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Abstract The standard support vector machine (SVM) formulation, widely used for super-
vised learning, possesses several intuitive and desirable properties. In particular, it is convex
and assigns zero loss to solutions if, and only if, they correspond to consistent classifying
hyperplanes with some nonzero margin. The traditional SVM formulation has been heuris-
tically extended to multiple-instance (MI) classification in various ways. In this work, we
analyze several such algorithms and observe that all MI techniques lack at least one of the
desirable properties above. Further, we show that this tradeoff is fundamental, stems from
the topological properties of consistent classifying hyperplanes for MI data, and is related to
the computational complexity of learning MI hyperplanes. We then study the empirical con-
sequences of this three-way tradeoff in MI classification using a large group of algorithms
and datasets. We find that the experimental observations generally support our theoretical
results, and properties such as the labeling task (instance versus bag labeling) influence the
effects of different tradeoffs.

Keywords Multiple-instance learning · Support vector machines · Kernel methods

1 Introduction

A goal of drug activity prediction is to classify molecules as “active” or “inactive” depend-
ing on whether they bind to a target protein. Molecules may exist in multiple shapes, called
conformations, in solution; however, the binding activity of individual conformations is of-
ten not observable. Therefore, if a molecule is active (i.e. binds to a target), that implies that
at least one of its conformations is active. On the other hand, inactivity of a molecule means
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that no conformation binds. The multiple-instance (MI) learning framework was motivated
by the above problem (Dietterich et al. 1997), and encodes this relationship between an ob-
served label and a set of instances responsible for that label. In particular, a dataset is treated
as a set of labeled bags, each of which contains several instances, which are feature vectors.
If a bag is labeled positive, then at least one instance in the bag is positive. However, if a bag
is negative, then every instance in the bag is negative. The learner has to produce a classifier
that can accurately label new bags.

Numerous supervised learning algorithms have been extended to the MI classification
(MIC) setting in prior work (Blockeel et al. 2005; Maron 1998; Ramon and De Raedt 2000;
Xu and Frank 2004; Zhang and Goldman 2001; Zhou and Zhang 2002). In particular, kernel
methods such as support vector machines (SVMs) have been modified to handle MI data,
and are the focus of our analysis in this work (Andrews et al. 2003; Bunescu and Mooney
2007; Mangasarian and Wild 2008; Zhou and Xu 2007). The approaches we study adapt
supervised SVMs to the MI setting by adding constraints to the optimization program or
by constructing set kernels from instance kernels. Many of these approaches incorporate
heuristic ideas. We seek to understand the theoretical basis for these approaches and study
the empirical effects of the theoretical tradeoffs they make. In this work, we do not consider
methods that construct new kernels directly on bags or create entirely different feature spaces
to find classifiers (Chen et al. 2006; Tao et al. 2004; Zhou et al. 2009).

Conceptually, we consider the relationship between two spaces: the space of classifying
hyperplanes and the space of feasible solutions allowed by an MI optimization program.
The theoretical framework we investigate is based on three intuitive questions about these
spaces and the relationship between them. First, consider the set of consistent hyperplanes
for an MI classification problem (the classifying hyperplanes that fit the training bags with-
out errors). Which MI SVMs encode a feasible solution with zero loss corresponding to each
consistent hyperplane? We call approaches “complete” if this property holds across all MI
classification problems. Second, consider the set of feasible solutions with zero loss in an
MI SVM approach. Do all of these solutions correspond to consistent hyperplanes? If this is
the case over all MI classification problems, we call the approach “sound.” Third, is the MI
SVM approach and the corresponding set of feasible solutions convex? For standard super-
vised learning, the SVM program (Eq. 1) is convex, sound, and complete by definition, since
every zero-loss solution corresponds to a hyperplane that produces a correct labeling of the
bags, and every hyperplane that produces a correct labeling has a corresponding zero-loss
solution, for all supervised learning problems.

What is the importance of these properties? Soundness and completeness of the SVM
ensure that loss is appropriately measured on solutions corresponding to consistent hyper-
planes, so that structural risk minimization (SRM) approaches will generalize to new data.
We show that, surprisingly, for MI classification, no approach can have all three properties.
In practice, we show that each MI SVM algorithm makes different tradeoffs: some sacrifice
soundness, some completeness, and others convexity. As part of this work, we prove new
results on the ability of normalized set kernels (Gärtner et al. 2002) (Eq. 2) to separate MI
data. Then, using topological arguments, we show that the tradeoff between soundness, com-
pleteness, and convexity is fundamental in MI learning, and we relate our result to the com-
putational complexity of MI classification via hyperplanes. Finally, we carry out a detailed,
large-scale empirical comparison using numerous datasets and algorithms to understand the
practical implications of this tradeoff. Our experimental results are generally consistent with
our theoretical analysis, and the results shed additional light on how the value of each trade-
off is affected by factors such as the labeling task (i.e. labeling instances versus labeling
bags).
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2 Consistency, soundness, and completeness in MI classification

An MI problem (B,Y ) is given by B , a list of bags, where each bag Bi is a set of instances
xij ∈ X , and Y is a list of corresponding labels with Yi ∈ {−1,1}. In our analysis, we de-
scribe the properties of optimization programs that attempt to learn a classifying hyperplane
for MI data. Let H be a space of classifying hyperplanes defined over the instance space
X . If the instance space X = R

n, then a hyperplane (w,b) with w ∈ R
n and b ∈ R labels

instances via the function f (xij ) = sign(〈w,xij 〉 + b). In the standard supervised setting, a
hyperplane is consistent with a dataset if it correctly labels each instance. For an MI dataset,
a consistent hyperplane correctly labels all bags; that is, it labels at least one instance in each
positive bag as positive, and all instances in negative bags as negative:

Definition 1 (Consistency) A classifying hyperplane (w,b) is consistent with (B,Y ) if for
each Bi ∈ B: {

∃xij ∈ Bi : 〈w,xij 〉 + b ≥ 1 if Yi > 0

∀xij ∈ Bi : 〈w,xij 〉 + b ≤ −1 if Yi < 0

A consistent hyperplane separates bags, but not necessarily instances (e.g. an instance
in a positive bag can lie within the margin as long as some other instance is classified as
positive). We use C ⊆ H to denote the set of all consistent hyperplanes. In some cases, we
consider a stronger notion of consistency in which each instance must lie outside the margin
of the classifier:

Definition 2 (Strong Consistency) A classifying hyperplane is strongly consistent with
(B,Y ) if it is consistent and for each instance xij , either 〈w,xij 〉 + b ≥ 1 or 〈w,xij 〉 +
b ≤ −1.

Note that the choice of ±1 labels for separating instances is arbitrary and equivalent to
any other constant value, since we can always rescale (w,b) to achieve the same separation
with labels of other values.

As in the supervised case, for some MI datasets there may not be a consistent hyperplane,
or regularization might be favored over strict consistency. Therefore, an SRM approach is
usually taken in which empirical risk (error on the training set) is minimized while the
complexity of the selected model is controlled via regularization. Learning hyperplanes for
MI data in this way entails solving an optimization problem of the form: mins∈F λΩ(s) +
�(s), with a solution space S , a feasible region F ⊆ S , a regularizer Ω , a nonnegative loss
function �, and a tradeoff parameter λ. We call this an MI optimization program if there
exists a continuous function μ : S → H that maps solutions in S to classifying hyperplanes
in H.

Most MI SVMs used in practice are encompassed by this general formulation. Typi-
cally, the variables (w,b) are included directly in the optimization program, in which case
μ simply projects a solution s ∈ S onto the dimensions corresponding to (w,b) . When a
kernel function k(·, ·) is used, the space of hyperplane classifiers H is a reproducing kernel
Hilbert space (RKHS), and s ∈ S contains dual variables αi such that a hyperplane f ∈ H is
represented via f = ∑

i αiφ(xi), where φ(·) is the feature map corresponding to k(·, ·).
Recent results in learning theory show that the Vapnik–Chervonenkis (VC) dimension

of an MI bag classifying hypothesis space is bounded in terms of the VC dimension of the



82 Mach Learn (2014) 97:79–102

underlying instance hypothesis space (Sabato and Tishby 2012). Therefore, given an appro-
priate kernel function, we can learn to classify bags using classifying hyperplanes via SRM
strategies. However, the theoretical guarantees of risk minimization strategies require that
� provides an accurate assessment of empirical risk. Guarantees can generally not be made
for algorithms whose loss functions do not reflect true empirical risk. In particular, if loss
is appropriately measured, there should be a correspondence between the set of consistent
hyperplanes C ⊆ H, and the set of zero-loss, feasible solutions Z = {s ∈ F : �(s) = 0} ⊆ S .
This correspondence between consistency and loss is fundamental (and usually trivially sat-
isfied) in the supervised setting. However, as we show in Sect. 3, loss functions are used in
several existing MI SVM formulations for which this correspondence does not hold.

We now define two desired properties of a loss function � used in an MI optimization
program. For any MI dataset, if a hyperplane (w,b) is consistent, then there should exist
a corresponding solution s (μ(s) = (w,b)) with zero loss, since the hyperplane properly
“separates” bags in the sense described above. Conversely, every zero-loss solution s should
correspond (again, via μ) to a consistent hyperplane (w,b); otherwise, the hyperplane mis-
classifies bags without penalty. We call these two properties “completeness” and “sound-
ness.”

Definition 3 (Soundness) An MI optimization program is sound if for any dataset, all fea-
sible, zero-loss solutions correspond to consistent hyperplanes; that is, if μ(Z) ⊆ C.

Definition 4 (Completeness) An MI optimization program is complete if for any dataset,
there exists a feasible, zero-loss solution corresponding to every consistent hyperplane; that
is, if C ⊆ μ(Z).

Therefore, sound and complete MI optimization programs have the property that
μ(Z) = C, or that the set of feasible, zero-loss solutions corresponds to the set of con-
sistent hyperplanes. Note that these properties are quantified over all datasets, so although
they focus on the datasets for which consistent hyperplanes exist, they apply to all MI op-
timization programs of the form described above. That is, these properties naturally apply
to algorithms that handle nonseparable data with regularization. Though these properties
in some sense “ignore” the behavior of such algorithms on nonseparable datasets, any al-
gorithm that correctly measures empirical risk must at least do so correctly on separable
datasets.

There is one additional desirable property of MI optimization programs, as in supervised
learning: convexity. We define this formally below:

Definition 5 (Convexity) An optimization program is convex if for any dataset, and any
λ ≥ 0, F is a convex set, and λΩ(s) + �(s) is a convex function. With λ = 0, this implies
that �(s) is also a convex function.

The standard supervised SVM has the following formulation:

min
w,b,ξ

1

2
‖w‖2 + C

∑
i

ξi , s.t. yi

(〈w,φ(xi)〉 + b
) ≥ 1 − ξi, ξi ≥ 0, (1)

where φ(·) is the feature map corresponding to some kernel, k(·, ·). Under the supervised
learning notion of consistency, this formulation is sound, complete, and convex. It is con-
vex because the feasible region is a convex set, and the objective function is convex for
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any choice of C. It is sound, because if any solution corresponds to a hyperplane that does
not fit the data, some ξi must be nonzero to satisfy the constraints, so the loss term

∑
i ξi

will be nonzero. Finally, it is complete, since for any solution corresponding to a consistent
hyperplane, there exists a solution with each ξi = 0, which means that

∑
i ξi = 0. Having

these three properties has contributed to making the SVM a popular and successful super-
vised learning approach. In our work, we study which MI SVM formulations have these
properties.

The soundness and completeness concepts described above consider hyperplanes in the
instance space (or in the feature space corresponding to an instance kernel). Other ap-
proaches use set kernels to map entire sets of instances into a feature space. For example,
the MI kernel approach (Gärtner et al. 2002) computes a kernel kMI via pairwise instance
kernel kI values between bag instances x in Bi and x ′ in Bj : kMI(Bi,Bj ) = ∑∑

k
p

I (x, x ′),
where p is a positive integer parameter. The kernel can be normalized, for example by the
length of the vector in the resulting feature space (feature space normalization), or by the
number of instances (averaging normalization):

kNSK(Bi,Bj ) =
∑∑

k
p

I (x, x ′)
(fnorm(Bi) · fnorm(Bj ))

, (2)

where fnorm(Bi) is a normalizer.
Since bags become individual points in a feature space, the set kernel corresponds to a

space HB of hyperplanes in the space of bags, not instances. There is a separate classifying
hyperplane space HI corresponding to the instance kernel kI. As in Definition 1, there is
a set CI of consistent solutions in the instance hyperplane space, and we say that kI sepa-
rates instances when CI 
= ∅ (there is some consistent hyperplane that separates instances).
Similarly, the set of consistent hyperplanes CB in the bag hyperplane space HB are the hy-
perplanes that, in a supervised learning sense, separate bags by assigning the appropriate
label to each bag in the dataset. A set kernel kMI separates bags when CB 
= ∅.

Since the set kernel approach uses the standard supervised SVM quadratic program with
a modified kernel, its loss function is not problematic (μ(Z) = CB); rather, the questions of
soundness and completeness must now consider the relationship between consistent hyper-
planes in the bag (CB) and instance (CI) hyperplane spaces, as done in prior work (Gärtner
et al. 2002).

Definition 6 (Soundness for Set Kernels) A set kernel kNSK is sound w.r.t. instance kernel
kI iff for any MI dataset, kNSK separates bags only if kI separates instances ((CB 
= ∅) =⇒
(CI 
=∅)).

Definition 7 (Completeness for Set Kernels) A set kernel kNSK is complete w.r.t. instance
kernel kI iff for any MI dataset, kNSK separates bags if kI separates instances ((CI 
= ∅) =⇒
(CB 
= ∅)).

For set kernels, soundness and completeness intuitively mean that it is possible to con-
struct a set kernel from an instance kernel such that a zero-loss, consistent hyperplane exists
in the set kernel feature space if and only if one exists in the original instance kernel fea-
ture space. Note that these notions do not require a bijection between CB and CI, because
in general the feature maps corresponding to kI and kNSK can have an arbitrarily complex
relationship depending on the specific set kernel. We show in Sect. 3.2 that even this weak
feature space correspondence is not maintained by the normalized set kernel (NSK): while
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Fig. 1 Soundness, completeness
and convexity of various
algorithms (*under the
definitions for set kernels)

it is always possible to construct a complete NSK, such kernels might not be sound in the
sense of Definition 6.

3 Theoretical analysis of MI SVMs

We now analyze MI SVM approaches with respect to the three properties described above:
soundness, completeness, and convexity. We consider three types of approaches: (i) instance-
based techniques that use instance kernels to learn hyperplanes that classify instances (e.g.
Andrews et al. 2003) and then derive bag classifications from these, (ii) set-based tech-
niques that use set kernels to learn hyperplanes that directly classify bags (e.g. Gärtner et al.
2002) and (iii) hybrid approaches that contain elements of both instance and set kernels (e.g.
Bunescu and Mooney 2007). See Appendix A for the detailed formulation of the approaches
discussed in this section.

Since the mapping μ between solutions and hyperplanes is trivial for most of the algo-
rithms described below, we will often refer to “solutions” and “hyperplanes” interchange-
ably. For example, “a consistent solution s” means that the corresponding hyperplane μ(s)

is consistent. The distinction between solutions and hyperplanes is made clear when it is
important.

Figure 1 summarizes the theoretical analysis in this section. An interesting point is that
no algorithm is sound, complete, and convex. In Sect. 4, we show that there can be no MI
SVM formulation with all three properties.

3.1 Instance-based kernels

SIL (sound, convex) A naïve approach to MI learning, single-instance learning (SIL), as-
signs each instance the label of its bag, creating a supervised learning problem but mis-
labeling negative instances in positive bags. SIL is sound, since each zero-loss solution is
consistent with the MI assumption. However, there are clearly consistent MI solutions that
do not require all instances in positive bags to be positively classified. SIL is not complete
because it does not allow these solutions without loss. Since SIL uses a standard SVM for-
mulation (1) after instance labeling, it is convex.

MI-SVM (sound, complete) The MI-SVM (Andrews et al. 2003) approach effectively
chooses a single witness or prime instance from both positive and negative bags in the
dataset. Using an optimization program with a “max” constraint:

min
w,b,ξ

1

2
‖w‖2 + C

∑
i

ξi ,
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s.t. Yi

[
max
xij ∈Bi

(〈
w,φ(xij )

〉 + b
)] ≥ 1 − ξi, ξi ≥ 0.

has the effect of choosing the instance with the most positive or least negative label to
represent each bag. MI-SVM is not convex because it selects instances with the maximum
function in the constraints. Its formulation is equivalent to choosing the minimum of the
slack variables required for each positive bag instance to put into the objective function. To
see why, consider positive bags with instances xij and a constraint for each instance of the
form 〈w,xij 〉 + b ≥ 1 − ξij , or ξij ≥ 1 − (〈w,xij 〉 + b). To minimize ξij , for a given (w,b) ,
we will have ξij = (1 − (〈w,xij 〉 + b))+, where (x)+ = max{0, x}, since ξij ≥ 0. Then, if a
bag’s slack ξi is defined as the minimum of instance slacks:

ξi = min(ξij ) = min
(
1 − (〈w,xij 〉 + b

))
+ = (

min
(
1 − (〈w,xij 〉 + b

)))
+

= (
1 − max

(〈w,xij 〉 + b
))

+.

This is equivalent to minimizing ξi under the constraints ξi ≥ 0 and ξi ≥ 1 − max(〈w,xij 〉+
b), so we have recovered the positive bag constraints for MI-SVM. By a similar argument,
MI-SVM essentially chooses the maximum of the negative instance slacks to put into the
objective function. Therefore, MI-SVM is sound and complete because it can be formulated
with the following loss function:

�(ξ) =
∑

i

{
minj ξij if Yi > 0

maxj ξij if Yi < 0.

In this form, it is easy to see that the loss is zero if and only if all negative bag instances are
correctly classified, and at least one positive bag instance is classified as positive.

MICA (sound, complete) Instead of choosing a particular instance to act as a witnesses for
each bag as is done by MI-SVM, the MI classification algorithm (MICA) finds an arbitrary
convex combination of points in a positive bag to act as a witness (Mangasarian and Wild
2008). If a convex combination of points lies on one side of a hyperplane, then at least one
of the points must lie on that side of the hyperplane, so MICA is sound. Conversely, for any
consistent hyperplane labeling certain instances as positive, there is a convex combination of
instances in each positive bag (e.g. one that just chooses some positively labeled instance),
such that the solution will have zero loss. Therefore, MICA is also complete, but not convex
due to the bilinear constraint introduced by the convex combination.

mi-SVM (sound, complete under strong consistency) The mixed integer SVM (mi-SVM)
formulation (Andrews et al. 2003) uses standard SVM constraints while leaving the yi vari-
ables unknown over {−1, +1} for instances in positive bags. Optimizing over binary labels
makes the program nonconvex. An additional constraint

∑
j

yij +1
2 ≥ 1 for positive bags en-

sures that at least one instance label in each positive bag is positive and guarantees sound-
ness.

Some MI SVM approaches, including mi-SVM, make stronger assumptions about what it
means for a hyperplane to be “consistent” with an MI dataset (see Definition 2). In particular,
strong consistency also assumes that each instance has some {−1,+1} label. Therefore, the
set of strongly consistent hyperplanes C′ is a subset of consistent hyperplanes C. Soundness
and completeness can also be defined w.r.t. C′ rather than C. This makes “strong soundness”
a stronger condition than soundness, and “strong completeness” a weaker condition than
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completeness. Thus, a “complete” algorithm using the strong consistency assumption might
not be complete in the sense of Definition 4. However, under the generative assumption that
each instance has a label, weakening the condition for completeness in this way does not
affect the behavior of the algorithm w.r.t. SRM (the target classifying hyperplane assigns a
{−1,+1} label to each instance). Accordingly, we consider such algorithms to be complete
with this caveat. Because a proper choice of each yi allows a zero-loss solution for any
(strongly) consistent hyperplane, mi-SVM is complete.

MissSVM (sound, complete under strong consistency) Much like mi-SVM, MI learning
by semi-supervised SVM (MissSVM) approaches an MI dataset as a semi-supervised learn-
ing problem in which positive bag instances have unknown labels (Zhou and Xu 2007).
The MissSVM optimization program is equivalent to MI-SVM, with two additional sets of
constraints that enforce both a positive and a negative label on positive bag instances (with
slack). However, because only one of these constraints is expected to be satisfied for each
instance, the minimum of the two slack variables corresponding to the instance constraint is
included in the objective function. Because the feasible region for MissSVM is a subset of
that for MI-SVM, it is sound. MissSVM requires each positive bag instance to have a label
so it is complete under strong consistency. The minimum term in the objective function and
the maximum terms in the constraints render MissSVM nonconvex.

I-KI-SVM (complete, convex) The instance-level key-instance SVM (I-KI-SVM) algo-
rithm uses a multiple kernel learning (MKL) approach to formulate a convex program for
learning key (or prime) instances from MI data (Li et al. 2009). A constraint is enforced so
that each negative instance is labeled correctly. For the positive bags, a kernel is included
in the MKL formulation for each possible way of choosing a positive instance out of each
positive bag. If there are n positive bags each with m instances, the optimization program
searches over convex combinations of mn kernels, each representing one possible consistent
instance labeling. Therefore, even though this formulation is convex, the number of variables
is exponential in the problem size (in practice, the cutting plane algorithm (Kelley 1960) is
used to avoid enumerating these variables). This approach is complete, since for any hy-
perplane corresponding to a consistent labeling, selecting (via the convex combination) the
kernel corresponding to that labeling makes the solution corresponding to that hyperplane
feasible with zero loss.

On the other hand, I-KI-SVM is not sound because forming convex combinations of
kernels allows hyperplanes which are not consistent to be feasible solutions. As an example,
consider a one-dimensional MI dataset with negative bag {0} and positive bags {0,−1} and
{0,1}. Clearly, this dataset is not linearly separable, so a sound MI optimization program
should have no feasible, zero-loss solution. However, learning an appropriate combination
of T kernels is like learning T hyperplanes {w1, . . . ,wT } and summing their predictions. In
the primal formulation, the constraint for a positive bag Bi with mi instances is:

T∑
t=1

(
mi∑
j=1

dt
ij

〈
w,φ(xij )

〉) ≥ 1,

where dt
ij ∈ {0,1} selects the appropriate instance to include in the sum for the t th combina-

tion. The constraint for each negative bag instance is:

T∑
t=1

〈
w,φ(xij )

〉 ≤ −1.
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So that the notation matches the original work, we exclude the constant threshold b, and
instead use the equivalent feature space map φ(xij ) = (xij ,1) (Li et al. 2009). For our ex-
ample, there are T = 22 = 4 possible selection vectors. Concatenating the instances in each
positive bag as rows in the matrix xij = [ 0 1

0 −1

]
, the corresponding selection variables are:

d1
ij =

[
0 1
1 0

]
d2

ij =
[

1 0
0 1

]
d3

ij =
[

0 1
0 1

]
d4

ij =
[

1 0
1 0

]
.

Suppose we choose w1 = (2,− 1
2 ), w2 = (−2,− 1

2 ), and w3 = w4 = (0,0), so the last two
terms are excluded from the sum over T . Then for the negative instance, 0, we have:

T∑
t=1

〈
w,φ(xij )

〉 = 〈(
2,−1

2

)
, (0,1)

〉
+

〈(
−2,−1

2

)
, (0,1)

〉
= −1 ≤ −1.

For the first positive bag, we have:

T∑
t=1

(
mi∑
j=1

dt
ij

〈
w,φ(xij )

〉) =
〈(

2,−1

2

)
, (1,1)

〉
+

〈(
−2,−1

2

)
, (0,1)

〉
= 1 ≥ 1,

and for the second:

T∑
t=1

(
mi∑
j=1

dt
ij

〈
w,φ(xij )

〉) =
〈(

2,−1

2

)
, (0,1)

〉
+

〈(
−2,−1

2

)
, (−1,1)

〉
= 1 ≥ 1.

Thus, this solution satisfies constraints with zero loss, but corresponds to no consistent hy-
perplane, so I-KI-SVM is not sound.

3.2 Set-based kernels

NSK (complete, convex) The NSK, described in Sect. 2, uses an instance kernel kI to con-
struct a set kernel kNSK that maps entire bags into a feature space (Gärtner et al. 2002). As in
prior work (Gärtner et al. 2002), we say that a concept is separable by a kernel if there exists
some consistent hyperplane classifier (with some nonzero margin) in the feature space of the
kernel. For a bag classifier, “consistency” is in the supervised learning sense, where each bag
is assigned its correct label, regardless of the instances. We denote the set of consistent bag
hyperplanes in the feature map of the NSK by CB, and the set of consistent instance hyper-
planes (in the sense of Definition 1) in the feature map of kI by CI. As defined in Sect. 2,
a set kernel is sound and complete when it separates bags if and only if the corresponding
instance kernel separates instances, (CI 
= ∅ ⇐⇒ CB 
= ∅).

Lemma 4.2 in Gärtner et al. (2002) shows that if an underlying instance concept is sepa-
rable by kI, then there is some power p > 0 for which the unnormalized set kernel kMI sep-
arates bags. This work uses a different, equivalent notion of consistency in which instead of
assigning ±1 labels to instances, a hyperplane cφ in the feature space of a kernel with feature
map φ assigns a label 1 ≤ 〈φ(xij ), cφ〉 to all positive instances, and 0 ≤ 〈φ(xij ), cφ〉 ≤ 1 − ε

to all negative instances. Here, ε > 0 is some arbitrary margin. To better align our results
with prior work, we adopt these conventions for the remainder of this section, without loss
of generality.

A proof of both soundness and completeness of the unnormalized NSK seems to appear
as Theorem 4.4 in prior work (Gärtner et al. 2002). However, we show next that though



88 Mach Learn (2014) 97:79–102

it is always possible to construct a complete NSK, such kernels might not be sound in the
sense of Definition 6.1 We start by extending Lemma 4.2 of that work, which shows that the
unnormalized set kernel kMI is complete, to the normalized set kernel. That is, we show that
kNSK, constructed from the instance kernel kI, can separate bags with margin ε in the RKHS
of kNSK with feature map Φ on bags.

Proposition 1 An MI concept2 is separable with kNSK (2), using sufficiently large p, if the
underlying instance concept is separable with margin ε by kI, the bag size is bounded by m,
and there are constants F and G such that 0 < F ≤ fnorm(Bi) ≤ G for all bags Bi .

Proof Choose an integer power p > 0 satisfying p > − log(mG/F)

log(1−ε)
.

Let cφ be the vector such that 〈φ(xij ), cφ〉 separates the instance concept in the instance
kernel feature space. Then consider the function on bags:

f (Bi) = G

fnorm(Bi)

∑
xij ∈Bi

〈
φ(xij ), cφ

〉p
.

If Bi is a positive bag, then by the MI assumption, at least one instance xij ∈ Bi satisfies
〈φ(xij ), cφ〉 ≥ 1, so:

f (Bi) ≥ G(1p)

fnorm(Bi)
≥ G

G
= 1.

On the other hand, if Bi is a negative bag, then all instances xij ∈ Bi satisfy 〈φ(xij ), cφ〉 ≤
1 − ε, so:

f (Bi) ≤ Gm(1 − ε)p

fnorm(Bi)
≤ Gm

F
(1 − ε)p <

Gm

F
(1 − ε)

− log(mG/F)
log(1−ε) = 1.

Therefore, this function separates bags.
To see that the function f (Bi) can be written as a dot product in the RKHS corresponding

to kNSK, first note that if k(x, y) = 〈φ(x),φ(y)〉, and we raise it to power p, this is also a
positive definite kernel, which is equivalent to some 〈ψ(φ(x)),ψ(φ(y))〉. Therefore, the
NSK feature map is given by

Φ(Bi) =
∑

xij ∈Bi
ψ(φ(xij ))

fnorm(Bi)
.

Therefore, we can rewrite f as:

f (Bi) = G

fnorm(Bi)

∑
xij ∈Bi

〈
φ(xij ), cφ

〉p

= G

fnorm(Bi)

∑
xij ∈Bi

〈
ψ

(
φ(xij )

)
,ψ(cφ)

〉

1In a personal communication, Gärtner suggests that Theorem 4.4 (Gärtner et al. 2002) might be interpreted
to mean that there is some kMI iff there is some kI.
2The set of all MI datasets derived from an instance concept is referred to as the MI concept in Gärtner et al.
(2002).
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Fig. 2 Certain types of NSKs separate bags of different sizes with no underlying MI concept. The y-axis
shows area under ROC curve

=
〈∑

xij ∈Bi
ψ(φ(xij ))

fnorm(Bi)
,Gψ(cφ)

〉
= 〈

Φ(Bi),CΦ

〉
.

So f is a hyperplane CΦ in the normalized set kernel feature space. �

As a corollary, given an upper bound m on bag size, the averaging normalization function
fnorm(Bi) = |Bi | is bounded by 1 ≤ |Bi | ≤ m, so using F = 1 and G = m in the proposition
above, p > − 2 logm

log(1−ε)
works to separate bags. This is just twice the p required in the unnor-

malized case. This result shows that even using various forms of normalization (which are
useful in practice; Gärtner et al. 2002), the NSK is complete.

On the other hand, the NSK is not sound. That is, the NSK can separate bags even
when the corresponding instance kernel cannot separate the instances. Consider the instance
space X = {(1,0), (−1,0), (0,1), (0,−1)}, with respective labels {+1,+1,−1,−1} (cor-
responding to XOR). With a linear instance kernel kI(x, x ′) = 〈x, x ′〉, the instance concept
is clearly not separable. However, with p = 2, the set kernel kMI(X,X′) = ∑

x,x′ 〈x, x ′〉2

can separate any MI dataset derived from these instances. To see why, consider the ex-
plicit feature map φ of the quadratic kernel (u, v) �→ (u2,

√
2uv, v2). Then, the set kernel

feature map is the sum of instance kernel feature maps: Φ(X) = ∑
x∈X φ(x). The linear

function f (X) = 〈Φ(X), (1,0,0)〉 in the feature space of kMI(·, ·) then separates any MI
dataset, since the first component of the map Φ(X) is nonzero if and only if X ∈ 2X con-
tains either (1,0) or (−1,0). Gärtner (2002) states that if fMI separates an MI dataset, then
fI(x) = fMI({x}) can separate instances. However, this is not sound under our definition
because fMI /∈ HI; i.e., there is no instance hyperplane in the original instance hyperplane
space corresponding to the bag hyperplane applied to singleton sets.

Finally, another form of unsoundness arises for set kernels due to the effects of bag size.
For example, consider an MI problem in which all bag instances are identical (say xij = 1),
but positive bags have size 10 while negative bags have size 5. Then for an unnormalized
linear kernel, the feature mapping of a positive bag will be 10, while the negative bag feature
space value will be 5. Clearly, there is no underlying MI concept; yet, the set kernel is able
to separate positive and negative bags in the feature space via the effects of bag size. We
illustrate this further in Fig. 2 using synthetic datasets. In these datasets, each instance has
25 features, which are drawn independently from the standard normal distribution N (0,1).
There are 50 positive bags, each with 10 instances, and 50 negative bags of sizes that vary
across datasets. Even though there is no underlying instance concept to learn, the set kernels
with either no normalization or feature space normalization can learn to distinguish between
positive and negative bags as the discrepancy in sizes grows.
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Fig. 3 Synthetic datasets illustrating when soundness and/or completeness fail for sMIL and stMIL. Left
shows when a sMIL solution without loss allows a misclassification of an arbitrary number of bags whose
averages lie close to the wrong size of the (inconsistent) classifier. Right shows a consistent MI separator with
nonzero loss for sMIL and stMIL

3.3 Hybrid approaches

sMIL (convex) The sparse MI learning (sMIL) algorithm uses both set and instance ker-
nels (Bunescu and Mooney 2007). Assuming that in the worst case all but one instance in
each positive bag is negative, the average instance label within positive bags is controlled
by a “balancing constraint” 〈w,Φ(Bi)〉 + b ≥ 2−|Bi |

|Bi | − ξi . Here, Φ(Bi) = 1
|Bi |

∑
j φ(xij ) de-

notes the feature map induced by the averaging normalized set kernel for bags. The standard
supervised constraint is used for negative instances, with an instance kernel feature map φ.
This is the same as putting each negative instance into its own bag. The sMIL approach
is convex, but is neither sound nor complete. A counterexample to soundness is shown in
Fig. 3 (left). In the figure, all instances in positive bags are marked with plus signs, and the
negative instances are marked with minus signs. Because the misclassified bags contain four
instances, they are allowed to be within 2−4

4 = − 1
2 of the margin without any loss. There-

fore, this solution is feasible and optimal without loss, but not consistent. In fact, an arbitrary
number of positive bags can be placed within the margin as shown, leading to an arbitrar-
ily poor classification of bags. A counterexample to the completeness of sMIL is shown in
Fig. 3 (right). While the solution is consistent, it is not feasible without loss because the
average of the instances in the large positive bag lies below the separating line and therefore
does not satisfy the balancing constraint.

stMIL (sound) The sparse transductive MI learning (stMIL) formulation includes the sMIL
constraints, as well as |〈w,φ(xij )〉 + b| ≥ 1 − ξij for every instance xij in a positive bag,
which force instances within bags to be outside the margin (Bunescu and Mooney 2007).
The addition of these constraints makes the problem nonconvex. But like mi-SVM, these
constraints impose a label on every instance, so stMIL is sound by avoiding cases such as
Fig. 3 (left). The scenario in Fig. 3 (right) is also a counterexample to the completeness of
stMIL because the instances in the large bag satisfy the transductive constraint but violate
the balancing constraint.

sbMIL (sound, convex) A third approach from Bunescu and Mooney (2007), sparse bal-
anced MI learning (sbMIL), searches for a balancing parameter η representing the fraction
of positive examples in positive bags. First, an initial solution is found via sMIL. Then, the
top η instances with the highest classifications from each positive bag are assigned a positive
label, and the remaining are assigned a negative label. Finally, a standard supervised SVM
is used to produce a final classifier from the instances. The sbMIL formulation is sound be-
cause it imposes a labeling on instances that is consistent with the MI assumption. However,
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it is not complete (by design) because it fixes a particular set of preassigned labels from the
sMIL classifier. Since sMIL is convex, the selected set of instances for each η is unique and
so sbMIL does not permit all possible consistent solutions. Because it successively uses two
convex approaches, we consider it to be convex.

B-KI-SVM (complete, convex) A variant of I-KI-SVM, described above, is bag-level key-
instance SVM (B-KI-SVM) (Li et al. 2009). B-KI-SVM is a hybrid because it uses the
average of instances in each negative bag to represent the bag, rather than including a con-
straint for every negative instance. The example for unsoundness of I-KI-SVM above also
applies to B-KI-SVM, since the negative bag contains a single instance. However, B-KI-
SVM is still complete, since the solution corresponding to a consistent hyperplane labels all
negative instances negative, and so the average of these instances is also labeled negative
and has zero loss under this solution. Furthermore, the B-KI-SVM is convex, but still uses
an optimization program with an exponential number of variables.

4 Can all three properties be satisfied?

None of the algorithms discussed above are sound, complete, and convex. In this section we
prove that this observation is no coincidence:

Theorem 1 No MI optimization program is sound, complete, and convex.

Proof Suppose some MI optimization program is sound, complete, and convex. Then for
any dataset, � is a convex function, so {s ∈ S : �(s) = 0} is a convex set. Since the feasible
region F is also convex, the set Z = F ∩ {s ∈ S : �(s) = 0} is convex as well. Since Z is
convex, it is a path-connected set. A set V ∈ S is path-connected when for any two points
v1, v2 ∈ V , there exists a continuous parametric function p : [0,1] → S such that p(0) = v1,
p(1) = v2, and p([0,1]) ⊆ V . For a convex set, the lines connecting any two points in the
set are such paths.

Furthermore, since the MI optimization program is sound and complete, the mapping be-
tween the solution and hyperplane spaces is such that μ(Z) = C; that is, the set of consistent
hyperplanes is the image of the Z under μ. Since μ is continuous and Z path-connected, this
implies that C is path-connected. Intuitively, the image of a path-connect set under a con-
tinuous function is also path-connected because the composition of continuous functions is
also continuous. Thus, any path in Z composed with μ produces a continuous path in C.

However, consider the one-dimensional dataset with a positive bag {−2,2} and a nega-
tive bag {−1,1}. A consistent linear “hyperplane” ((w,b) ∈ R

2) must label either 2 or −2
“positive” and the other instances negative. The “support vectors” for these two scenarios
are either −2 and −1, or 1 and 2. Therefore, the set of consistent hyperplanes is the union
of the regions where (1)w + b ≤ −1 and (2)w + b ≥ 1, or where (−1)w + b ≤ −1 and
(−2)w + b ≥ 1. This set is shown in Fig. 4 (left), and is clearly not path-connected (no path
connects the two disjoint regions). Thus, we have a contradiction with the implication that
C is path-connected for every MI dataset, so there cannot be a sound, complete, and convex
MI optimization program. �

Intuitively, the inability to satisfy all three properties is related to the disjoint nature of
the set of consistent hyperplanes, which is in turn related to the combinatorial nature of the
set of consistent instance labelings. In the standard supervised setting, this difficulty does
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Fig. 4 (Left) The shaded region shows the set C of consistent hyperplanes in the space of hyperplanes (w,b)

for the example in the proof of Theorem 1. (Right) When a supervised labeling is applied to each instance,
the set of consistent hyperplanes becomes a convex set

not arise, since the set of consistent hyperplanes forms a convex set. For example, if we fix
a labeling in the example of Theorem 1 so that −2 is positive and the other instances are
negative, the set of consistent hyperplanes collapses to the convex set shown in Fig. 4 (right).

Theorem 1 is in line with previous complexity results for MI classification via hyper-
planes (Kundakcioglu et al. 2010; Diochnos et al. 2012). For clarity, we include the theorem
below, expressed in terms of our formalism:

Theorem 2 Given an MI problem (B,Y ) , a set of bags with |Bi | ≤ k, k ≥ 3, the deci-
sion problem MI-CONSIS of determining whether there exists a hyperplane consistent with
(B,Y ) (i.e. is C =∅?) is NP-complete. It is also NP-complete to determine if C′ = ∅, where
C′ is the set of strongly consistent hyperplanes.

The proof of Theorem 2 (Diochnos et al. 2012) reduces a 3-SAT instance to an instance
of MI-CONSIS such that there is a strongly consistent hyperplane if the 3-SAT formula is
satisfiable and no consistent (in the usual sense) hyperplane if the formula is not satisfiable.
Thus, the proof works for either notion of consistency, though the distinction is not made in
the original work.

If there were a sound, complete, and convex MI optimization program, the question
C = ∅ is equivalent to asking whether Z = ∅, or whether there is a feasible, zero-loss
solution to the MI optimization program. Similarly, if a set kernel approach is sound and
complete, then CB = ∅ ⇐⇒ CI = ∅. Thus, if we could construct a sound and complete
set kernel in polynomial time, we could use it in conjunction with a standard convex SVM
formulation to search for a consistent bag classifier to decide whether the instances were
separable. In either case, we could solve an NP-complete problem via convex programming,
which is generally regarded to be efficiently solvable, albeit in a non-Turing model of com-
putation (Ben-Tal and Nemirovskiı̆ 2001).

Finally, the complexity results above allow us to show that MI hypotheses over arbitrary
distributions are not efficiently probably approximately correct (PAC) learnable with clas-
sifying hyperplanes. Previous work (Auer et al. 1997) reduced PAC learning axis parallel
rectangles (APRs) for MI concepts over arbitrary distributions to PAC learning disjunctive
normal form (DNF) formulae. Other work has shown that concepts PAC learnable from one-
sided noise are also PAC learnable from MI examples, assuming that all bag instances are
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drawn independently from some instance distribution (Blum and Kalai 1998). Some recent
results give a bound on the sample complexity of bag classifiers in terms of bag sizes, and
show that it is possible to learn a bag classifier from labeled bags (Sabato et al. 2010; Sabato
and Tishby 2012). Because we can reduce MI-CONSIS to an algorithm that PAC learns MI
concepts with hyperplanes, we could produce an RP algorithm to solve MI-CONSIS. An RP
algorithm for a decision problem runs in polynomial time in the input instance size, always
returns false when the correct answer is false, and returns true at least half of the
time across randomized runs when the correct answer is true.

Proposition 2 If RP 
= NP, then there is no algorithm A that (for arbitrary bag distribu-
tions) efficiently PAC learns MI hyperplanes.

Proof We can reduce MI-CONSIS to an algorithm A that efficiently PAC learns MI concepts
with hyperplanes. For an instance of MI-CONSIS, (B,Y ) , we can construct (B,Y,D, ε, δ),
an instance of the PAC learning problem to provide to A, where labeled examples are drawn
from (B,Y ) via the uniform distribution D. By setting ε = 1

|B|+1 and δ = 1
4 (any arbitrary

δ < 1
2 works), we ensure that A will produce a classifier consistent with every bag, with

probability 1 − δ > 1
2 . If A fails to produce a classifier, we return false. If A produces a

classifier, we check it for consistency with each bag in B , and return true if it is, or false
otherwise. Note that 1

ε
and 1

δ
are polynomial in the size of the input, and the reduction takes

polynomial time to check each bag for consistency.
Now, suppose that MI-CONSIS returns false, then A will either fail to learn a classifier,

or produce an inconsistent classifier and return false during the consistency check. On
the other hand, if MI-CONSIS returns true, then with probability 1 − δ > 1

2 , A will learn a
classifier with error less than ε (i.e. one consistent with all bags), and return true. Because
A only requires a polynomial number of examples, the reduction produces an algorithm in
RP to solve MI-CONSIS. Since MI-CONSIS is NP-complete, it is impossible for A to exist
unless RP = NP. �

In light of these complexity results, practical algorithms must sacrifice either soundness,
completeness, or convexity. Therefore, we empirically evaluate how tradeoffs between these
three properties affect classification performance.

5 Empirical evaluation

Given the properties possessed by (or lacking in) the various classification algorithms ana-
lyzed above, it is natural to wonder whether one property is more important than another for
classification accuracy in practice. In this section we perform a large-scale, detailed empiri-
cal comparison of several algorithms on a variety of real-world problems to provide insight
into this question.

Datasets We use twenty-two MI benchmark datasets for evaluation. The two musk
datasets come from the drug activity prediction domain, which originally motivated the cre-
ation of the MIC framework (Dietterich et al. 1997; Frank and Asuncion 2010), and the two
text datasets are from the text categorization domain (Andrews et al. 2003). There are
three animal image datasets (elephant, tiger, and fox) and three scene image datasets
(mountain, field, flower) from the content-based image retrieval (CBIR) domain
(Andrews et al. 2003; Zhang et al. 2002). Also from the CBIR domain is a twenty-five class
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spatially independent, variable area, and lighting (SIVAL) dataset, which has been annotated
with labels for both bags and instances (Settles et al. 2008). From these, we construct twelve
one-vs.-one datasets by randomly pairing images classes. We use all twenty-two datasets (ig-
noring instance labels) when evaluating algorithms on the bag-labeling task and the twelve
SIVAL datasets when evaluating them on the instance-labeling task.

Methodology We implement most techniques in Python using NumPy (Ascher et al. 2001)
for general matrix computations, and the CVXOPT library (Dahl and Vandenberghe 2009)
for solving quadratic programs (QPs).3 We use the authors’ MATLAB code for the key-
instance SVM (KI-SVM) approaches.4 For each dataset, we use ten-fold cross-validation
with the same folds across all techniques and accuracy as the performance metric. We use
the radial basis function (RBF) kernel for all approaches, and it serves as the instance kernel
in set kernel approaches. We implement the normalized set kernel with both averaging and
feature space normalization, described in Sect. 2. We use random parameter search (Bergstra
and Bengio 2012) with five-fold cross-validation to select the RBF kernel parameter γ from
[10−6,101] and the regularization parameter C from [10−2,105]. For the set kernel, we fix
p = 1, but with an RBF kernel, p can be absorbed into the constant γ . We search for the η

parameter of sbMIL within the range [0,1]. For an algorithm requiring m ∈ {1,2,3} param-
eters, we evaluate 5m random parameter combinations for the search. For techniques that
rely on iteratively solving QPs, iteration continues at most 50 times or until the change in
objective function value falls below 10−6. MICA was originally formulated using L1 regu-
larization, but in our experiments we use the L2 norm to provide a more direct comparison to
other approaches. We only use bag labels when performing parameter cross-validation, even
for the instance-labeling task (we only use instance labels to perform the final evaluation of
instance predictions pooled across the ten outer folds).

Hypothesis tests To statistically compare the classifiers, we use the approach described in
Demšar (2006). First, we rank (with respect to accuracy) the k algorithms for each dataset,
with 1 being the best and k the worst, and then we average the ranks across datasets. Next,
we use the Friedman test to reject the null hypothesis that the algorithms perform equally at
an α = 0.001 significance level. Finally, we plot the average ranks using a critical difference
diagram, which uses the Nemenyi test to identify statistically equivalent groups of classifiers
at an α = 0.1 significance level. Figure 5 shows the resulting ranks for the instance and bag
labeling tasks using the accuracy evaluation metric for ranking.

Effect of soundness and completeness Conceptually, soundness is more important than
completeness for SRM approaches. Soundness ensures that, on the set of consistent hyper-
planes, the loss on the corresponding solutions is an upper bound on the true risk. On the
other hand, techniques lacking soundness might return solutions that appear to perform well
(with respect to empirical risk), but do not generalize to new data. This hypothesis about the
relative importance of soundness and completeness is generally consistent with the results
in Fig. 5, where we see that techniques that are either sound and complete or sound and
convex are generally more accurate than other approaches. The few exceptions to this trend
are explained below.

3The code is available online at http://engr.case.edu/doran_gary/code.html.
4http://lamda.nju.edu.cn/code_KISVM.ashx.

http://engr.case.edu/doran_gary/code.html
http://lamda.nju.edu.cn/code_KISVM.ashx
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Fig. 5 Ranks of the various MI SVM approaches on the instance and bag labeling tasks using accuracy for
evaluation. The critical difference diagrams (left) show the average rank of each technique across datasets,
with techniques being statistically different at an α = 0.1 significance level if the ranks differ by more
than the critical difference (CD) indicated above the axis. Thick horizontal lines indicate statistically in-
distinguishable groups (i.e. a technique is statistically different from any technique to which it is not con-
nected with a horizontal line). The Venn diagrams (right) show the average ranks of techniques within each
Sound/Complete/Convex categorization

Effect of the labeling task The results for bag accuracy in Fig. 5(b) appear to contradict
the observation that unsound approaches will produce solutions that do not generalize well
to new data. In particular, the unsound NSK approaches are among the top performers on
the bag-labeling task. However, the success of the NSK makes sense because it uses a sound
and complete supervised SVM to perform SRM using hyperplanes defined over bags. The
unsoundness of the NSK is caused by the tenuous relationship between the bag and instance
hypothesis spaces. This can be also seen from the fact that the NSK performs poorly on the
instance labeling task, as shown in Fig. 5(a). The case of the NSK shows a previously ob-
served empirical phenomenon, that there might be little correlation between the performance
of algorithms on the two labeling tasks (Tragante do O et al. 2011). Unfortunately, few MI
datasets come with instance labels, making comparisons between the two tasks difficult in
practice. We feel that it is important to construct more such datasets to better understand the
relationship between algorithms’ behavior on these two tasks.

Effect of instance distributions within bags Although we might expect the NSK to perform
well on the bag labeling task, we still need to explain why it often performs better than
other sound and complete MI approaches. We hypothesize that the set kernel is capable of
using information about bags to which instance-based approaches do not have access. The
NSK with averaging normalization can be thought of as mapping (empirical) distributions
of instances within bags into an RKHS for classification via the kernel mean map (Smola
et al. 2007). When a kernel such as the RBF kernel is used, the mean map is an injective
mapping of distributions into a feature space, which allows learning linear concepts directly
from instance distributions within bags (Muandet et al. 2012). In many domains, it is natural
to think that the distribution of even negative instances within positive bags might provide
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Fig. 6 The degree of linear relationship between prime instances and bag averages and the classification
performance of a linear set kernel with averaging normalization are correlated

additional useful contextual information to a bag classifier. For example, when trying to
learn a classifier for images containing spoons, it is more likely that other objects in such
images will be forks, plates, or other tableware rather than grass, trees, or water. This context
may be beneficial, for example, if only part of a spoon were visible in an image. Instance
classifiers that select only single instances from bags to learn a concept are not able to
take advantage of such contextual information. Although the MI formulation says nothing
about contextual relationships between instances, many MI domains may possess them in
practice, leading to improved performance for techniques that can take advantage of such
relationships.

To demonstrate this effect, we design an experiment to test the hypothesis that when there
is a relationship between bag distributions and positive instances within positive bags, the
NSK will be more accurate. To test this hypothesis, we use the one-vs.-all instance-labeled
SIVAL datasets (Settles et al. 2008) and the linear instance kernel. In this case, the set kernel
maps each bag to the average of the bag’s instances. We then determine if there is a (linear)
relationship between the distribution representer (bag average) and positive instances as
follows. We pick the most positively labeled positive instance after a classifier is found, and
compute the R2 coefficient of determination from a least squares multiple linear regression
between bag averages and these instances. If this R2 is high, a (linear) relationship exists.
Because there is a large class imbalance in these one-vs.-all datasets, we use area under
ROC curve (AUC) rather than accuracy as a performance metric. In Fig. 6, we plot the AUC
against the R2 for several datasets in which the linear set kernel found a good classifier
(high AUC). We observe that indeed, for these datasets, there is a general association (r =
0.59) between a strong linear relationship between bag averages and positive instances, and
classifier accuracy, indicating how the linear NSK can take advantage of bag distributions in
practice.

Effect of convexity In the Venn diagram of Fig. 5(b), the approaches sacrificing complete-
ness for convexity appear to outperform nonconvex, sound, complete approaches. A possi-
ble explanation for this behavior is that nonconvex approaches rely on heuristic optimization
techniques that are only likely to converge to local optima. For example, some optimization
programs require an initial labeling of instances. A widely-used heuristic is to assign each
instance the label of its bag. However, use of this heuristic is justified intuitively, not theoret-
ically. Therefore, the disparity between convex and nonconvex approaches might be caused
by a deficiency in optimization heuristics rather than in the formulation itself. To rule out
this possibility, we also run the nonconvex approaches using 15 random restarts (using the
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Table 1 Average ranks (lower ranks are better) of techniques across 7 datasets with and without 15 random
restarts. Boldface indicates that the ranks are significantly different. Using random restarts only occasionally
affords a significant advantage to nonconvex approaches

Technique mi-SVM MI-SVM MICA MissSVM

Without R.R. 1.43 1.57 1.43 1.71

With R.R. 1.57 1.43 1.57 1.29

instance-labeling heuristic as one restart). Due to practical time constraints in running many
random restarts on large datasets, we use the musk1, elephant, tiger, fox, moun-
tain, field, and flower datasets to explore the effects of random restarts. We tabulate
performance in terms of a 1 or 2 rank (comparing random restarts to no random restarts) of
each technique averaged across datasets and tested for significance at an α = 0.1 level with
the Wilcoxon signed-rank test.

From the results (Table 1), we observe that random restarts only occasionally offer a
significant advantage to nonconvex, sound, complete approaches. These results align with
previous work, showing that the initial heuristic assignment of labels can produce relatively
good classifiers in terms of classification accuracy, especially when there are multiple pos-
itive instances per positive bag (Gehler and Chapelle 2007). We conclude that the choice
of optimization heuristic for nonconvex approaches does not present a serious disadvantage
relative to sound, convex approaches.

Time and space requirements Instance kernel approaches are much more computationally
expensive than set kernel approaches, since kernel sizes are O(n2) in terms of the number of
instances rather than bags. For the datasets used, instance kernels range from having 1.8 ×
105 to 3.5 × 107 entries, whereas bag kernels contain from 6.9 × 103 to 1.3 × 105 entries.
Runtime also increases significantly for instance methods due to the increased number of
variables in the optimization program. For set-based methods, median training and testing
time for any particular set of parameters takes between 0.4 and 50 seconds across datasets.
For hybrid methods, this increases to between 1 and 635 seconds, and for instance-based
methods it is between 1 and 1440 seconds. These figures increase by a large factor when
parameter search and cross validation are used. In particular, the actual overall training time
of the hybrid sbMIL algorithm is longer due to the extra search for the balancing parameter
η required. Therefore, training instance-based classifiers on very large datasets becomes
impractical.

Finally, we note that our analysis of soundness and completeness is motivated by the
need for loss functions to accurately assess the empirical risk of MI hyperplane concepts.
Empirical risk is expressed in terms of classification accuracy. On the other hand, AUC is
another popular evaluation metric, which can be viewed as an estimate of the probability
that a classifier will correctly “rank” examples (assign higher real-valued labels to positive
examples than to negative examples). A key direction for future work is to extend our ap-
proach to the AUC metric, for which corresponding notions of soundness and completeness
might be defined.

Another direction for future work is to generalize the definitions of soundness and com-
pleteness to evaluate the behavior of approaches on nonseparable datasets. However, as gen-
eralizations, these properties would need to coincide with ours on the separable datasets.
Therefore, if an algorithm lacks soundness or completeness under our definitions, it would
also lack these properties under the alternate definitions. On the other hand, an algorithm
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might be sound or complete under our definition but not under the alternate definitions.
Thus, each algorithm can only lose these properties (not gain them) under generalized defi-
nitions.

6 Conclusion

In this work, we formally specify soundness and completeness properties desired in algo-
rithms for MI classification via hyperplanes. We use these properties to analyze a variety
of existing techniques, and show that no convex approach can have both properties. We
evaluate the performance of these approaches empirically to characterize the practical trade-
offs between properties. Though the experimental results generally align with our theoretical
analysis, we find that the effects of soundness and completeness depend on the labeling task.
We hypothesize that set kernels can use additional information about instance distributions
within bags not available to instance-based approaches. Sound and complete approaches
lack convexity, but we show using random restarts that more rigorous optimization of the
objective function does not significantly improve the performance of these techniques. In fu-
ture work, we plan to explore the relationship between the instance- and bag-labeling tasks
to see if techniques such as the set kernel, which are good at bag classification but not at
instance classification, can be modified to accurately label instances. We also plan to define
corresponding notions of soundness and completeness for other metrics such as AUC, and
derive similar tradeoffs for that case.
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Appendix A: MI SVM formulations

The formulations described in Sect. 3 are listed in detail below. In many cases, the nota-
tion and precise formulation of each approach has been modified slightly from the original
publication for consistency. In the constraints, there is implicit universal quantification over
the indices corresponding to each bag in the dataset and the instances within each bag. For
formulations that mix instance- and bag-level slack variables ξij and ξi , respectively, sums
of the form

∑
i,j ξij are intended to be taken over both sets of slack variables. The notation

|B+|, |X+|, and |X−| is used to denote the number of positive bags, instances in positive
bags, and instances in negative bags, respectively.

SIL (sound, convex)

min
w,b,ξ

1

2
‖w‖2 + C

∑
i,j

ξij , s.t. Yi

(〈
w,φ(xij )

〉 + b
) ≥ 1 − ξij , ξij ≥ 0

MI-SVM (sound, complete) (Andrews et al. 2003)

min
w,b,ξ

1

2
‖w‖2 + C

∑
i

ξi , s.t. Yi

[
max
xij ∈Bi

(〈
w,φ(xij )

〉 + b
)] ≥ 1 − ξi, ξi ≥ 0.
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MICA (sound, complete) (Mangasarian and Wild 2008)

min
w,b,ξ ,d

1

2
‖w‖2 + C

∑
i,j

ξij ,

s.t.

{
〈w,

∑
j dijφ(xij )〉 + b ≥ 1 − ξi if Yi = 1

−(〈w,φ(xij )〉 + b) ≥ 1 − ξij if Yi = −1,

∑
j

dij = 1, dij ≥ 0, ξij ≥ 0

mi-SVM (sound, complete under strong consistency) (Andrews et al. 2003)

min
w,b,ξ ,y

1

2
‖w‖2 + C

∑
i,j

ξij ,

s.t. yij

(〈
w,φ(xij )

〉 + b
) ≥ 1 − ξij , ξij ≥ 0, yij ∈ {−1,1},

{∑
j

yij +1
2 ≥ 1 if Yi = 1

yij = −1 if Yi = −1

MissSVM (sound, complete under strong consistency) (Zhou and Xu 2007)

min
w,b,ξ ,ε

1

2
‖w‖2 + C

|B+|
∑

i

ξ+
i + C

|X−|
∑
i,j

ξ−
ij + C

|X+|
∑
i,j

min
(
ε+
ij , ε

−
ij

)
,

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

maxj (〈w,φ(xij )〉 + b) ≥ 1 − ξ+
i

〈w,φ(xij )〉 + b ≥ 1 − ε+
ij

−(〈w,φ(xij )〉 + b) ≥ 1 − ε−
ij

⎫⎪⎬
⎪⎭ if Yi = 1

−(〈w,φ(xij )〉 + b) ≥ 1 − ξ−
ij if Yi = −1,

ξij ≥ 0, εij ≥ 0

I-KI-SVM (complete, convex) (Li et al. 2009)

min
w,ρ,ξ ,d

1

2
‖w‖2 − ρ + C1

∑
i

(
ξ+
i

)2 + C2

∑
i,j

(
ξ−
ij

)2
,

s.t.

{
〈w,

∑
j dijφ(xij )〉 ≥ ρ − ξ+

i if Yi = 1

−〈w,φ(xij )〉 ≥ ρ − ξ−
ij if Yi = −1,

∑
j

dij = 1, dij ∈ {0,1}, ξij ≥ 0

NSK (complete, convex) (Gärtner et al. 2002)

min
w,b,ξ

1

2
‖w‖2 + C

∑
i

ξi , s.t. Yi

(〈
w,

1

fnorm(Bi)

∑
j φ(xij )

〉
+ b

)
≥ 1 − ξi, ξi ≥ 0

sMIL (convex) (Bunescu and Mooney 2007)

min
w,b,ξ

1

2
‖w‖2 + C

|B+|
∑

i

ξ+
i + C

|X−|
∑
i,j

ξ−
ij ,

s.t.

{
〈w, 1

|Bi |
∑

j φ(xij )〉 + b ≥ 2−|Bi |
|Bi | − ξ+

i if Yi = 1

−(〈w,φ(xij )〉 + b) ≥ 1 − ξ−
ij if Yi = −1,

ξij ≥ 0
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stMIL (sound) (Bunescu and Mooney 2007)

min
w,b,ξ

1

2
‖w‖2 + C

|B+|
∑

i

ξ+
i + C

|X−|
∑
i,j

ξ−
ij + C

|X+|
∑
i,j

ξ ∗
ij ,

s.t.

⎧⎪⎨
⎪⎩

〈w, 1
|Bi |

∑
j φ(xij )〉 + b ≥ 2−|Bi |

|Bi | − ξ+
i

|〈w,φ(xij )〉 + b| ≥ 1 − ξ ∗
ij

}
if Yi = 1

−(〈w,φ(xij )〉 + b) ≥ 1 − ξ−
ij if Yi = −1,

ξij ≥ 0

sbMIL (sound, convex) (Bunescu and Mooney 2007) sbMIL first solves the sMIL formu-
lation, then uses the resulting function to rank instances from least to most positive. The top
(most positive) η fraction of instances from positive bags are labeled positive and the rest
negative. Then a standard SVM is trained on the resulting supervised dataset.

B-KI-SVM (complete, convex) (Li et al. 2009)

min
w,ρ,ξ ,d

1

2
‖w‖2 − ρ + C1

∑
i

(
ξ+
i

)2 + C2

∑
i

(
ξ−
i

)2
,

s.t.

⎧⎨
⎩

〈w,
∑

j dijφ(xij )〉 ≥ ρ − ξ+
i if Yi = 1

−〈w, 1
|Bi |

∑
j φ(xij )〉 ≥ ρ − ξ−

i if Yi = −1,

∑
j

dij = 1, dij ∈ {0,1}, ξi ≥ 0

Appendix B: Numerical results

Here, we include numerical results for the critical difference diagrams computed in the pa-
per. Table 2 shows results under instance accuracy and Table 3 for bag accuracy.

Table 2 Instance accuracy results

Dataset MICA Miss-
SVM

mi-
SVM

MI-
SVM

sMIL stMIL sbMIL SIL NSK-
AV

NSK-
FS

I-KI-
SVM

B-KI-
SVM

sival01 0.498 0.898 0.964 0.964 0.948 0.948 0.971 0.808 0.456 0.360 0.945 0.952

sival02 0.926 0.890 0.933 0.947 0.935 0.935 0.939 0.509 0.540 0.352 0.935 0.890

sival03 0.885 0.855 0.865 0.872 0.877 0.877 0.887 0.811 0.489 0.411 0.872 0.886

sival04 0.411 0.780 0.954 0.894 0.846 0.846 0.908 0.789 0.778 0.670 0.867 0.868

sival05 0.711 0.731 0.896 0.812 0.732 0.732 0.805 0.839 0.795 0.806 0.765 0.787

sival06 0.869 0.854 0.876 0.899 0.863 0.863 0.922 0.640 0.596 0.697 0.858 0.859

sival07 0.917 0.853 0.919 0.936 0.911 0.911 0.942 0.685 0.361 0.530 0.919 0.919

sival08 0.905 0.864 0.955 0.904 0.866 0.866 0.917 0.899 0.547 0.456 0.872 0.875

sival09 0.884 0.831 0.828 0.885 0.877 0.877 0.888 0.734 0.598 0.463 0.881 0.883

sival10 0.768 0.930 0.953 0.908 0.945 0.945 0.976 0.855 0.482 0.411 0.929 0.947

sival11 0.933 0.842 0.573 0.915 0.936 0.936 0.923 0.738 0.517 0.452 0.938 0.931

sival12 0.864 0.675 0.880 0.869 0.810 0.810 0.865 0.433 0.756 0.831 0.862 0.867
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Table 3 Bag accuracy results

Dataset MICA Miss-
SVM

mi-
SVM

MI-
SVM

sMIL st-
MIL

sb-
MIL

SIL NSK-
AV

NSK-
FS

I-KI-
SVM

B-KI-
SVM

musk1 0.511 0.565 0.848 0.772 0.750 0.728 0.859 0.848 0.913 0.837 0.870 0.815

musk2 0.696 0.725 0.647 0.833 0.608 0.618 0.843 0.804 0.814 0.873 0.755 0.745

elephant 0.680 0.700 0.750 0.815 0.520 0.590 0.810 0.740 0.845 0.855 0.830 0.690

fox 0.550 0.600 0.590 0.585 0.520 0.515 0.600 0.645 0.615 0.580 0.540 0.555

tiger 0.535 0.680 0.770 0.785 0.590 0.615 0.800 0.780 0.825 0.845 0.725 0.760

text1 0.627 0.557 0.762 0.650 0.500 0.500 0.932 0.728 0.885 0.873 0.670 0.642

text2 0.500 0.512 0.595 0.552 0.500 0.500 0.618 0.637 0.682 0.703 0.520 0.565

mountain 0.615 0.660 0.860 0.855 0.500 0.500 0.815 0.830 0.845 0.860 0.790 0.795

field 0.650 0.635 0.760 0.805 0.500 0.500 0.810 0.725 0.815 0.830 0.700 0.745

flower 0.780 0.695 0.800 0.815 0.500 0.500 0.805 0.775 0.740 0.800 0.810 0.765

sival01 0.617 0.575 0.850 0.875 0.500 0.500 0.883 0.558 0.842 0.883 0.600 0.758

sival02 0.558 0.600 0.758 0.867 0.500 0.500 0.808 0.542 0.908 0.908 0.708 0.575

sival03 0.833 0.558 0.733 0.600 0.500 0.500 0.750 0.650 0.908 0.925 0.650 0.800

sival04 0.583 0.575 0.892 0.975 0.500 0.500 0.967 0.575 0.933 0.767 0.783 0.742

sival05 0.658 0.692 0.908 0.917 0.500 0.500 0.975 0.650 0.958 0.983 0.842 0.942

sival06 0.725 0.492 0.775 0.933 0.500 0.500 0.908 0.542 0.800 0.883 0.450 0.675

sival07 0.733 0.567 0.833 0.900 0.500 0.500 0.925 0.533 0.867 0.892 0.817 0.875

sival08 0.840 0.487 0.798 0.807 0.504 0.504 0.899 0.655 0.966 0.941 0.714 0.731

sival09 0.700 0.550 0.525 0.658 0.500 0.500 0.817 0.583 0.883 0.950 0.583 0.750

sival10 0.500 0.600 0.817 0.667 0.500 0.500 0.925 0.750 0.825 0.817 0.642 0.783

sival11 0.808 0.517 0.500 0.533 0.500 0.500 0.700 0.583 0.933 0.900 0.683 0.683

sival12 0.967 0.575 0.917 0.950 0.500 0.500 0.958 0.517 0.908 0.917 0.950 0.967

References

Andrews, S., Tsochantaridis, I., & Hofmann, T. (2003). Support vector machines for multiple-instance learn-
ing. In Advances in neural information processing systems (pp. 561–568).

Ascher, D., Dubois, P., Hinsen, K., Hugunin, J., & Oliphant, T. (2001). Numerical Python. Livermore:
Lawrence Livermore National Laboratory.

Auer, P., Long, P., & Srinivasan, A. (1997). Approximating hyper-rectangles: learning and pseudo-random
sets. In Proceedings of the 29th annual ACM symposium on the theory of computation (pp. 314–323).
New York: ACM.

Ben-Tal, A., & Nemirovskiı̆, A. (2001) MPS-SIAM series on optimization. In Lectures on modern convex
optimization: analysis, algorithms, and engineering applications. Philadelphia: SIAM

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13, 281–305.

Blockeel, H., Page, D., & Srinivasan, A. (2005). Multi-instance tree learning. In Proceedings of the interna-
tional conference on machine learning (pp. 57–64).

Blum, A., & Kalai, A. (1998). A note on learning from multiple-instance examples. Machine Learning Jour-
nal, 30, 23–29.

Bunescu, R., & Mooney, R. (2007). Multiple instance learning from sparse positive bags. In Proceedings of
the international conference on machine learning (pp. 105–112).



102 Mach Learn (2014) 97:79–102

Chen, Y., Bi, J., & Wang, J. Z. (2006). MILES: multiple-instance learning via embedded instance selection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 1931–1947.

Dahl, J., & Vandenberghe, L. (2009). CVXOPT: a Python package for convex optimization.
Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning

Research, 7, 1–30.
Dietterich, T. G., Lathrop, R. H., & Lozano-Perez, T. (1997). Solving the multiple instance problem with

axis-parallel rectangles. Artificial Intelligence, 89(1–2), 31–71.
Diochnos, D., Sloan, R., & Turán, G. (2012). On multiple-instance learning of halfspaces. Information Pro-

cessing Letters, 112(23), 933–936.
Frank, A., & Asuncion, A. (2010) UCI machine learning repository.
Gärtner, T., Flach, P., Kowalczyk, A., & Smola, A. (2002). Multi-instance kernels. In Proceedings of the

international conference on machine learning (pp. 179–186).
Gehler, P., & Chapelle, O. (2007). Deterministic annealing for multiple-instance learning. In Proceedings of

the international conference on artificial intelligence and statistics (pp. 123–130).
Kelley, J. E. Jr. (1960). The cutting-plane method for solving convex programs. Journal of the Society for

Industrial & Applied Mathematics, 8(4), 703–712.
Kundakcioglu, O., Seref, O., & Pardalos, P. (2010). Multiple instance learning via margin maximization.

Applied Numerical Mathematics, 60(4), 358–369.
Li, Y.-F., Kwok, J. T., Tsang, I. W., & Zhou, Z.-H. (2009). A convex method for locating regions of interest

with multi-instance learning. In Machine learning and knowledge discovery in databases (pp. 15–30).
Berlin: Springer.

Mangasarian, O., & Wild, E. (2008). Multiple instance classification via successive linear programming.
Journal of Optimization Theory and Applications, 137, 555–568.

Maron, O. (1998). Learning from ambiguity. PhD thesis, Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA.

Muandet, K., Fukumizu, K., Dinuzzo, F., & Schölkopf, B. (2012). Learning from distributions via support
measure machines. In Advances in neural information processing systems (pp. 10–18).

Ramon, J., & De Raedt, L. (2000). Multi instance neural networks. In Proceedings of the ICML-2000 work-
shop on attribute-value and relational learning.

Sabato, S., Srebro, N., & Tishby, N. (2010). Reducing label complexity by learning from bags. In Interna-
tional conference on artificial intelligence and statistics (pp. 685–692).

Sabato, S., & Tishby, N. (2012). Multi-instance learning with any hypothesis class. Journal of Machine
Learning Research, 13, 2999–3039.

Settles, B., Craven, M., & Ray, S. (2008). Multiple-instance active learning. In Advances in neural informa-
tion processing systems (pp. 1289–1296).

Smola, A., Gretton, A., Song, L., & Schölkopf, B. (2007). A Hilbert space embedding for distributions. In
Algorithmic learning theory (pp. 13–31).

Tao, Q., Scott, S. D., & Vinodchandran, N. V. (2004). SVM-based generalized multiple-instance learning
via approximate box counting. In Proceedings of the international conference on machine learning
(pp. 779–806).

do Tragante O, V., Fierens, D., & Blockeel, H. (2011). Instance-level accuracy versus bag-level accuracy in
multi-instance learning. In Proceedings of the 23rd Benelux conference on artificial intelligence.

Xu, X., & Frank, E. (2004). Logistic regression and boosting for labeled bags of instances. In Pacific-Asia
conference on knowledge discovery and data mining (pp. 272–281).

Zhang, Q., & Goldman, S. (2001). EM-DD: an improved multiple-instance learning technique. In Advances
in neural information processing systems (pp. 1073–1080).

Zhang, Q., Yu, W., Goldman, S., & Fritts, J. (2002). Content-based image retrieval using multiple-instance
learning. In Proceedings of the international conference on machine learning (pp. 682–689). San Mateo:
Morgan Kaufmann.

Zhou, Z., & Xu, J. (2007). On the relation between multi-instance learning and semi-supervised learning. In
Proceedings of the international conference on machine learning (pp. 1167–1174).

Zhou, Z.-H., Sun, Y.-Y., & Li, Y.-F. (2009). Multi-instance learning by treating instances as non-iid samples.
In Proceedings of the international conference on machine learning (pp. 1249–1256).

Zhou, Z.-H., & Zhang, M.-L. (2002). Neural networks for multi-instance learning. In Proceedings of the
international conference on intelligent information technology.


	A theoretical and empirical analysis of support vector machine methods for multiple-instance classiﬁcation
	Abstract
	Introduction
	Consistency, soundness, and completeness in MI classiﬁcation
	Theoretical analysis of MI SVMs
	Instance-based kernels
	SIL (sound, convex)
	MI-SVM (sound, complete)
	MICA (sound, complete)
	mi-SVM (sound, complete under strong consistency)
	MissSVM (sound, complete under strong consistency)
	I-KI-SVM (complete, convex)

	Set-based kernels
	NSK (complete, convex)

	Hybrid approaches
	sMIL (convex)
	stMIL (sound)
	sbMIL (sound, convex)
	B-KI-SVM (complete, convex)


	Can all three properties be satisﬁed?
	Empirical evaluation
	Datasets
	Methodology
	Hypothesis tests
	Effect of soundness and completeness
	Effect of the labeling task
	Effect of instance distributions within bags
	Effect of convexity
	Time and space requirements

	Conclusion
	Acknowledgements
	Appendix A: MI SVM formulations
	SIL (sound, convex)
	MI-SVM (sound, complete)
	MICA (sound, complete)
	mi-SVM (sound, complete under strong consistency)
	MissSVM (sound, complete under strong consistency)
	I-KI-SVM (complete, convex)
	NSK (complete, convex)
	sMIL (convex)
	stMIL (sound)
	sbMIL (sound, convex)
	B-KI-SVM (complete, convex)

	Appendix B: Numerical results
	References


