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Abstract The classification models obtained via maximum likelihood-based training do not
necessarily reach the optimal Fjg-measure for some user’s choice of 8 that is achievable with
the chosen parametrization. In this work we link the weighted maximum entropy and the
optimization of the expected Fg-measure, by viewing them in the framework of a general
common multi-criteria optimization problem. As a result, each solution of the expected Fg-
measure maximization can be realized as a weighted maximum likelihood solution within
the maximum entropy model - a well understood and behaved problem for which standard
(off the shelf) gradient methods can be used. Based on this insight, we present an efficient
algorithm for optimization of the expected Fg using weighted maximum likelihood with
dynamically adaptive weights.

1 Introduction and related work

The F measure is a common tool for expressing a trade-off between precision and recall in
binary classification, which might be specific to each application. Optimizing an F measure
based performance of a classifier has a long history and many applications in text analy-
sis. High precision is often needed in the analysis of clinical records, job boards, automatic
summarization, machine translation etc., whereas high recall is usually preferred when the
output of the system will be used in information retrieval applications, as an input to other text
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analysis components like relation extraction (Georgiev et al. 2009), correference (Gancheyv et
al. 2007; Carpenter 2007), or software-aided curation and annotation (Gancheyv et al. 2007).

Typically the Precision/Recall preferences are expressed by requiring a large Fjg measure,
the weighted harmonic mean of precision and recall, for some specific 8, where B encodes
the particular Precision/Recall trade-off. Obviously, the larger the 8 the more preference is
put on optimizing the precision as compared to the recall. In order to avoid confusions with
other equivalent definitions, we specify that in this article we define Fg as

Fg = (B/Precision + (1 — B)/Recall) ™!, for somef € [0, 1].

In some learning algorithms the precision/recall trade-off have also been controlled by
means of different loss functions. For instance, Ganchev et al. (2007) use the MIRA (Crammer
etal. 2006) learning algorithm to boost the recall of a gene mention tagger, by using a loss that
is a weighted combination of the number of false positive and false negative gene mentions
in a sentence. Other authors focus on both precision and recall and develop methods for
multiobjective optimization of both scores. The approach is preceded by likelihood training
(Klinger 2009).

Maximum-likelihood-based binary classifiers such as maximum entropy are relatively
easy to fit, but they are rigid and cannot be tuned to a desired Precision and Recall trade-
off. In this work, we show that the well known weighted MaxEnt (Vandev and Neykov
1998), with corresponding estimation that is barely harder than in the standard case with-
out weights, can be used to optimize the Fjg measure; see also Simeckovd (2005) for an
interesting discussion on weighted maximum likelihood. The main statement of the paper is
that if appropriate weights are chosen, then the fitted maximum weighted likelihood model
coincides with the optimal expected Fg model for the binary classification task. There are
at least two major advantages of the weighted likelihood as a loss function, namely: (i) it
is concave and (ii) standard (off the shelf) gradient methods can be used for its optimiza-
tion. To the best of our knowledge, such a link between the weighted maximum likelihood
and the Fg maximization has not been established before. The article is focused on the
intuition of the relation and the proof of the main result. The value of our theoretical obser-
vation is that it establishes the methodology of viewing a particular model as a specific
solution of a common multi-criteria optimization problem. Furthermore, we give a handy
expression for the optimal weights and propose and test an efficient algorithm for the max-
imization of the expected Fg measure. Obviously if the assumed model is, in contrast to
the considered in this article maximum entropy framework, such that the (weighted) max-
imum likelihood estimation is computationally not accessible there is little gain in casting
the hard problem of Fg maximization into a possibly even harder maximum likelihood
problem.

This article is organized as follows: in Sect. 2 we briefly introduce the weighted maximum
entropy model. In Sect.3, the Fjg measure as a trade-off of precision and recall is presented
and the expected Fy is defined (see also Nan et al. 2012). In Sect. 4, we establish the link
between the optimal expected Fg and a weighted maximum entropy model. Sections 5 and 6
present a method for estimating weights that afford optimal expected Fg and a corresponding
algorithm. We describe our approach for evaluation of the algorithm in Sect. 7. In Sect. 8
we introduce the datasets that we used for experiments. Section 9 presents the results and
Sects. 10 and 11 conclude the article with comments and a discussion.

Related work One of the most popular heuristics for precision-recall trade-off is based on
adjusting the acceptance threshold given by maximum entropy models (or any other model
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that estimates class posterior probabilities). However, this procedure amounts to a simple
translation of the maximum likelihood hyperplane towards or away from the target class and
does not fit the model anew. Thresholding on posterior probabilities has been used in the
context of other learning frameworks, such as Conditional Random Fields (CRFs) (Culotta
2004).

Minkov et al. (2006) introduces another heuristic, which is based on changing the weight
of a special feature, which indicates if a sample is in the sought-after class or not.

Jansche (2005) describes a maximum entropy model that optimizes directly an expected
Fg-based loss by means of gradient ascent. However the expected Fg is not concave and is
rather cumbersome to deal with. Therefore the standard gradient methods do not guarantee
optimality of the solution.

Approaches for training CRFs (Lafferty 2001) to directly optimize multivariate evaluation
measures, including non-linear measures such as the F-score (Suzuki et al. 2006) have been
proposed recently.

Joachims (2005) proposes a multivariate SVM capable of optimizing an upper bound
of a class of rather general nonlinear performance measures including Fg. The obtained
optimization problem is of exponential complexity, but the solution can be approximated in
polynomial time using a heuristic algorithm.

Our approach is somewhat different in nature - instead of directly optimizing the nonlinear
performance measure, we show that the optimizer can be represented as a maximizer of a
weighted version of a traditional “linear” performance measure, i.e. one that decomposes
into a sum of performance measures over each training example. Needless to say, we also
keep the parametrization of the conditional probabilities and in fact optimize the expected
Fg measure rather than an upper bound.

A general algorithm for F-measure optimization is given in Dembczyn’ski et al. (2011),
however they rely on known data distributions, which is an unrealistic requirement in practice.
A very interesting result in Dembczyn’ski et al. (2011) is that there is a lower bound on the
discrepancy between the optimal solution and the solution obtained by means of optimal
acceptance threshold.

In Nan et al. (2012), the authors systematically classify the existing approaches for Fg
maximization into two groups: empirical utility maximization (EUM) and decision-theoretic
approaches (DTA). The authors show that EUM-optimal and DTA-optimal algorithms are
asymptotically equivalent and also comment on the practical advantages and disadvantages
of the two classes of approaches. In their article when considering the EUM approaches,
where in general our framework resides, they basically restrict to approaches where a score
function (e.g. parametric model for the conditional probabilities) is learned and only the
acceptance threshold is obtained by directly optimizing the F-measure on the expected F
measure F is also considered in Nan et al. (2012), where also its consistency is stated and
even a Hoeffding bound for the convergence is given.

2 The maximum entropy model

The maximum entropy modeling framework as introduced in the NLP domain in Berger et
al. (1996) has become standard for various NLP tasks. To fix notations consider a training
set of m examples {(x;, y;) : i € 1,...m} where x;’s are the attributes and the y;’s are the
classes taking values in some finite set ). Each observation is represented by a set of N
features { fj(x;, y;): je€l,..., N}
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The maximum entropy principle forces the model conditional probabilities p(y | x, A) of
an example with attributes x to be of class y to be of the form

exp()\-f),

1
p(ylx,A) = 7.0

where 1 € RY are the parameters of the model and Z; (x) is the corresponding partition
function given by

Zy(x) =D exp(h- f).
yey

The calibration of the model amounts to (see Berger et al. 1996) maximizing the log-likelihood
function

10-:x,y) = D" log p(yi | xi, 1) e))
i=1

In the following for a weight vector w € R"™ we will make use of the weighted log-
likelihood function

Y (w, x, y) = w(i)log plyi | xi, 4. 2
i=1

Apart from the obvious technical generalization of the likelihood function the weights
could also be interpreted as modifying the training set by adding new examples having the
same attributes and classes (x;, y;) with intensity w(7) resulting in an expected number of
w(i) identical training examples. In particular for w(i) < 1 the i-th example is deleted with
probability 1 — w(i). If w(i) > 1, say w(i) = z + wy(i) for some integer z > 1 and
0 < wy(@i) < 1 then generate z training identical examples (x;, y;) and additionally clone
the ith example with probability w r (7).

In what follows we will always assume that the underlying log-likelihood function has a
maximum. A possible exception is when the training set is separable in which case the log-
likelihood converges to zero while the parameters diverge. The same holds for the weighted
log-likelihood as long as the weights are strictly positive which will be the case in this paper.
To see that indeed the weighted log-likelihood has a maximum when the training set is not
separable we refer again to the interpretation of the weights as a modification of the training
set. Indeed if the weights are integers then the weighted log-likelihood is in fact the standard
log-likelihood for the modified training set where each training example (x;, y;) is duplicated
w; times. Hence the weighted log-likelihood attains its maximum if the modified training
set is not separable which is exactly then the case when the original set is not separable.
The case of rational weights can be reduced back to the integer case by a simple scaling of
the log-likelihood with an appropriate integer, and the general case with real weights can be
tackled via approximating it with weighted log-likelihoods having rational weights. Hence,
as long as the weights are strictly positive, assuming the non-separability of the training set
yields the existence of the unique maximum of the weighted log-likelihood. The case when
the training set is separable is not relevant for our considerations here because in that case
any separating plane results in an maximal Fg measure for any .

In this paper we are aiming at optimizing the F measure which is only defined in the
binary classification case. Therefore, for the rest of the paper we restrict discussion to the
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binary classification case with || = 2, i.e. the case where we have only two classes, which
we will denote with u and u. Hence, from now on y; € Y = {u, u}.

The extension to the multi-class case is possible but nontrivial and will be presented in a
separate paper.

3 The precision/recall trade off expected F-measure

The learned maximum entropy model produces for each vector of attributes x a whole proba-
bility distribution p(y | x, A) over the space of classes ) giving the model conditional proba-
bilities of the example being in each one of the classes. However when used for classification
one typically would use the model as a maximum a-posteriori classifier, that is one would
classify x in the class y(x) that maximizes the model conditional probability:

y(x) = argmax, p(y | x, 1).

The performance of the classifier for the class u is typically measured in terms of the Precision
and Recall for the class u (i denotes the complementary class) defined as

_ #true u . Ay
T o#true u + #falseu A, +Cy
3)
#true u Ay

T Htrue u + #falseir A, + B,

i.e. the precision is the ratio between the number of true positives divided by all examples
classified as positive, while the Recall is the the ratio of the number of true positives divided
by the number of all positive examples. For a class u, called positive, we will denote with A,,,
B,, C, and D, the number of true u, false negative, false u and true negative classifications
respectively.

Typically if the model is not overfitting we cannot maximize simultaneously both the
precision and recall and dependent on the application one typically focuses on a particular
trade-off between them described by a constant 8 € [0, 1] and expressed as the S-weighted
harmonic mean called Fg-measure:

1— -1

The larger the B the greater the influence of the Precision as compared to the Recall on the
Fg-measure.

Expected F-measure: The problem with the maximum posterior probability classification is
that it only takes into account the index of the largest probability in the vector of model proba-
bilities and completely disregards the rest. Instead we focus on the stochastic classifier which
takes into account the whole information contained in the learned model. More precisely, an
example with a given vector of attributes x is classified into the class y (x) which is randomly
drawn from the set of all classes according to the model conditional probabilities p(y | x, 1).
In this set-up the quantities A,, B,, C, and D, become random variables. However if we
repeatedly perform the stochastic classification and average over the results we would get
approximately their expected values over the training set which we denote with A, B,, C,.
D, respectively:
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A, = E#true u = Z pQu|xi, A);

ityi=u
B, = E#false ii = Z (I —=pQulxi,1);

R G =:p(u|xi,2) 4)
Cu =E#falseu = D pu|xi, )

iyi=it
D, = E#true i1 = Z (I = pQulxi,A);

iyi=it

With these expected counts we can define the plug-in estimators P and R of the precision
and recall by simply interchanging the counts with their expected values. The corresponding
approximation Fg of the Fig measure is then defined using P and R:

_ —1
@:(%ﬂﬁﬂ) . )

As in Jansche (2005), with a slight abuse of notation we will call the obtained plug-in
approximation F, s the expected Fjg measure.

For a large training set and a good model, the expected Fg measure on the training set
will be close to the standard one since most of the model probabilities p(y; | x;, A) will be
close to 1 for the training examples.

In the next section we will show that we can maximize the expected Fjg measure by
modifying the training set via adding weights and then again estimating the model parameters
using the well-behaved and understood maximum likelihood procedure.

4 Achieving expected F-measure maximization via weighted maximum likelihood

Clearly, the log-likelihood (1) and the expected Fg (5) are different, though - one would hope
- not orthogonal objectives.

Intuitively, every reasonable machine learning model would try to set the model parameters
A in such a manner that for all training examples the model conditional probabilities of the
observed classes y; given the example’s attributes x;, namely p(y; | x;, A), are as large as
possible. In general, if the used model is not overfitting badly it will not be possible for all
conditional probabilities to be close to 1 simultaneously. Every particular model can be viewed
as a specific method to implicitly handle these trade-offs. In this view the crucial difference
between the log-likelihood and the expected Fg measure seen as objective functions is that
while the log-likelihood approach gives equal importance to all training examples on the
logarithmic scale the (expected) Fg measure has a parameter B controlling this trade-off
on a class-wise scale. On the other hand as noted in Jansche (2005) the flexibility in 155
comes at a price - the 1:}; is by far not that nice function to optimize as the log-likelihood
is. Fortunately, the F, s maximization can be viewed in terms of the weighted likelihood
maximization, which is only a slight generalization of the standard maximum likelihood. To
make the above discussion precise we will rely on some basic facts from the theory of multi-
criteria optimization. For a thorough and up to date treatise on the topic see Ehrgott (2005).

We will briefly give a definition of Pareto optimality (also sometimes called efficiency).
For a multicriteria optimization problem (MOP)
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max{fi(x),..., fr(x)} subjectto x € x

the point xg € yx issaid to dominate x; € yx ifforalli € 1, ..., kitholdsthat f; (xo) > fi(x1)
and for atleastone j € 1,...,k fj(xo) > fj(x1). A feasible point xo € x is called Pareto
optimal if there is no point x € x, which dominates xo. The Pareto optimal set is the set
of all Pareto optimal points. In plain language, Pareto optimality for a point xo means that
by moving away from x¢ we cannot improve all objectives but rather we would necessarily
deteriorate at least one objective.

The following proposition and in particular its proof make the above discussion precise
by viewing the weighted maximum likelihood solution and the maximizer of the expected
Fg measure as particular elements of the Pareto optimal set of the single multi-criteria opti-
mization problem (MOP)

mfx{p(y1 [x1,2), ooy P | Xy M)}

This way we unify the two objectives by viewing them as methods to pick a particular point
from the Pareto optimal set associated with the common MOP stated above. Clearly, the
approach is much more general and can be applied to other statistical machine learning
models and objective functions as well.

As a simple consequence we obtain that each expected Fg measure maximizer can be
realized as a weighted maximum likelihood estimator and even approximated via a class-
wise weighted maximum likelihood estimator. Later on, we elaborate on the optimal weights.

Proposition 1 Let A g be the maximizer of the expected Fg measure with respect to the class

u € Y. Then there exists a vector of weights w(B) € R™ such that ):,3 coincides with the
weighted maximum likelihood estimator

iﬂf) = argmale(A tw(p), x,y).
That is we have
g = A0

We first sketch the idea of the proof:

The maximum likelihood optimizes simultaneously the conditional probabilities

p(yi | xi, A) via implicitly setting some trade-offs between them. Therefore our idea is to
adjust these trade-offs using the weights in such a manner that the Fg is optimized rather
than the rigid likelihood. The most natural and general way to look at these trade offs is to
consider the MOP (multicriteria optimization problem)

max{log p(y1 | x1, A), ..., 10g p(ym | Xm, M)}

It turns out that both the max likelihood and the expected Fg optimizer are particular solu-
tions of the MOP above. On the other hand all solutions of the MOP can be obtained by
maximizing nonnegative linear combinations of the objectives (see Theorem 3.15 in Ehrgott
2005). However a nonnegative combination of the objectives log p(y; | x;, 1) is precisely a
weighted maximum entropy objective function.

Proof Let 5»,3 be the F s maximizer, i.e.

):,s = argmaxklj};.
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We first rewrite the expected Fg measure as follows:
. 1-8\" A
Fﬁ:(ﬁi+7~ﬂ) . , ©)
B(Ay — Dy) + (1 = Bymy + Bmy

where m,, and m;; denote the total number of training examples in classes u and i respectively.
Equation (6) (observe the denominator is always positive) shows that the maximizer Ag

of Fpg is an element of the Pareto optimal set of the MOP

mflx{/iu, Du}. @)

Indeed, if we would assume that )AL/; is not Pareto efficient for the MOP (7) above then
we can find another set of parameters Ao such that the pair (/iu (*0), D, (o)) dominates
(Au (5»,3), D, (5»/3)), that is at least one of the objectives is improved in A¢ as compared with
A g and the other one is at least not deteriorating. Since the function

X

Blx —y) + (1 = Bymy + pmj

is increasing in x and y as long as the denominator is positive this would mean that F s(ho) >

F B (i p) which contradicts the assumption that A p maximizes the expected Fg measure.
With a similar argument we can pass to the finer granularity MOP by observing that the

Pareto optimal set of (7) is contained in the Pareto optimal set of the finer granularity MOP

Slx,y) =

mflx{p(yl [ X1, A5 oy PO [ Xms M)} 3)
This follows from the fact that

A= D plulxi,n)and D) = D plii|xi, 2.
Lyj=u Lyi=u

Indeed if we assume that A is Pareto optimal for (7) but not for (8) then we can find X such
that some of the objectives of (8) are improved and none of them is decreased. But this would
mean that the pair (A, (Xo), D, (1o)) dominates (A, (L), D, (X)), that is at least one of the
strict inequalities A, (Lo) > A, (}) and D, (A9) > D, (1) holds and at the same time both
inequalities A, ( o) > A, (1) and D, (o) > D, () hold, which is a contradiction with the
assumption that X is Pareto optimal for (7).

By now we know that the expected Fg optimizer A p 1s Pareto optimal for (8). Furthermore
the Pareto efficient sets of (8) and the yet another MOP

mfx{IOg PO 1x1,A), ..., 1log p(Ym | Xpm, A)} 9

coincide as the logarithm is strictly increasing function. Therefore A g is also Pareto optimal for
(9). But since all of the objectives log p(y; | x;, A) are concave in A each of the Pareto efficient
points of (9) can be realized as a maximizer of some nonnegative linear combination of the
objectives log p(y; | xi, ). For a proof of this result see Geoffrion (1968) or Theorem 3.15
in Ehrgott (2005) (there they have minimizers and respectively convex objective functions
while we have maximizers and concave objectives). In particular, there are positive weights
(w(B)1, ..., w(B)m) such that

iFﬂ = argmax, |:z w(B)ilog p(yi | xi, k)i| = argmaxAlW()L w(B), x, y).

i=1
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W w(B), x, y) is the weighted log-likelihood function and its maximizer is
)A\%L = argmax; [V (A : w(B), x, y).

This concludes the proof. O

5 The weights

Following the lines of the proof, for a given objective 8 we can in fact calculate the weights
w(p) that would allow us to compute the expected Fjg maximizer as a w()-weighted max-
imum likelihood. We also present a class-wise approximation w(f) for the instant-wise
weights w(B)

In the proof of Proposition 1 we noticed that ):5, the maximizer of F, B, can as well be
realized as

m

Ag = argmax, (Z w(B); log p(yi | xi, A)) =: argmax; G (1). (10)

i=1

This means that both objective functions F and the weighted log-likelihood G should have
vanishing gradients at the optimal A = Ag. For the gradients we have:

ViFg(p) = D 93FCp) VapGilxishp) + D 95F(Gp) Vap(i | xi, hg)

iiyi=u ityi=u
- w(B)i

ViG(hp) = D ————Vap(yi|xi, hp).
= pOi | xi, Ap)

If we choose some ¢ > 0 and weights w(f) such that for every i we have
Cw@i _[9FGe ifyi=u
pGilxihg) | 5FGg) ifyi=a

then we shall obtain

m

A w(B)i - 1~ -
ViG(g) = > —————VopQilxi,rg) = =V3Fg(hg) = 0.
; pOilxi, Ag) ¢
Thus by setting
Lpulxi,hp)8;F(g) ify; =u
wBi=y, _ . .. . )
cplu|xi, Ap)dpF(hp) ifyi=u

we obtain a weighted maximum-likelihood objective whose unique maximum is at N B

For the sake of simplicity we set ¢ = 9 F (5»,3) (recall that F  is increasing in D and
hence 9 F (3» g) > 0) and the weights become
a;F
a5 F
p(@|xi, hp) ity =it

pQu| xi, hp) (Gp) ifyi=u

w(B); =
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Using expression (6) for the expected Fg and some simple algebra we get
aFp  Z.—PBD. 1—BFp
opFg BAy BFg

where z,, = (1 — B)m, + Bm;. Thus we have shown the following Proposition:

’

Proposition 2 Let the weights w(B) be given by:

I=BEs o Ra) iy =
w(pB)i = BEs (i | xi, ﬁ) if yi u 7 (11)

i | %0, hp) ifyi it

where F, = Flg ()15) denotes the optimal expected Fg measure, that is the one calculated
with the model parameters ). = iﬁ = argmaxﬁﬂ (A). Then, in the notation of Proposition 1

that is ):5 maximizes the w(B)-weighted log-likelihood as well.

If we additionally assume that the model probabilities in the learned model p(y; | x;, N 8)
are close to 1 then we can approximate the weights w(f); from (11) by the following class-
wise versions:

_ 1=FF ¢ Vi=u
w(B)i = BFg
I ify e

Hence the following Corollary:

Corollary 1 [f the conditional probabilities p(y; | xi, ):,3) ~ 1 for all i then the weights
w(p) from (11) can be approximated via class-wise weights w(B) given by (12).

1By o _
DBy = b TNEE (12)
1 ifyi €

where F, 8 is as in Proposition 2.

6 Algorithm

The important take away from Sect. 4 is that each maximizer of the expected Fg measure
can also be realized as a weighted maximum likelihood. This is very appealing since the
log-likelihood is a well behaved concave function. Furthermore, it is important to notice that
Corollary 1 and Proposition 2 suggest that we can fall back to weights depending on a single
parameter and the qualitative behavior is obvious: larger weights w correspond to smaller
and vice versa.

The expressions (11) for the weights as well as the class-wise approximation (12) are
at first sight useless as they involve A g 1.e. precisely the parameter values we are looking
for. However, we can determine them in an adaptive manner: at each iteration perform one
full batch step of the gradient ascent optimization of the weighted maximum likelihood
with weights as given in Proposition 2 (or Corollary 1 in the class-wise case) but instead
of using the unknown optimal F, s and the conditional model probabilities p(y; | x;, A ) for
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the optimal parameter 5»,3 use F, s and the model probabilities as achieved at the previous
epoch.The Algorithm 1 lists the precise steps.

Algorithm 1 F s maximizer

Iin=1
2: Initialize the model parameters and calculate the initial F (1) from the initialized model.
3: Set the weights (instance-wise)

BEg(n)

1—BFg(n) IS
Mp(y”xi’)m) ify,=u
(wp); = R
pOilxis An) ify,=u

or in the class-wise case

L L/ TO TN
(Wn)i =y BFg) !

1 ify; =it

4: Do one full-batch update of the weighted log-likelihood maximization with weights w,, (respectively
w(n)). n:=n+1. )

5: Calculate the model expected Fg(n) measure and the model conditional probabilities p(y; | x;, An)-

6: If convergence criteria not met, where convergence means no significant improvement of the target F, g in
the last k steps — Step 3.

One of the strengths of this algorithm is that it is straightforward to implement. The
weighted log-likelihood maximization is analogous to the standard one with a different gra-
dient involving the weights. The implementation then follows some off-the-shelf version of
the gradient ascent algorithm.

Convergence of the algorithm: In the following we will show that, given the learning rate
for the full-batch gradient ascent is small enough, each step of the instance-wise version of
the above algorithm improves the attained value of the expected Fg measure. Hence, if the
learning rate is decreasing appropriately the algorithm will converge.

At the n-th step of the (instance-wise) algorithm the following update of the parameters
A is performed:

il = dng1 + € - Vil Oy s i, x, ), (13)

where w,, is as described in the algorithm and €, is the learning rate. Let us define the unscaled
weight-functions:

Wi = p(i 13020 [0 Fs ) + 05 Fp 0Ly |

Observe that the weights w,, are simply W(i,,) / 95 F B (in).
For the gradient VadW(On : wy, x, y) using the definition of w, we have:

m

1
Vil s wn, x, y) = (wp)i —————— Vo p(yi | xiy A)
! ; " p(i L xi, A o
1 & PO 1 Xishn) s
= > P T W o) Vip (i 3 ).

3515/3(5\") im pi | xis A)
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Now evaluating the above gradient at the current state o obviously yields:

m
> WiG)Vap(Gi | X, hn)
i=1

Wiy . —
Vo™ (0w, x, y)|x=?\,, = m
D n

= V0. (14)
0 D F, B (An)
This shows that the calculated gradient of the weighted likelihood is collinear with the gradient
of the expected Fg measure (observe that 9 F, 8 is strictly positive aslong as 8 > 0). Therefore
the update (13) results in an improvement of the expected Fjg objective. This proves that the
algorithm will eventually converge to a local maximum of the expected Fpg.
In a future work the authors intend to investigate scalable strategies to improve Algorithm
1 and to explore the parameter set for the global maximum. Here we briefly sketch two such
strategies but we emphasize again that these are merely ideas for future research:

1. One approach would be to consider also versions of the above algorithm where at the n-th
iteration k,, > 1 steps of the gradient ascent algorithm for the weighted log-likelihood
function are performed, rather than just a single one as presented in Step 4 of Algorithm
1. As long as k,, = 1 is satisfied for all n greater than some large N we still get conver-
gence. However the previous phases with k, > 1 might result in escaping regions with
suboptimal local maxima of F . While this is a topic for further research the performed
numerical experiments did indicate that the Algorithm 1 tends to converge fasterifk, > 1
at least during an initial burn-in phase. Furthermore, our experiments also suggested that
the convergence of the algorithm is improved by replacing the expected Fg measure in
the expression for the weights w, (w, respectively) in Step 3 of the Algorithm with the
true Fg measure.

2. Another approach which we call “targeting” is as follows: One fixes a rather large
target value T for the achieved F, B (r g) and in a burn-in phase runs the algorithm with
this value for Fﬁ(iﬁ), that is use Fﬁ ():,3) = T instead of using the proxy I:“,g (5\,3) ~
F B ()Ahn). Following this phase the algorithm continues with the realized proxy F B ()A\n) as
described in Algorithm 1. The idea behind the “fargeting” is obvious - we prescribe a
target value T for the F, B (): p) and tries to achieve it by fixing the weights to (w,); =

%P(yi [ Xis An) Ly =y + P [ X5 An) Ly, 20y
Clearly an attempt can be made to also merge these two approaches in an appropriate manner.

Exploring the targeting strategy as well as variable schedules for &, and using the true Fg
instead of the expected one is in our view a very interesting topic for further research.

7 Baseline methods

We now proceed with the numerical evaluation of our results. We will use two baseline
methods in our experiments, with two different goals. First, in order to demonstrate that the
algorithm presented in Sect. 6 identifies appropriate weights for the weighted log-likelihood
leading to the true optimal F s solution, we compare to a class-wise brute force approach which
tries a large number of weights (50 between 0 and 1) of the target class and assigns a value
of 1 to the other class. Then, for each g, the brute force baseline simply picks the particular
weight value which results in the maximum Fg. The brute-force approach thus performs
an exhaustive search for the optimal weight for the target class within some predefined
range [Wiin, Wmax]- This baseline finds the weights for which the achieved expected Fpg is

@ Springer



Mach Learn (2015) 98:435-454 447

(a) ° o « | © ClassO (b) x o Class 0
X Class 1 X Class 1
< +
wn |
™ 4
o o
w [
5 2 5 o o
© ©
[+) [+ o o]
w w o &gbcb
— 1)
n oS ?@O
=2 (o]
o 4
T T T T T T T T T T
0.0 0.5 1.0 1.5 -1 0 1 2 3 4
Feature 1 Feature 1

Fig. 1 Distribution of the samples in the space of features for the synthetic dataset: a synthetic data A; b
synthetic data B

optimal and we demonstrate that the class-wise version of our algorithm achieves the same
results, however without the computationally extremely exhaustive brute force calculations.
We compare our algorithm to this baseline on the train set, as the model is trained on this set
and the objective of this comparison is to show that our algorithm fits the training set as well
as the brute force approach but with much less computational effort.

The purpose of the second baseline is to compare the performance of our method to
the popular approach for adjusting Precision and Recall based on varying the acceptance
threshold of a simple maximum entropy model. We call this baseline acceptance threshold.
The method modifies acceptance thresholds (w.r.t. target class) for the posterior probabilities
in order to achieve higher precision (larger threshold) or recall (smaller threshold). For a
given f3, the probability threshold that gives the best Fjg is estimated on the train set and then
the threshold is used for prediction on the test set. We use this baseline for comparison on
the test set.

8 Data

We tested our algorithm on binary classification tasks on three different datasets, as follows:

Synthetic data - A:

We simulated a dataset of 5000 samples with two classes and two features. Each class contains
2500 samples, distributed as spherical Gaussians in the space of features. The samples from
class i are distributed as A" (o, o), with wg = (0.5, 1) and Zo = (0.3, 0.3) T I,. Class u is
generated by N (i, X1), with u; = (1, 0.8) and X1 = (0.3, 0.3)TI>.In Fig. 1a we visualize
the synthetic data A using 600 of its elements. We used 4500 of the samples for training and
500 for testing.

Synthetic data - B:

We simulated a dataset of 5000 samples with two classes and two features. Each class contains
2500 samples, distributed as elliptical Gaussians in the space of features. The samples from
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class i are distributed as N (io, X¢), with wo = (2, 1) and ¢ = (1, 0.3) T I». Class u is
generated by N (i1, 1), with u; = (1,2) and £; = (0.3, DT L. In Fig. 1b we visualize
the synthetic data B, again using a subset. We used 4500 of the samples for training and 500
for testing.

Sanders Twitter sentiment corpus:

The Sanders Twitter sentiment corpus is free of charge public data set' for training and
testing sentiment analysis algorithms (Saif et al. 2013) on tweets. It consists of 5513 hand-
classified tweets with respect to four different topics “Apple”, “Microsoft”, “Google” and
“Twitter” along with the respective sentiment with regard the tweet’s topic - “positive”,
“neutral”, “negative”, or “irrelevant”. The data set consists of: tweet text; tweet creation date;
hand-curated tweet topic; hand-curated sentiment label.

In this work we ignore the topic and focus on tweets expressing an attitude (positive and
negative - class 1) vs. impersonal (neutral and irrelevant - class 2). This splits the dataset
into 1224 tweets of class 1 that is the class of interest to us (class u in the notation in the
theoretical part of the paper) and 4289 of class 2. The distribution of tweets with respect
topic and sentiment classes can be found in the set’s download package.

In our experiments we started with splitting tweets in tokens; then we use stemming
(Porter stemmer) and filtered out the stop words. We conducted some other normalization
of the tweets like: all explicit URLs and emails are rewritten as URL and email features.
The @“words” and #“words” are rewritten as @tag and #tag and “n’t” as “not”. Three and
more “!” marks are rewritten as “STRONGEST”, two as “STRONGER” a single one as
“STRONG”, while four and more “?”” marks are rewritten as “QQQQ+”, three as “QQQ”,
respectively two and one as “QQ” and “Q”. We normalized the text to lower case, removed
all non-alpha-numeric characters and conjunct tokens up to three at the end of the pipeline.
We end up with more than 45000 features from which we selected 50 via evaluation of the
information gain of a feature with respect to the classes as in Yang and Pedersen (1997).

The corpus is automatically shuffled before each experiment—90 % of all tweets are used
for training and 10 % for testing. The results with this dataset are an average of 10 experiments.
The following is a list of the top 10 features for Sanders after the feature selection procedure.
(obscene words were removed):

1. QQ 2. STRONG 3. @tag 4. iphone 5. URL 6. ios 7. i_m 8. URL_#tag 9. customer 10.
love.

Apple Twitter corpus:

The corpus consists of freely available tweets? that mention the word “apple”. The corpus
is created with the idea to distinguish tweets that discuss “Apple, Inc.” (class 1) from tweets
about “apple pie” and “apple juice” (class 2). All tweets are 2000; 1306 of which are class 1
and 694 are class 2.

Tweets are tokenized, stemmed and stop words are filtered out. We

and email features. Again the @“words” and #“words” are rewritten as @tag and #tag.
Finally we transform the text to lower case, removed all non-alpha-numeric characters and
conjunct up to three tokens at the end of the transformation pipeline.

1 http://www.sananalytics.com/lab/twitter-sentiment/.
2 https://dl.dropboxusercontent.com/u/3942841/appleBinaryFiltered.txt.
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After these transformations we observe 18462 features from which we selected 276 via
the same feature extraction routine as for the Sander twitter corpus. Below is a list of the
top 10 features for the Apple Twitter corpus after the feature selection procedure. (obscene
words are again removed): 1. iphone 2. apple_juice 3. mac 4. ipod 5. ipad 6. apple_pie 7.
iphone_5 8. apple_cider 9. cider 10. patent.

Press association (PA) data:

The “PA” dataset was developed by the Press Association? to enable the implementation of
a system for recognition and semantic disambiguation of named entities in press releases.
Given certain metadata for a number of overlapping candidate entities, an array of features
derived from the textual context of their occurrence, and additional document-level metadata,
the model is trained to recognize which (if any) of the candidate entities is the one referenced
in the text.

The corpus is annotated with respect to people, organization and location mentions; a
special “negative” label denotes the candidates that can be considered irrelevant in the given
context. We remove non-location entities, thus reducing the problem to a binary classification
task, and conduct feature selection to keep ~10 % of the originally extracted features.We
split the corpus into a training set (2369 documents) and a held-out test set (160 documents).
As a result of this preprocessing, we have 2 classes (“Location” and “Negative”), 48773
instances, a target to irrelevant instance counts ratio of 0.17, and 4640 features.

9 Experiments

On Figs. 2a and b we compare the two versions of our algorithm to the brute-force baseline
which finds the optimal solution using an exhaustive search which is computationally very
demanding. The objective is to demonstrate that our algorithm does find the optimal solution
with far less iterations. The results clearly demonstrate that on the synthetic datasets (train) our
class-wise version of the algorithm is indeed very close to the brute-force baseline. However,
the brute-force method requires training 50 weighted maximum entropy models, whereas our
approach needs only one.The instance-wise approach ensures a better adaptation to the data
and therefore achieves even higher Fg values than the class-wise brute-force.Additionally we
have added the Fj as achieved by the standard rigid maximum entropy model to demonstrate
the scale of improvement that can be achieved with a dedicated Fg optimizer. The comparison
to the standard Maxent clearly underlines the importance of the targeted Fg optimization.

Figures 3a and b depict the performance of the two versions of our algorithm (instance-wise
and class-wise) on the test subset of the synthetic datasets A and B, respectively, compared
with the acceptance threshold baseline. On the synthetic dataset A, the Fg values are com-
parable. We believe in fact that for the two spherical Gaussian distributions, the acceptance
threshold should be nearly optimal, as translations of the maximum likelihood model to the
left and right are the best choice for trading Precision and Recall. We elaborate on this in the
next section. On the other hand, when the class distributions are skewed as in the synthetic
data B, our algorithm is clearly superior.

As noted above we have tested our algorithm also on two publicly available datasets: the
Sanders Twitter corpus and the Apple Twitter corpus. The results on the train and test subsets
of the Sanders Twitter dataset are shown on Fig. 4.

3 http://www.pressassociation.com/.
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The instance-wise version of the algorithm achieves a significant improvement of the Fg
measure compared to the acceptance threshold baseline. The improvement of the class-wise
version is however marginal.

While the improvement on the Apple Twitter corpus (Fig. 5) is not that impressive it is
still visible and given the rather large values of the achieved Fjg not to be underestimated as
well. Clearly, the Apple Twitter corpus (Fig. 5) is more of the “Spherical type” rather than
the “Orthogonal type” (see the discussion in Sect. 10).

Finally, Fig. 6 shows the performance of our algorithm and the acceptance threshold
baseline on the Press Association dataset. Clearly both the class-wise and instance-wise
algorithms outperform the acceptance threshold baseline by a generous margin. In particular,
the instance-wise approach is visibly better than the class-wise one.

Following the observations on the two simulated datasets, we believe that the Press Asso-
ciation and the Sanders Twitter data, and perhaps a good portion of the NLP data in general,
are distributed in a non-trivial way in the space of features, such that adaptive approaches
for Precision-Recall trade-off like the one we are proposing are indeed useful. Clearly, as
the experiments on the Apple Twitter corpus show, the improvement over the acceptance
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threshold depends on the dataset as well as on the used features and might not be always
substantial but given that our approach comes at virtually no additional computational and
implementation cost and is guaranteed at least not to underperform compared to the adjust-
ment threshold (on the training dataset) we believe thatitis a good choice for Fg optimization.

10 Limits and merits of the weighted maximum entropy

In this section we compare the class-wise weighted maximum entropy and the acceptance
threshold method with the help of the two stylized artificial data sets A and B shown on
Fig. 1.

The acceptance threshold corresponds to a translation of the separating hyperplane
obtained by the standard maximum entropy model. It is rather clear that with translation
we can achieve an optimal Precision/Recall trade-off for the synthetic dataset A. Indeed on
Fig. 3a one sees that the acceptance threshold and the weighted maximum entropy do result
in similar optimal Fg values on the test set. On the train set the acceptance threshold and our
algorithms generate virtually the same optimal Fg values.

Observe that Fig. 7 merely reiterates on the train set the comparisons from Fig. 3.

The optimal Precision/Recall trade-off for the synthetic dataset B however requires addi-
tional rotation/tilting of the separating hyperplane that cannot be produced by adjusting
the acceptance threshold. In line with this intuition Figs. 3b and 7b, for the test and train
sets respectively, demonstrate that the weighted likelihood settles at a considerably better
Precision-Recall pairs and consequently results in larger Fg values on the test and the train
sets.

Clearly, in the general case the optimal shift of the separating plane is expected to have
a rotation component that is unaccessible by simply adjusting the acceptance threshold.
Moreover as shown in the previous section the instance-wise weighted maximum entropy
also outperforms the class-wise approximation.

11 Conclusions and future work

The main result of the paper is that the weighted maximum likelihood and the expected
Fg measure are simply two different ways to specify a particular trade-off between the
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objectives of the same MOP. As a consequence, each expected Fg maximizer can be realized
as a weighted maximum likelihood estimator and approximated via a class-wise weighted
maximum likelihood estimator.

The difficulty in exploiting the statement of Proposition 1 lies in the fact that it is not a
priori clear how to choose the weights w(f) for a given S.

We presented a theoretical result giving the optimal w () as well as an efficient algorithm
for maximizing the I:}; by adaptively determining the right weights. We have tested the
algorithm on various data sets and the experiments suggest that it indeed finds the optimal
weights and achieves F, s maximization. Furthermore we have compared the algorithm to the
optimal threshold baseline showing the superiority of our approach.

The presented results can be generalized to the regularized and multi-class cases and will
be presented in a forthcoming article. Lastly, the proposed approach to view a broad class
of probabilistic learning schemes based on optimizing some objective function as a specific
trade-off between the underlying conditional probabilities and thus to link it to a weighted
maximum likelihood model can be applied beyond the specific set-up of maximum entropy
and the Fg objective. In particular, the intuition via modifying the original data set and then
using the standard model on the new data set, as explained above, can obviously be applied
to a very broad range of machine learning models.
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