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Abstract This paper introduces information-theoretic measure of complexity (ICOMP) cri-
terion for model selection in multivariate adaptive regression splines (MARS) to tradeoff
efficiently between how well the model fits the data and the model complexity. As is well
known, MARS is a popular nonparametric regression technique used to study the nonlinear
relationship between a response variable and the set of predictors with the help of piecewise
linear or cubic splines as basis functions. A critical aspect in determining the form of the
nonparametric regression model during the MARS strategy is the evaluation of portfolio of
submodels to select the best submodel with the appropriate number of knots over subset of
predictors. In the usual regression modeling, when a large number of predictor variables are
present in the model, and there is no precise information about the exact functional rela-
tionships among the variables, many model selection criteria still overfit the model. In this
paper, to find the simplest model that balances the overfitting and underfitting for the model,
ICOMP is proposed as a powerful model selection criterion for MARS modeling. Here, the
model complexity is treated with respect to the interdependency of parameter estimates, as
well as the number of free parameters in the model. We develop and study the performance
of ICOMP along with several most popular model selection criteria such as Akaike’s infor-
mation criterion, Schwarz’s Bayesian information criterion and generalized cross-validation
inMARSmodeling to select the best subset models. We provide twoMonte Carlo simulation
examples and a real benchmark example to demonstrate the utility and versatility of the pro-
posed model selection approach to determine best functional form of the predictive model.
Our numerical examples show that ICOMP provides a general model selection criterion with
an insight to the interdependencies and/or correlational structure between parameter esti-
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mates in the selected model. This new approach can also be applicable to many complex
statistical modeling problems.

Keywords Model selection · Multivariate adaptive regression Splines (MARS) ·
Nonparametric regression · Information complexity

1 Introduction

In high dimensional data modeling, multivariate adaptive regression splines (MARS) is a
popular nonparametric regression technique used to study the nonlinear relationship between
a response variable and the set of predictor variables with the help of splines. MARS uses
piecewise linear or cubic splines for local fit and applies an adaptive procedure to select
the final model. MARS can be viewed as a generalization of stepwise linear regression or
modification of the classification and regression trees (CART) to improve further CART’s
performance in the regression modeling (Friedman 1991).

In passing, we note that the underlying idea of MARS modeling appears to be similar to
the group method of data handling (GMDH) which is a combinatorial heuristic, developed
by Ivakhnenko dating back to 1966 (Ivakhnenko 1966), a Ukrainian cyberneticist, which
constructs a mathematical model of a system in an evolutionary fashion. The algorithm is
designed to model the functional relationship between the response and predictor variables
which are learned directly from a self-organization of the data. It constructs high order
regression type models beginning with a few basic quadratic equations and constructing a
high-order polynomial of the Kolmogorov–Gabor type. The difference between MARS and
GMDH is that, MARS uses piecewise linear or cubic splines instead of quadratic polynomi-
als in several variables. For more on GMDH, we refer the readers to Ivakhnenko (1966) and
Hild and Bozdogan (1995).

The popularity of MARS as a nonparametric modeling tool can be seen in its successful
applications inmany cross-disciplinary fields such as inmedical research in detecting disease-
risk relationship differences among gender subgroups (York et al. 2006), in studies of HIV
reverse transcriptase inhibitors (Xu et al. 2004), in breast cancer diagnosis (Chou et al. 2004);
in business in mining the customer credit (Lee et al. 2006), and in intrusion detection systems
(Mukkamala et al. 2006); in molecular biology in chromatographic retention prediction of
peptides (Put and Vander Heyden 2007), and many others, to mention a few.

In terms ofmost recent newalgorithmic developments on the performance ofMARS, in the
literature, we see the uses of genetic algorithm for knot selection in Pitmann and McCulloch
(2002). In the study of Weber et al. (2012), MARS algorithm is modified by introducing
penalized residual sum of squares, and the problem is solved as Tikhonov regularization
problemwith conic quadratic optimization (Weber et al. 2012). In the studies of Yazici (2011)
and Ozmen et al. (2011), the complexity of the method proposed in Weber et al. (2012) is
reduced by bootsrapping and the capability of the method is enhanced to handle random
input and output variables by robust method, respectively. Further, a time efficient forward
selection procedure is proposed in Kartal Koc and Iyigun (2013) for MARS modeling.

A critical aspect in determining the form of the non-parametric regression model during
the MARS strategy is the evaluation of submodels to select the best one with proper number
of knots over the best subset of predictors. In themodel fitting process, the function estimation
is basically generated via a two-step procedure: forward selection and backward elimination.
At each forward step, a candidate term (spline function) that most improves the overall
’goodness-of-fit’ of the fitted model is added to the model. As discussed in Friedman (1991),
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at the end of this step there may be model terms that no longer sufficiently contributes to
the model fit. Thus, by a backward step, the candidate term that least degrades the overall
’goodness-of-fit’ of the fitted model is eliminated from the model. In this respect, evaluation
and selection of relevant subset of predictor variables with corresponding proper knots are
the main concern of MARS to reduce the curse of dimensionality.

The problem of selecting the best spline functions, which are treated as the inputs, in
MARS is solved by Friedman through a stepwise procedure using the modified generalized
cross-validation (GCV) (not accounting for the selection bias) of Craven and Wahba (1979).
Although Friedman avoids the overfitting problem in MARS by the modified GCV, in the lit-
erature, questions have been raised whether the modified GCV criterion is the ’best’ criterion
for model selection in the MARS algorithm.

In the literature, initially Stevens (1991) appears to be the first to apply Akaike’s informa-
tion criterion (AIC) (Akaike 1974), AIC’s modification (Akaike 1979), Schwarz Bayesian
criterion (SBC) (Schwarz 1978), Amemiya’s prediction criterion (PC) (Amemiya 1980)
including modified GCV in MARS for modeling the univariate and semi-multivariate time
series systems. Although, these criteria are specifically designed for model selection and not
just for the estimation of risk as stated in Barron and Xiao (1991), in regression modeling,
when a large number of predictor variables are presented to the model, and there is no precise
information about the exact relationships among the variables, such criteria still overfit the
model. In addition, the complexity of a model increases as the number of independent and
adjustable parameters (i.e., effective degrees of freedom of the model) increase. Accord-
ing to the qualitative principle of Occam’s Razor, we need to find the simplest model that
judiciously balances overfitting and under-fitting of the model. To achieve this in MARS,
our major objective is to introduce and develop for the first time Bozdogan’s information-
theoretic measure of complexity (ICOMP) criterion (“I” for information and “COMP” for
complexity) (Bozdogan 1988, 1990, 1994, 2000) within the MARS modeling framework .

In contrast to AIC-based information criteria, ICOMP approximates sum of two Kull-
back and Leibler (1951) distances that measures the lack of fit of the model and the model
complexity in one criterion function using an entropic measure of the estimated covariance
matrix of themodel parameters. In this sense, the concept ofmodel complexity here takes into
account not only the number of free parameters in the model but also the interdependency
of parameter estimates. Hence, a general model selection criterion with an insight to the
correlational structure between parameter estimates in the selected model can be provided
by ICOMP. Using ICOMP, also a better tradeoff between how well the model fits the data
and the model complexity is achieved for MARS modeling. In addition, our objective also is
to carry out a comprehensive Monte Carlo simulation study to compare the performance of
the model selection criteria such as ICOMP, AIC, SBC, and GCV in MARS modeling which
to our knowledge does not exist in the literature.

This paper is organized as follows. In Sect. 2, requisite background on MARS modeling
and GCV criterion are given. Section 3 provides analytical derived forms of ICOMP based
on the estimated inverse Fisher information matrix (IFIM) and the estimated posterior utility
form of ICOMP along with the derived forms of AIC and SBC in MARS modeling. As an
alternative to Tikhonov regularization, in this section we introduce a new and novel smoothed
(or robust) covariance estimation procedures to resolve the problem of ill-conditioned model
covariance matrices in MARS modeling and also use an eigenvalue stabilization method
given in Thomaz (2004). In Sect. 4, performances of the model selection criteria in selecting
the best subset of models are shown and studied via two Monte Carlo simulations, and on a
real dataset to predict the body fat in obesity studies. Section 5 concludes the paper with a
discussion and provides future directions in MARS modeling research.
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Fig. 1 The forms of BFs in MARS

2 Multivariate adaptive regression splines

MARS is developed by Friedman (1991) as a nonparametric regression technique to approx-
imate a general type of model,

y = f (x) + ε, (1)

where, ε indicates the error term, x = (x1, x2, . . . , xp)T denotes the p number of predictor
variables, and y is a response variable.

To approximate the nonlinear relationship between predictor variables, x and response
variable, y, a flexible model estimate is provided using piecewise linear basis functions (BFs)
of the form,

(x − t)+ =
{
x − t, if x > t

0 otherwise
and (t − x)+ =

{
t − x, if x < t

0 otherwise

where, the “+” means positive part.
As an example for univariate variable, x , the piecewise linear BFs (also called reflected

pairs) for t = 0.5 are shown in Fig. 1, where t denotes the knot point (or breaking point).
The idea ofMARS is to form reflected pairs for each predictor variable, x j , j ∈ {1, . . . , p}

with knots at each observed value, xi j , i ∈ {1, . . . , n} of that variable, where n is the sample
size. For the example given in Fig. 1, two other possible BFswith knots at t = 0.2 and t = 0.8
are displayed by shadow lines. The set of all possible reflected pairs with the corresponding
knots, therefore, can be expressed by the set S in (2).

S = {(x j − t)+, (t − x j )+| t ∈ {x1 j , x2 j , . . . , xnj }, j ∈ {1, . . . , p}}. (2)

The model building strategy of MARS is similar to the one developed in classical linear
regression. However, instead of the original predictor variables, MARS uses the functions in
set S or their products. The form of the MARS model defined to approximate the function
in (1) is defined as

f (x) = β0 +
M∑

m=1

βm Bm(x), (3)

where, Bm(x) represents a BF from set S or product of two or more such functions, and M
is the number of BFs in the current model (Friedman 1991; Friedman and Silverman 1989).

For multiple variable cases, the expression Bm(x) in (3) can also incorporate interactions
between predictors. The interaction terms are created in MARS by multiplying an existing
BF with a truncated linear function involving a new variable. Hence, product of two BFs
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Fig. 2 Two-way interactions BFs

produces a result which is nonzero only over the space of predictors where both components
are nonzero. In Fig. 2, the form of the function B(x1,x2) resulted from the multiplication of
two piecewise linear functions (x1 + 0.5)+ and (x2 + 1)+ is illustrated.

An example of MARS models built by piecewise linear and cubic splines for a two-
dimensional noise-free function given by

y = f (x1, x2) = sin(2πx1) cos(1.25πx2) (4)

are shown in Fig. 3a, b, respectively. The regression surface is build by using only nonzero
components which locally obtained from the product of two BFs only when they are needed
(Hastie et al. 2001).

2.1 Traditional model selection in MARS with GCV

MARS builds a model by searching over all combinations of the variables and all values of
each variable as the candidate knots through an adaptive procedure including a two-stage
process: forward selection and backward elimination.

In the forward step, the algorithm starts with a model consisting of intercept term, β0 and
then the reflected pairs that give the maximum reduction in sum-of-squares residual error are
added to the model iteratively until the maximum number of terms specified by the user is
reached. Each newBF consists of a term already in themodel multiplied with a new truncated
linear function. At the end of this step, a large model typically overfitting the data is obtained.
Figure 4a illustrates a simple example of how MARS would attempt to fit data during the
forward step in a two dimension space using piecewise linear regression splines.

Following the forward-step, a backward elimination is implemented to refine the model
fitting process. In this pruning step, the BFs contributing less to the model are eliminated step
by step through modified GCV (Craven and Wahba 1979) until the best submodel is found.
GCV depends on the idea of minimizing the average-squared residuals of the fit of the model
given by

GCV (M) = 1

n

∑n
i=1

(
yi − f̂M (xi )

)2
(1 − P(M)∗/n)2

, (5)
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Fig. 3 The plots of the piecewise linear and cubic types of MARS models. a Piecewise linear approximation,
b Piecewise cubic approximation
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Fig. 4 Examples of MARS models fitted after forward and backward steps. a Forward-step model, b
backward-step model

where, yi is the ith observed response value; f̂M (xi ) is the fitted response value obtained for
the ith observed predictor vector, xi = (xi1, . . . , xip)T , i = (1, .., n), n is the number of
observations, and M represents the maximum number of BFs in the model.

In general, P(M) is calculated by

P(M) = trace
(
B(BTB)−1BT

)
+ 1 (6)

and it represents the cost penalty measure of a model, when there are M BFs in the model
(Friedman 1991). In (6), B denotes the matrix of BFs with dimension M × n.

Further, P(M) in (6) represents the effective number of parameters which is a penalty
measure for complexity. A modified form of P(M) is used in the current MARS algorithm
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which is P(M)∗ = P(M) + dM , where M is the number non-constant BFs in the MARS
model. Note that, for an additive model, d is taken to be two, while it is taken to be three for
an interaction model (Friedman 1991; Hastie et al. 2001). If the value of P(M) is small, a
large model including too many BFs is built. Otherwise, a smaller model is obtained. For a
simple model with less lack-of-fit, the model with minimum GCV is chosen.

Figure 4b gives an example for a fitted model obtained after a backward step. As it is seen,
the models obtained by the backward elimination step are smooth that keeps the fidelity of
the data.

Friedman (1991) provides valuable insights into the use of GCV criterion for various
types of MARS modeling. However, the criterion does not consider the complexity in terms
of correlation within the model parameters.

3 ICOMP: a new information theoretic model selection criterion

In recent years, the statistical literature has placed more and more emphasis on information-
based model selection and evaluation criteria. The necessity of introducing the concept of
model evaluation has been recognized as one of the important technical areas, and the prob-
lem is posed on the choice of the best approximating model among a class of competing
models by a suitable model evaluation criteria given a data set. Several of the popular model
selection criteria have its underpinning to statistical information theory. They are based on
the estimation of Kullback-Leibler information in high dimensions as a loss function (Kull-
back and Leibler 1951; Kullback 1968). The objective of information-based model selection
criteria are to select a model that best incorporates the inference uncertainty (i.e., a measure
of the lack-of-fit or badness-of-fit of the model) and parametric uncertainty (i.e., a measure
of model parsimony and complexity).

Recently, based on Akaike’s original AIC (Akaike 1973), many model-selection proce-
dures which take the form of a penalized likelihood (a negative log likelihood plus a penalty
term) have been proposed (Sclove 1987). For example, for AIC this form is given by

AIC(k) = −2logL(θ̂k) + 2k, (7)

where, L(θ̂k) is the maximized likelihood function, θ̂k is the maximum likelihood estimate
of the parameter vector θk , and k is the number of independent parameters estimated. The
first term in (7), −2logL(θ̂k) is a measure of lack of fit, and 2k is the penalty term for the
number of free parameters estimated in the model.

In AIC, a compromise takes place between the measure of lack-of-fit, and the number of
parameters, which is considered as a measure of complexity that compensates for the bias
in the lack-of-fit. The model with minimum AIC value is chosen as the best model to fit the
data.

The use of AIC as a model selection criterion is popular because of its simplicity. How-
ever, it is well-known that in the context of complex modeling situations, AIC overfits the
model order. In response to the over-fitting phenomenon in model selection, Schwarz (1978)
introduced a Bayesian model selection criterion, abbreviated as SBC, assuming the data are
generated from an exponential family of distributions. Independently, Rissanen (1978) intro-
duced his minimum description length (MDL) criterion which takes the same form as SBC
both defined as

MDL/SBC(k) = −2logL(θ̂k) + klog(n). (8)
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Comparing with AIC, the SBC in (8) increases the penalty for adding additional terms to
the model by a factor of (1/2)ln(n). In general, the model with minimum SBC or MDL is
chosen as the best model to fit the data.

The development of ICOMP has beenmotivated in part by AIC, and in part by information
complexity concepts and indices. In contrast to AIC, the new ICOMP procedure is based on
the structural complexity of an element or set of random vectors via a generalization of the
information-based covariance complexity index of Van Emden (1971).

A rationale for ICOMP as a model selection criterion is that it combines a badness-of-fit
term (such as minus twice the maximum log likelihood) with a measure of complexity of
a model differently than AIC, or its variants, by taking into account the interdependencies
of the parameter estimates as well as the dependencies of the model residuals. The general
form of ICOMP is based on the quantification of the concept of overall model complexity in
terms of the estimated inverse-Fisher information matrix (IFIM). This approach results in an
approximation to the sum of two Kullback-Leibler distances Kullback and Leibler (1951).

In contrast to AIC and SBC, ICOMP is designed to estimate a loss function given by
Bozdogan (2004) as

Loss = Lack of Fit + Lack of Parsimony + Lack of Complexity (9)

This is achieved by using the additivity property of information theory and the entropic
developments in Rissanen (1976) in his final estimation criterion (FEC) in estimation and
model identification problems, as well as AIC (Akaike 1973) and its analytical extensions
in Bozdogan (1987). In the loss function in (9), by the third term, profusion of complexity,
we mean the interdependencies or the correlations among the parameter estimates and the
random error term of a model.

We define the general form of ICOMP as

ICOMP(k) = −2logL(θ̂k) + 2C
(
�̂model

)
, (10)

where L(θ̂k) is the maximized likelihood function, θ̂k is the maximum likelihood estimate
of the parameter vector θk , and C represents a real-valued complexity measure. In (10),
�̂model = Ĉov(θ̂) represents the estimated covariance matrix of the parameter vector of
the model. This covariance matrix can be estimated in several ways, one of which uses
celebrated Cramer-Rao lower bound (CRLB) matrix. The form of the estimated inverse
Fisher information matrix (IFIM) of the model is obtained from

F̂−1 =
{
−E

(
∂2logL(θ)

∂θ∂θ
′

)
θ̂

}−1

. (11)

In (11), the expression in bracket is the matrix of second partial derivatives of the log-
likelihood function of the fitted model evaluated at the maximum likelihood estimators. For
more on IFIM, we refer the readers to Cramér (1946) and Rao (1945, 1947, 1948). By the
estimated IFIM, an inherent measure of uncertainty or a precise measure of accuracy of the
parameterswhich is estimated from the available data can be provided. The diagonal elements
of IFIM contain the estimated variance of the estimated parameters, while the corresponding
off-diagonals contain their covariances. Thus, ICOMP provides a universal criterion with
IFIM which takes into account the entire parameter space of the model.

There are several forms and justifications of ICOMP based on (10) discussed in Bozdogan
(1988, 1990, 2000, 2004, 2010) and Bozdogan and Bearse (1998). Here, we present only
two of the general forms of ICOMP to be used in MARS modeling and show their derived
analytical forms in the next section.
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3.1 ICOMP based on estimated inverse Fisher information matrix (IFIM)

For a multivariate normal linear or nonlinear structural model, based on IFIM, ICOMP in
(10) is defined as

ICOMP(IFIM) = −2logL(θ̂k) + 2C1

(
F̂−1(θ̂k)

)
, (12)

where, C1 denotes the maximal entropic complexity of the estimated IFIM, given by

C1(F̂−1) = s

2
log

[
tr(F̂−1)

s

]
− 1

2
log|F̂−1|. (13)

In (13), s refers to the dimension or the rank of F̂−1.
After some work, for a MARS model under the consideration that the random noise is

normally distributed, the estimated IFIM is obtained as

Ĉov(β̂, σ̂ 2) = F̂−1 =
[

σ̂ 2(B ′B)−1 0

0 2σ̂ 4

n

]
, (14)

where

β̂ = (B ′B)−1(B ′y) and σ̂
2 = (y − Bβ̂)′(y − Bβ̂)

n
.

Using the definition in (12), ICOMP(IFIM) becomes

ICOMP(IFIM) = nln(2π) + nln(σ̂ 2) + n + 2C1(F̂−1(θ̂M )), (15)

where, the C1 complexity is given by

C1(F̂−1(θ̂M )) = (M + 1)log

[
tr σ̂ 2(B ′B)−1 + 2σ̂ 4

n

M + 1

]
− log|σ̂ 2(B ′B)−1| − log

(
2σ̂ 4

n

)
.

(16)
In (14), as the number of free parameters increases (i.e. as the size of B increases), the
error variance σ̂ 2 gets smaller even though the complexity gets larger. Also, as σ̂ 2 increases,
(B ′B)−1 decreases. Therefore, the use ofC1(F̂−1(θ̂M )) in information-theoretic model eval-
uation criteria achieves a trade-off between these two extremes and guards against the pres-
ence of multicollinearity. With ICOMP(IFIM), complexity is defined as the measure of the
interaction or the dependency between its components. Hence, ICOMP(IFIM) provides a
more judicious penalty term than AIC and SBC, and chooses simple models that provide
more accurate and efficient parameter estimates over more complex models.

3.2 ICOMP as an estimate of posterior expected utility

By introducing some utility functions for both the lack of fit component of the model and the
complexity of the parameters space of the model, a new class of ICOMP(IFIM) criteria are
developed as aBayesian criterion inmaximizing aposterior expectedutility (PEU) (Bozdogan
and Haughton 1998; Bozdogan 2010). The idea of using two utility functionsU1 andU2 that
are multiplied to define a utility U whose posterior expectation is maximized to select a
model is also considered by Poskitt (1987) and others. Poskitt defines log(U1) = K L , where
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KL is Kullbrack-Liebler information, and it is considered as utility function bymany authors.
See Chaloner and Verdinelli (1995) for more details.

In this paper, a version of ICOMP(IFIM) derived from the multiplication of the utilityU1

by a utility U2 equal to

U2 = exp

[
−k

2
log(n) − C1(F̂−1)

]
(17)

is used. With the choice of these utility functions, a more consistent ICOMP(IFIM) criterion
whose formulation given in (18) is proposed and used in MARS modeling. This criterion
provides a severe penalization for the overparametrization. Thus, simplest MARSmodels are
chosen whenever there is nothing to be lost by doing so. This is very crucial for determining
the nonlinear relationship between inputs and output variables with high multicollinearity.

ICOMP(IFIM)PEU = −2logL(θ̂k) + k(1 + log(n)) + 2C1

(
F̂−1(θ̂k)

)
, (18)

3.3 Robust covariance estimation

In regression modeling, covariance matrices of the parameter estimates can often be ill-
conditioned. That is, singularity occurs and that the condition number becomes very large.
This is especially valid in the case of high multicollinearity between predictors, and that fact
is usually indispensable in MARS modeling. To remedy the manifestation of the singular
solutions, as an alternative to Tikhonov regularization (Taylan et al. 2010), we propose a new
regularization of the covariance matrix of the parameter estimates in MARS modeling by
adjusting the eigenvalues of the estimated covariance matrix, �̂ given by

�∗ = �̂ + α Ip, (19)

where, Ip is the p dimensional identity matrix. This is often called the “naive” ridge regu-
larization.

Usually, the ridge parameter, α, is chosen to be very small. For different ridge parameters,
many smoothed (or robust) covariance estimators have been developed as a way to data-
adaptively improve ill-conditioned and/or singular covariance matrix in MARS. Several of
these smoothed covariance estimators perturb the diagonals, and hence, the eigenvalues
enough to achieve well-conditioned covariance matrix. In this study, we propose to use
Maximum Likelihood/ Empirical Bayes (MLE/EB) given in (20), Stipulated Ridge (SRE)
(Shurygin 1983) given in (21), and Thomaz Stabilization method (Thomaz 2004) given in
(23).

MLE/EB:

�̂MLE/EB = �̂ + p − 1

ntr(�̂)
Ip, (20)

SRE:
�̂SRE = �̂ + p(p − 1)(2ntr(�̂)−1 Ip (21)

Thomaz Stabilization:
�̂Thomaz = V
∗V, (22)
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Fig. 5 MARS fits obtained by different model selection criteria

where,


∗ =

⎡
⎢⎢⎢⎢⎢⎣

max(λ1,λ̄) 0 · · · 0
0 max(λ2,λ̄) · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · max(λp,λ̄)

⎤
⎥⎥⎥⎥⎥⎦ (23)

where λi is the ith eigenvalue, λ̄ is the arithmetic mean of the eigenvalues, and V is the matrix
of eigenvalues.

4 Numerical examples

In this section, ICOMP(IFIM)PEU criterion given in (18) is implemented forMARSmodeling,
and its performance on best subset of variable selection is compared with that of GCV, AIC
and SBC criteria using Monte Carlo simulations. We also show our results on a real dataset
to predict body fat in obesity studies. As mentioned before, model selection criterion has an
important effect on the selection of proper knots and influential variables over the response
variable. In Fig. 5, we illustrate how different models can be fitted by using different model
selection criteria. Since the selected number and locations of knots are different over the same
variables, different forms ofMARSmodels may be obtained for the same underlying dataset.
Because of this fact, MARS modeling is studied under the model selection framework. It
is note that, the model selection criteria studied in this paper are implemented to MARS
algorithm using ARESLab (Jekabsons 2011) toolbox written entirely in MATLAB(R) (2010)
environment. This toolbox uses the main functionality of MARS technique described by
Friedman (1991).

To carry out a subset selection of variables, two Monte Carlo simulation protocols are
implemented. The first protocol includes a nonlinear functional form between predictors and
response, while the second simulation protocol refers collinear variable structure. MARS
models are built for 100 different datasets generated using the same function in each pro-
tocol. To provide some insight regarding the importance of variables as predictors over the
dependent variable, and to see whether the true model can be selected or not, the final MARS
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model fit is analyzed by ANOVA decomposition form given in (24).

f̂ (x) = β0 +
∑
km=1

βm Bm(xi ) +
∑
km=2

βm Bm(xi , x j )

+
∑
km=3

βm Bm(xi , x j , xk) + · · · (24)

MARS refits the model after removing all terms involving the variable to be assessed and cal-
culates the reduction in goodness of fit. All variables are then ranked according to their impact
on goodness of fit. By the ANOVA decomposition in (24), it is possible to identify which
variables enter to the model, whether they are purely additive, or are involved in interactions
with other variables. In (24), the first term in ANOVA decomposition represents only the
main effects, while the second and third terms reflect two-way and three-way interactions,
respectively. The other terms denotes four-way interaction terms or etc. For each MARS
model, the resulting ANOVA decomposition is examined to see whether the correct subset
of models can be selected or not. Furthermore, the prediction and accuracy performances of
the final models selected by each criterion are evaluated using the measures such as mean
squared error (MSE) including residual sum of squares and number of terms in the model
and multiple coefficient of determination (R2).

4.1 Monte Carlo simulation: example 1

In over first Monte Carlo simulation study, the performance of ICOMP(IFIM)PEU criteria is
demonstrated on a simulated dataset using a nonlinear function given in Friedman (1991).
We start by creating datasets using a ten-dimensional function with Gaussian noise. The data
consists of a 10-dimensional unit hypercube (xi = rand(0, 1), i = 1, . . . , 10 ).

y = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + 0.5ε, (25)

where, ε ∼ N (0, 1), the standard normal distribution.
Note that, while the first three variables are nonlinear in function in (25), the next are

linear to the output, and the last 5 variables have no effect on the response y. Therefore, true
model includes the predictors x1, x2, x3, x4 and x5.

For this simulation protocol, the maximal number of basis functions (BFs) is set to 21
including the intercept term, and maximum interaction level is limited to 2. That is, only
pairwise products of BFs are allowed. Themodel is piecewise linear type.MARS algorithm is
applied under these specifications usingGCV,AIC, SBC and ICOMP(IFIM)PEU. An example
of MARS model obtained through GCV criterion for a data generated with 200 observations
is illustrated in Table 1.

The final MARS model in Table 1 includes 15 BFs including the main effects of
{x1, x2, x3, x4, x5} and interaction terms x1x2 and x1x3. The ANOVA decomposition of
the corresponding MARS model is given in Table 2. As described in the paper of Friedman
(1991), the first column lists the function number. Each function is a sum of overall basis
functions involving only the predictor in the last column. The second column gives the stan-
dard deviation of the functions. This gives us an indication of the (relative) importance of the
corresponding function to the overall model and can be interpreted in a manner similar to a
standardized regression coefficient in a linear regression model. The third column lists the
GCV score for a model obtained by removing the entire basis functions corresponding to that
particular ANOVA function. Hence, whether this ANOVA function is making an important
contribution to themodel, orwhether it just slightly helps to improve the globalGCVscore can
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Table 1 Mars equation

y = 8.43 + 10.4BF1+18.5BF2 − 20.3BF3 + 17.4BF4 + 4.13BF5 − 5.39BF6 − 99.8BF7− 28.1BF8
+ 18.4BF9 + 10.5BF10 − 20BF11 + 18.5BF12 + 9.55BF13 + 1.83BF14 + 25.6BF15,

where,

BF1 = max(0, x4 − 0.0504), BF2 = max(0, x2 − 0.569), BF3 = max(0, 0.569 − x2),

BF4 = max(0, x3 − 0.502), BF5 = max(0, x5 − 0.582), BF6 = max(0, 0.582 − x5),

BF7 = BF2 × max(0, x1 − 0.515), BF8 = max(0, 0.938 − x1) × max(0, x2 − 0.878),

BF9 = max(0, 0.938 − x1) × max(0, 0.878 − x2), BF10 = max(0, x1 − 0.749),

BF11 = max(0, 0.749 − x1) BF12 = max(0, x3 − 0.927), BF13 = max(0, 0.927 − x3),

BF14 = max(0, 0.938 − x1) × max(0, x3 − 0.125),

BF15 = max(0, 0.938 − x1) × max(0, 0.125 − x3).

Table 2 ANOVA decomposition
of MARS model selected with
GCV criterion

Func. Std GCV #Basis #Params Variables

1 5.445 99.198 2 5.0 1

2 5.852 59.167 2 5.0 2

3 1.388 57.831 3 7.5 3

4 2.969 45.321 1 2.5 4

5 1.442 4.304 2 5.0 5

6 4.967 47.939 3 7.5 1 2

7 0.367 1.108 2 5.0 1 3

be judged. The fourth columngives the number ofBFs comprising theANOVAfunctionwhile
the fifth column provides an estimate of the additional number of linear degrees-of-freedom.
The last column gives the particular predictor variables associated with the ANOVA function.

In this example, the MARS model in Table 1 selects {x1, x2, x3, x4, x5, x1x2, x1x3} as
the best subset model using GCV criterion. The first two ANOVA functions (corresponding
x1 and x2) give the largest contribution to the model, as well as the effect of interaction
between x1 and x2. The last ANOVA function which corresponds to the BFs developed for
the predictors x1 and x3 gives very small contribution. Hence, the termmay be removed from
the model.

MARSmodels are built using ICOMP(IFIM)PEU, AIC, SBC and GCV for 100 replication
of the above simulation protocol with different sample sizes. The performances of the model
selection criteria in selecting the best subset of predictors are analyzed in terms of percentage
hits over 100 trials through ANOVA tables as in Table 2. In Table 3, the percent number of
hits are given for only three types of models (in column 2). The first one refers to the models
including exactly the true predictors {x0, x1, x2, x3}. The second one determines the models
in which the relative importance of the true predictors is more than 90%, and the last one
describes themodels for which at least one of the true predictors is not selected by the criteria.
Note that, the percent contribution is calculated over the standard deviations of the functions
given in ANOVA decomposition shown in Table 2. Depending on the results in Table 3, the
following conclusions can be drawn:

– For small sample size, n = 50, GCV criterion selects the true model with the highest
frequency and less number of BFs. However, the increase in the rates at which GCV
selects exactly the true model does not improve dramatically as the sample size increases.
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Table 3 % model hits out of 100 simulations

Criteria Models selected Main effect and interaction terms

Sample size

50 100 200 500

GCV 1 45 36 76 100

2 86 97 100 100

3 13 3 0 0

BFs 10.9 14.4 15.4 16.0

AIC 1 8 32 83 99

2 79 96 100 100

3 14 0 0 0

BFs 14.8 15.9 16.1 16.3

SBC 1 11 32 73 99

2 82 97 99 100

3 11 0 1 0

BFs 13.9 15.2 14.9 15.6

ICOMP(IFIM)PEU 1 32 42 83 100

2 76 96 100 100

3 20 0 0 0

BFs 11.8 13.9 15.3 15.7

For n ≥ 100, all criteria be able select the models including the all true predictors with
about 100%. In other words, the percent hit of the models for which at least one of the true
predictors is not selected by the criteria is zero. The highest percent hit ratio of models
with exact true predictors is achieved by ICOMP(IFIM)PEU for n ≥ 100.

– When the relative importance of true predictors is examined, it is observed that the percent
hit of models dominated by the true predictors and interaction terms is at least 96% for
all criteria, and for n ≥ 100.

– For large sample size n = 500, all criteria are able to select the true model including
predictors and interaction terms with 100% for GCV and ICOMP(IFIM)PEU, and with
99% for AIC and BIC.

– For n ≥ 100, the simplest models, the ones with minimum average number of BFs, are
selected by ICOMP(IFIM)PEU and SBC criteria.

In order to evaluate and compare the prediction (generalization) ability of MARSmodels,
models are analyzed for 100 simulated train and test datasets genetared with n = 100 and
n = 20 observations, respectively through MSE and R2 measures. The corresponding results
are shown in Table 4. Looking at Table 4, although the average values of the performance
measures are close to each others for all criteria, the models selected by AIC show better
performance both in training and testing datasets. However, the highest numbers of BFs in
the final models belongs to AIC models. The simplest models including less number of BFs
are selected by ICOMP(IFIM)PEU and GCV criterion.
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Table 4 Comparison of MARS models with respect to model selection criteria for n = 100

Criteria avgMSE avgR2 BFs

Train Test Train Test

GCV 0.382 0.782 0.988 0.973 14.5

AIC 0.349* 0.737* 0.989* 0.975* 16.0

SBC 0.367 0.766 0.988 0.974 15.0

ICOMP(IFIM)PEU 0.389 0.806 0.987 0.972 13.9

∗ indicates better performance

4.2 Monte Carlo simulation: example 2

In this Monte Carlo simulation example, a different simulation protocol (Bozdogan 2004)
is used in which highly collinear input variables are generated. The first five variables are
simulated using the following protocol.

x1 = 10 + ε1
x2 = 10 + 0.3ε1 + αε2
x3 = 10 + 0.3ε1 + 0.5604αε2 + 0.8282αε3
x4 = −8 + x1 + 0.5x2 + 0.3x3 + 0.5
x5 = −5 + 0.5x1 + x2 + 0.5ε5

where, ε1, ε2, ε3, ε4, ε5 ∼ N (0, σ 2 = 1). The parameter α = √
1 − 0.32 controls the degree

of collinearity in the predictors. Then, the response variable y is generated from:

y = −8 + x1 + 0.5x2 + 0.3x3 + 0.5ε, (26)

where, ε is independent and identically distributed (i.i.d.) according to N (0, σ 2 = 1) for
i = 1, 2, . . . , n.

Further, five redundant variables x6, . . . , x10 are generated using the uniform random
numbers given by x6 = 6 × rand(0, 1), . . . , x10 = 10 × rand(0, 1) and a MARS model
of y on X = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} is fitted for different sample sizes n =
50, 100, 200, 500 and 1,000, where x0 = 1 constant column of (n × 1) vector of ones.

In this simulation study, it is expected that model selection criteria would pick the set
of variables {x0, x1, x2, x3} to be the best subset through the MARS algorithm. Using the
ANOVA decomposition analysis, model selection performances of criteria are analyzed by
examining the predictors selected in the final model and their corresponding relative impor-
tance within the model.

In Table 5, the percentages of simulations in which the criteria select three types of models
in 100 trials are given. The first row for each criterion refers to models including exactly the
true predictors {x0, x1, x2, x3}. The second one determines the models in which the relative
importance of the true predictors is more than 90%, and the last one describes the models to
which at least one of the true predictors is not selected via the criteria. Based on the results
presented in Table 5, the following conclusions can be drawn:

– For small sample sizes, ICOMP(IFIM)PEU performs better in selecting the true set of
predictors than others, although it misses the true subset in 44 trials. However, AIC only
selects the models that do not include the true model with 16% of the simulation. That
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Table 5 % model hits out of 100 simulations

Criteria Models selected Sample size

50 100 200 500 1,000

GCV 1 18 18 14 15 12

2 25 35 55 78 96

3 33 7 0 0 0

BFs 5.7 7.0 7.1 7.9 8.6

AIC 1 0 0 0 0 0

2 0 3 6 38 69

3 16 1 0 0 0

BFs 13.6 12.9 12.9 12.8 12.9

SBC 1 3 21 30 45 50

2 7 40 69 95 98

3 18 0 0 0 0

BFs 9.9 7.2 9.4 6.1 6.8

ICOMP(IFIM)PEU 1 23 55 66 84 85

2 26 65 86 99 100

3 44 7 0 0 0

BFs 5.0 5.2 5.3 5.1 5.1

may be due to the fact that the models built by ICOMP(IFIM)PEU includes less number of
BFs than the models of AIC and other criteria.

– As the sample size increases, the percent hit ofmodels including exactly the true predictors
is improved for ICOMP(IFIM)PEU, rising dramatically to 84% for n=500. However, other
criteria, especially GCV and AIC, cannot show such an improvement in selecting exactly
the true model. In this respect, GCV performs much better than AIC and SBC for small
sample sizes. However, as the sample size increase, it tends to pick models with extra
predictor variables as it is always the case for AIC. AIC cannot select the exact true
model for all sample sizes. The performance of SBC on selecting exactly the true model
is improved slightly, rising to 50% for n = 1,000.

– GCV and AIC show higher tendency to pick the models including extra variables other
than true predictors. This result can be validated by examining the percent hits in picking
themodels in which true predictors havemore than 90% contribution.While the exact true
model can be selected with 12% by GCV, the rate of selecting models which are mainly
dominated by the true predictors become 96% for n = 1,000. In overall simulations, SBC
selects models including 8.6 BFs, on the average. This may, however, indicate that there
is no substantial tendency for SBC to overfit. It is difficult to draw the same conclusion
for AIC. All models selected by AIC include the true model (e.g. {x0, x1, x2, x3}). For
31 trials, the contributions of true predictors are even less than 90%, which may indicate
over parameterization. This conclusion can also be supported by the excessive number of
BFs in the final models.

– ICOMP(IFIM)PEU also performs very well in picking the models in which true predic-
tors have more than 90% contribution. Even if some extra variables are selected by
ICOMP(IFIM)PEU, their contributions to the model is less than 10% for at least 86%
of hits for n ≥ 200.
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Table 6 Comparison of MARS models selected by the corresponding model selection criteria for n=200

Criteria avgMSE avgR2 BFs

Train Test Train Test

GCV 0.251 0.347 0.894 0.838 7.4

AIC 0.241* 0.371 0.901* 0.832 12.2

SBC 0.253 0.340 0.893 0.837 6.7

ICOMP(IFIM)PEU 0.262 0.312* 0.888 0.844* 5.5

∗ indicates better performance

Table 7 List of variables for body fat data

y = Percent body fat from Siri’s equation

x0 = Constant x7 = Hip circumference

x1 = Age (years) x8 = Thigh circumference

x2 = Weight (lbs) x9 = Knee circumference

x3 = Height (in) x10 = Ankle circumference

x4 = Neck circumference x11 = Extended biceps circum.

x5 = Chest circumference x12 = Forearm circumference

x6 = Abdomen 2 circumference x13 = Wrist circumference

The estimation and prediction performances of the MARS models are also evaluated for
each criterion with respect to MSE and R2. Table 6 shows that the models selected by AIC
criterion for training datasets have better performance than the other models with respect to
all performancemeasures. However, the prediction performance of the correspondingmodels
for new datasets is not as good as ICOMP(IFIM)PEU models although including less number
of BFs in the models. This may be because of the overfitting problem caused by the excessive
number of BFs in AIC models.

4.3 A real benchmark example: prediction of body fat in obesity studies

The practical utility and the importance of the new class of model selection criteria proposed
for MARS modeling is applied on a real body fat dataset to determine a predictive model
in obesity studies. This data is composed of body measurement observations from n = 252
men. There are 13 regressors, listed in Table 7. A method for accurately computing the
percent body fat from simple body measurements without requiring underwater weighing is
highly desirable (Bozdogan and Howe 2012). Before the construction of models, variables
are normalized to make them comparable, and the MARS algorithm is run for 30 maximum
numbers of BFs with no interaction terms.

The equation of the MARS model built by ICOMP(IFIM)PEU criterion is given in
Table 8. It is noted that, during the implementation of ICOMP criterion for body fat data, we
encountered with the problem of ill-conditioned covariance matrices. The higher condition
numbers obtained for the covariance matrices may refer to the existence of high correlation
between the BFs selected. This situation may affect the model selection performance of the
criteria. In order to make the ICOMP criterion reliable, the methods proposed in Sect. 3 are
applied to the model covariance matrices. Since the method that can decrease the condition
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Table 8 MARS model with ICOMP(IFIM)PEU

y = 12.8 − 5.93BF1 + 2.16BF2 − 1.55BF3 + 11.2BF4 − 6.68BF5 + 5.28BF6

where,

BF1 = max(0, x2 + 0.406), BF2 = max(0, 0.397 − x13), BF3 = max(0, 1.13 − x11)

BF4 = max(0, x6 + 0.905), BF5 = max(0, −0.74 − x7), BF6 = max(0, −0.945 − x10)

Table 9 ANOVA decomposition of MARS model selected with ICOMP(IFIM)PEU criterion

Func. Std ICOMP(IFIM)PEU #Basis #Params Variables

1 4.747 1508.6 1 2.5 2

2 10.119 1656.1 1 2.5 6

3 1.544 1442.5 1 2.5 7

4 0.808 1432.1 1 2.5 10

5 1.357 1435.1 1 2.5 11

6 1.494 1439.1 1 2.5 13

Table 10 MARS model with GCV

y = 23.3 − 3.18BF1 + 2.23BF2 − 3.56BF3 − 1.78BF4 + 12.4BF5 − 18.9BF6+,4.89BF7+ 8.76BF8
− 13.5BF9 + 18.3BF10 − 8.71BF11 − 1.3BF12 − 10.6BF13 + 4.21BF14 + 13.2BF15.

where,

BF1 = max(0, x2 + 0.406), BF2 = max(0, 0.397 − x13), BF3 = max(0, x11 − 1.13),

BF4 = max(0, 1.13 − x11), BF5 = max(0, −0.905 − x6), BF6 = max(0, −0.74 − x7),

BF7 = max(0, −0.945 − x10), BF8 = max(0, x6 − 0.0597), BF9 = max(0, 0.0597 − x6),

BF10 = max(0, −0.202 − x4), BF11 = max(0, −0.861 − x4), BF12 = max(0, −0.15 − x1),

BF13 = max(0, 0.00326 − x4), BF14 = max(0, 0.0412 − x7), BF15 = max(0, −1.13 − x7).

numbers is Thomaz regularization given in (23), this regularization method is applied for
body fat dataset.

Minimizing ICOMP(IFIM)PEU leads to the best model as the one including weight,
abdomen 2, hip, ankle, extended biceps and wrist circumferences. ANOVA decomposition
table of the corresponding MARS model given in Table 9 shows that weight and abdomen 2
circumferences are the important predictors with the highest contributions.

TheMARSmodel fitted usingGCVcriterion is given in Table 10. The finalmodel includes
16 BFs with constant term. According to the ANOVA decomposition in Table 11, although
the model includes 8 different variables, the highest contribution is supplied by weight and
abdomen 2 circumferences according to GCV.

Once the MARS algorithm is run with AIC, the fitted model in Table 12 is obtained. The
model includes 21 BFs including constant term, and the variables selected into the model are
similar to the ones selected by GCV. However, the model selected by AIC is larger than the
model selected by GCV. The main contribution is again supplied by two variables: weight
and abdomen 2 circumferences (see Table 13).

Finally, MARS algorithm is applied to body fat data using SBC. The fitted model in
Table 14 includes only 8 BFs including 6 variables: weight, abdomen 2, hip, ankle, extended
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Table 11 ANOVA decomposition of MARS model selected with GCV criterion

Func. Std GCV #Basis #Params Variables

1 0.644 19.39 1 2.5 1

2 2.551 32.35 1 2.5 2

3 1.284 20.01 3 7.5 4

4 9.590 140.31 3 7.5 6

5 1.515 20.81 3 7.5 7

6 0.748 19.28 1 2.5 10

7 1.500 28.58 2 5.0 11

8 1.540 24.28 1 2.5 13

Table 12 MARS model with AIC

y = 3.53 − 2.25BF1 − 1.13BF2 + 2.12BF3 − 3.38BF4 − 1.83BF5 + 8.32BF6 + 4.38BF7
− 13.1BF8 − 6.82BF9 + 5.51BF10 + 4.01BF11 − 5.17BF12 + 11.3BF13 + 8.02BF14
− 9.09BF15 + 2.66BF16 − 5.81BF17 − 11.7BF18 + 4.88BF19 + 13.2BF20.

where,

BF1 = max(0, x2 + 0.406), BF2 = max(0, x13 − 0.397), BF3 = max(0, 0.397 − x13),

BF4 = max(0, x11 − 1.13), BF5 = max(0, 1.13 − x11), BF6 = max(0, x6 + 0.905),

BF7 = max(0, −0.905 − x6), BF8 = max(0, x7 + 0.74), BF9 = max(0, −0.74 − x7),

BF10 = max(0, −0.945 − x10), BF11 = max(0, 0.961 − x1), BF12 = max(0, 0.0597 − x6),

BF13 = max(0, x4 + 0.202), BF14 = max(0, −0.202 − x4), BF15 = max(0, −0.861 − x4),

BF16 = max(0, x1 + 0.15), BF17 = max(0, −0.15 − x1), BF18 = max(0, x4 − 0.00326),

BF19 = max(0, 0.0412 − x7), BF20 = max(0, x7 + 1.13).

Table 13 ANOVA decomposition of MARS model selected with AIC criterion

Func. Std AIC #Basis #Params Variables

1 0.978 1448.8 3 7.5 1

2 1.802 1441.9 1 2.5 2

3 1.372 1439.3 4 10.0 4

4 9.302 1588.3 3 7.5 6

5 1.599 1435.3 4 10.0 7

6 0.843 1449.1 1 2.5 10

7 1.519 1467.5 2 5.0 11

8 1.762 1455.8 2 5.0 13

biceps and wrist circumferences. Again, the weight and abdomen 2 circumferences are the
most significant variables in the model (see Table 15).

Overall, the weight and abdomen 2 circumferences are selected as the important predic-
tors with the highest contributions by all criteria. As always the case, the model selected
with AIC includes more BFs than the models selected by other model selection criteria.
ICOMP(IFIM)PEU and SBC can capture the contribution of important variables with less
number BFs.
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Table 14 MARS model with SBC

y = 10.9 − 3.73BF1 + 2.4BF2 − 1.61BF3 + 10.3BF4 − 11.4BF5 − 2.91BF6 + 1.98BF7 + 9.55BF8

where,

BF1 = max(0, x2 + 0.406), BF2 = max(0, 0.397 − x13), BF3 = max(0, 1.13 − x11),

BF4 = max(0, x6 + 0.905), BF5 = max(0, x7 + 0.74), BF6 = max(0, 0.0597 − x6),

BF7 = max(0, −0.202 − x4), BF8 = max(0, x7 + 1.13).

Table 15 ANOVA decomposition of MARS model selected with SBC criterion

Func. Std SBC #Basis #Params Variables

1 2.990 1422.8 1 2.5 2

2 0.952 1415.6 1 2.5 4

3 10.481 1642.2 2 5.0 6

4 1.590 1432.9 2 5.0 7

5 1.410 1423.9 1 2.5 11

6 1.659 1428.9 1 2.5 13

Table 16 Estimation and prediction performance of MARS models with the corresponding model selection
criteria

Criteria avgMSE avgR2 BFs

Train Test Train Test

GCV 15.660 26.187 0.783 0.590 13

AIC 14.624* 27.986 0.805* 0.579 21.8

SBC 15.469 26.314 0.786 0.590 13.7

ICOMP(IFIM)PEU 17.052 23.126* 0.759 0.629* 7.8*

∗ indicates better performance

Table 16 gives the performances of MARS models obtained as a result of 10-fold cross
validation study. The models selected with different criteria show close performances both
for training and test datasets. Although AIC models perform better for training data, their
prediction performance is not as good as the others. This is due to the fact that the model
selected by AIC includes excessive number of BFs which causes an overfitting problem.
On the other hand, the simplest models are selected by ICOMP(IFIM)PEU criterion, and its
corresponding models have better prediction performances for new datasets.

5 Conclusion and discussion

In multivariate adaptive regression splines (MARS), comparison of the submodels during
the backward elimination step plays a crucial role in the estimation of nonlinear relationship
between predictors and output. By minimizing a model selection criterion, both the accuracy
and the complexity of models can be controlled in each step of backward iterations. Most
of the criteria in the literature such as AIC, BIC and GCV consider the complexity as the
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number of free parameters within a model, and determine the model dimension with an
additional penalized term, a cost function of number of free parameters in the model. In this
paper, however, a new information-based model selection criterion, ICOMP, is proposed to
be used in MARS which also handles the interdependency of parameter estimates and the
model complexity. ICOMP selects the best number of breaking points, and corresponding
basis functions in MARS by taking into account the interaction or dependency between the
components as well as the lack of model fit and model parsimony.

In this paper, the model selection performances of ICOMP is evaluated and compared
with AIC, SBC, and GCV using two Monte Carlo simulation protocols and on a real body
fat dataset. Following the results of first simulation protocol, over 100 simulation datasets,
it is observed that the capability of ICOMP(IFIM)PEU for selecting models with exact true
predictors is higher than the other criteria. For small sample size, GCV selects the true model
with the highest frequency of all the criteria. However, the increase in the rates at which GCV
selects exactly the true model does not improve dramatically as the sample size increases.
For large sample sizes, all criteria are able to select the true model including main effects
and interaction between true predictors with about 100%.

With the second Monte Carlo simulation protocol, the model selection performances of
criteria are evaluated for the datasets including highmulticollinear structure. The results show
that ICOMP(IFIM)PEU performs better in selecting the true set of predictors than the others
for small sample sizes. As the sample size increases, the rates at which ICOMP(IFIM)PEU
selected exactly the true model improved dramatically. AIC can never select the exact true
model for all sample sizes. As well as GCV, AIC shows higher tendencies to pick the models
including extra variables besides the true predictors. This conclusion can also be supported
by the excessive number of BFs in the final models.

Overall, ICOMP(IFIM)PEU criterion can be used as a powerful criteria for the submodel
selection of MARS algorithm due to its better performances on the selection of true models
with less number of BFs and high generalization capability.

The existing forward selection and backward elimination procedures of MARS are com-
putationally expensive and does not quarantee globally optimal solution. As it is observed in
the simulation studies, MARS selects many redundant terms into the model. Although this
can be prevented by a model selection criterion to some extent, it is not always possible to
select the correct model due to the stepwise nature of MARS. In this respect, we will try to
develop a data adaptive “open architecture” for model building via the intelligent Genetic
Algorithm (GA) as our optimizer along with ICOMP criterion. In a future study, we shall
develop and score the misspecified form of ICOMP criteria given in Bozdogan (2004).
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