξ l , ζ l) + λeT ul − f (xl+1, γ l+1, ξ l+1, ζ l+1) − λeT ul+1

≤ f (xl , γ l , ξ l , ζ l) + λeT ul − η.

If p(ul+1) > 0, then

τ ≤ f (xl , γ l , ξ l , ζ l) + λeT ul − η

p(ul+1)
≤ f (xl , γ l , ξ l , ζ l) + λeT ul − η

δ
≤ τ1
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which contradicts the fact that τ > τ1. Therefore we have p(ul+1) = 0.

(iii) Since (37) is a polyhedral DC program,DCAEP-SVM has a finite convergence, say, the
sequence {(xl , γ l , ξ l , ζ l , ul)} converges to a critical point (x∗, γ ∗, ξ∗, ζ ∗, u∗) ∈ V (Δ)

after a finite number of iterations. If u∗
j �= 1/2,∀ j ∈ 1..n, then the function h is

differentiable at (x∗, γ ∗, ξ∗, ζ ∗, u∗) and then the necessary local condition

∂h(x∗, γ ∗, ξ∗, ζ ∗, u∗) ⊂ ∂g(x∗, γ ∗, ξ∗, ζ ∗, u∗)

holds. Since h is a polyhedral convex function, this subdifferential inclusion is also
a sufficient local optimality condition, i.e. (x∗, γ ∗, ξ∗, ζ ∗, u∗) is a local minimizer of
(37). The proof is then complete.

��
4.2 Computational experiments

To study the performances of our approach, we perform it on several datasets. Our experiment
is composed of two parts. In the first one we consider the synthetic data and in the second
we test on a collection of real-world datasets.

4.2.1 Datasets

Synthetic datasets
We generate the datasets such that among n features, there exists a subset of ni features

that define a subspace in which two classes can be discriminated (i.e. only ni of n features
are informative while the others are irrelevant). Thus we are available to evaluate the per-
formance of the algorithms in terms of feature selection, not only on the sparsity but also
on the correctness of the selected features. The data are generated in a similar way given in
Rakotomamonjy et al. (2011). First, we randomly drawn a mean vector ν ∈ {−1, 1}ni and a
ni × ni covariance matrix � fromWishart distribution. Then, the ni informative features are
generated from amultivariate Gaussian distribution N (ν,�) and N (−ν,�), respectively, for
class +1 and −1. The n−ni remaining features (irrelevant features) follow an i.i.d Gaussian
distribution N (0, 1).
Real-world datasetsReal-word datasets are taken fromwell-knownUCI data repository and
from challenging feature-selection problems of the NIPS 2003 datasets. Datasets from UCI
repository include several problems of gene selection for cancer classification with standard
public microarray gene expression datasets. Challenging NIPS 2003 datasets are known to be
difficult and are designed to test various feature-selection methods using an unbiased testing
procedure without revealing the labels of the test set. They contain a huge number of features
while the number of examples in both training sets and test sets is small. In Table 1, the
number of features, the number of points in training and test set of each dataset are given.
The full description of each dataset can be found on the web site of UCI repository and NIPS
2003.

4.2.2 Set up experiments and Parameters

All algorithms were implemented in the Visual C++ 2008, and performed on a PC Intel
i5 CPU650, 3.2 GHz of 4GB RAM. CPLEX 12.2 was used for solving linear/quadratic
programs. We stop all algorithms with the tolerance ε = 10−4. The non-zero elements of x
are determined according to whether |xi | exceeds a small threshold (10−5).
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Table 1 Datasets

Data # features # points in training set # points in test set

Ionosphere 34 234 117

WPBC (24 months) 32 104 51

WPBC (60 months) 32 380 189

Breast cancer 24,481 78 19

Leukemia 7,129 38 34

Arcene 10,000 100 100

Gisette 5,000 6,000 10,000

Prostate 12,600 102 21

We used the following set of candidate values for the parameter λ in our experiments
{0.001, 0.002, 0.003, 0.004, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.

Concerning the parameter τ, as τ0 is not computable, we take a quite large value τ0 at
the beginning and use an adaptive procedure described in Pham Dinh and Le Thi (2014) for
updating τ during the DCA scheme.

We compare the performance of algorithms in terms of the following three criteria: the
percentage ofwell classified objects (PWCO), the number and percentage of selected features
and CPU Time in seconds. POWC1 (resp. POWC2) denotes the POWC on training set (resp.
test set). In addition, for the synthetic data we examine how the algorithms retrieve the
informative features.

4.2.3 Comparative algorithms

Wewill compare our exact approach with some algorithms in convex and nonconvex approx-
imation approaches. In convex regularization approaches we consider the well known �1-
regularization (Tibshirani 1996) and Elastic Net (Zou and Hastie 2005) (�1-regularization
and Elastic Net for SVM have been proposed, respectively in Bradley and Mangasarian
(1998) (Appendix A) and Wang et al. (2006) (Appendix B)). Among usual sparse induc-
ing functions in nonconvex approximation approaches the capped �1 (Peleg and Meir 2008)
(the polyhedral DC approximation discussed in Sect. 2), the piecewise concave exponential
(Bradley and Mangasarian 1998) and SCAD (Fan and Li 2001) approximations have been
proved to be the most efficient in several works of various authors. As we have proved in
Sect. 2 that the capped �1 is equivalent to our exact formulation with suitable parameters, we
exclude it from our comparison and focus on the piecewise concave exponential and SCAD
approximations. The first algorithm based on the piecewise concave exponential approxima-
tion is the SLA (Successive Linear Approximation) (Bradley and Mangasarian 1998) (which
is in fact a version of DCA). The DCA based algorithm using this approximation (but with
another DC decomposition) in Le Thi et al. (2008) (see Appendix C) has been shown to be
more efficient than SLA, hence we consider it in our comparative experiments. Likewise,
for the SCAD approximation we consider the DCA based algorithm developed in Le Thi et
al. (2009) (Appendix D) which is less expensive than the LQA (Local Quadratic Approxi-
mation) algorithm proposed in Fan and Li (2001) and used for feature selection in SVM in
Zhang et al. (2006) (subproblems are quadratic programs).

The comparative algorithms are named as follows:

– �1-SVM: SVM with �1 regularization (Bradley and Mangasarian 1998);
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– ElasticNet-SVM: SVM with Elastic net regularization (Wang et al. 2006);
– DCA-PiE-SVM: DCA for piecewise exponential approximation (Le Thi et al. 2008);
– DCA-SCAD-SVM: DCA for SCAD approximation (Le Thi et al. 2009);
– DCAEP-SVM: the algorithm proposed in this paper.

4.2.4 Experiment on synthetic data

We set the sample sizes of training and test set to 500 and 10, 000, respectively. For each
experimental setting (n, ni ) (number total of features, number of informative features), 50
training sets and 1 test set are generated. For each training set, we performed 5-folds cross-
validation to choose the best parameters of each algorithm. Then, for each experimental
setting (n, ni ), we summarize in Table 2 the average of accuracy, the average of number of
selected features,the average of CPU time as well as the percentage of success of 50 runs
over 50 training sets. A success means the considered algorithm retrieves exactly the ni
informative features and suppresses all irrelevant features.

We observe from the Table 2 that

– In terms of feature selection, DCAEP-SVM and DCA-PiE-SVM give the best results
on all three experimental settings (n, ni ) (DCA-PiE-SVM is slightly better on the
last dataset (n = 50, ni = 10). Moreover, DCA based algorithms are more suc-
ces than the convex regularization approaches when retrieving the informative fea-
tures. The percentage of success of DCA based algorithm varies from 84 to 94%,
while that of �1-SVM (resp. ElasticNet-SVM) goes from 72% to 81% (resp. 68% to
85%).

– As for the accuracy of classification, the results are comparable. All five algorithms
furnish quite good accuracy, more than 85% correctness.

4.2.5 Experiment on real-world data

For each algorithm, we first use a 10-folds cross-validation to determine the best set of para-
meter values. Afterward, we perform, with these parameter values a 5-folds cross-validation
and report the average and the standard deviation of each evaluation criterion. The compar-
ative results are given in Table 3.
Comments on numerical results:

– Concerning the sparsity of solution (the number of selected feature), as above, DCAEP-
SVM and DCA-PiE-SVM are the best: averagely, only 5% and 4.6% of features
are selected, respectively. All DCA based algorithms perform better than �1-SVM and
ElasticNet-SVM, especially on Gisette and Breast. All DCA based algorithms suppress
considerably the number of features (up to 99% on large datasets such as Arcene and
Leukemia) while the correctness of classification is quite good (from 77% to 100%). For
WPBC(60) and Prostate, DCAEP-SVM suppresses more features than the other algo-
rithmswhile furnishing a better classification accuracy. On other datasets,DCAEP-SVM
selects slightly more features than DCA-PiE-SVM (1 or 2 features, except for Gisette).
Overall, DCAEP-SVM realizes a better trade-off between accuracy and sparsity than
other algorithms.

– As for the accuracy of classification,DCAEP-SVM is the best for 6 out of 8 training sets.
The gain is important on 2 datasets: WPBC(24) 10, 4% and Gisette 12, 1%. The same
conclusion goes for test sets, DCAEP-SVM is better on 6 datasets (with a gain up to
17.1%onGisette dataset).ElasticNet-SVM is slightly better thanDCAbased algorithms
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Table 3 Comparative results on real-world datasets

Dataset �1-SVM ElasticNet -SVM DCA-SCAD-SVM DCA-PiE-SVM DCAEP-SVM

Ionosphere

POWC1 85.6 ±1.2 86.3 ±1.6 81.5 ±1.4 82.1 ±3.1 85.2 ±1.2

POWC2 81.2 ±1.1 80.3 ±1.4 73.5 ±1.2 82.3 ±2.2 83.4 ±1.5

FS 10.9 (32.1%) 9.4 (27.6%) 3.1 (9.1%) 2.3 (6.8%) 3.1 (9.1%)

Time 0.01 0.04 0.3 0.3 0.2

WPBC(24)

POWC1 74.8±1.2 76.5±1.2 77.8 ±1.3 78.3 ±1.5 85.2 ±1.2

POWC2 77.1±1.5 78.9±1.3 79.2 ±1.2 82.3 ±1.2 83.5 ±1.2

FS 9.1 (28.4%) 8.3 (25.9%) 4.1 (12.8%) 3 (9.4%) 4.1 (12.8%)

Time 0.03 0.07 0.2 0.2 0.2

WPBC(60)

POWC1 89.2 ±1.6 87.5 ±1.1 84.3 ±1.3 90.3 ±1.2 92.5 ±1.5

POWC2 82.5 ±1.1 87.4 ±1.3 89.4 ±1.4 92.3 ±1.4 94.2 ±1.2

FS 8.3 (27.7%) 7.9 (26.3%) 5.2 (17.3%) 5.2 (17.3%) 4.2 (14.0%)

Time 0.02 0.05 0.4 0.4 0.3

Breast

POWC1 94.2±1.2 95.6±1.3 91.4±1.4 91.5±1.5 93.8±1.1

POWC2 68.1±1.3 71.9±1.2 69.4±1.6 70.3±1.4 71.5±1.7

FS 142.3 (0.6%) 102.4 (0.4%) 37.0 (0.2%) 17.0 (0.1%) 18.6 (0.1%)

Time 19 45 31 25 25

Leukemia

POWC1 92.2±1.4 100 98.9±1.1 100 100

POWC2 96.3±1.4 96.2±1.3 97.3±3.2 96.2±2.4 97.4±1.2

FS 12.0 (0.2%) 10.2 (0.1%) 8.2 (0.1%) 8.3 (0.1%) 15.3 (0.2%)

Time 1 5 21 23 24

Arcene

POWC1 91.4±1.5 90.4±2.1 89..4±2.1 88.3±1.7 96.5±3.7

POWC2 72.2±1.3 76.2±1.2 78.2±3.7 78.9±1.4 78.3±2.6

FS 81.3 (0.81%) 92.3 (0.92%) 32.5 (0.33%) 32.4 (0.32%) 32.8 (0.33%)

Time 10 20 31 34 31

Gisette

POWC1 78.3±1.2 79.2±1.2 87.3±1.5 83.3±2.1 90.4±1.2

POWC2 68.5±1.2 80.1±1.3 82.2±1.4 82.2±1.2 85.6±1.3

FS 1276.5 (25.5%) 1034.4 (20.7%) 140.1 (2.8%) 140.1 (2.8%) 165.5 (3.3%)

Time 45 192 81 98 74

Prostate

POWC1 92.4±1.4 91.8±1.3 91.5±1.9 91.6±1.8 94.4±1.3

POWC2 100 100 100 100 100

FS 56.4 (0.45%) 45.4 (0.36%) 34.2 (0.27%) 32.1 (0.25%) 30.8 (0.24%)

Time 14 16 16 16 18
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Table 3 continued

Dataset �1-SVM ElasticNet -SVM DCA-SCAD-SVM DCA-PiE-SVM DCAEP-SVM

Average

POWC1 87.2 88.4 87.7 88.1 92.2

POWC2 80.7 83.9 83.3 85.8 86.6

FS(%) 14.4% 12.8% 5.5% 4.6% 5.0%

Time 11.1 34.7 22.6 24.4 21.5

(1.1% and 1.8%on two datasetsBreast and Ionosphere. This can be explained by the fact
that ElasticNet-SVM selects 6 (resp. 4) times more features than DCA based algorithms
on Breast (resp. Ionosphere) dataset.

– In terms of CPU time, not surprisingly, �1-SVM is the fastest algorithm, with an average
of CPU time 11, 1s, since it only requires solving one linear program. The CPU time
of DCA based algorithms is quite small, less than 101s for the largest dataset (Gisette).
DCAEP-SVM is somehow slightly faster with an average of CPU time 21, 5s while that
of DCA- PiE-SVM (resp. DCA-SCAD-SVM) is 24, 6 (resp. 22, 6) s.

5 Conclusion

We have proposed an exact reformulation approach based on DC programming and DCA
for minimizing a class of functions involving the zero-norm and its application on feature
selection in classification. Using a recent result on exact penalty inDCprogrammingwe show
that the original problem (4) can be equivalently reformulated as a continuous optimization
problem which is a DC program. By this result we can unify all nonconvex approaches for
treating the zero-norm into the DC programming and DCA. The link between the exact
reformulation and convex/nonconvex approximations stated in this paper allows to analyze
/ justify the performance of these approximations approaches. Numerical experiments on
feature selection in SVM show that our algorithm is efficient on both feature selection and
classification. The advantage of this approach is that it solves directly an equivalent model
of the original problem. Several issues arise from this work. Firstly, the choice of a good
exact penalty parameter is still open. Secondly, the link between the exact reformulation and
the polyhedral approximation suggests us to study new approximations such that the exact
penalty reformulation are equivalent to the approximate problem for which efficient DCA
schemes can be investigated. Thirdly, we should extend our exact penalty approaches for
larger classes of problems (when f nonconvex for example) as well as other applications
including regression, sparse Fisher linear discriminant analysis, feature selection in learning
to rank with sparse SVM, compressed sensing, etc. Works in these directions are in progress.

Appendix:

�1 regularization for SVM (Bradley and Mangasarian (1998))

�1-SVM formulation:

minx,γ,ξ,ζ (1 − λ)( 1
m eT ξ + 1

k e
T ζ ) + λ ‖x‖1

s.t. −Ax + eγ + e ≤ ξ, Bx − eγ + e ≤ ζ, ξ ≥ 0, ζ ≥ 0.
(39)
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By adding a new variable z ∈ IRn+, we obtain the following equivalent linear program:

minx,γ,ξ,ζ,z (1 − λ)
(

1
m e

T ξ + 1
k e

T ζ
)

+ λeT z

s.t. −Ax + eγ + e ≤ ξ, Bx − eγ + e ≤ ζ,

−zi ≤ xi ≤ zi , ∀i = 1, . . . , n,

ξ ≥ 0, ζ ≥ 0, z ≥ 0.

(40)

Elastic Net regularization for SVM (Wang et al. (2006))

Elastic Net regularization was introduced by Zou and Hastie (Zou and Hastie 2005) in the
context of regression. Later, in Wang et al. (2006), the authors proposed to use Elastic net
regularization for feature selection in SVM. The problem can be described as follows (Wang
et al. 2006)

minx,γ,ξ,ζ
1
m e

T ξ + 1
k e

T ζ + λ1 ‖x‖1 + λ2
2 ‖x‖22

s.t. −Ax + eγ + e ≤ ξ, Bx − eγ + e ≤ ζ, ξ ≥ 0, ζ ≥ 0.
(41)

with λ1, λ2 > 0. Similarly to SVM using �1, (41) is equivalent to the following convex
quadratic problem:

minx,γ,ξ,ζ,t
1
m e

T ξ + 1
k e

T ζ + λ1eT z + λ2
2 ‖x‖22

s.t. −Ax + eγ + e ≤ ξ, Bx − eγ + e ≤ ζ,

−zi ≤ xi ≤ zi , ∀i = 1, . . . , n,

ξ ≥ 0, ζ ≥ 0, z ≥ 0.

(42)

Piecewise concave exponential approximation (Le Thi et al. (2008))

For y ∈ R, let η1 be the function defined by

η1(t) =
{
1 − ε−αt if t ≥ 0

1 − εαt if t ≤ 0
(43)

with α > 0. Hence, for all x ∈ R
n , the step vector |x |0 is approximated by |x |0 � η1(xi ) and

the approximation of the zero-norm ‖x‖0 is determined as

‖x‖0 �
n∑

i=1

η1(xi ).

This approximation has been proposed for the first time in Bradley and Mangasarian (1998)
for feature selection in SVMwhere the authors developed a SLA (Sucessive Linear Approx-
imation) algorithm for the resulting approximate problem (called FSV algorithm). Later, in
Le Thi et al. (2008) , the authors proposed another DC decomposition for which the follwing
DCA scheme has been investiaged. Numerical experiments in Le Thi et al. (2008) showed
that this new algorithm is better than FSV which is also an instance of DCA.
DCA-PiE-SVM:
Initialization Let ε be a tolerance sufficiently small, set l = 0.

Choose (x0, γ 0, ξ0, ζ 0) ∈ R
n+1m+k+n .

Repeat
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– Compute x̄ l as follows

x̄ j =
{

α(1 − ε−αx j ) if x j ≥ 0

−α(1 − εαx j ) if x j < 0
, j = 1, . . . , n. (44)

– Solve the linear program
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min(1 − λ)
(

1
m e

T ξ + 1
k e

T ζ
)

+ λ
n∑

i=1
t j − 〈x̄ l , x〉

s.t (x, γ, ξ, γ ) ∈ K

−αw j ≤ t j , αw j ≤ t j , j = 1..n

(45)

to obtain (xl+1, γ l+1, ξ l+1, ζ l+1)

– Increase l by 1

Until ∥∥∥(xl , γ l , ξ l , ζ ) − (xl−1, γ l−1, ξ l−1, ζ l−1)

∥∥∥ ≤
∥∥∥ε(xl , γ l , ξ l , ζ )

∥∥∥ .

Remember that K is a polytope defined by

K :=
{
(x, γ, ξ, ζ ) ∈ R

n × R × R
m+ × R

k+ : Ax + eγ + e ≤ ξ, Bx − eγ + e ≤ ζ
}

. (46)

For more detail about DCA-PiE-SVM and its convergence properties, the reader is referred
to Le Thi et al. (2008).

SCAD approximation (Le Thi et al. (2009))

The SCAD (Smoothly Clipped Absolute Deviation) penalty function has been proposed for
the first time by J. Fan and R. Li (Fan and Li 2001) in the context of regression and variable
selection. The SCAD penalty function is expressed as follow, for t ∈ R :

ω(|t |) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β|t | if |t | ≤ β,

−|t |2−2αβ|t |+β2

2(α−1) if β < |t | ≤ αβ,

(α+1)β2

2 if |t | > αβ,

(47)

where α > 2 and β > 0 are two tuning parameters.
InZhang et al. (2006), using theSCADapproximation, a local quadratic approximation has

been proposed for features selection in SVM. This algorithm can be regarded as a reweighted
l2 procedure which is in fact a version of DCA. Later, in Le Thi et al. (2009), using a suitable
DCdecompostion of SCAD function the authors developed an efficient DCAbased algorithm
that requires one linear program at each iteration. The algorithm can be described as follow.
DCA-SCAD-SVM:
Initialization Let τ be a tolerance sufficiently small, set l = 0.

Choose (x0, γ 0, ξ0, ζ 0) ∈ R
n+1m+k+n .

Repeat
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– Compute x̄ l as follows

x̄ j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if − β ≤ x j ≤ β

(α − 1)−1(x j − β) if β < x j ≤ αβ

(α − 1)−1(x j + β) if − αβ < x j ≤ −β

β if x j > αβ

−β if x j < −αβ

, j = 1, . . . n, (48)

– Solve the linear program
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min(1 − λ)
(

1
m e

T ξ + 1
k e

T ζ
)

+ λ
n∑

i=1
t j − 〈x̄ l , x〉

s.t (x, γ, ξ, γ ) ∈ K

− αw j ≤ t j , αw j ≤ t j , j = 1..n

(49)

to obtain (xl+1, γ l+1, ξ l+1, ζ l+1)

– Increase l by 1

Until ∥∥∥(xl , γ l , ξ l , ζ ) − (xl−1, γ l−1, ξ l−1, ζ l−1)

∥∥∥ ≤
∥∥∥ε(xl , γ l , ξ l , ζ )

∥∥∥ .

The reader is referred to Le Thi et al. (2009) for more details.
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