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Abstract The effect of a splitting rule on random forests (RF) is systematically studied for
regression and classification problems. A class of weighted splitting rules, which includes as
special cases CART weighted variance splitting and Gini index splitting, are studied in detail
and shown to possess a unique adaptive property to signal and noise. We show for noisy
variables that weighted splitting favors end-cut splits. While end-cut splits have traditionally
been viewed as undesirable for single trees, we argue for deeply grown trees (a trademark of
RF) end-cut splitting is useful because: (a) it maximizes the sample size making it possible
for a tree to recover from a bad split, and (b) if a branch repeatedly splits on noise, the tree
minimal node size will be reached which promotes termination of the bad branch. For strong
variables, weighted variance splitting is shown to possess the desirable property of splitting
at points of curvature of the underlying target function. This adaptivity to both noise and
signal does not hold for unweighted and heavy weighted splitting rules. These latter rules are
either too greedy, making them poor at recognizing noisy scenarios, or they are overly ECP
aggressive, making them poor at recognizing signal. These results also shed light on pure
random splitting and show that such rules are the least effective. On the other hand, because
randomized rules are desirable because of their computational efficiency, we introduce a
hybrid method employing random split-point selection which retains the adaptive property
of weighted splitting rules while remaining computational efficient.

Keywords CART · End-cut preference · Law of the iterated logarithm · Splitting rule ·
Split-point

Editor: Johannes Fürnkranz.

H. Ishwaran (B)
Division of Biostatistics, University of Miami, 1120 NW 14th Street, Miami, FL 33136, USA
e-mail: hemant.ishwaran@gmail.com

123



76 Mach Learn (2015) 99:75–118

1 Introduction

One of the most successful ensemble learners is random forests (RF), a method introduced by
Breiman (2001). In RF, the base learner is a binary tree constructed using the methodology
of Classification and Regression Tree (CART) (Breiman et al. 1984); a recursive procedure
in which binary splits recursively partition the tree into homogeneous or near-homogeneous
terminal nodes (the ends of the tree). A good binary split partitions data from the parent
tree-node into two daughter nodes so that the ensuing homogeneity of the daughter nodes is
improved from the parent node. A collection of ntree >1 trees are grown in which each tree is
grown independently using a bootstrap sample of the original data. The terminal nodes of the
tree contain the predicted values which are tree-aggregated to obtain the forest predictor. For
example, in classification, each tree casts a vote for the class and the majority vote determines
the predicted class label.

RF trees differ from CART as they are grown nondeterministically using a two-stage
randomization procedure. In addition to the randomization introduced by growing the tree
using a bootstrap sample, a second layer of randomization is introduced by using random
feature selection. Rather than splitting a tree node using all p variables (features), RF selects
at each node of each tree, a random subset of 1 ≤ mtry ≤ p variables that are used to split
the node where typically mtry is substantially smaller than p. The purpose of this two-step
randomization is to decorrelate trees and reduce variance. RF trees are grown deeply, which
reduces bias. Indeed, Breiman’s original proposal called for splitting to purity in classification
problems. In general, a RF tree is grown as deeply as possible under the constraint that each
terminal node must contain no fewer than nodesize ≥ 1 cases.

The splitting rule is a central component to CART methodology and crucial to the perfor-
mance of a tree. However, it is widely believed that ensembles such as RF which aggregate
trees are far more robust to the splitting rule used. Unlike trees, it is also generally believed
that randomizing the splitting rule can improve performance for ensembles. These views are
reflected by the large literature involving hybrid splitting rules employing random split-point
selection. For example, Dietterich (2000) considered bagged trees where the split-point for a
variable is randomly selected from the top 20 split-points based on CART splitting. Perfect
random trees for ensemble classification (Cutler and Zhao 2001) randomly chooses a variable
and then chooses the split-point for this variable by randomly selecting a value between the
observed values from two randomly chosen points coming from different classes. Ishwaran
et al. (2008, 2010) considered a partially randomized splitting rule for survival forests. Here
a fixed number of randomly selected split-points are chosen for each variable and the top
split-point based on a survival splitting rule is selected. Related work includes Geurts et al.
(2006) who investigated extremely randomized trees. Here a single random split-point is
chosen for each variable and the top split-point is selected.

The most extreme case of randomization is pure random splitting in which both the variable
and split-point for the node are selected entirely at random. Large sample consistency results
provides some rationale for this approach. Biau et al. (2008) proved Bayes-risk consistency
for RF classification under pure random splitting. These results make use of the fact that
partitioning classifiers such as trees approximate the true classification rule if the partition
regions (terminal nodes) accumulate enough data. Sufficient accumulation of data is possible
even when partition regions are constructed independently of the observed class label. Under
random splitting, it is sufficient if the number of splits kn used to grow the tree satisfies
kn/n → 0 and kn → ∞. Under the same conditions for kn , Genuer (2012) studied a purely
random forest, establishing a variance bound showing superiority of forests to a single tree.
Biau (2012) studied a non-adaptive RF regression model proposed by Breiman (2004) in
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which split-points are deterministically selected to be the midpoint value and established
large sample consistency assuming kn as above.

At the same time, forests grown under CART splitting rules have been shown to have
excellent performance in a wide variety of applied settings, suggesting that adaptive splitting
must have benefits. Theoretical results support these findings. Lin and Jeon (2006) considered
mean-squared error rates of estimation in nonparametric regression for forests constructed
under pure random splitting. It was shown that the rate of convergence cannot be faster than
M−1(log n)−(p−1) (M equals nodesize), which is substantially slower than the optimal rate
n−2q/(2q+p) [q is a measure of smoothness of the underlying regression function; Stone
(1980)]. Additionally, while Biau (2012) proved consistency for non-adaptive RF models, it
was shown that successful forest applications in high-dimensional sparse settings requires
data adaptive splitting. When the variable used to split a node is selected adaptively, with
strong variables (true signal) having a higher likelihood of selection than noisy variables
(no signal), then the rate of convergence can be made to depend only on the number of
strong variables, and not the dimension p. See the following for a definition of strong and
noisy variables which shall be used throughout the manuscript [the definition is related to
the concept of a “relevant” variable discussed in Kohavi and John (1997)].

Definition 1 If X is the p-dimensional feature and Y is the outcome, we call a variable X ⊆ X
noisy if the conditional distribution of Y given X does not depend upon X . Otherwise, X
is called strong. Thus, strong variables are distributionally related to the outcome but noisy
variables are not.

In this paper we formally study the effect of splitting rules on RF in regression and
classification problems (Sects. 2, 3). We study a class of weighted splitting rules which
includes as special cases CART weighted variance splitting and Gini index splitting. Such
splitting rules possess an end-cut preference (ECP) splitting property (Morgan and Messenger
1973; Breiman et al. 1984) which is the property of favoring splits near the edge for noisy
variables (see Theorem 4 for a formal statement). The ECP property has generally been
considered an undesirable property for a splitting rule. For example, according to Breiman
et al. (Chapt. 11.8; 1984), the delta splitting rule used by THAID (Morgan and Messenger
1973) was introduced primarily to suppress ECP splitting.

Our results, however, suggest that ECP splitting is very desirable for RF. The ECP property
ensures that if the ensuing split is on a noisy variable, the split will be near the edge, thus
maximizing the tree node sample size and making it possible for the tree to recover from
the split downstream. Even for a split on a strong variable, it is possible to be in a region of
the space where there is near zero signal, and thus an ECP split is of benefit in this case as
well. Such benefits are realized only if the tree is grown deep enough—but deep trees are
a trademark of RF. Another aspect of RF making it compatible with the ECP property is
random feature selection. When p is large, or if mtry is small relative to p, it is often the case
that many or all of the candidate variables will be noisy, thus making splits on noisy variables
very likely and ECP splits useful. Another benefit occurs when a tree branch repeatedly splits
on noise variables, for example if the node corresponds to a region in the feature space where
the target function is flat. When this happens, ECP splits encourage the tree minimal node
size to be reached rapidly and the branch terminates as desired.

While the ECP property is important for handling noisy variables, a splitting rule should
also be adaptive to signal. We show that weighted splitting exhibits such adaptivity. We derive
the optimal split-point for weighted variance splitting (Theorem 1) and Gini index splitting
(Theorem 8) under an infinite sample paradigm. We prove the population split-point is the
limit of the empirical split-point (Theorem 2) which provides a powerful theoretical tool for
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random unweighted heavy weighted weighted

Fig. 1 Synthetic two-class problem where the true decision boundary is oriented obliquely to the coordinate
axes for the first two features (p = 5). Top panel is the decision boundary for a single tree with nodesize = 1
grown under pure random splitting, unweighted, heavy weighted and weighted Gini index splitting (left to
right). Bottom panel is the decision boundary for a forest of 1,000 trees using the same splitting rule as the
panel above it. Thick black lines indicate the predicted decision boundary. Black and gray points are the
observed classes

understanding the split-rule [this technique of studying splits under the true split function has
been used elsewhere; for example Buhlmann and Yu (2002) looked at splitting for stumpy
decision trees in the context of subagging]. Our analysis reveals that weighted variance
splitting encourages splits at points of curvature of the underlying target function (Theorem 3)
corresponding to singularity points of the population optimizing function. Weighted variance
splitting is therefore adaptive to both signal and noise. This appears to be a unique property.
To show this, we contrast the behavior of weighted splitting to the class of unweighted and
heavy weighted splitting rules and show that the latter do not possess the same adaptivity.
They are either too greedy and lack the ECP property (Theorem 7), making them poor at
recognizing noisy variables, or they have too strong an ECP property, making them poor at
identifying strong variables. These results also shed light on pure random splitting and show
that such rules are the least desirable. Randomized adaptive splitting rules are investigated
in Sect. 4. We show that certain forms of randomization (Theorem 10) are able to preserve
the useful properties of a splitting rule while significantly reducing computational effort.

1.1 A simple illustration

As a motivating example, n = 1, 000 observations were simulated from a two-class problem
in which the decision boundary was oriented obliquely to the coordinate axes of the features.
In total p = 5 variables were simulated: the first two were strong variables defining the
decision boundary; the remaining three were noise variables. All variables were simulated
independently from a standard normal distribution. The first row of panels in Fig. 1 displays
the decision boundary for the data under different splitting rules for a classification tree
grown to purity. The boundary is shown as a function of the two strong variables. The first
panel was grown under pure random splitting (i.e., the split-point and variable used to split
a node were selected entirely at random), the remaining panels used unweighted, heavy
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weighted and weighted Gini index splitting, respectively (to be defined later). We observe
random splitting leads to a heavily fragmented decision boundary, and that while unweighted
and heavy weighted splitting perform better, unweighted splitting is still fragmented along
horizontal and vertical directions, while heavy weighted splitting is fragmented along its
boundary.

The latter boundaries occur because (as will be demonstrated) unweighted splitting pos-
sesses the strongest ECP property, which yields deep trees, but its relative insensitivity to
signal yields a noisy boundary. Heavy weighted splitting does not possess the ECP property,
and this reduces overfitting because it is shallower, but its boundary is imprecise because it
has limited ability to identify strong variables. The best performing tree is weighted splitting.
However, all decision boundaries, including weighted splitting, suffer from high variability—
a well known deficiency of deep trees. In contrast, the lower row displays the decision bound-
ary for a forest of 1,000 trees grown using the same splitting rule as the panel above it. There
is a noticeable improvement in each case; however, notice how forest boundaries mirror those
found with single trees: pure random split forests yield the most fragmented decision bound-
ary, unweighted and heavy weighted are better, while the weighted variance forest performs
best.

This demonstrates, among other things, that while forests are superior to single trees, they
share the common property that their decision boundaries depend strongly on the splitting
rule. Notable is the superior performance of weighted splitting, and in light of this we suggest
two reasons why its ECP property has been under-appreciated in the CART literature. One
explanation is the potential benefit of end-cut splits requires deep trees applied to complex
decision boundaries—but deep trees are rarely used in CART analyses due to their instability.
A related explanation is that ECP splits can prematurely terminate tree splitting when nodesize
is large: a typical setting used by CART. Thus, we believe the practice of using shallow trees
to mitigate excess variance explains the lack of appreciation for the ECP property. See Torgo
(2001) who discussed benefits of ECP splits and studied ECP performance in regression
trees.

2 Regression forests

We begin by first considering the effect of splitting in regression settings. We assume the
learning (training) data is L = {(X1, Y1), . . . , (Xn, Yn)} where (Xi , Yi )1≤i≤n are i.i.d. with
common distribution P. Here, Xi ∈ R

p is the feature (covariate vector) and Yi ∈ R is a
continuous outcome. A generic pair of variables will be denoted as (X, Y ) with distribution
P. A generic coordinate of X will be denoted by X . For convenience we will often simply
refer to X as a variable. We assume that

Yi = f (Xi ) + εi , for i = 1 . . . , n, (1)

where f : R
p → R is an unknown function and (εi )1≤i≤n are i.i.d., independent of (Xi )1≤i≤n ,

such that E(εi ) = 0 and E(ε2
i ) = σ 2 where 0 < σ 2 < ∞.

2.1 Theoretical derivation of the split-point

In CART methodology a tree is grown by recursively reducing impurity. To accomplish this,
each parent node is split into daughter nodes using the variable and split-point yielding the
greatest decrease in impurity. The optimal split-point is obtained by optimizing the CART
splitting rule. But how does the optimized split-point depend on the underlying regression
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function f ? What are its properties when f is flat, linear, or wiggly? Understanding how the
split-point depends on f will give insight into how splitting affects RF.

Consider splitting a regression tree T at a node t . Let s be a proposed split for a variable
X that splits t into left and right daughter nodes tL and tR depending on whether X ≤ s or
X > s; i.e., tL = {Xi ∈ t, Xi ≤ s} and tR = {Xi ∈ t, Xi > s}. Regression node impurity is
determined by within node sample variance. The impurity of t is

�̂(t) = 1

N

∑

Xi ∈t

(Yi − Y t )
2,

where Y t is the sample mean for t and N is the sample size of t . The within sample variance
for a daughter node is

�̂(tL) = 1

NL

∑

i∈tL

(Yi − Y tL )2, �̂(tR) = 1

NR

∑

i∈tR

(Yi − Y tR )2,

where Y tL is the sample mean for tL and NL is the sample size of tL (similar definitions apply
to tR). The decrease in impurity under the split s for X equals

�̂(s, t) = �̂(t) −
[

p̂(tL )�̂(tL) + p̂(tR)�̂(tR)
]
,

where p̂(tL ) = NL/N and p̂(tR) = NR/N are the proportions of observations in tL and tR ,
respectively.

Remark 1 Throughout we will define left and right daughter nodes in terms of splits of the
form X ≤ s and X > s which assumes a continuous X variable. In general, splits can
be defined for categorical X by moving data points left and right using the complementary
pairings of the factor levels of X (if there are L distinct labels, there are 2L−1 − 1 distinct
complementary pairs). However, for notational convenience we will always talk about splits
for continuous X , but our results naturally extend to factors.

The tree T is grown by finding the split-point s that maximizes �̂(s, t) (Chapt. 8.4;
Breiman et al. 1984). We denote the optimized split-point by ŝN . Maximizing �̂(s, t) is
equivalent to minimizing

D̂(s, t) = p̂(tL)�̂(tL) + p̂(tR)�̂(tR). (2)

In other words, CART seeks the split-point ŝN that minimizes the weighted sample variance.
We refer to (2) as the weighted variance splitting rule.

To theoretically study ŝN , we replace �̂(s, t) with its analog based on population para-
meters:

�(s, t) = �(t) −
[

p(tL )�(tL ) + p(tR)�(tR)
]
,

where �(t) is the conditional population variance

�(t) = Var (Y |X ∈ t) ,

and �(tL) and �(tR) are the daughter conditional variances

�(tL ) = Var (Y |X ≤ s, X ∈ t) , �(tR) = Var (Y |X > s, X ∈ t) ,

and p(tL) and p(tR) are the conditional probabilities

p(tL ) = P{X ≤ s|X ∈ t}, p(tR) = P{X > s|X ∈ t}.
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One can think of �(s, t) as the tree splitting rule under an infinite sample setting. We optimize
the infinite sample splitting criterion in lieu of the data optimized one (2). Shortly we describe
conditions showing that this solution corresponds to the limit of ŝN . The population analog
to (2) is

D(s, t) = p(tL )�(tL ) + p(tR)�(tR). (3)

Interestingly, there is a solution to (3) for the one-dimensional case (p = 1). We state this
formally in the following result.

Theorem 1 Let Pt denote the conditional distribution for X given that X ∈ t . Let PtL (·) and
PtR (·) denote the conditional distribution of X given that X ∈ tL and X ∈ tR, respectively.
Let t = [a, b]. The minimizer of (3) is the value for s maximizing

�t (s) = Pt {X ≤ s}
⎛

⎝
s∫

a

f (x) PtL (dx)

⎞

⎠
2

+ Pt {X > s}
⎛

⎝
b∫

s

f (x) PtR (dx)

⎞

⎠
2

. (4)

If f (s) is continuous over t and Pt has a continuous and positive density over t with respect
to Lebesgue measure, then the maximizer of (4) satisfies

2 f (s) =
s∫

a

f (x) PtL (dx) +
b∫

s

f (x) PtR (dx). (5)

This solution is not always unique and is permissible only if a ≤ s ≤ b.

In order to justify our infinite sample approach, we now state sufficient conditions for ŝN

to converge to the population split-point. However, because the population split-point may
not be unique or even permissible according to Theorem 1, we need to impose conditions
to ensure a well defined solution. We shall assume that �t has a global maximum. This
assumption is not unreasonable, and even if �t does not meet this requirement over t , a
global maximum is expected to hold over a restricted subregion t ′ ⊂ t . That is, when the tree
becomes deeper and the range of values available for splitting a node become smaller, we
expect �t ′ to naturally satisfy the requirement of a global maximum. We discuss this issue
further in Sect. 2.2.

Notice in the following result we have removed the requirement that f is continuous and
replaced it with the lighter condition of square-integrability. Additionally, we only require
that Pt satisfies a positivity condition over its support.

Theorem 2 Assume that f ∈ L2(Pt ) and 0 < Pt {X ≤ s} < 1 for a < s < b where
t = [a, b]. If �t (s) has a unique global maximum at an interior point of t , then the following
limit holds as N → ∞

ŝN
p→ s∞ = argmax

a≤s≤b
�t (s).

Note that s∞ is unique.

2.2 Theoretical split-points for polynomials

In this section, we look at Theorems 1 and 2 in detail by focusing on the class of polynomial
functions. Implications of these findings to other types of functions are explored in Sect.
2.3. We begin by noting that an explicit solution to (5) exists when f is polynomial if X is
assumed to be uniform.
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Theorem 3 Suppose that f (x) = c0 + ∑q
j=1 c j x j . If Pt is the uniform distribution on

t = [a, b], then the value for s that minimizes (3) is a solution to

q∑

j=0

(
U j + Vj − 2c j

)
s j = 0, (6)

where U j = c j/( j + 1) + ac j+1/( j + 2) + · · · + aq− j cq/(q + 1) and Vj = c j/( j + 1) +
bc j+1/( j+2)+· · ·+bq− j cq/(q + 1). To determine which value is the true maximizer, discard
all solutions not in t (including imaginary values) and choose the value which maximizes

�t (s) = 1

(b − a)(s − a)

⎛

⎝
q∑

j=0

c j

j + 1

(
s j+1 − a j+1)

⎞

⎠
2

+ 1

(b − a)(b − s)

⎛

⎝
q∑

j=0

c j

j + 1

(
b j+1 − s j+1)

⎞

⎠
2

. (7)

Example 1 As a first illustration, suppose that f (x) = c0 + c1x for x ∈ [a, b]. Then,
U0 = c0 + ac1/2, V0 = c0 + bc1/2 and U1 = V1 = c1/2. Hence (6) equals

c1

2
(a + b) − c1s = 0.

If c1 
= 0, then s = (a + b)/2; which is a permissible solution. Therefore for simple slope-
intercept functions, node-splits are always at the midpoint. ��
Example 2 Now consider a more complicated polynomial, f (x) = 2x3 − 2x2 − x where
x ∈ [−3, 3]. We numerically solve (6) and (7). The solutions are displayed recursively in
Fig. 2. The first panel is the optimal split over the root node [−3, 3]. There is one distinct
solution s = −1.924. The second panel is the optimal split over the daughters arising from
the first panel. The third panel are the optimal splits arising from the second panel, and so
forth.

The derivative of f is f ′(x) = 6x2 − 4x − 1. Inspection of the derivative shows that f is
increasing most rapidly for −3 ≤ x ≤ −2, followed by 2 ≤ x ≤ 3, and then −2 < x < 2.
The order of splits in Fig. 2 follows this pattern, showing that node splitting tracks the
curvature of f , with splits occurring first in regions where f is steepest, and last in places
where f is flattest. ��

Example 2 (continued). Our examples have assumed a one-dimensional (p = 1) scenario.
To test how well our results extrapolate to higher dimensions we modified Example 2 as
follows. We simulated n = 1, 000 values from

Yi = f (Xi ) + C1

d∑

k=1

Ui,k + C2

D∑

k=d+1

Ui,k + εi , i = 1 . . . , n, (8)

using f as in Example 2, where (εi )1≤i≤n were i.i.d. N(0, σ 2) variables with σ = 2 and
(Xi )1≤i≤n were sampled independently from a uniform [−3, 3] distribution. The additional
variables (Ui,k)1≤k≤D were also sampled independently from a uniform [−3, 3] distribution
(we set d = 10 and D = 13). The first 1 ≤ k ≤ d of the Ui,k are signal variables with signal
C1 = 3, whereas we set C2 = 0 so that Ui,k are noise variables for d + 1 ≤ k ≤ D. The
data was fit using a regression tree under weighted variance splitting. The data-optimized
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Fig. 2 Theoretical split-points for X under weighted variance splitting (displayed using vertical gray lines)
for f (x) = 2x3 − 2x2 − x (in black) assuming a uniform [−3, 3] distribution for X

split-points ŝN for splits on X are displayed in Fig. 3 and closely track the theoretical splits
of Fig. 2. Thus, our results extrapolate to higher dimensions and also illustrate closeness of
ŝN to the population value s∞. ��

The near-exactness of the split-points of Figs. 2 and 3 is a direct consequence of Theorem 2.
To see why, note that with some rearrangement, (7) becomes

�t (s) = (s − a)

⎛

⎝
q∑

j=0

A j s
j

⎞

⎠
2

+ (b − s)

⎛

⎝
q∑

j=0

B j s
j

⎞

⎠
2

,

where A j , B j are constants that depend on a and b. Therefore �t is a polynomial. Hence it
will achieve a global maximum over t or over a sufficiently small subregion t ′.

To further amplify this point, Fig. 4 illustrates how �t ′(s) depends on t ′ for f (x) of
Example 2. The first subpanel displays �t (s) over the entire range t = [−3, 3]. Clearly
it achieves a global maximum. Furthermore, when [−3, 3] is broken up into contiguous
subregions t ′, �t ′(s) becomes nearly concave (last three panels) and its maximum becomes
more pronounced. Theorem 2 applies to each of these subregions, guaranteeing ŝN converges
to s∞ over them.

2.3 Split-points for more general functions

The contiguous regions in Fig. 4 (panels 3,4 and 5) were chosen to match the stationary points
of �t (see panel 2). Stationary points identify points of inflection and maxima of �t and thus
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Fig. 3 Data optimized split-points ŝN for X (in gray) using weighted variance splitting applied to simulated
data from the multivariate regression model (8). Black curves are f (x) = 2x3 − 2x2 − x of Fig. 2

Fig. 4 The first two panels are �t (s) and its derivative � ′
t (s) for f (s) = 2s3 − 2s2 − s where t = [−3, 3].

Remaining panels are �t ′ (s) for t ′ = [−3,−1.9], t ′ = [−1.9, 1.5], t ′ = [1.5, 3]. Dashed vertical lines in
first subpanel identify stationary points of �t (s)

it is not surprising that �t ′ is near-concave when restricted to such t ′ subregions. The points
of stationarity, and the corresponding contiguous regions, coincide with the curvature of f .
This is why in Figs. 2 and 3, optimal splits occur first in regions where f is steepest, and last
in places where f is flattest.

We now argue in general, regardless of whether f is a polynomial, that the maximum of
�t depends heavily on the curvature of f . To demonstrate this, it will be helpful if we modify
our distributional assumption for X . Let us assume that X is uniform discrete with support
X = {αk}1≤k≤K . This is reasonable because it corresponds to the data optimized split-point
setting. The conditional distribution of X over t = [a, b] is

Pt {X = αk} = 1

K
, where a ≤ α1 < α2 < · · · < αK ≤ b.
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It follows (this expression holds for all f ):

�t (s) = 1

K
∑

αk≤s

(
∑

αk≤s

f (αk)

)2

+ 1

K
∑

αk>s

(
∑

αk>s

f (αk)

)2

, where s ∈ X . (9)

Maximizing (9) results in a split-point s∞ such that the squared sum of f is large either to
the left of s∞ or right of s∞ (or both). For example, if there is a contiguous region where f
is substantially high, then �t will be maximized at the boundary of this region.

Example 3 As a simple illustration, consider the step function f (x) = 1{x>1/2} where x ∈
[0, 1]. Then,

�t (s) =

⎧
⎪⎨

⎪⎩

(∑
αk>1/2

)2/(
K
∑

αk>s

)
if s ≤ 1

2(∑
1/2<αk≤s

)2/(
K
∑

αk≤s

)
+
(∑

αk>s

)2/(
K
∑

αk>s

)
if s > 1

2 .

When s ≤ 1/2, the maximum of �t is achieved at the largest value of αk less than or equal to
1/2. In fact, �t is increasing in this range. Let α− = max{αk : αk ≤ 1/2} denote this value.
Likewise, let α+ = min{αk : αk > 1/2} denote the smallest αk larger than 1/2 (we assume
there exists at least one αk > 1/2 and at least one αk ≤ 1/2). We have

�t (α
−) =

⎛

⎝
∑

αk>1/2

⎞

⎠
2

K
∑

αk>α−

=

⎛

⎝
∑

αk≥α+

⎞

⎠
2

K
∑

αk≥α+

=

∑

αk≥α+

K

.

The following bound holds when s ≥ α̂+ > 1/2:

�t (s) <

⎛

⎝
∑

1/2<αk≤s

⎞

⎠
2

K
∑

α+≤αk≤s

+

(
∑

αk>s

)2

K
∑

αk>s

=

∑

α+≤αk≤s

K

+

∑

αk>s

K

=

∑

αk≥α+

K

= �t (α
−).

Therefore the optimal split point is s∞ = α−: this is the value in the support of X closest to
the point where f has the greatest increase; namely s = 1/2. Importantly, observe that s∞
coincides with a change in the sign of the derivative of �t . This is because �t increases over
s ≤ 1/2, reaching a maximum at α−, and then decreases at α+. Therefore s ∈ [α−, α+) is a
stationary point of �t . ��
Example 4 As further illustration that �t depends on the curvature of f , Fig. 5 displays
the optimized split-points ŝN for the Blocks, Bumps, HeaviSine and Doppler simulations
described in Donoho and Johnstone (1994). We set n = 400 in each example, but otherwise
followed the specifications of Donoho and Johnstone (1994), including the use of a fixed
design xi = i/n for X . Figure 6 displays the derivative of �t for t = [0, 1], where �t

was calculated as in (9) with X = {xi }1≤i≤n . Observe how splits in Fig. 5 generally occur
within the contiguous intervals defined by the stationary points of �t . Visual inspection of
�t ′ for subregions t ′ confirmed �t ′ achieved a global maximum in almost all examples (for
Doppler, �t ′ was near-concave). These results, when combined with Theorem 2, provide
strong evidence that ŝN closely approximates s∞. ��
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Fig. 5 Data optimized split-points ŝN for X (in gray) using weighted variance splitting for Blocks, Bumps,
HeaviSine and Doppler simulations (Donoho and Johnstone 1994). True functions are displayed as black
curves

Fig. 6 Derivative of �t (s) for Blocks, Bumps, HeaviSine and Doppler functions of Fig. 5, for �t (s) calculated
as in (9)

We end this section by noting evidence of ECP splitting occurring in Fig. 5. For example,
for Blocks and Bumps, splits are observed near the edges 0 and 1 even though �t has no
singularities there. This occurs, because once the tree finds the discernible boundaries of the
spiky points in Bumps and jumps in the step functions of Blocks (by discernible we mean
signal being larger than noise), it has exhausted all informative splits, and so it begins to split
near the edges. This is an example of ECP splitting, a topic we discuss next.

2.4 Weighted variance splitting has the ECP property

Example 1 showed that weighted variance splits at the midpoint for simple linear functions
f (x) = c0 + c1x . This midpoint splitting behavior for a strong variable is in contrast to what
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happens for noisy variables. Consider when f is a constant, f (x) = c0. This is the limit as
c1 → 0 and corresponds to X being a noisy variable. One might think weighted variance
splitting will continue to favor midpoint splits, since this would be the case for arbitrarily
small c1, but it will be shown that edge-splits are favored in this setting. As discussed earlier,
this behavior is referred to as the ECP property.

Definition 2 A splitting rule has the ECP property if it tends to split near the edge for a noisy
variable. In particular, let ŝN be the optimized split-point for the variable X with candidate
split-points x1 < x2 < · · · < xN . The ECP property implies that ŝN will tend to split towards
the edge values x1 and xN if X is noisy.

To establish the ECP property for weighted variance splitting, first note that Theorem 1
will not help in this instance. The solution (5) is

2c0 = c0 + c0,

which holds for all s. The solution is indeterminate because �t (s) has a constant derivative.
Even a direct calculation using (9) will not help. From (9),

�t (s) = c2
0

∑
αk≤s

K
+ c2

0

∑
αk>s

K
= c2

0.

The solution is again indeterminate because �t (s) is constant and therefore has no unique
maximum.

To establish the ECP property we will use a large sample result due to Breiman et al.
(Chapt. 11.8; 1984). First, observe that (2) can be written as

D̂(s, t) = 1

N

∑

i∈tL

(Yi − Y tL )2 + 1

N

∑

i∈tR

(Yi − Y tR )2

= 1

N

∑

i∈t

Y 2
i − NL

N
Y

2
tL

− NR

N
Y

2
tR

.

Therefore minimizing D̂(s, t) is equivalent to maximizing

1

NL

⎛

⎝
∑

i∈tL

Yi

⎞

⎠
2

+ 1

NR

⎛

⎝
∑

i∈tR

Yi

⎞

⎠
2

. (10)

Consider the following result (see Theorem 10 for a generalization of this result).

Theorem 4 (Theorem 11.1; Breiman et al. 1984) Let (Zi )1≤i≤N be i.i.d. with finite variance
σ 2 > 0. Consider the weighted splitting rule:

ξN ,m = 1

m

(
m∑

i=1

Zi

)2

+ 1

N − m

(
N∑

i=m+1

Zi

)2

, 1 ≤ m ≤ N − 1. (11)

Then for any 0 < δ < 1/2 and any 0 < τ < ∞:

lim
N→∞ P

{
max

1≤m≤Nδ
ξN ,m > max

Nδ<m<N (1−δ)
τ ξN ,m

}
= 1 (12)

and
lim

N→∞ P

{
max

N (1−δ)≤m≤N
ξN ,m > max

Nδ<m<N (1−δ)
τ ξN ,m

}
= 1. (13)
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Theorem 4 shows (11) will favor edge splits almost surely. To see how this applies to (10),
let us assume X is noisy. By Definition 1, this implies that the distribution of Y given
X does not depend on X , and therefore Yi ∈ tL has the same distribution as Yi ∈ tR .
Consequently, Yi ∈ tL and Yi ∈ tR are i.i.d. and because order does not matter we can set
Z1 = Yi1 , . . . , Z N = YiN where i1, . . . , iN are the indices of Yi ∈ t ordered by Xi ∈ t . From
this, assuming Var(Yi ) < ∞, we can immediately conclude (the result applies in general for
p ≥ 1):

Theorem 5 Weighted variance splitting possesses the ECP property.

2.5 Unweighted variance splitting

Weighted variance splitting determines the best split by minimizing the weighted sample
variance using weights proportional to the daughter sample sizes. We introduce a different
type of splitting rule that avoids the use of weights. We refer to this new rule as unweighted
variance splitting. The unweighted variance splitting rule is defined as

D̂U (s, t) = �̂(tL ) + �̂(tR). (14)

The best split is found by minimizing D̂U (s, t) with respect to s. Notice that (14) can be
rewritten as

D̂U (s, t) = 1

NL

∑

i∈tL

Y 2
i + 1

NR

∑

i∈tR

Y 2
i − 1

N 2
L

⎛

⎝
∑

i∈tL

Yi

⎞

⎠
2

− 1

N 2
R

⎛

⎝
∑

i∈tR

Yi

⎞

⎠
2

.

The following result shows that rules like this, which we refer to as unweighted splitting
rules, possess the ECP property.

Theorem 6 Let (Zi )1≤i≤N be i.i.d. such that E(Z4
1) < ∞. Consider the unweighted splitting

rule:

ζN ,m = 1

m

m∑

i=1

Z2
i + 1

N − m

N∑

i=m+1

Z2
i

− 1

m2

(
m∑

i=1

Zi

)2

− 1

(N − m)2

(
N∑

i=m+1

Zi

)2

, 1 ≤ m ≤ N − 1. (15)

Then for any 0 < δ < 1/2:

lim
N→∞ P

{
min

1≤m≤Nδ
ζN ,m < min

Nδ<m<N (1−δ)
ζN ,m

}
= 1 (16)

and
lim

N→∞ P

{
min

N (1−δ)≤m≤N
ζN ,m < min

Nδ<m<N (1−δ)
ζN ,m

}
= 1. (17)

2.6 Heavy weighted variance splitting

We will see that unweighted variance splitting has a stronger ECP property than weighted
variance splitting. Going in the opposite direction is heavy weighted variance splitting, which
weights the node variance using a more aggressive weight. The heavy weighted variance
splitting rule is

D̂H (s, t) = p̂(tL)2�̂(tL) + p̂(tR)2�̂(tR). (18)
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The best split is found by minimizing D̂H (s, t). Observe that (18) weights the variance by
using the squared daughter node size, which is a power larger than that used by weighted
variance splitting.

Unlike weighted and unweighted variance splitting, heavy variance splitting does not
possess the ECP property. To show this, rewrite (18) as

D̂H (s, t) = NL

N 2

∑

i∈tL

Y 2
i + NR

N 2

∑

i∈tR

Y 2
i − 1

N 2

⎛

⎝
∑

i∈tL

Yi

⎞

⎠
2

− 1

N 2

⎛

⎝
∑

i∈tR

Yi

⎞

⎠
2

.

This is an example of a heavy weighted splitting rule. The following result shows that such
rules favor center splits for noisy variables. Therefore they are the greediest in the presence
of noise.

Theorem 7 Let (Zi )1≤i≤N be i.i.d. such that E(Z4
1) < ∞. Consider the heavy weighted

splitting rule:

ϕN ,m = m
m∑

i=1

Z2
i + (N − m)

N∑

i=m+1

Z2
i

−
(

m∑

i=1

Zi

)2

−
(

N∑

i=m+1

Zi

)2

, 1 ≤ m ≤ N − 1. (19)

Then for any 0 < δ < 1/2:

lim
N→∞ P

{
min

1≤m<Nδ
ϕN ,m > min

Nδ≤m≤N (1−δ)
ϕN ,m

}
= 1 (20)

and
lim

N→∞ P

{
min

N (1−δ)<m≤N
ϕN ,m > min

Nδ≤m≤N (1−δ)
ϕN ,m

}
= 1. (21)

2.7 Comparison of split-rules in the one-dimensional case

The previous results show that the ECP property only holds for weighted and unweighted
splitting rules, but not heavy weighted splitting rules. For convenience, we summarize the
three splitting rules below:

Definition 3 Splitting rules of the form (11), (15) and (19) are called weighted, unweighted
and heavy weighted splitting rules, respectively.

Example 5 To investigate the differences between our three splitting rules we used the fol-
lowing one-dimensional (p = 1) simulation. We simulated n = 100 observations from

Yi = c0 + c1 Xi + εi , i = 1, . . . , n,

where Xi was drawn independently from a uniform distribution on [−3, 3] and εi was drawn
independently from a standard normal. We considered three scenarios: (a) noisy (c0 = 1, c1 =
0); (b) moderate signal (c0 = 1, c1 = 0.5); and (c) strong signal (c0 = 1, c1 = 2).

The simulation was repeated 10,000 times independently and ŝN under weighted,
unweighted and heavy weighted variance splitting was recorded. Also recorded was ŝN

under pure random splitting where the split-point was selected entirely at random. Fig. 7
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Fig. 7 Density for ŝN under weighted variance (solid), unweighted variance (dash), heavy weighted variance
(dot) and random splitting (dot–dash) where f (x) = c0 + c1x for c0 = 1, c1 = 0 (left: noisy), c0 = 1, c1 =
0.5 (middle: weak signal) and c0 = 1, c1 = 2 (right: strong signal)

displays the density estimate for ŝN for each of the four splitting rules. In the noisy vari-
able setting, only weighted and unweighted splitting exhibit ECP behavior. When the sig-
nal increases moderately, weighted splitting tends to split in the middle, which is optimal,
whereas unweighted splitting continues to exhibit ECP behavior. Only when there is strong
signal, does unweighted splitting finally adapt and split near the middle. In all three scenarios,
heavy weighted splitting splits towards the middle, while random splitting is uniform in all
instances.

The example confirms our earlier hypothesis: weighted splitting is the most adaptive. In
noisy scenarios it exhibits ECP tendencies but with even moderate signal it shuts off ECP
splitting enabling it to recover signal. ��

Example 4 (continued). We return to Example 4 and investigate the shape of �t under the
three splitting rules. As before, we assume X is discrete with support X = {1/n, 2/n, . . . , 1}.
For each rule, let �t denote the population criterion function we seek to maximize. Discarding
unnecessary factors, it follows that �t can be written as follows (this holds for any f ):

�t (i/n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

i

(∑
k≤i f (k/n)

)2 + 1

n − i

(∑
i<k f (k/n)

)2 (weighted)

1

i2

(∑
k≤i f (k/n)

)2 − 1

i

∑
k≤i f (k/n)2

+ 1

(n − i)2

(∑
i<k f (k/n)

)2 − 1

n − i

∑
i<k f (k/n)2 (unweighted)

(∑
k≤i f (k/n)

)2 − k
∑

k≤i f (k/n)2

+ (∑i<k f (k/n)
)2 − (n − i)

∑
i<k f (k/n)2. (heavy)

�t functions for Blocks, Bumps, HeaviSine and Doppler functions of Example 4 are shown
in Fig. 8. For weighted splitting, �t consistently tracks the curvature of the true f (see Fig. 5).
For unweighted splitting, �t is maximized near the edges, while for heavy weighted splitting,
the maximum tends towards the center. ��
2.8 The ECP statistic: multivariable illustration

The previous analyses looked at p = 1 scenarios. Here we consider a more complex p > 1
simulation as in (8). To facilitate this analysis, it will be helpful to define an ECP statistic to
quantify the closeness of a split to an edge. Let ŝN be the optimized split for the variable X
with values x1 < x2 < · · · < xN in a node t . Then, ŝN = x j for some 1 ≤ j ≤ N − 1. Let
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Fig. 8 �t (s) for Blocks, Bumps, HeaviSine and Doppler functions of Example 4 for weighted (solid),
unweighted (dash) and heavy weighted (dot) splitting

j (ŝN ) denote this j . The ECP statistic is defined as

ecp(ŝN ) = 1

2
−

min
{

N − 1 − j (ŝN ), j (ŝN ) − 1
}

N − 1
.

The ECP statistic is motivated by the following observations. The closest that ŝN can be to
the right most split is when j (ŝN ) = N −1, and the closest that ŝN can be to the left most split
is when j (ŝN ) = 1. The second term on the right chooses the smallest of the two distance
values and divides by the total number of available splits, N − 1. This ratio is bounded by
1/2. Subtracting it from 1/2 yields a statistic between 0 and 1/2 that is largest when the split
is nearest an edge and smallest when the split is away from an edge.

n = 1, 000 values were sampled from (8) using 25 noise variables (thus increasing the
previous D = 13 to D = 35). Fig. 9 displays ecp(ŝN ) values as a function of node depth
for X (non-linear variable with strong signal), U1 (linear variable with moderate signal), and
Ud+1 (a noise variable) from 100 trees. Large points in red indicate high ECP values, smaller
points in blue are moderate ECP values, and small black points are small ECP values.

For weighted splitting (top panel), ECP values are high for X near −1 and 1.5. This is
because the observed values of Y are relatively constant in the range [−1, 1.5] which causes
splits to occur relatively infrequently in this region, similar to Fig. 3, and end-cut splits to
occur at its edges. Almost all splits occur in [−3,−1) and (1.5, 3] where Y is non-linear
in X , and many of these occur at relatively small depths, reflecting a strong X signal in
these regions. For U1, ECP behavior is generally uniform, although there is evidence of ECP
splitting at the edges. The uniform behavior is expected, because U1 contributes a linear term
to Y , thus favoring splits at the midpoint, while edge splits occur because of the moderate
signal: after a sufficient number of splits, U1’s signal is exhausted and the tree begins to split
at its edge. For the noisy variable, strong ECP behavior occurs near the edges −3 and 3.

Unweighted splitting (second row) exhibits aggressive ECP behavior for X across much of
its range (excluding [−1, 1.5], where again splits of any kind are infrequent). The predominate
ECP behavior indicates that unweighted splitting has difficulty in discerning signal. Note the
large node depths due to excessive end-cut splitting. For U1, splits are more uniform but there
is aggressive ECP behavior at the edges. Aggressive ECP behavior is also seen at the edges
for the noisy variable. Heavy weighted splitting (third row) registers few large ECP values
and ECP splitting is uniform for the noisy variable. Node depths are smaller compared to the
other two rules.

The bottom panel displays results for restricted weighted splitting. Here weighted splitting
was applied, but candidate split values x1 < · · · < xN were restricted to xL < · · · < xU

for L = [Nδ] and U = [N (1 − d)] where 0 < δ < 1/2 and [z] rounds z to the nearest
positive integer. This restricts the range of split values so that splits cannot occur near (or
at) edges x1 or xN and thus by design discourages end-cut splits. A value of δ = 0.20
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Fig. 9 ECP statistic, ecp(ŝN ), from simulation (8). Circles are proportional to ecp(ŝN ). Black, blue and red
indicate low, medium and high ecp(ŝN ) values

was used (experimenting with other δ values did not change our results in any substantial
way). Considering the bottom panel, we find restricted splitting suppresses ECP splits, but
otherwise its split-values and their depth closely parallel those for weighted splitting (top
panel).

To look more closely at the issue of split-depth, Table 1 displays the average depth at which
a variable splits for the first time. This statistic has been called minimal depth by Ishwaran
et al. (2010, 2011) and is useful for assessing a variable’s importance. Minimal depth for
unweighted splitting is excessively large so we focus on the other rules. Focusing on weighted,
restricted weighted, and heavy weighted splitting, we find minimal depth identical for X ,
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Table 1 Depth of first split on
X , linear variables {U j }10

1 , and

noise variables {U j }35
11 from

simulation of Fig. 9

Average values for {U j }10
1 and

{U j }35
11 are displayed

X {U j }10
1 {U j }35

11
Nonlinear Linear Noise

Weighted 1.9 4.1 7.1

Unweighted 5.9 26.6 34.1

Heavy weighted 1.9 3.8 6.2

Restricted weighted 1.9 3.9 6.4

while minimal depth for linear variables are roughly the same, although heavy weighted
splitting’s value is smallest—which is consistent with the rules tendency to split towards the
center, which favors linearity. Over noise variables, minimal depth is largest for weighted
variance splitting. It’s ECP property produces deeper trees which pushes splits for noise
variables down the tree. It is notable how much larger this minimal depth is compared with
the other two rules—and in particular, restricted weighting. Therefore, combining the results
of Table 1 with Fig. 9, we can conclude that restricted weighted splitting is closest to weighted
splitting, but differs by its inability to produce ECP splits. Because of this useful feature, we
will use restricted splitting in subsequent analyses to assess the benefit of the ECP property.

2.9 Regression benchmark results

We used a large benchmark analysis to further assess the different splitting rules. In total,
we used 36 data sets of differing size n and dimension p (Table 2). This included real
data (in capitals) and synthetic data (in lower case). Many of the synthetic data were
obtained from the mlbench R-package (Leisch and Dimitriadou 2009) (e.g., data sets
listed in Table 2 starting with “friedman” are the class of Friedman simulations included
in the package). The entry “simulation.8” is simulation (8) considered in the previous
section. A RF regression (RF-R) analysis was applied to each data set using parameters
(ntree, mtry, nodesize) = (1000, [p/3]+, 5) where [z]+ rounds z to the first largest integer.
Weighted variance, unweighted variance, heavy weighted variance and pure random split-
ting rules were used for each data set. Additionally, we used the restricted weighted splitting
rule described in the previous section (δ = 0.20). Mean-squared-error (MSE) was estimated
using 10-fold cross-validation. In order to facilitate comparison of MSE across data, we stan-
dardized MSE by dividing by the sample variance of Y . All computations were implemented
using the randomForestSRC R-package (Ishwaran and Kogalur 2014).

To systematically compare performance we used univariate and multivariate nonparamet-
ric statistical tests described in Demsar (2006). To compare two splitting rules we used the
Wilcoxon signed rank test applied to the difference of their standardized MSE values. To
test for an overall difference among the various procedures we used the Iman and Davenport
modified Friedman test (Demsar 2006). The exact p value for the Wilcoxon signed rank test
are recorded along the upper diagonals of Table 3. The lower diagonal values record the
corresponding test statistic where small values indicate a difference. The diagonal values of
the table record the average rank of each procedure and were used for the Friedman test.

The modified Friedman test of equality of ranks yielded a p value < 0.00001, thus pro-
viding strong evidence of difference between the methods. Overall, weighted splitting had
the best overall rank, followed by restricted weighted splitting, unweighted splitting, heavy
weighted splitting, and finally pure random splitting. To compare performance of weighted
splitting to each of the other rules, based on the p values in Table 3, we used the Hochberg
step-down procedure (Demsar 2006) which controls for multiple testing. Under a familywise
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Table 2 MSE performance of RF-R under different splitting rules. MSE was estimated using 10-fold valida-
tion and has been standardized by the sample variance of Y and multiplied by 100

n p WT WT∗ UNWT HVWT RND

Air 111 5 26.66 27.54 25.05 29.90 41.83

Automobile 193 24 7.60 8.28 7.43 8.02 24.23

Bodyfat 252 13 33.09 33.62 33.65 34.51 46.12

BostonHousing 506 13 14.71 15.62 16.37 15.06 31.26

CMB 899 4 106.79 103.11 99.39 100.60 89.54

Crime 47 15 58.92 57.31 58.30 58.39 74.69

Diabetes 442 10 53.74 54.14 58.80 54.18 58.74

DiabetesI 442 64 53.36 54.51 67.03 53.89 77.18

Fitness 31 6 65.59 64.95 65.20 67.01 82.55

Highway 39 11 39.42 42.37 37.82 43.51 67.35

Iowa 33 9 60.44 64.15 58.20 64.50 81.22

Ozone 203 12 27.61 28.15 24.81 29.46 32.31

Pollute 60 15 46.52 46.75 44.82 49.32 66.66

Prostate 97 8 44.98 44.51 45.11 46.60 48.93

Servo 167 19 23.42 23.61 17.34 30.71 46.18

Servo_asfactor 167 4 36.22 36.11 33.18 34.58 54.04

Tecator 215 22 17.18 17.68 19.37 18.64 50.63

Tecator2 215 100 34.39 35.22 37.64 36.14 55.61

Windmill 1114 12 31.88 32.24 35.22 32.89 36.68

simulation.8 1000 36 22.74 23.94 43.77 27.88 79.64

expon 250 2 47.90 47.80 45.49 54.29 60.89

expon.noise 250 17 60.27 63.18 66.60 88.86 95.60

friedman1 250 10 26.46 28.10 37.41 33.50 56.57

friedman1.bigp 250 250 44.10 46.37 78.39 52.86 98.56

friedman2 250 4 28.72 31.42 30.22 32.24 43.52

friedman2.bigp 250 254 33.23 35.70 50.51 37.72 97.85

friedman3 250 4 34.78 38.33 35.93 39.53 53.68

friedman3.bigp 250 254 40.73 49.50 61.14 54.24 99.06

noise 250 500 103.51 103.41 102.30 103.15 100.48

sine 250 2 41.01 39.85 53.56 38.27 58.80

sine.noise 250 5 68.06 70.13 91.04 64.56 87.27

AML 116 629 27.19 27.27 27.31 28.05 42.45

DLBCL 240 740 30.94 32.18 32.61 34.86 55.12

Lung 86 713 30.16 31.69 34.95 33.01 67.16

MCL 92 881 13.46 14.01 13.16 14.47 33.78

VandeVijver78 78 475 15.48 15.57 15.50 16.18 30.81

WT weighted, WT∗ restricted weighted, UNWT unweighted, HVWT heavy weighted, RND pure random
splitting

error rate (FWER) of 0.05, the test rejected the null hypothesis that performance of weighted
splitting was equal to one of the other methods. This demonstrates superiority of weighted
splitting. Other points worth noting in Table 3 are that while unweighted splitting’s overall
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Table 3 Performance of RF-R under different splitting rules

WT WT∗ UNWT HVWT RND

WT 1.83 0.0004 0.0459 0.0001 0.0000

WT∗ 117 2.47 0.2030 0.0004 0.0000

UNWT 206 251 2.69 0.8828 0.0000

HVWT 93 118 323 3.28 0.0000

RND 17 10 16 10 4.72

Upper diagonal values are Wilcoxon signed rank p values comparing two procedures; lower diagonal values
are the corresponding test statistic. Diagonal values record overall rank

rank is better than heavy weighted splitting, the difference appears marginal and consider-
ing Table 2 we see there is no clear winner. In moderate-dimensional problems unweighted
splitting is generally better, while heavy weighted splitting is sometimes better in high dimen-
sions. The high-dimensional scenario is interesting and we discuss this in more detail below
(Sect. 2.9.1). Finally, it is clearly evident from Table 3 that pure random splitting is substan-
tially worse than all other rules. Considering Table 2, we find its performance deteriorates as
p increases. One exception is “noise” which is a synthetic data set with all noisy variables:
all methods perform similarly here. In general, its performance is on par with other rules only
when n is large and p is small (e.g., CMB data).

Figure 10 displays the average number of nodes by tree depth for each splitting rule. We
observe the following patterns:

1. Heavy weighted splitting (green) yields the most symmetric node distribution. Because
it does not possess the ECP property, and splits near the middle, it grows shallower
balanced trees.

2. Unweighted splitting (red) yields the most skewed node distribution. It has the strongest
ECP property and has the greatest tendency to split near the edge. Edge splitting promotes
unbalanced deep trees.

3. Random (blue), weighted (black), and restricted weighted (magenta) splitting have node
distributions that fall between the symmetric distributions of heavy weighted splitting
and the skewed distributions of unweighted splitting. Due to suppression of ECP splits,
restricted weighted splitting is the least skewed of the three and is closest to heavy
weighted splitting, whereas weighted splitting due to ECP splits is the most skewed of
the three and closest to unweighted splitting.

2.9.1 Impact of high dimension on splitting

To investigate performance differences in high dimensions, we ran the following two addi-
tional simulations. In the first, we simulated n = 250 observations from the linear model

Yi = C0 + C1 Xi + C2

d∑

k=1

Ui,k + εi , (22)

where (εi )1≤i≤n were i.i.d. N(0, 1) and (Xi )1≤i≤n , (Ui,k)1≤i≤n were i.i.d. uniform[0, 1]. We
set C0 = 1, C1 = 2 and C2 = 0. The Ui,k variables introduce noise and a large value of d
was chosen to induce high dimensionality (see below for details). Because of the linearity in
X , a good splitting rule will favor splits at the midpoint for X . Thus model (22) will favor
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Fig. 10 Average number of nodes by tree depth for weighted variance (black), restricted weighted (magenta),
unweighted variance (red), heavy weighted variance (green) and random (blue) splitting for regression bench-
mark data from Table 2

heavy weighted splitting and weighted splitting, assuming the latter is sensitive enough to
discover the signal. However, the presence of a large number of noise variables presents an
interesting challenge. If the ECP property is not beneficial, then heavy weighted splitting will
outperform weighted splitting; otherwise weighted splitting will be better (again, assuming it
is sensitive enough to find the signal). The same conclusion also applies to restricted weighted
splitting. As we have argued, this rule suppresses ECP splits and yet retains the adaptivity
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Fig. 11 Standardized MSE (×100) for high dimensional linear simulation (22) (left panel) and non-linear
simulation “friedman2.bigp” (right panel) as a function of p for weighted (solid), unweighted (dash), heavy
weighted (dot) and restricted weighted (dot-dash) splitting. Performance assessed using an independent test-set
(n = 5, 000)

of weighted splitting. Thus, if weighted splitting outperforms restricted weighted splitting in
this scenario, we can attribute these gains to the ECP property. For our second simulation,
we used the “friedman2.bigp” simulation of Table 2.

The same forest parameters were used as in Table 2. To investigate the effect of dimension-
ality, we varied the total number of variables in small increments. The left panel of Fig. 11
presents the results for (22). Unweighted splitting has poor performance in this example,
possible due to its overly strong ECP property. Restricted weighted splitting is slightly better
than heavy weighted splitting, but weighted splitting has the best performance and its relative
performance compared with heavy weighted and restricted weighted splitting increases with
p. As we have discussed, we can attribute these gains as a direct consequence of ECP split-
ting. The right panel of Figure 11 presents the results for “friedman2.bigp”. Interestingly, the
results are similar, although MSE values are far smaller due to the strong non-linear signal.

3 Classification forests

Now we consider the effect of splitting in multiclass problems. As before, the learning data
is L = (Xi , Yi )1≤i≤n where (Xi , Yi ) are i.i.d. with common distribution P. Write (X, Y ) to
denote a generic variable with distribution P. Here the outcome is a class label Y ∈ {1, . . . , J }
taking one of J ≥ 2 possible classes.

We study splitting under the Gini index, a widely used CART splitting rule for classifica-
tion. Let φ̂ j (t) denote the class frequency for class j in a node t . The Gini node impurity for
t is defined as


̂(t) =
J∑

j=1

φ̂ j (t)(1 − φ̂ j (t)).

As before, Let tL and tR denote the left and right daughter nodes of t corresponding to cases
{Xi ≤ s} and {Xi > s}. The Gini node impurity for tL is


̂(tL ) =
J∑

j=1

φ̂ j (tL )(1 − φ̂ j (tL )),

where φ̂ j (tL ) is the class frequency for class j in tL . In a similar way define 
̂(tR). The
decrease in the node impurity is
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̂(s, t) = 
̂(t) −
[

p̂(tL )
̂(tL ) + p̂(tR)
̂(tR)
]
.

The quantity

Ĝ(s, t) = p̂(tL)
̂(tL ) + p̂(tR)
̂(tR)

is the Gini index. To achieve a good split, we seek the split-point maximizing the decrease in
node impurity: equivalently we can minimize Ĝ(s, t) with respect to s. Notice that because
the Gini index weights the node impurity by the node size, it can be viewed as the analog of
the weighted variance splitting criterion (2).

To theoretically derive ŝN , we again consider an infinite sample paradigm. In place of
Ĝ(s, t), we use the population Gini index

G(s, t) = p(tL )
(tL ) + p(tR)
(tR), (23)

where 
(tL ) and 
(tR) are the population node impurities for tL and tR defined as


(tL ) =
J∑

j=1

φ j (tL)(1 − φ j (tL)), 
(tR) =
J∑

j=1

φ j (tR)(1 − φ j (tR))

where φ j (tL) = P{Y = j |X ≤ s, X ∈ t} and φ j (tR) = P{Y = j |X > s, X ∈ t}.
The following is the analog of Theorem 1 for the two-class problem.

Theorem 8 Let φ(s) = P{Y = 1|X = s}. If φ(s) is continuous over t = [a, b] and Pt has a
continuous and positive density over t with respect to Lebesgue measure, then the value for
s that minimizes (23) when J = 2 is a solution to

2φ(s) =
s∫

a

φ(x) PtL (dx) +
b∫

s

φ(x) PtR (dx), a ≤ s ≤ b. (24)

Theorem 8 can be used to determine the optimal Gini split in terms of the underlying
target function, φ(x). Consider a simple intercept-slope model

φ(x) = (1 + exp(− f (x)))−1 . (25)

Assume Pt is uniform and that f (x) = c0 + c1x . Then, (24) reduces to

2c1φ(s) = 1

s − a
log

(
1 − φ(a)

1 − φ(s)

)
+ 1

b − s
log

(
1 − φ(s)

1 − φ(b)

)
.

Unlike the regression case, the solution cannot be derived in closed form and does not equal
the midpoint of the interval [a, b].

It is straightforward to extend Theorem 2 to the classification setting, thus justifying
the use of an infinite sample approximation. The square-integrability condition will hold
automatically due to boundedness of φ(s). Therefore only the positive support condition for
Pt and the existence of a unique maximizer for �t is required, where �t (s) is

(
Pt {X ≤ s}

)−1

⎛

⎝
s∫

a

φ(x) Pt (dx)

⎞

⎠
2

+
(
Pt {X > s}

)−1

⎛

⎝
b∫

s

φ(x) Pt (dx)

⎞

⎠
2

.

Under these conditions it can be shown that ŝN converges to the unique population split-point,
s∞, maximizing �t (s).
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Remark 2 Breiman (1996) also investigated optimal split-points for classification splitting
rules. However, these results are different than ours. He studied the question of what config-
uration of class frequencies yields the optimal split for a given splitting rule. This is different
because it does not involve the classification rule and therefore does not address the question
of what is the optimal split-point for a given φ(x). The optimal split-point studied in Breiman
(1996) may not even be realizable.

3.1 The Gini index has the ECP property

We show that Gini splitting possesses the ECP property. Noting that


̂(tL ) =
J∑

j=1

φ̂ j (tL )(1 − φ̂ j (tL)) = 1 −
J∑

j=1

φ̂ j (tL )2,

and that 
̂(tR) = 1 −∑J
j=1 φ̂ j (tR)2, we can rewrite the Gini index as

Ĝ(s, t) = NL

N

⎛

⎝1 −
J∑

j=1

N 2
j,L

N 2
L

⎞

⎠+ NR

N

⎛

⎝1 −
J∑

j=1

N 2
j,R

N 2
R

⎞

⎠ ,

where N j,L =∑i∈tL
1{Yi = j} and N j,R =∑i∈tR

1{Yi = j}. Observe that minimizing Ĝ(s, t) is
equivalent to maximizing

J∑

j=1

N 2
j,L

NL
+

J∑

j=1

N 2
j,R

NR
. (26)

In the two-class problem, J = 2, it can be shown this is equivalent to maximizing

N 2
1,L

NL
+ N 2

1,R

NR
= 1

NL

⎛

⎝
∑

i∈tL

1{Yi =1}

⎞

⎠
2

+ 1

NR

⎛

⎝
∑

i∈tR

1{Yi =1}

⎞

⎠
2

,

which is a member of the class of weighted splitting rules (11) required by Theorem 4 with
Zi = 1{Yi =1}.

This shows Gini splitting has the ECP property when J = 2, but we now show that the
ECP property applies in general for J ≥ 2. The optimization problem (26) can be written as

J∑

j=1

⎡

⎢⎣
1

NL

⎛

⎝
∑

i∈tL

Zi( j)

⎞

⎠
2

+ 1

NR

⎛

⎝
∑

i∈tR

Zi( j)

⎞

⎠
2
⎤

⎥⎦

where Zi( j) = 1{Yi = j}. Under a noisy variable setting, Zi( j) will be identically distributed.
Therefore we can assume (Zi( j))1≤i≤n are i.i.d. for each j . Because the order of Zi( j) does
not matter, the optimization can be equivalently described in terms of

∑J
j=1 ξN ,m, j , where

ξN ,m, j = 1

m

(
m∑

i=1

Zi( j)

)2

+ 1

N − m

(
N∑

i=m+1

Zi( j)

)2

.

We compare the Gini index for an edge split to a non-edge split. Let

j∗ = argmax
1≤ j≤J

ξN , j , where ξN , j = max
Nδ<m<N (1−δ)

ξN ,m, j .
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For a left-edge split

P

⎧
⎨

⎩ max
1≤m≤Nδ

⎧
⎨

⎩

J∑

j=1

ξN ,m, j

⎫
⎬

⎭ > max
Nδ<m<N (1−δ)

⎧
⎨

⎩

J∑

j=1

ξN ,m, j

⎫
⎬

⎭

⎫
⎬

⎭

≥ P

⎧
⎨

⎩ max
1≤m≤Nδ

⎧
⎨

⎩

J∑

j=1

ξN ,m, j

⎫
⎬

⎭ > JξN , j∗

⎫
⎬

⎭

=
J∑

j ′=1

P

⎧
⎨

⎩ max
1≤m≤Nδ

⎧
⎨

⎩

J∑

j=1

ξN ,m, j

⎫
⎬

⎭ > JξN , j ′ , j∗ = j ′
⎫
⎬

⎭

≥
J∑

j=1

P

{
max

1≤m≤Nδ
ξN ,m, j > JξN , j , j∗ = j

}
.

Apply Theorem 4 with τ = J to each of the J terms separately. Let An, j denote the first
event in the curly brackets and let Bn, j denote the second event (i.e., Bn, j = { j∗ = j}).
Then An, j occurs with probability tending to one, and because

∑
j P(Bn, j ) = 1, deduce that

the entire expression has probability tending to 1. Applying a symmetrical argument for a
right-edge split completes the proof.

Theorem 9 The Gini index possesses the ECP property.

3.2 Unweighted Gini index splitting

Analogous to unweighted variance splitting, we define an unweighted Gini index splitting
rule as follows

ĜU (s, t) = 
̂(tL) + 
̂(tR). (27)

Similar to unweighted variance splitting, the unweighted Gini index splitting rule possesses
a strong ECP property.

For brevity we prove that (27) has the ECP property in two-class problems. Notice that
we can rewrite (27) as follows

1

2
ĜU (s, t) =

(
N1,L

NL
− N 2

1,L

N 2
L

)
+
(

N1,R

NR
− N 2

1,R

N 2
R

)

= 1

NL

∑

i∈tL

Z2
i + 1

NR

∑

i∈tR

Z2
i − 1

N 2
L

⎛

⎝
∑

i∈tL

Zi

⎞

⎠
2

− 1

N 2
R

⎛

⎝
∑

i∈tR

Zi

⎞

⎠
2

,

where Zi = 1{Yi =1} (note that Z2
i = Zi ). This is a member of the class of unweighted

splitting rules (15). Apply Theorem 6 to deduce that unweighted Gini splitting has the ECP
property when J = 2.

3.3 Heavy weighted Gini index splitting

We also define a heavy weighted Gini index splitting rule as follows

Ĝ H (s, t) = p̂(tL )2
̂(tL) + p̂(tR)2
̂(tR).
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Fig. 12 Density for ŝN under Gini (solid), unweighted Gini (dash), heavy weighted Gini (dot) and random
splitting (dot-dash) for φ(x) specified as in (25) for J = 2 with f (x) = c0 + c1x for c0 = 1, c1 = 0 (left
noisy), c0 = 1, c1 = 0.5 (middle weak signal) and c0 = 1, c1 = 2 (right strong signal)

Similar to heavy weighted splitting in regression, heavy weighted Gini splitting does not
possess the ECP property. When J = 2, this follows directly from Theorem 7 by observing
that

1

2
Ĝ H (s, t) = 1

N 2

(
NL N1,L − N 2

1,L

)+ 1

N 2

(
NR N1,R − N 2

1,R

)

= NL

N 2

∑

i∈tL

Z2
i + NR

N 2

∑

i∈tR

Z2
i − 1

N 2

⎛

⎝
∑

i∈tL

Zi

⎞

⎠
2

− 1

N 2

⎛

⎝
∑

i∈tR

Zi

⎞

⎠
2

,

which is a member of the heavy weighted splitting rules (19) with Zi = Z2
i = 1{Yi =1}.

3.4 Comparing Gini split-rules in the one-dimensional case

To investigate the differences between the Gini splitting rules we used the following one-
dimensional two-class simulation. We simulated n = 100 observations for φ(x) specified as
in (25) where f (x) = c0 + c1x and X was uniform [−3, 3]. We considered noisy, moderate
signal, and strong signal scenarios, similar to our regression analysis of Fig. 7. The experiment
was repeated 10,000 times independently.

Figure 12 reveals a pattern similar to Fig. 7. Once again, weighted splitting is the most
adaptive. It exhibits ECP tendencies, but in the presence of even moderate signal it shuts
off ECP splitting. Unweighted splitting is also adaptive but with a more aggressive ECP
behavior.

3.5 Multiclass benchmark results

To further assess differences in the splitting rules we ran a large benchmark analysis comprised
of 36 data sets of varying dimension and number of classes (Table 4). As in our regression
benchmark analysis of Table 2, real data sets are indicated with capitals and synthetic data in
lower case. The latter were all obtained from the mlbench R-package (Leisch and Dimitriadou
2009). A RF classification (RF-C) analysis was applied to each data set using the same forest
parameters as Table 2. Pure random splitting as well as weighted, unweighted and heavy
weighted Gini splitting was employed. Restricted Gini splitting, defined as in the regression
case, was also used (δ = .20).

Performance was assessed using the Brier score (Brier 1950) and estimated by tenfold
cross-validation. Let p̂i, j := p̂ (Yi = j |Xi , L ) denote the forest predicted probability for
event j = 1, . . . , J for case (Xi , Yi ) ∈ T , where T denotes a test data set. The Brier score
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Table 4 Brier score performance (×100) of RF-C under different splitting rules

n p J WT WT∗ UNWT HVWT RND

Hypothyroid 2000 24 2 1.16 1.11 1.58 1.05 1.85

SickEuthyroid 2000 24 2 2.30 2.58 2.52 2.56 5.90

SouthAHeart 462 9 2 20.04 20.03 20.52 19.16 18.77

Prostate 158 20 2 15.78 16.97 15.33 16.45 16.69

WisconsinBreast 194 32 2 18.11 17.78 18.70 17.77 17.49

Esophagus 3127 28 2 18.52 18.35 18.80 18.52 18.21

BreastCancer 683 10 2 2.56 2.51 2.45 2.55 2.49

DNA 3186 180 3 3.09 3.03 3.09 4.28 13.76

Glass 214 9 6 5.88 6.00 6.96 6.17 7.66

HouseVotes84 232 16 2 5.94 5.95 3.09 3.01 5.77

Ionosphere 351 34 2 5.61 7.17 5.04 6.90 11.37

2dnormals 250 2 2 7.12 6.96 7.25 7.11 7.52

cassini 250 2 3 1.06 1.20 0.73 1.21 4.86

circle 250 2 2 5.92 6.97 6.35 7.69 11.30

cuboids 250 3 4 0.71 0.86 1.07 0.73 3.91

ringnorm 250 20 2 11.03 14.98 9.23 17.33 18.46

shapes 250 2 4 0.77 0.80 1.26 0.80 4.85

smiley 250 2 4 0.51 0.51 0.54 0.50 2.97

spirals 250 2 2 2.67 5.11 2.30 5.52 12.98

twonorm 250 20 2 8.62 8.67 6.53 8.71 10.50

threenorm 250 20 2 16.92 17.54 18.55 17.90 19.82

waveform 250 21 3 9.53 9.54 10.62 9.61 12.83

xor 250 2 2 4.85 4.26 10.90 2.99 12.01

PimaIndians 768 8 2 15.97 16.09 16.39 16.34 16.70

Sonar 208 60 2 13.32 13.01 18.29 12.87 18.51

Soybean 562 35 15 0.81 0.80 0.69 1.24 1.69

Vehicle 846 18 4 7.52 7.54 9.44 7.80 10.03

Vowel 990 10 11 2.58 2.71 4.96 2.91 4.61

Zoo 101 16 7 1.44 1.43 1.47 1.64 2.30

aging 29 8740 3 16.60 16.42 16.42 17.02 21.86

brain 42 5597 5 8.08 8.37 8.03 8.49 13.16

colon 62 2000 2 12.95 13.03 12.99 12.43 19.43

leukemia 72 3571 2 4.08 4.06 4.24 4.09 17.26

lymphoma 62 4026 3 2.75 2.84 2.67 2.82 8.90

prostate 102 6033 2 7.62 7.62 7.39 7.69 20.84

srbct 63 2308 4 3.23 3.35 2.88 4.35 14.33

Performance was estimated using tenfold validation. To interpret the Brier score, the benchmark value of 25
represents the performance of a random classifier
WT weighted, WT∗ restricted weighted, UNWT unweighted, HVWT heavy weighted, RND pure random
splitting
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Table 5 Performance of RF-C
from benchmark data sets of
Table 4 with values recorded as in
Table 3

WT WT∗ UNWT HVWT RND

WT 2.22 0.0798 0.1568 0.0183 0.0000

WT∗ 221 2.58 0.6693 0.0134 0.0000

UNWT 242 305 2.81 0.9938 0.0000

HVWT 184 237 334 2.92 0.0000

RND 22 26 43 14 4.47

was defined as

Brier Score = 1

J |T |
∑

i∈T

J∑

j=1

(
1{Yi = j} − p̂i, j

)2
.

The Brier score was used rather than misclassification error because it directly measures
accuracy in estimating the true conditional probability P{Y = j |X}. We are interested in the
true conditional probability because a method that is consistent for estimating this value is
immediately Bayes risk consistent but not vice-versa. See Gyorfi et al. (Theorem 1.1, 2002).

Tables 4 and 5 reveal patterns consistent with Tables 2 and 3. As in Table 2, random splitting
is consistently poor with performance degrading with increasing p. The rank of splitting rules
in Table 5 is consistent with Table 3, however statistical significance of pairwise comparisons
are not as strong. The Hochberg step-down procedure comparing weighted splitting to each of
the other methods did not reject the null hypothesis of equality between between weighted and
unweighted splitting at a 5% FWER, however increasing the FWER to 16 %, which matches
the observed p value for unweighted splitting, led to all hypotheses being rejected. The
modified Friedman test of difference in ranks yielded a p value < 0.00001, thus indicating
a strong difference in performance of the methods. We can conclude that splitting rules
generally exhibit the same performance as in the regression setting, but performance gains
for weighted splitting are not as strong.

Regarding the issue of dimensionality, there appears to be no winner over the high-
dimensional examples in Table 4: aging, brain, colon, leukemia, lymphoma, prostate and
srbct. However, these are all microarray data sets and this could simply be an artifact of this
type of data. To further investigate how p affects performance, we added noise variables
to mlbench synthetic data sets (Fig. 13). The dimension was increased systematically in
each instance. We also included a linear model simulation similar to (22) with φ(x) spec-
ified as in (25) (see top left panel, “linear.bigp”). Figure 13 shows that when performance
differences exist between rules, weighted splitting and unweighted splitting, which possess
the ECP property, generally outperform restricted weighted and heavy weighted splitting.
Furthermore, there is no example where these latter rules outperform weighted splitting.

4 Randomized adaptive splitting rules

Our results have shown that pure random splitting is rarely as effective as adaptive splitting.
It does not possess the ECP property, nor does it adapt to signal. On the other hand, random-
ized rules are desirable because they are computationally efficient. Therefore as a means to
improve computational efficiency, while maintaining adaptivity of a split-rule, we consider
randomized adaptive splitting. In this approach, in place of deterministic splitting in which
the splitting rule is calculated for the entire set of N available split-points for a variable, the
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Fig. 13 Brier score performance (×100) for synthetic high dimensional simulations as a function of p under
weighted variance (solid), restricted weighted (dot-dash), unweighted variance (dash), and heavy weighted
(dot) Gini splitting. Performance assessed using an independent test-set (n = 5, 000)

splitting rule is confined to a set of split-points indexed by IN ⊆ {1, . . . , N }, where |IN | is
typically much smaller than N . This reduces the search for the optimal split-point from a
maximum of N split-points to the much smaller |IN |.

For brevity, we confine our analysis to the class of weighted splitting rules. Deterministic
(non-random) splitting seeks the value 1 ≤ m ≤ N − 1 maximizing (11). In contrast,
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Table 6 Performance of
weighted splitting rules from
RF-R benchmark data sets of
Table 2 expanded to include
randomized weighted splitting
for nsplit = 1, 5, 10 denoted by
WT(1),WT(5),WT(10)

Values recorded as in Table 3

WT WT∗ WT(1) WT(5) WT(10)

WT 2.08 0.0004 0.0000 0.0074 0.6028

WT∗ 117 3.44 0.0000 0.1974 0.0000

WT(1) 54 77 4.42 0.0000 0.0000

WT(5) 165 416 637 2.97 0.0001

WT(10) 299 580 623 572 2.08

randomized adaptive splitting maximizes the split-rule by restricting m to IN . The optimal
split-point is determined by maximizing the restricted splitting rule:

ξ r
N ,m = 1

m

(
m∑

i=1

Z N ,i

)2

+ 1

RN − m

⎛

⎝
RN∑

i=m+1

Z N ,i

⎞

⎠
2

, 1 ≤ m ≤ RN − 1, (28)

where RN = |IN | and (Z N ,i )1≤i≤RN denotes the sequence of values {Zi : i ∈ IN }.
In principle, IN can be selected in any manner. The method we will study empirically

selects nsplit candidate split-points at random, which corresponds to sampling RN -out-of-N
values from {1, . . . , N } without replacement where RN = nsplit. This method falls under the
general result described below, which considers the behavior of (28) under general sequences.
We show (28) has the ECP property under any sequence (IN )N≥1 if the number of split-points
RN increases to ∞. The result requires only a slightly stronger moment assumption than
Theorem 4.

Theorem 10 Let (Zi )1≤i≤N be independent with a common mean and variance and assume
supi E(|Zi |q) < ∞ for some q > 2. Let (IN )N≥1 be a sequence of index sets such that
RN → ∞. Then for any 0 < δ < 1/2 and any 0 < τ < ∞:

lim
N→∞ P

{
max

1≤m≤RN δ
ξ r

N ,m > max
RN δ<m<RN (1−δ)

τ ξ r
N ,m

}
= 1 (29)

and
lim

N→∞ P

{
max

RN (1−δ)≤m≤RN
ξ r

N ,m > max
RN δ<m<RN (1−δ)

τ ξ r
N ,m

}
= 1. (30)

Remark 3 As a special case, Theorem 10 yields Theorem 4 for the sequence IN =
{1, . . . , N }. Note that while the moment condition is somewhat stronger, Theorem 10 does
not require (Zi )1≤i≤N to be i.i.d. but only independent.

Remark 4 Theorem 10 shows that the ECP property holds if nsplit → ∞. Because any rate
is possible, the condition is mild and gives justification for nsplit-randomization. However,
notice that nsplit = 1, corresponding to the extremely randomized tree method of Geurts et
al. (2006), does not satisfy the rate condition.

4.1 Empirical behavior of randomized adaptive splitting

To demonstrate the effectiveness of randomized adaptive splitting, we re-ran the RF-R bench-
mark analysis of Section 2. All experimental parameters were kept the same. Randomized
weighted splitting was implemented using nsplit = 1, 5, 10. Performance values are dis-
played in Table 6 based on the Wilcoxon signed rank test and overall rank of a procedure.
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Table 7 Performance of
weighted splitting rules from
RF-C benchmark data sets of
Table 4

Values recorded as in Table 3

WT WT∗ WT(1) WT(5) WT(10)

WT 2.64 0.0798 0.0001 0.0914 0.9073

WT∗ 221 3.00 0.0046 0.7740 0.1045

WT(1) 97 156 3.94 0.0000 0.0000

WT(5) 225 352 601 2.97 0.0000

WT(10) 325 437 600 548 2.44

Table 6 shows that the rank of a procedure improves steadily with increasing nsplit. The
modified Friedman test of equality of ranks rejects the null (p value < 0.00001) while the
Hochberg step-down procedure, which tests equality of weighted splitting to each of the other
methods, cannot reject the null hypothesis of performance equality between weighted and
randomized weighted splitting for nsplit = 10 at any reasonable FWER. This demonstrates
the effectiveness of nsplit-randomization. Table 7 displays the results from applying nsplit-
randomization to the classification analysis of Table 4. The results are similar to Table 6
(modified Friedman test p value < 0.00001; Hochberg step-down procedure did not reject
equality between weighted and randomized weighted for nsplit = 10).

Remark 5 For brevity we have presented results of nsplit-randomization only in the context
of weighted splitting, but we have observed that the properties of all our splitting rules remain
largely unaltered under randomization: randomized unweighted variance splitting maintains
a more aggressive ECP behavior, while randomized heavy weighted splitting does not exhibit
the ECP property at all.

5 Discussion

Of the various splitting rules considered, the class of weighted splitting rules, which possess
the ECP property, performed the best in our empirical studies. The ECP property, which is
the property of favoring edge-splits, is important because it conserves the sample size of a
parent node under a bad split. Bad splits generally occur for noisy variables but they can also
occur for strong variables (for example, the parent node may be in a region of the feature
space where the signal is low). On the other hand, non-edge splits are important when strong
signal is present. Good splitting rules therefore have the ECP behavior for noisy or weak
variables, but split away from the edge when there is strong signal.

Weighted splitting has this optimality property. In noisy scenarios it exhibits ECP ten-
dencies, but in the presence of signal, it can shut off ECP splitting. To understand how this
adaptivity arises, we found that optimal splits under weighted splitting occur in the contiguous
regions defined by the singularity points of the population optimization function �t —thus,
weighted splitting tracks the underlying true target function. To illustrate this point, we looked
carefully at �t for various functions, including polynomials and complex nonlinear func-
tions. Empirically, we observed that unweighted splitting is also adaptive, but it exhibits an
aggressive ECP behavior and requires a stronger signal to split away from an edge. How-
ever, in some instances this does lead to better performance. Thus, it is recommended to use
weighted splitting in RF analyses, but an unweighted splitting analysis could also be run and
the forest with the smallest test-set error retained as the final predictor. Restricted weighted
splitting in which splits are restricted from occurring at the edge, and hence which suppress
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ECP behavior, was generally found inferior to weighted splitting and is not recommended.
In general, rules which do not possess ECP behavior are not recommended.

Randomized adaptive splitting is an attractive compromise to deterministic (non-
randomized) splitting. It is computationally efficient and yet does not disrupt the adaptive
properties of a splitting rule. The ECP property can be guaranteed under fairly weak condi-
tions. Pure random splitting, however, is not recommended. Its lack of adaptivity and non-ECP
behavior yields inferior performance in almost all instances except large sample settings with
low dimensionality. Although large sample consistency and asymptotic properties of forests
have been investigated under the assumption of pure random splitting, these results show that
such studies mist be viewed only as a first (but important) step to understanding forests. The-
oretical analysis of forests under adaptive splitting rules is challenging, yet future theoretical
investigations which consider such rules are anticipated to yield deeper insight into forests.

While CART weighted variance splitting and Gini index splitting are known to be equiv-
alent (Wehenkel 1996), many RF users may not be aware of their interchangeability: our
work reveals both are examples of weighted splitting and therefore share similar properties
(in the case of two-class problems, they are equivalent). Related to this is work by Malley
et al. (2012) who considered probability machines, defined as learning machines which esti-
mate the conditional probability function for a binary outcome. They outlined advantages of
treating two-class data as a nonparametric regression problem rather than as a classification
problem. They described a RF regression method to estimate the conditional probability—an
example of a probability machine. In place of Gini index splitting they used weighted vari-
ance splitting and found performance of the modified RF procedure to compare favorably to
boosting, k-nearest neighbors, and bagged nearest neighbors. Our results which have shown
a connection between the two types of splitting rules sheds light on these findings.
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Appendix: Proofs

Proof of Theorem 1 Let Pε denote the measure for ε. By the assumed independence of X
and ε, the conditional distribution of (X, ε) given X ≤ s and X ∈ t is the product measure
PtL × Pε. Furthermore, for each Borel measurable set A, we have

PtL (A) = P{A, X ≤ s, X ∈ t}
P{X ≤ s, X ∈ t} = Pt {A, X ≤ s}

Pt {X ≤ s} =
∫

A∩[a,s]

Pt (dx)

Pt {X ≤ s} . (31)

Setting Y = f (X) + ε, it follows that

p(tL )�(tL ) = Pt {X ≤ s}Var(Y |X ≤ s, X ∈ t)

= Pt {X ≤ s}
[
E(Y 2|X ≤ s, X ∈ t) − E(Y |X ≤ s, X ∈ t)2

]

= Pt {X ≤ s}
∫∫

( f (x) + ε)2
PtL (dx) Pε(dε)

−Pt {X ≤ s}
(∫∫

( f (x) + ε) PtL (dx) Pε(dε)

)2
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=
∫ s∫

a

( f (x) + ε)2
Pt (dx) Pε(dε)

−
(
Pt {X ≤ s}

)−1

⎛

⎝
∫ s∫

a

( f (x) + ε) Pt (dx) Pε(dε)

⎞

⎠
2

,

where we have used (31) in the last line. Recall that E(ε) = 0 and E(ε2) = σ 2. Hence

∫ s∫

a

( f (x) + ε)2
Pt (dx) Pε(dε) =

s∫

a

f (x)2
Pt (dx) + σ 2

Pt {X ≤ s}

and

∫ s∫

a

( f (x) + ε) Pt (dx) Pε(dε) =
s∫

a

f (x) Pt (dx).

Using a similar argument for p(tR)�(tR), deduce that

D(s, t) =
b∫

a

f (x)2
Pt (dx) + σ 2 −

(
Pt {X ≤ s}

)−1

⎛

⎝
s∫

a

f (x) Pt (dx)

⎞

⎠
2

−
(
Pt {X > s}

)−1

⎛

⎝
b∫

s

f (x) Pt (dx)

⎞

⎠
2

. (32)

We seek to minimize D(s, t). However, if we drop the first two terms in (32), multiply by
−1, and rearrange the resulting expression, it suffices to maximize �t (s). We will take the
derivative of �t (s) with respect to s and find its roots. When taking the derivative, it will be
convenient to rexpress �t (s) as

�t (s) = Pt {X ≤ s}−1

⎛

⎝
s∫

a

f (x) Pt (dx)

⎞

⎠
2

+ Pt {X > s}−1

⎛

⎝
b∫

s

f (x) Pt (dx)

⎞

⎠
2

.

The assumption that f (s) is continuous ensures that the above integrals are continuous and
differentiable over s ∈ [a, b] by the fundamental theorem of calculus. Another application of
the fundamental theorem of calculus, making use of the assumption Pt has a continuous and
positive density, ensures that Pt {X ≤ s}−1 and Pt {X > s}−1 are continuous and differentiable
at any interior point s ∈ (a, b). It follows that �t (s) is continuous and differentiable for
s ∈ (a, b). Furthermore, by the dominated convergence theorem, �t (s) is continuous over
s ∈ [a, b].

Let h(s) denote the density for Pt . For s ∈ (a, b)

∂

∂s
�t (s) = 2 f (s)h(s)

s∫

a

f (x) PtL (dx) − h(s)

⎛

⎝
s∫

a

f (x) PtL (dx)

⎞

⎠
2

−2 f (s)h(s)

b∫

s

f (x) PtR (dx) + h(s)

⎛

⎝
b∫

s

f (x) PtR (dx)

⎞

⎠
2

.
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Keeping in mind our assumption h(s) > 0, the two possible solutions that make the above
derivative equal to zero are (5) and

s∫

a

f (x) PtL (dx) =
b∫

s

f (x) PtR (dx). (33)

Because �t (s) is a continuous function over a compact set [a, b], one of the solutions must
be the global maximizer of �t (s), or the global maximum occurs at the edges of t .

We will show that the maximizer for �t (s) cannot be s = a, s = b, or the solution to (33),
unless (33) holds for all s and �s(t) is constant. It follows by definition that

�t (a) = �t (b)

=
⎛

⎝
b∫

a

f (x) Pt (dx)

⎞

⎠
2

=
⎛

⎝Pt {X ≤ s}
s∫

a

f (x) PtL (dx) + Pt {X > s}
b∫

s

f (x) PtR (dx)

⎞

⎠
2

≤ �t (s),

where the last line holds for any a < s < b due to Jensen’s inequality. Moreover, the
inequality is strict with equality occurring only when (33) holds. Thus, the maximizer for
�t (s) is some a < s0 < b such that

∫ s0
a f (x) PtL (dx) 
= ∫ b

s0
f (x) PtR (dx), or �t (s) is a

constant function and (33) holds for all s. In the first case, s0 = ŝN . In the latter case, the
derivative of �t (s) must be zero for all s and (5) still holds, although it has no unique solution.

��

Proof of Theorem 2 Let X̃ , X1, . . . , X N be i.i.d. with distribution Pt . By the strong law of
large numbers

p̂(tL ) = 1

N

N∑

i=1

1{Xi ≤s}
a.s.→ P{X̃ ≤ s} = P{X ≤ s|X ∈ t}. (34)

Next we apply the strong law of large numbers to �̂(tL). First note that

E

(
1{X̃≤s}Y

2
)

=
∫ s∫

a

( f (x) + ε)2
Pt (dx) Pε(dε)

=
s∫

a

f (x)2
Pt (dx) + σ 2

Pt {X ≤ s}.

The right-hand side is finite because σ 2 < ∞ and f 2 is integrable (both by assumption). A
similar argument shows that E(1{X̃≤s}Y ) < ∞. Appealing once again to the strong law of
large numbers, deduce that for s ∈ (a, b)
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�̂(tL ) =
∑N

i=1 1{Xi ≤s}Y 2
i∑N

i=1 1{Xi ≤s}
−
(∑N

i=1 1{Xi ≤s}Yi∑N
i=1 1{Xi ≤s}

)2

a.s.→
E

(
1{X̃≤s}Y

2
)

P{X̃ ≤ s} −
⎛

⎝
E

(
1{X̃≤s}Y

)

P{X̃ ≤ s}

⎞

⎠
2

= E(Y 2|X ≤ s, X ∈ t) −
(
E(Y |X ≤ s, X ∈ t)

)2
,

where we have used that the denominators in the above expression are strictly positive by
our positivity assumption for Pt . Noting that the last line above equals Var(Y |X ≤ s, X ∈ t),
it follows that

p̂(tL)�̂(tL )
a.s.→ P{X ≤ s|X ∈ t}Var(Y |X ≤ s, X ∈ t).

The above convergence can be shown to be uniform on compact sets [a′, b′] ⊂ (a, b) by
appealing to a uniform law of large numbers. For example, the Glivenko-Cantelli theo-
rem immediately guarantees that convergence of (34) is uniform over [a, b]. See Chapter 2
of Pollard (1984) for background on uniform convergence of empirical measures. Applying
a symmetrical argument for the right daughter node tR , deduce that

D̂(s, t)
a.s.→ D(s, t), uniformly on compacta.

The minimizer of D(s, t) is equivalent to the maximizer of �t (s). The conclusion follows
by Theorem 2.7 of Kim and Pollard (1990) because �t has a unique global maximum (by
assumption) and ŝN = Op(1) (because a ≤ s ≤ b). ��
Proof of Theorem 3 By Theorem 1, and using the fact that Pt is a uniform distribution, the
global minimum to (3) is the solution to

2 f (s) = F(a, s) + F(s, b), (35)

where F(α, β) = ∫ β

α
f (x) dx/(β − α) for a ≤ α < β ≤ b. Multiply the right-hand side by

(s − a)(b − s), and substituting f (x) and solving, yields

(b − s)

⎛

⎝
q∑

j=0

c j

j + 1

(
s j+1 − a j+1)

⎞

⎠+ (s − a)

⎛

⎝
q∑

j=0

c j

j + 1

(
b j+1 − s j+1)

⎞

⎠ .

Divide by (s − a)(b − s). Deduce that the right-hand side is

q∑

j=0

a j c j

j + 1
(1 + · · · + u j ) +

q∑

j=0

b j c j

j + 1
(1 + · · · + v j ),

where u = s/a and v = s/b (if a = 0 the identity continues to hold under the convention
that 0 j/0 j = 1). With some rearrangement deduce (6).

To determine which solution from (35) minimizes (3), choose that value which maxi-
mizes (4). Algebraic manipulation allows one to express (4) as (7). ��
Proof of Theorem 4 The following is a slightly modified version of the proof given
in Breiman et al. (1984). We provide a proof not only for the convenience of the reader,
but also because parts of the proof will be reused later.
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To start, we first show there is no loss of generality in assuming E(Z1) = 0. Let Sm =∑m
i=1(Zi − μ) and S∗

m =∑N
i=m+1(Zi − μ) where μ = E(Z1). Then

ξN ,m = 1

m
(Sm + mμ)2 + 1

N − m

(
S∗

m + (N − m)μ
)2

= 1

m
S2

m + 1

N − m
S∗2

m + 2μ(Sm + S∗
m) + Nμ2

which is equivalent to maximizing

1

m
S2

m + 1

N − m
S∗2

m = 1

m

(
m∑

i=1

(Zi − μ)

)2

+ 1

N − m

(
N∑

i=m+1

(Zi − μ)

)2

.

Therefore, we can assume E(Z1) = 0. Hence, Sm = ∑m
i=1 Zi , S∗

m = ∑N
i=m+1 Zi and

ξN ,m = S2
m/m + S∗2

m /(N −m). Let C > 0 be an arbitrary constant. Kolmogorov’s inequality
asserts that for independent variables (Ui )1≤i≤n with E(Ui ) = 0

P

{
max

1≤m≤n

∣∣∣
∑

1≤i≤m

Ui

∣∣∣ ≥ C
}

≤ 1

C2

∑

1≤i≤n

E(U 2
i ).

Let σ 2 = E(Z2
1). Because Zi are independent with mean zero, deduce that

P

{
max

Nδ<m<N (1−δ)

(
τ S2

m

m

)
≥ σ 2

δC

}
≤ P

{
max

Nδ<m<N (1−δ)
S2

m ≥ Nδσ 2

τδC

}

≤ τC

Nσ 2

∑

1≤i≤N (1−δ)

E(Z2
i )

≤ τC.

Similarly,

P

{
max

Nδ<m<N (1−δ)

(
τ S∗2

m

N − m

)
≥ σ 2

δC

}
≤ τC

Nσ 2

∑

Nδ+1≤i≤N

E(Z2
i ) ≤ τC.

Therefore,

P

{
max

Nδ<m<N (1−δ)
τ ξN ,m ≥ 2σ 2

δC

}
≤ 2τC. (36)

Let Lm = √m log(log m). By the law of the iterated logarithm (LIL) (Hartman and Wintner
1941)

lim sup
m→∞

(
Sm

Lm

)2

= 2σ 2, almost surely,

which implies that for any 0 < θ < 2 and any integer m0 > 2

lim
N→∞ P

{
max

m0≤m≤Nδ

(
Sm

Lm

)2

> θσ 2
}

= 1.
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Hence for m0 chosen such that δC log(log m0) > 2/θ

lim
N→∞ P

{
max

1≤m≤Nδ
ξN ,m >

2σ 2

δC

}

≥ lim
N→∞ P

{
max

1≤m≤Nδ

(
S2

m

m

)
>

2σ 2

δC

}

≥ lim
N→∞ P

{
max

m0≤m≤Nδ

(
S2

m

m log(log(m0))

)
>

2σ 2

δC log(log(m0))

}

≥ lim
N→∞ P

{
max

m0≤m≤Nδ

(
Sm

Lm

)2

> θσ 2

}

= 1. (37)

Because C can be made arbitrarily small, deduce from (37) and (36) that (12) holds. A
symmetrical argument yields (13). ��

Proof of Theorem 6 We will assume E(Z1) = 0 and later show that the assumption holds
without loss of generality. Let σ 2 = E(Z2

1). With a little bit of rearrangement we obtain

−√
NζN ,m = −2

√
Nσ 2 + AN ,m + BN ,m

where

AN ,m =
√

N

m

m∑

i=1

Z̃i +
√

N

N − m

N∑

i=m+1

Z̃i ,

Z̃i = σ 2 − Z2
i are i.i.d. with mean zero, and

BN ,m =
√

N

m2

(
m∑

i=1

Zi

)2

+
√

N

(N − m)2

(
N∑

i=m+1

Zi

)2

.

We will maximize AN ,m + BN ,m which is equivalent to minimizing ζN ,m . This analysis will
reveal that BN ,m is uniformly smaller than AN ,m asymptotically. The desired result follows
from the asymptotic behavior of AN ,m .

We begin with BN ,m . We consider its behavior away from an edge. Let Sm = ∑m
i=1 Zi

and S∗
m =∑N

i=m+1 Zi . Arguing as in the proof of Theorem 4, we have for any C > 0

P

{
max

Nδ<m<N (1−δ)

(√
N S2

m

m2

)
≥ σ 2

δ2C

}
≤ δ2C

√
N

(Nδ)2σ 2

∑

1≤i≤N (1−δ)

E(Z2
i ) ≤ C√

N
.

Applying a similar argument for S∗2
m /(N − m)2, deduce that

P

{
max

Nδ<m<N (1−δ)
BN ,m ≥ 2σ 2

δ2C

}
≤ 2C√

N
.

Therefore we have established that

max
Nδ<m<N (1−δ)

BN ,m = Op(1/
√

N ). (38)
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Now consider AN ,m . We first consider its behavior away from an edge. Let σ̃ 2 = E(Z̃2
1),

which is finite by our assumption E(Z4
1) < ∞. Let S̃m = ∑m

i=1 Z̃i and S̃∗
m = ∑N

i=m+1 Z̃i .
Let C > 0 be an arbitrary constant. By Kolmogorov’s inequality

P

{
max

Nδ<m<N (1−δ)

(√
N S̃m

m

)
≥ σ̃

δC

}

≤ P

{
max

Nδ≤m<N (1−δ)
|S̃m | ≥

√
N σ̃

C

}

≤ C2 N (1 − δ)σ̃ 2

N σ̃ 2

≤ C2.

Using a similar argument for S̃∗
m/(N − m),

P

{
max

Nδ<m<N (1−δ)
AN ,m ≥ 2σ̃

δC

}
≤ 2C2. (39)

Now we consider the behavior of AN ,m near an edge. As in the proof of Theorem 4, let
Lm = √

m log(log m). Choose 0 < θ <
√

2 and let m0 > 2 be an arbitrary integer. Even
though S̃m can be negative, we can deduce from the LIL that for any sequence rm ≥ 1

lim
N→∞ P

{
max

m0≤m≤Nδ

(
rm S̃m

Lm

)
> θσ̃

}

≥ lim
N→∞ P

{
max

m0≤m≤Nδ

(
S̃m

Lm

)
> θσ̃

}

= 1. (40)

We will need a bound for the following quantity

�∗
N = max

m0≤m≤Nδ

(√
N |S̃∗

m |
N − m

)
.

By Kolmogorov’s inequality, for any constant K > 0,

P
{
�∗

N > K
} ≤ P

{
max

m0≤m<Nδ
|S̃∗

m | ≥ √
N (1 − δ)K

}

≤ Nδσ̃ 2

N (1 − δ)2 K 2

≤ 2σ̃ 2

K 2 . (41)

The following lower bounds hold:

P

{
max

1≤m≤Nδ
AN ,m >

2σ̃

δC

}

= P

{
max

1≤m≤Nδ

(√
N S̃m

m
+

√
N S̃∗

m

N − m

)
>

2σ̃

δC

}
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≥ P

{
max

m0≤m≤Nδ

(√
Nδ S̃m

ml0

)
−

√
δ�∗

N

l0
>

2σ̃

Cl0
√

δ

}
, l0 = √log(log m0)

≥ P

{{
max

m0≤m≤Nδ

(√
Nδ S̃m

ml0

)
≥

√
δ�∗

N

l0
+ 2σ̃

Cl0
√

δ

}
⋂ {

�∗
N ≤ K

}
}

≥ P

{
max

m0≤m≤Nδ

(√
Nδ S̃m

ml0

)
≥ K

√
δ

l0
+ 2σ̃

Cl0
√

δ

}
− P

{
�∗

N > K
}
. (42)

The last line follows from P(AB) = P(A) − P(ABc) ≥ P(A) − P(Bc) for any two sets A
and B. Choose m0 large enough so that

K
√

δ

l0
+ 2σ̃

Cl0
√

δ
= 1√

log(log m0)

[
K

√
δ + 2σ̃

C
√

δ

]
< θσ̃ .

Then the first term on the last line of (42) is bounded below by

P

{
max

m0≤m≤Nδ

(√
Nδ S̃m

ml0

)
> θσ̃

}

≥ P

{
max

m0≤m≤Nδ

(
S̃m√
ml0

)
> θσ̃

}
, because

√
m ≤ √

Nδ,

which converges to 1 due to (40) with rm = lm/ l0, where lm = √
log(log m). Meanwhile,

the second term on the last line of (42) can be made arbitrarily close to 0 by selecting K
large enough due to (41). Deduce that (42) can be made arbitrarily close to 1, and because C
can be made arbitrarily small, it follows from (39) and (42) that

lim
N→∞ P

{
max

1≤m≤Nδ

(
AN ,m + BN ,m

)
> max

Nδ<m<N (1−δ)
AN ,m

}

≥ lim
N→∞ P

{
max

1≤m≤Nδ
AN ,m > max

Nδ<m<N (1−δ)
AN ,m

}

= 1. (43)

The limits (16) and (17) follow by combining results from above. To prove (16), note
by (38) we have

max
Nδ<m<N (1−δ)

(
AN ,m + BN ,m

) ≤ max
Nδ<m<N (1−δ)

AN ,m + max
Nδ<m<N (1−δ)

BN ,m

= max
Nδ<m<N (1−δ)

AN ,m + op(1).

Combining this with (43) yields (16). The limit (17) follows by symmetry. Therefore, this
concludes the proof under the assumption E(Z1) = 0. To show such an assumption holds
without loss of generality, let μ = E(Z1) and define

Sm =
m∑

i=1

(Zi − μ), S∗
m =

N∑

i=m+1

(Zi − μ), Tm =
m∑

i=1

(Zi − μ)2, T ∗
m =

N∑

i=m+1

(Zi −μ)2.
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Rewrite ζN ,m as follows

ζN ,m = 1

m

m∑

i=1

(Zi − μ + μ)2 + 1

N − m

N∑

i=m+1

(Zi − μ + μ)2

− 1

m2

(
m∑

i=1

(Zi − μ) + mμ

)2

− 1

(N − m)2

(
N∑

i=m+1

(Zi − μ) + (N − m)μ

)2

.

Simplifying, it follows that

ζN ,m = 1

m
Tm + 1

N − m
T ∗

m − 1

m2 S2
m − 1

(N − m)2 S∗2
m

and therefore μ = 0 can be assumed without loss of generality. ��

Proof of Theorem 7 We can assume without loss of generality that E(Z1) = 0 (the proof is
similar to the proof used for Theorem 6 given above). Let σ 2 = E(Z2

1). Some rearrangement
yields

− 1

N
ϕN ,m + Nσ 2 = AN ,m + BN ,m + CN ,m

where AN ,m = −σ 2(m2 + (N − m)2)/N + Nσ 2,

BN ,m = m

N

m∑

i=1

Z̃i + N − m

N

N∑

i=m+1

Z̃i ,

Z̃i = σ 2 − Z2
i are i.i.d. with mean zero and finite variance σ̃ 2 = E(Z̃2

1) (finiteness holds by
our assumption of a fourth moment), and

CN ,m = 1

N

(
m∑

i=1

Zi

)2

+ 1

N

(
N∑

i=m+1

Zi

)2

.

In place of minimizing ϕN ,m we will maximize AN ,m + BN ,m + CN ,m . We will show that
AN ,m is the dominant term by showing

max
N/2−1≤m≤N/2+1

AN ,m � max
1≤m≤N

|BN ,m | + max
1≤m≤N

CN ,m .

The result will follow from the asymptotic behavior of AN ,m .
For brevity we only provide a sketch of the proof since many of the technical details are

similar to that used in the proof of Theorem 6. We start with a bound for CN ,m . By the LIL

max
1≤m≤N

1

N

(
m∑

i=1

Zi

)2

≤ max
1≤m≤N

(
1√
m

m∑

i=1

Zi

)2

� 2σ 2 log(log N ), almost surely.

A similar analysis for the second term in CN ,m , yields

max
1≤m≤N

CN ,m ≤ Op (log(log N )) .
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Now we bound BN ,m . Applying the LIL

max
1≤m≤N

(
m

N

m∑

i=1

Z̃i

)
≤ √

N max
1≤m≤N

∣∣∣∣∣
1√
m

m∑

i=1

Z̃i

∣∣∣∣∣

�
√

2σ̃ 2 N log(log N ), almost surely.

Applying a similar analysis for the second term in BN ,m , deduce that

max
1≤m≤N

|BN ,m | ≤ Op

(√
N log(log N )

)
.

To complete the proof we show that AN ,m is the dominating term. Collecting terms,

N

σ 2 AN ,m = −2(m − N/2)2 + N 2/2.

The function g(m) = −2(m − N/2)2 is concave (quadratic) in m with a unique maximum
at m = N/2. Furthermore,

AN ,N/2 = Nσ 2

2
.

Thus, AN ,N/2 � maxm |BN ,m | + maxm CN ,m is the dominating term. Because the optimal
split point must be an integer, its value lies in the range m ∈ [N/2−1, N/2+1]. Deduce (20)
and (21). ��
Proof of Theorem 8 For each measurable set A

P{Y = 1|X ∈ A, X ∈ t} = P{Y = 1, X ∈ A, X ∈ t}
P{X ∈ A, X ∈ t}

=
PX

[
1{X∈A,X∈t}PY |X 1{Y=1}

]

P{X ∈ A, X ∈ t}

=
PX

[
1{X∈A,X∈t}φ(X)

]

P{X ∈ A, X ∈ t}

=
Pt

[
1{X∈A}φ(X)

]

Pt {X ∈ A} .

Because φ1(tL)(1 − φ1(tL)) = φ2(tL)(1 − φ2(tL)), it follows that

1

2
p(tL )
(tL )

= Pt {X ≤ s}φ1(tL)(1 − φ1(tL))

= Pt {X ≤ s}
[
P{Y = 1|X ≤ s, X ∈ t} −

(
P{Y = 1|X ≤ s, X ∈ t}

)2]

= Pt {X ≤ s}
⎡

⎢⎣
Pt

[
1{X≤s}φ(X)

]

Pt {X ≤ s} −
⎛

⎝
Pt

[
1{X≤s}φ(X)

]

Pt {X ≤ s}

⎞

⎠
2⎤

⎥⎦

=
s∫

a

φ(x) Pt (dx) −
(
Pt {X ≤ s}

)−1

⎛

⎝
s∫

a

φ(x) Pt (dx)

⎞

⎠
2

.
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Using a similar argument for p(tR)
(tR), deduce that

1

2
G(s, t) =

b∫

a

φ(x)Pt (dx) −
(
Pt {X ≤ s}

)−1

⎛

⎝
s∫

a

φ(x) Pt (dx)

⎞

⎠
2

−
(
Pt {X > s}

)−1

⎛

⎝
b∫

s

φ(x) Pt (dx)

⎞

⎠
2

. (44)

Notice that this has a similar form to (32) with φ(x) playing the role of f (x) (the first term
on the right of (44) and the first two terms on the right of (32) play no role). Indeed, we can
simply follow the remainder of the proof of Theorem 1 to deduce the result. ��
Proof of Theorem 10 The proof is nearly identical to Theorem 4 except for the modifications
required to deal with triangular arrays. Assume without loss of generality that E(Zi ) = 0.
Let σ 2 = E(Z2

i ), Sm = ∑m
i=1 Z N ,i and S∗

m = ∑RN
i=m+1 Z N ,i . Splits away from an edge are

handled as in Theorem 4 with Z N ,i substituted for Zi and RN substituted for N . It follows
for any constant C > 0

P

{
max

RN δ<m<RN (1−δ)
τ ξ r

N ,m ≥ 2σ 2

δC

}
≤ 2τC. (45)

Now we consider the contribution of a split from a left edge split. To do so, we make use of
a LIL for weighted sums. We use Theorem 1 of Lai and Wei (1982). Using their notation,
we write SN = ∑∞

i=−∞ aN ,i Zi , where aN ,i = 1 for i ∈ IN , and aN ,i = 0 otherwise. The
values aN ,i comprise a double array of constants {aN ,i : N ≥ 1,−∞ < i < ∞}. By part
(iii) of Theorem 1 of Lai and Wei (1982), for any 0 < θ < 2

lim sup
N→∞

S2
N

AN log(log AN )
> θσ 2, almost surely,

where AN = ∑∞
i=−∞ a2

N ,i = RN → ∞. Now arguing as in the proof of Theorem 4, this
implies

lim
N→∞ P

{
max

1≤m≤RN δ
ξ r

N ,m >
2σ 2

δC

}
= 1. (46)

Because C can be made arbitrarily small, deduce from (46) and (45) that (29) holds. The
limit (30) for a right-edge split follows by symmetry. ��
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