
Mach Learn (2014) 97:65–78
DOI 10.1007/s10994-014-5438-z

Leave-one-out cross-validation is risk consistent for lasso

Darren Homrighausen · Daniel J. McDonald

Received: 3 March 2013 / Accepted: 6 March 2014 / Published online: 28 March 2014
© The Author(s) 2014

Abstract The lasso procedure pervades the statistical and signal processing literature, and
as such, is the target of substantial theoretical and applied research. While much of this
research focuses on the desirable properties that lasso possesses—predictive risk consistency,
sign consistency, correct model selection—these results assume that the tuning parameter is
chosen in an oracle fashion. Yet, this is impossible in practice. Instead, data analysts must
use the data twice, once to choose the tuning parameter and again to estimate the model. But
only heuristics have ever justified such a procedure. To this end, we give the first definitive
answer about the risk consistency of lasso when the smoothing parameter is chosen via cross-
validation. We show that under some restrictions on the design matrix, the lasso estimator is
still risk consistent with an empirically chosen tuning parameter.

Keywords Stochastic equicontinuity · Uniform convergence · Persistence

1 Introduction

Since its introduction in the statistical (Tibshirani 1996) and signal processing (Chen et al.
1998) communities, the lasso has become a fixture as both a data analysis tool (see for
example Lee et al. 2010; Shi et al. 2008) and as an object for deep theoretical investigations
(Fu and Knight 2000; Greenshtein and Ritov 2004; Meinshausen and Bühlmann 2006). To
fix ideas, suppose that the observational model is of the form
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Y = Xθ + σ W. (1.1)

where Y = (Y1, . . . , Yn)� is the vector of responses and X ∈ R
n×p is the feature matrix,

with rows (X�
i )n

i=1, W is a noise vector, and σ is the signal-to-noise ratio. Under Eq. (1.1),
the lasso estimator, ̂θ(λ), is defined to be the minimizer of the following functional:

̂θ(λ) := argmin
θ

1

2n
‖Y − Xθ‖2 + λ‖θ‖1. (1.2)

Here, λ ≥ 0 is a tuning parameter controlling the trade-off between fidelity to the data (small
λ) and sparsity (large λ). We tacitly assume that X has full column rank, and thus, ̂θ(λ) is the
unique minimum.

Throughout the paper, we will reserve ||·|| for the �2- or Euclidean norm when applied
to vectors or the spectral norm when applied to matrices. We indicate other norms with an
appropriate subscript: ||·||F is the Frobenius norm of a matrix, ||·||1 is the �1 norm of a vector,
and ||x ||2A = x� Ax is the �2-norm of x weighted by a matrix A.

Under conditions on the matrix X, noise vector W , and the parameter θ , the optimal choice
of λ leads to predictive risk consistency (Greenshtein and Ritov 2004). However, arguably the
most crucial aspect of any procedure’s performance is the selection of the tuning parameters.
Typically, theory advocating the lasso’s empirical properties specifies only the rates. That is,
this theory claims “if λ = λn goes to zero at the correct rate, then ̂θ(λn) will be consistent in
some sense.” For the regularized problem in Eq. (1.2), taking λn = o((log(n)/n)1/2) gives
risk consistency under very general conditions. However, this type of theoretical guidance
says nothing about the properties of the lasso when the tuning parameter is chosen using the
data.

There are several proposed techniques for choosing λ, such as minimizing the empirical
risk plus a penalty term based on the degrees of freedom (Zou et al. 2007; Tibshirani and
Taylor 2012) or using an adapted Bayesian information criterion (Wang and Leng 2007). In
many papers, (Efron et al. 2004; van de Geer and Lederer 2011; Greenshtein and Ritov 2004;
Hastie et al. 2009; Tibshirani 1996, 2011; Zou et al. 2007, for example), the recommended
technique for selecting λ is to choose λ = ̂λn such that ̂λn minimizes a cross-validation
estimator of the risk.

Some results supporting the use of cross-validation for statistical algorithms other than
lasso are known. For instance, kernel regression (Györfi et al. 2002, [Theorem 8.1]), k-nearest
neighbors (Györfi et al. 2002, [Theorem 8.1]), and various classification algorithms (Schaffer
1993) all behave well with tuning parameters selected using the data. Additionally, suppose
we form the adaptive ridge regression estimator (Grandvalet 1998)

argmin
θ,(λ j )

||Y − Xθ ||2 +
p

∑

j=1

λ jθ
2
j (1.3)

subject to the contraint λ
∑p

j=1 1/λ j = p. Then the solution to Eq. (1.3) is equivalent,
under a reparameterization of λ (Grandvalet, 1998, §3), to the solution to Eq. (1.2). As
ridge regression has been shown to have good asymptotic properties under (generalized)
cross-validation, there is reason to believe these properties may carry over to lasso and cross-
validation using this equivalence. However, rigorous results for the lasso have yet to be
developed.

The supporting theory for other methods indicates that there should be corresponding
theory for the lasso. However, other results are not so encouraging. In particular, (Shao 1993)
shows that cross-validation is inconsistent for model selection. As lasso implicitly does model
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selection, and shares many connections with forward stagewise regression (Efron et al. 2004),
this raises a concerning possibility that lasso might also be predictive risk inconsistent under
cross-validation. Likewise, (Leng et al. 2006) shows that using prediction accuracy (which
is what cross-validation estimates) as a criterion for choosing the tuning parameter fails to
recover the sparsity pattern consistently in an orthogonal design setting. Furthermore, (Xu et
al. 2008) shows that sparsity inducing algorithms like lasso are not (uniformly) algorithmi-
cally stable. In other words, leave-one-out versions of the lasso estimator are not uniformly
close to each other. As shown in Bousquet and Elisseeff (2002), algorithmic stability is a
sufficient, but not necessary, condition for predictive risk consistency.

These results taken as a whole leave the lasso in an unsatisfactory position, with some
theoretical results and generally accepted practices advocating the use of cross-validation
while others suggest that it may not work. Our result partially resolves this antagonism by
showing that, in some cases, the lasso with cross-validated tuning parameter is indeed risk
consistent.

In this paper we provide a first result about the predictive risk consistency of lasso with
the tuning parameter selected by cross-validation under some assumptions about X and W .
In Sect. 2 we introduce our notation and state our main theorem. In Sect. 3 we state some
results necessary for our proof methods and in Sect. 4 we provide the proof. Lastly, in Sect. 5
we mention some implications of our main theorem and some directions for future research.

2 Notation, assumptions, and main results

The main assumptions we make for this paper ensure that the sequence (Xi )
n
i=1 is sufficiently

regular. These are

Assumption A

Cn := 1

n

n
∑

i=1

Xi X�
i → C, (2.1)

where C is a positive definite matrix with minimum eigenvalue eigenmin(C) = cmin > 0.

Assumption B There exists a constant CX < ∞ independent of n such that

||Xi || ≤ CX . (2.2)

Note that Assumption A appears repeatedly in the literature in various contexts (Tibshirani
1996; Fu and Knight 2000; Osborne et al. 2000; Leng et al. 2006, for example). Additionally,
Assumption B is similar to the standard requirement maxi {||Xi ||, 1 ≤ i ≤ n} = O(1) as
n → ∞. See Chatterjee and Lahiri (2011) for example.

It is important to note that̂θ(λ) as defined in Eq. (1.2) is random whether or not λ is chosen
stochastically. While in this paper we investigate the behavior of ̂θ(λ) when λ is a function
of the data, and hence itself stochastic, very nice results describe the asymptotic behavior of
̂θ(λ) for deterministic sequences λ = λn . Under Assumptions A and B, (Fu and Knight 2000)
shows that for a deterministic sequence such that λ/

√
n → 0,

√
n(̂θ(λ)−θ) → N (0, σ 2C−1)

in distribution. Alternatively, if λ/
√

n → λ0 > 0, then
√

n(̂θ(λ) − θ) → argmin(V ), where

V (u) = −2u�W + u�Cu + λ0

p
∑

j=1

u j sgn(θ j )1(θ j 
= 0) + |θ j |1(θ j = 0).
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Here 1 is a binary indicator function and sgn(x) = 1(x ≥ 0) − 1(x < 0). From this we
see that if λ grows slowly relative to n, then ̂θ(λ) has the same asymptotic behavior as ̂θ(0)

while if λ grows more quickly, it will have an asymptotic bias. This is further evidence for the
need to investigate the asymptotic behavior of the lasso solution with cross-validated tuning
parameter.

We define the predictive risk and the leave-one-out cross-validation estimator of risk to
be

Rn(λ) := 1

n
E‖X(̂θ(λ) − θ)‖2 + σ 2 = E‖̂θ(λ) − θ)‖2

Cn
+ σ 2 (2.3)

and

̂Rn(λ) = 1

n

n
∑

i=1

(Yi − X�
i
̂θ(i)(λ))2, (2.4)

respectively. Throughout this paper, we assume that Wi ∼ Pi are independently distributed.
We define P = ∏

i Pi to be the n-fold product distribution of the Wi ’s and use E to denote
the expected value with respect to this product measure. In Eq. (2.4) we are using ̂θ(i)(λ) to
indicate the lasso estimator ̂θ(λ) computed using all but the i th observation.

Lastly, let � be a large, compact subset of [0,∞) the specifics of which are unimportant.
In practical situations, any λ ∈ [max j |̂θ j (0)|,∞) will result in the same solution, namely
̂θ j (λ) = 0 for all j , so any large finite upper bound is sufficient. Then define

̂λn := argmin
λ∈�

̂Rn(λ), and λn := argmin
λ∈R+

Rn(λ),

where R
+ = [0,∞). For ̂θ(λ) to be consistent, it must hold that λ → 0 as n → ∞. Hence,

for some N , n ≥ N implies λn ∈ � ⊂ R
+. Therefore, without loss of generality, we assume

that λn ∈ � for all n.
We spend the balance of this paper discussing and proving the following result:

Theorem 2.1 (Main Theorem) Suppose that Assumptions A and B hold and that there exists
a Cθ < ∞ such that ||θ ||1 ≤ Cθ . Let Wi be independently distributed such that E[Wi ] = 0,
E[Wi ]2 = 1, and E[W 4

i ] ≤ CW , for some constant CW < ∞ independent of i . Then

Rn(̂λn) − Rn(λn) → 0. (2.5)

Essentially, this result states that under some conditions on the design matrix X and the
noise vector W , the predictive risk of the lasso estimator with tuning parameter chosen via
cross-validation converges to the predictive risk of the lasso estimator with the oracle tuning
parameter. In other words, the typical procedure for a data analyst is asymptotically equivalent
(in terms of predictive risk) to the optimal procedure.

To prove this theorem, we show that supλ∈� |̂Rn(λ) − Rn(λ)| → 0 in probability. Then
Eq. (2.5) follows as

Rn(̂λn) − Rn(λn) = (

Rn(̂λn) − ̂Rn(̂λn)
) + (

̂Rn(̂λn) − Rn(λn)
)

≤ (

Rn(̂λn) − ̂Rn(̂λn)
) + (

̂Rn(λn) − Rn(λn)
)

≤ 2 sup
λ∈�

(

Rn(λ) − ̂Rn(λ)
)

= oP(1).

In fact, the term Rn(̂λn) − Rn(λn) is non-stochastic (the expectation in the risk integrates
out the randomness in the data) and therefore convergence in probability implies sequential
convergence and hence oP(1) = o(1).
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We can write

|Rn(λ) − ̂Rn(λ)|
=

∣

∣

∣

∣

1

n
E

∣

∣

∣

∣X̂θ(λ)
∣

∣

∣

∣

2 + 1

n
||Xθ ||2 − 1

n
2E(X̂θ(λ))�Xθ + σ 2

− 1

n

n
∑

i=1

(

Y 2
i + (X�

i
̂θ(i)(λ))2 − 2Yi X�

i
̂θ(i)(λ)

)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

n
E

∣

∣

∣

∣X̂θ(λ)
∣

∣

∣

∣

2 − 1

n

n
∑

i=1

(X�
i
̂θ(i)(λ))2

∣

∣

∣

∣

∣

︸ ︷︷ ︸

(a)

+2

∣

∣

∣

∣

∣

1

n
E(X̂θ(λ))�Xθ − 1

n

n
∑

i=1

Yi X�
i
̂θ(i)(λ)

∣

∣

∣

∣

∣

︸ ︷︷ ︸

(b)

+
∣

∣

∣

∣

∣

1

n
||Xθ ||2 + σ 2 − 1

n

n
∑

i=1

Y 2
i

∣

∣

∣

∣

∣

︸ ︷︷ ︸

(c)

. (2.6)

Our proof follows by addressing (a), (b), and (c) in lexicographic order in Sect. 4. To show
that each term converges in probability to zero uniformly in λ, we will need a few preliminary
results.

3 Preliminary material

In this section, we present some definitions and lemmas which are useful for proving risk
consistency of the lasso with cross-validated tuning parameter. First, we give some results
regarding the uniform convergence of measurable functions. Then, we use these results to
show that the leave-one-out lasso estimator converges uniformly to the full-sample lasso
estimator.

3.1 Equicontinuity

Our proof of Theorem 2.1 uses a number of results relating uniform convergence with con-
vergence in probability. The essential message is that particular measurable functions behave
nicely over compact sets. Mathematically, such collections of functions are called stochasti-
cally equicontinuous.

To fix ideas, we first present the definition of stochastic equicontinuity in the context
of statistical estimation. Suppose that we are interested in estimating some functional of a
parameter β, Qn(β), using ̂Qn(β) where β ∈ B.

Definition 3.1 (Stochastic equicontinuity) If for every ε, η > 0 there exists a random variable

n(ε, η) and constant n0(ε, η) such that for n ≥ n0(ε, η), P(|
n(ε, η)| > ε) < η and for
each β ∈ B there is an open set N (β, ε, η) containing β such that for n ≥ n0(ε, η),

sup
β ′∈N (β,ε,η)

∣

∣̂Qn(β ′) − ̂Qn(β)
∣

∣ ≤ 
n(ε, η),

then we call {̂Qn} stochastically equicontinuous over B.

An alternative formulation of stochastic equicontinuity which is often more useful can be
found via a Lipschitz-type condition.
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Theorem 3.2 (Theorem 21.10 in Davidson (1994)) Suppose there exists a random variable
Bn and a function h such that Bn = OP(1) and for all β ′, β ∈ B, |̂Qn(β ′) − ̂Qn(β)| ≤
Bnh(d(β ′, β)), where h(x) ↓ 0 as x ↓ 0 and d is a metric on B and the downward facing
arrow indicates convergence from above. Then {̂Qn} is stochastically equicontinuous.

The importance of stochastic equicontinuity is in showing uniform convergence, as is
expressed in the following two results.

Theorem 3.3 (Theorem 2.1 in Newey (1991)) If B is compact, |̂Qn(β) − Qn(β)| = oP(1)

for each β ∈ B, {̂Qn} is stochastically equicontinuous over B, and {Qn} is equicontinuous,
then supβ∈B |̂Qn(β) − Qn(β)| = oP(1).

This theorem allows us to show uniform convergence of estimators ̂Qn(β) of statistical
functionals to Qn(β) over compact sets B. However, we may also be interested in the uniform
convergence of random quantities to each other. While one could use the above theorem to
show such a result, the following theorem of Davidson (1994) is often simpler.

Theorem 3.4 (Davidson (1994)) If B is compact, then supβ∈B Gn(β) = oP(1) if and only if
Gn(β) = oP(1) for each β in a dense subset of B and {Gn(β)} is stochastically equicontin-
uous.

3.2 Uniform convergence of lasso estimators

Using stochastic equicontinuity, we prove two lemmas about lasso estimators which, while
intuitive, are nonetheless novel. The first shows that the lasso estimator converges uniformly
over � to its expectation. The second shows that the lasso estimator computed using the full
sample converges in probability uniformly over � to the lasso estimator computed with all
but one observation.

Before stating our lemmas, we include without proof some standard results about uniform
convergence of functions. A function f : [a, b] → R has the Luzin N property if, for all
N ⊂ [a, b] that has Lebesgue measure zero, f (N ) has Lebesgue measure zero as well. Also,
a function f is of bounded variation if and only if it can be written as f = f1 − f2 for
non-decreasing functions f1 and f2.

Theorem 3.5 A function f is absolutely continuous if and only if it is of bounded variation,
continuous, and has the Luzin N property.

Theorem 3.6 If a function f : [a, b] → R is absolutely continuous, and hence differentiable
almost everywhere, and satisfies | f ′(x)| ≤ CL for almost all x ∈ [a, b] with respect to
Lebesgue measure, then it is Lipschitz continuous with constant CL .

Throughout this paper, we use CL as generic notation for a Lipschitz constant; its actual value
changes from line to line. The following result is useful for showing the uniform convergence
of ̂θ(λ).

Proposition 3.7 The random function ̂θ(λ) is Lipschitz continuous over �. That is, there
exists CL < ∞ such that for any λ, λ′ ∈ �,

∣

∣

∣

∣̂θ(λ) − ̂θ(λ′)
∣

∣

∣

∣ ≤ CL |λ − λ′|. (3.1)

Additionally, CL = O(1) as n → ∞.
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Proof The solution path of the lasso is piecewise linear over λ with a finite number of
‘kinks.’ Using the notation developed in (Tibshirani, 2013, Sect. 3.1), over each such interval,
the nonzero entries in ̂θ(λ) behave as a linear function with slope n(X�

E XE )−1sE , where
E ⊂ {1, . . . , p} is the set of the indices of the active variables, sE is the vector of signs, and
XE is the feature matrix with columns restricted to the indices in E .

Therefore, as
∣

∣

∣

∣n(X�
E XE )−1sE

∣

∣

∣

∣ ≤ ∣

∣

∣

∣n(X�
E XE )−1

∣

∣

∣

∣, ̂θ(λ) is Lipschitz continuous with

CL = max
E⊂{1,...,p}

∣

∣

∣

∣

∣

∣n(X�
E XE )−1

∣

∣

∣

∣

∣

∣

By Assumption A, for any E , 1
n X

�
E XE → CE . Also, eigenmin(CE ) ≥ cmin for any E . Fix

ε = cmin/2. Then, there exists an N such that for all n ≥ N and any E ,

1

n
eigenmin(X

�
E XE ) ≥ ε. (3.2)

Therefore, for n large enough, CL ≤ 1
ε

< ∞, which is independent of n. ��
Lemma 3.8 For any i ,

sup
λ∈�

∣

∣

∣

∣

∣

∣

̂θ(λ) − ̂θ(i)(λ)

∣

∣

∣

∣

∣

∣

P−→ 0.

Proof The pointwise convergence of ‖̂θ(λ) − ̂θ(i)(λ)‖2 to zero follows by (Fu and Knight,
2000, Theorem 1). Hence, we invoke the consequent of Theorem 3.4 as long as ‖̂θ(λ) −
̂θ(i)(λ)‖2 is stochastically equicontinuous. For this, it is sufficient to show that̂θ(λ) and̂θ(i)(λ)

are Lipschitz in the sense of Theorem 3.2. This follows for both estimators by Proposition
3.7. ��
Lemma 3.9 For all 1 ≤ j ≤ p, {̂θ j (λ)} is stochastically equicontinuous, {E[̂θ j (λ)]} is
equicontinuous, and |̂θ j (λ) − Êθ j (λ)| = oP(1). Thus,

sup
λ∈�

|̂θ j (λ) − Êθ j (λ)| = oP(1).

Furthermore,

sup
λ∈�

∣

∣

∣

∣̂θ(λ) − Êθ(λ)
∣

∣

∣

∣

2
Cn

= oP(1),

where this notation is introduced in Eq. (2.3).

Proof To show this claim, we use Theorem 3.3. For pointwise convergence, note that ̂θ(λ)

converges in probability to an non-stochastic limit (Fu and Knight, 2000, Theorem 1), call it
θ(λ). Also, |̂θ j (λ)| ≤ ∣

∣

∣

∣̂θ(0)
∣

∣

∣

∣

1, which is integrable. By the Skorohod representation theorem,
there exists random variables ̂θ j (λ)′ such that ̂θ j (λ)′ → θ(λ) almost surely and ̂θ j (λ)′ has
the same distribution as ̂θ j (λ) for each n. By the dominated convergence theorem,

lim Êθ j (λ) = lim Êθ j (λ)′ = Eθ(λ) = θ(λ).

Therefore, |̂θ j (λ) − Êθ j (λ)| → 0 in probability.
Stochastic equicontinuity follows by Proposition 3.7 and Theorem 3.2. Hence, Theo-

rem 3.3 is satisfied as long as {Êθ j (λ)} is equicontinuous. Observe that the expectation and
differentiation operations commute for ̂θ(λ). Therefore, the result follows by Proposition
3.7.
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Finally, we have
∣

∣

∣

∣̂θ(λ) − Êθ(λ)
∣

∣

∣

∣

2
Cn

= (̂θ(λ) − Êθ(λ))�Cn(̂θ(λ) − Êθ(λ))

≤ ∣

∣

∣

∣̂θ(λ) − Êθ(λ)
∣

∣

∣

∣

∣

∣

∣

∣Cn(̂θ(λ) − Êθ(λ))
∣

∣

∣

∣

≤ ∣

∣

∣

∣̂θ(λ) − Êθ(λ)
∣

∣

∣

∣

2||Cn ||

= ||Cn ||
p

∑

j=1

|̂θ j (λ) − Êθ j (λ)|2,

which goes to zero uniformly, as ||Cn || → ||C || < ∞ ��

4 Proofs

In this section, we address each component of the decomposition in (2.6). Parts (a) and
(b) follow from uniform convergence of the lasso estimator to its expectation (Lemma 3.9)
and asymptotic equivalence of the leave-one-out lasso estimator and the full-sample lasso
estimator (Lemma 3.8) while part (c) uses Markov’s inequality.

Proposition 4.1 (Part (a))

sup
λ∈�

∣

∣

∣

∣

∣

1

n
E

∣

∣

∣

∣X̂θ(λ)
∣

∣

∣

∣

2 − 1

n

n
∑

i=1

(

X�
i
̂θ(i)(λ)

)2
∣

∣

∣

∣

∣

= oP(1).

Proof Observe
∣

∣

∣

∣

∣

1

n
E

∣

∣

∣

∣X̂θ(λ)
∣

∣

∣

∣

2 − 1

n

n
∑

i=1

(X�
i
̂θ(i)(λ))2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

n
E

∣

∣

∣

∣X̂θ(λ)
∣

∣

∣

∣

2 − 1

n

∣

∣

∣

∣X̂θ(λ)
∣

∣

∣

∣

2
∣

∣

∣

∣

︸ ︷︷ ︸

(ai)

+
∣

∣

∣

∣

∣

1

n

∣

∣

∣

∣X̂θ(λ)
∣

∣

∣

∣

2 − 1

n

n
∑

i=1

(X�
i
̂θ(i)(λ))2

∣

∣

∣

∣

∣

︸ ︷︷ ︸

(aii)

For (ai), note that E

∣

∣

∣

∣X̂θ(λ)
∣

∣

∣

∣

2 = trace(X�
XV̂θ(λ)) + ∣

∣

∣

∣XÊθ(λ)
∣

∣

∣

∣

2
, where V̂θ(λ) =

E
[

(̂θ(λ) − Êθ(λ))(̂θ(λ) − Êθ(λ))�
]

is the variance matrix of ̂θ(λ). Hence,

(ai) ≤ ∣

∣trace(CnV̂θ(λ))
∣

∣ + 1

n

∣

∣

∣

∣

∣

∣

∣EX̂θ(λ)
∣

∣

∣

∣

2 − ∣

∣

∣

∣X̂θ(λ)
∣

∣

∣

∣

2
∣

∣

∣

≤ ||Cn ||F

∣

∣

∣

∣V̂θ(λ)
∣

∣

∣

∣

F + 1

n

∣

∣

∣

∣

∣

∣

∣EX̂θ(λ)
∣

∣

∣

∣

2 − ∣

∣

∣

∣X̂θ(λ)
∣

∣

∣

∣

2
∣

∣

∣

≤ ||Cn ||F

∣

∣

∣

∣V̂θ(0)
∣

∣

∣

∣

F + 1

n

∣

∣

∣

∣

∣

∣

∣EX̂θ(λ)
∣

∣

∣

∣

2 − ∣

∣

∣

∣X̂θ(λ)
∣

∣

∣

∣

2
∣

∣

∣

= σ 2||Cn ||F

∣

∣

∣

∣

∣

∣(X
�

X)−1
∣

∣

∣

∣

∣

∣

F
+ 1

n

∣

∣

∣

∣

∣

∣

∣EX̂θ(λ)
∣

∣

∣

∣

2 − ∣

∣

∣

∣X̂θ(λ)
∣

∣

∣

∣

2
∣

∣

∣

≤ σ 2

n
||Cn ||F

∣

∣

∣

∣C−1
n

∣

∣

∣

∣

F + ∣

∣

∣

∣̂θ(λ) + Êθ(λ)
∣

∣

∣

∣

Cn

∣

∣

∣

∣̂θ(λ) − Êθ(λ)
∣

∣

∣

∣

Cn
.

The third inequality follows from (Osborne et al. 2000, [Eq. 4.1]) which bounds the variance
of the lasso estimator with the variance of the least-squares estimator. The last line goes to
zero uniformly by Lemma 3.9.
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For (aii), note that

1

n

∣

∣

∣

∣

∣

‖X̂θ(λ)‖2 −
n

∑

i=1

(X�
i
̂θ(i)(λ))2

∣

∣

∣

∣

∣

= 1

n

∣

∣

∣

∣

∣

n
∑

i=1

(

(X�
i
̂θ(λ))2 − (X�

i
̂θ(i)(λ))2

)

∣

∣

∣

∣

∣

≤ 1

n

n
∑

i=1

∣

∣

∣(X�
i
̂θ(λ))2 − (X�

i
̂θ(i)(λ))2

∣

∣

∣

= 1

n

n
∑

i=1

∣

∣

∣X�
i
̂θ(λ)̂θ(λ)� Xi − X�

i
̂θ(i)(λ)̂θ(i)(λ)� Xi

∣

∣

∣

= 1

n

n
∑

i=1

∣

∣

∣X�
i

(

̂θ(λ)̂θ(λ)� − ̂θ(i)(λ)̂θ(i)(λ)�
)

Xi

∣

∣

∣

≤ 1

n

n
∑

i=1

||Xi ||2
∣

∣

∣

∣

∣

∣

̂θ(λ)̂θ(λ)� − ̂θ(i)(λ)̂θ(i)(λ)�
∣

∣

∣

∣

∣

∣

F
.

Furthermore,

∣

∣

∣

∣

∣

∣

̂θ(λ)̂θ(λ)� − ̂θ(i)(λ)̂θ(i)(λ)�
∣

∣

∣

∣

∣

∣

F
≤

p
∑

j=1

∣

∣

∣

∣

∣

∣

̂θ j (λ)̂θ(λ) − ̂θ
(i)
j (λ)̂θ(i)(λ)

∣

∣

∣

∣

∣

∣.

Finally,
∣

∣

∣

∣

∣

∣

(

̂θ j (λ)̂θ(λ) − ̂θ
(i)
j (λ)̂θ(i)(λ)

)

−
(

̂θ j (λ
′)̂θ(λ′) − ̂θ

(i)
j (λ′)̂θ(i)(λ′)

)∣

∣

∣

∣

∣

∣

≤ |̂θ j (λ)|∣∣∣∣̂θ(λ) − ̂θ(λ′)
∣

∣

∣

∣ + ∣

∣̂θ j (λ) − ̂θ j (λ
′)
∣

∣

∣

∣

∣

∣̂θ(λ′)
∣

∣

∣

∣ +
∣

∣

∣

̂θ
(i)
j (λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

̂θ(i)(λ′) − ̂θ(i)(λ)

∣

∣

∣

∣

∣

∣ +
∣

∣

∣

̂θ
(i)
j (λ′) − ̂θ

(i)
j (λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

̂θ(i)(λ′)
∣

∣

∣

∣

∣

∣

≤ |̂θ j (0)|∣∣∣∣̂θ(λ) − ̂θ(λ′)
∣

∣

∣

∣ + ∣

∣̂θ j (λ) − ̂θ j (λ
′)
∣

∣

∣

∣

∣

∣̂θ(0)
∣

∣

∣

∣

1 +
∣

∣

∣

̂θ
(i)
j (0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

̂θ(i)(λ′) − ̂θ(i)(λ)

∣

∣

∣

∣

∣

∣ +
∣

∣

∣

̂θ
(i)
j (λ′) − ̂θ

(i)
j (λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

̂θ(i)(0)

∣

∣

∣

∣

∣

∣

1
.

The least squares solution is Op(1), so Proposition 3.7 and Theorem 3.2 imply that
∣

∣

∣

∣̂θ(λ)̂θ(λ)� − ̂θ(i)(λ)̂θ(i)(λ)�
∣

∣

∣

∣

F is stochastically equicontinuous and, since ||Xi ||2 ≤ C2
X

by Assumption B, Theorem 3.3 implies that (aii) goes to zero uniformly in probability over
�. ��

Proposition 4.2 (Part (b))

sup
λ∈�

∣

∣

∣

∣

∣

1

n
E(X̂θ(λ))�Xθ − 1

n

n
∑

i=1

Yi X�
i
̂θ(i)(λ)

∣

∣

∣

∣

∣

= oP(1).

Proof Observe,

n
∑

i=1

Yi X�
i
̂θ(i)(λ) =

n
∑

i=1

(X�
i θ + σ 2Wi )(X�

i
̂θ(i)(λ)) (4.1)

=
n

∑

i=1

X�
i θ X�

i
̂θ(i)(λ) +

n
∑

i=1

σ 2Wi X�
i
̂θ(i)(λ). (4.2)
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So,
∣

∣

∣

∣

∣

1

n
E(X̂θ(λ))�Xθ − 1

n

n
∑

i=1

Yi X�
i
̂θ(i)(λ)

∣

∣

∣

∣

∣

≤
∣

∣

∣Êθ(λ)�Cnθ − ̂θ(λ)�Cnθ

∣

∣

∣ +
∣

∣

∣

∣

∣

̂θ(λ)�Cnθ − 1

n

n
∑

i=1

Yi X�
i
̂θ(i)(λ)

∣

∣

∣

∣

∣

=
∣

∣

∣(Êθ(λ) − ̂θ(λ))�Cnθ

∣

∣

∣ +
∣

∣

∣

∣

∣

̂θ(λ)�Cnθ − 1

n

n
∑

i=1

Yi X�
i
̂θ(i)(λ)

∣

∣

∣

∣

∣

≤ ∣

∣

∣

∣Êθ(λ) − ̂θ(λ)
∣

∣

∣

∣

Cn
||θ ||Cn

︸ ︷︷ ︸

(bi)

+
∣

∣

∣

∣

∣

1

n
̂θ(λ)�X

�
Xθ − 1

n

n
∑

i=1

X�
i θ X�

i
̂θ(i)(λ)

∣

∣

∣

∣

∣

︸ ︷︷ ︸

(bii)

+

+
∣

∣

∣

∣

∣

1

n

n
∑

i=1

σ 2Wi X�
i
̂θ(i)(λ)

∣

∣

∣

∣

∣

︸ ︷︷ ︸

(biii)

.

By Lemma 3.9, (bi) goes to zero uniformly. For (bii),

1

n

∣

∣

∣

∣

∣

̂θ(λ)�X
�

Xθ −
n

∑

i=1

X�
i θ X�

i
̂θ(i)(λ)

∣

∣

∣

∣

∣

= 1

n

∣

∣

∣

∣

∣

n
∑

i=1

θ� Xi X�
i

(

̂θ(λ) − ̂θ(i)(λ)
)

∣

∣

∣

∣

∣

≤ 1

n

n
∑

i=1

(

||θ ||||Xi ||2
∣

∣

∣

∣

∣

∣

̂θ(λ) − ̂θ(i)(λ)

∣

∣

∣

∣

∣

∣

)

≤ CθC2
X

1

n

n
∑

i=1

∣

∣

∣

∣

∣

∣

̂θ(λ) − ̂θ(i)(λ)

∣

∣

∣

∣

∣

∣.

This goes to zero uniformly by Lemma 3.8.
For (biii), ‖̂θ(i)(λ)‖1 ≤ ‖̂θ(i)(0)‖1 for any λ, i . So:

∣

∣

∣

∣

∣

1

n

n
∑

i=1

σ 2Wi X�
i
̂θ(i)(λ)

∣

∣

∣

∣

∣

= σ 2

n

∣

∣

∣

∣

∣

n
∑

i=1

Wi X�
i
̂θ(i)(λ)

∣

∣

∣

∣

∣

≤ σ 2

n

∣

∣

∣

∣

∣

n
∑

i=1

Wi ||Xi ||∞
∣

∣

∣

∣

∣

∣

̂θ(i)(λ)

∣

∣

∣

∣

∣

∣

1

∣

∣

∣

∣

∣

≤ σ 2CX

n

∣

∣

∣

∣

∣

n
∑

i=1

Wi

∣

∣

∣

∣

∣

∣

̂θ(i)(0)

∣

∣

∣

∣

∣

∣

1

∣

∣

∣

∣

∣

ae−→ 0.

The proof of almost-everywhere convergence is given in the appendix. This completes the
proof of Proposition 4.2. ��
Proposition 4.3 (Part (c))

∣

∣

∣

∣

∣

1

n
||Xθ ||2 + σ 2 − 1

n

n
∑

i=1

Y 2
i

∣

∣

∣

∣

∣

= oP(1).

123



Mach Learn (2014) 97:65–78 75

Proof Using Markov’s inequality and the fact that for any random variable Z , E|Z | ≤ √
EZ2,

and using the notation VZ = E[(Z − EZ)2] for the variance, we see that

δ2 P

(∣

∣

∣

∣

∣

1

n
||Xθ ||2 + σ 2 − 1

n

n
∑

i=1

Y 2
i

∣

∣

∣

∣

∣

> δ

)2

≤ V

[

1

n

n
∑

i=1

Y 2
i

]

= 1

n2

n
∑

i=1

V

[

(

(X�
i θ)2 + σ 2W 2

i + 2X�
i θσ Wi

)2
]

= 1

n2

n
∑

i=1

(

σ 4
V[W 2

i ] + 4(X�
i θ)2σ 2

V[Wi ] + 4σ 3 X�
i θEW 3

i

)

= 1

n2

n
∑

i=1

(

σ 4(EW 4
i − 1) + 4(X�

i θ)2σ 2 + 4σ 3 X�
i θEW 3

i

)

≤ 1

n
σ 4(CW − 1) + 4σ 2

n2 ‖Xθ‖2 + 4σ 3CW

n2

n
∑

i=1

X�
i θ

1

n
σ 4(CW − 1) + 4σ 2

n
C2

X C2
θ + 4σ 3CW CX Cθ

n
= O(1/n).

��

5 Discussion and future work

A common practice in data analysis is to estimate the coefficients of a linear model with
the lasso and choose the regularization parameter by cross-validation. Unfortunately, no
definitive theoretical results existed as to the effect of choosing the tuning parameter in this
data-dependent way. In this paper, we provide a solution to the problem by demonstrating,
under particular assumptions on the design matrix, that the lasso is risk consistent even when
the tuning parameter is selected via leave-one-out cross-validation.

However, a number of important open questions remain. The first is to generalize to other
forms of cross-validation, especially K -fold. In fact, this generalization should be possible
using the methods developed herein. Lemma 3.8 holds when more than one training example
is held out, provided that the size of the datasets used to form the estimators still increases
to infinity with n. Furthermore, with careful accounting of the held out sets, Proposition 4.2
should hold as well.

A second question is to determine whether cross-validation holds in the high-dimensional
setting where p > n. However, our methods are not easily extensible to this setting. We rely
heavily on Assumption A which says that n−1

X
�

X has a positive definite limit as well as the
related results of Fu and Knight (2000) which are not available in high dimensions or with
random design. Additionally, an interesting relaxation of our results would be to assume that
the matrices Cn are all non-singular, but tend to a singular limit. This would provide a more
realistic scenario where regularization is more definitively useful.
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Finally, one of the main benefits of lasso is its ability to induce sparsity and hence perform
variable selection. While selecting the correct model is far more relevant in high dimensions,
it may well be desirable in other settings as well. As mentioned in the introduction, various
authors have shown that cross-validation and model selection are in some sense incompatible.
In particular, CV is inconsistent for model selection. Secondly, using prediction accuracy
(which is what ̂Rn(λ) is estimating) as the method for choosing λ fails to recover the sparsity
pattern even under orthogonal design. Thus, while we show that the predictions of the model
are asymptotically equivalent to those with the optimal tuning parameter, we should not
expect to have the correct model even if θ were sparse. In particular,̂θ(λ) does not necessarily
converge to the OLS estimator, and may not converge to θ . We do show (Lemma 3.9) that
̂θ(λ) converges to its expectation uniformly for all λ. While this expectation may be sparse,
it may not be. But we are unable to show that with cross-validated tuning parameter, the
lasso will select the correct model. While this is not surprising in light of previous research,
neither is it comforting. The question of whether lasso with cross-validated tuning parameter
can recover an unknown sparsity pattern remains open. Empirically, our experience is that
cross-validated tuning parameters lead to over-parameterized estimated models, but this has
yet to be validated theoretically.

6 Supplementary results

We state here the proof of Proposition 4.2.

Proof (Almost everywhere convergence of (biii))
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∣

∣

∣

∣
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∣

∣
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∣

∣
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∣

∣

∣
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∣
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∣

∣

∣

∣
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∣

∣

∣
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∣

∣
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∣

∣

∣

∣

∣
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)

The second term goes to zero in probability by the strong law of large numbers. For the first
term, define Ci,n = (n − ||Xi ||22)−1, then

̂θ(i)(0) = (X�
(i)X(i))

−1
X

�
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∣

∣

̂θ(i)(0) − θ

∣

∣

∣

∣

∣
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∣

∣

∣

∣
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∣
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where C∗
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