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Abstract This paper reviews the development of Register Automaton learning, an enhance-
ment of active automata learning to deal with infinite-state systems. We will revisit the pre-
cursor techniques and influences, which in total span over more than a decade. A large share
of this development was guided and motivated by the increasingly popular application of
grammatical inference techniques in the field of software engineering. We specifically focus
on a key problem to achieve practicality in this field: the adequate treatment of data values
ranging over infinite domains, a major source of undecidability. Starting with the first case
studies, in which data was completely abstracted away, we revisit different steps towards
dealing with data explicitly at a model level: we discuss Mealy machines as a model for
systems with (data) output, automated alphabet abstraction refinement techniques as a two-
dimensional extension of the partition-refinement based approach of active automata learn-
ing to also inferring optimal alphabet abstractions, and Register Mealy Machines, which can
be regarded as programs restricted to data-independent data processing as it is typical for
protocols or interface programs. We are convinced that this development will significantly
contribute to paving the road for active automata learning to become a technology of high
practical importance.
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1 Introduction

In the increasingly popular component-oriented software development, web services and
other third party, or even legacy software components form an important part of the whole
system. However, these often come without code or appropriate documentation, which im-
poses a major hurdle for the application of formal verification and validation techniques.
(Active) automata learning (Angluin 1987)—or regular inference—has shown to be a pow-
erful means to tackle the major challenge of these components, their inherent black-box
character. Being regarded as a mostly theoretical effort until then, Peled et al. (1999) intro-
duced it to the software engineering community in their seminal 1999 paper: in the context of
black-box checking, active automata learning is proposed as the key to enable model check-
ing on systems of which there neither is a formal model available, nor can it be extracted
from, for example, the source code.

In 2001, only shortly afterwards, Hagerer et al. demonstrated also the practical value of
this approach: in an industrial-scale project, its application led to major improvements in
the context of regression testing (Hagerer et al. 2002, 2001). Since then, the technology has
undergone an impressive development, in particular concerning the aspect of practical appli-
cation. Today, active learning is a valuable asset for bringing formal methods to black-box
systems, for instance, in the CONNECT project (Issarny et al. 2009), which aims at de-
veloping “Emergent Middleware” through run-time automated mediator synthesis. Models
inferred by using active automata learning form the basis for the synthesis process.

Perhaps the most striking limitation of classical active automata learning (cf. Sect. 2.2)
is its restriction to finite automata. For modeling many real-life systems, this is hardly ade-
quate, as alone the assumption of having a finite input alphabet is unrealistic: while usually
there is a finite number of interaction primitives (methods, operations, commands, protocol
messages, . . . ) when interacting with any kind of software system, actual interactions of-
ten carry additional data values such as authentication credentials, resource identifiers etc.
As these data values usually range over infinite domains (strings, integers, . . . ), faithfully
modeling the potential of interactions requires alphabets of infinite size.

Even worse, a major aspect of these systems is data-flow: supplied data values are stored
and have an impact on the future behavior, requiring later interactions to supply the same
(or distinct) data values, or appearing in the output of the system. Modeling such systems is
well beyond the scope of finite-state automata.

In this paper, we will review how the goal of overcoming these limitations has driven our
development of active automata learning to capture aspects of data-flow in infinite-state sys-
tems. We will sketch the way from the first primitive treatment of data values (by basically
ignoring them) to the state of the art, where data values are treated as first-class citizens in
models like Register Automata (Cassel et al. 2011) and Register Mealy Machines (Howar
et al. 2012). These models are able to faithfully represent interface programs: programs de-
scribing the typical protocol of interaction with components and services. In particular, we
will discuss

– DFAs as the original subject of active learning algorithms, and techniques for representing
reactive systems in terms of those,

– Mealy Machines as a model for systems explicitly distinguishing input and output (data),
– automated Alphabet Abstraction Refinement (AAR) techniques as a two-dimensional ex-

tension of the partition-refinement based approach of active learning for inferring not only
states but also optimal alphabet abstractions, and

– Register Automata and Register Mealy Machines, which come with the ability to natively
represent data-flow semantics. They can be regarded as a simple form of programs, with
certain restrictions on how data can be processed.
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We are convinced that this development has the potential to transform active automata learn-
ing into a technology of high practical importance.

Outline The remainder of this paper is structured as follows. In Sect. 2, we start with
introducing the basic concepts and notations for dealing with languages and automata, and
give a brief description on active automata learning of regular languages. We also sketch
the scenario of active learning in practice and provide a running example (a data structure
with stack semantics). Section 3 contains the actual survey: we discuss different approaches
for inferring models of the stack and respective resulting models, with a special emphasis
on how data is treated. Related approaches are discussed in Sect. 4, before we present our
conclusions and perspectives in Sect. 5.

Note This is an extended and revised version of the paper “Active Automata Learning:
From DFAs to Interface Programs and Beyond” (Steffen et al. 2012), discussing the key
technical ideas in greater depth and particularly elaborating on the learning of Register Au-
tomata. A more technically oriented survey on classical active automata learning is provided
by the paper “Introduction to Active Automata Learning from a Practical Perspective” (Stef-
fen et al. 2011), however completely omitting the aspect of Register Automata Learning,
which is central to this paper.

2 Preliminaries

In this section, we will introduce the basic notation used throughout the whole paper. More-
over, we will describe the underlying concepts of active automata learning and present an
example which will serve to illustrate the different approaches reviewed in Sect. 3.

2.1 Regular languages and deterministic finite automata

Let Σ be a finite set of input symbols a1, . . . , ak . We also refer to Σ as our (input) alphabet.
Sequences of (input) symbols are called (input) words. The empty word (of length zero) is
denoted by ε. The set of all finite words over a given alphabet Σ is denoted by Σ∗. Note
that Σ∗ always contains the empty word ε, we therefore also define the set of all non-empty
words Σ+ = Σ∗ \ {ε}. Words can be concatenated in the obvious way: we write u · v or
simply uv to denote the concatenation of two words u and v; the former notation is used
when we want to put an emphasis on a certain concatenation operation. Finally, a language
L ⊆ Σ∗ is a set of words.

Definition 1 (Deterministic finite automaton) A deterministic finite automaton (DFA) is a
tuple 〈Q,q0,Σ, δ,F 〉, where

– Q is the finite set of states,
– q0 ∈ Q is the dedicated initial state,
– Σ is the finite input alphabet,
– δ : Q × Σ → Q is the transition function, and
– F ⊆ Q is the set of final states.

We write q
a−→ q ′ for δ(q, a) = q ′ and q

w=⇒ q ′ if for some w = a1 · · ·an there is a sequence

q = q0, q1, . . . , qn = q ′ of states such that qi−1 ai−→ qi for 1 ≤ i ≤ n. In the latter case, we
also say that w reaches q ′ from q . If q = q0 and there exists such a w, then q ′ is called
reachable.
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A DFA A accepts the language LA of words that reach final states on A, hence LA =
{w ∈ Σ∗ | q0

w=⇒ q, with q ∈ F }. A language L ⊆ Σ∗ for which there exists a DFA A such
that L = LA is called a regular language. A DFA A is called minimal if no DFA with fewer
states than A accepting the same language LA exists.

It is well-known that minimal DFA serve as a canonical representation for regular lan-
guages. Given a regular language L, there exists a unique (up to isomorphism) minimal DFA
A such that L = LA. The link between regular languages and their canonical DFA represen-
tation is established by the famous Nerode (1958) relation. For a language L, the residual
language (or simply residual) of a word u ∈ Σ∗ with respect to L, denoted by u−1L, is
defined as the set u−1L = {v ∈ Σ∗ | uv ∈ L}.

Definition 2 (Nerode equivalence) Two words w,w′ from Σ∗ are equivalent with respect
to L, denoted by w ≡L w′, iff w−1L = w′−1L.

By [w] we denote the equivalence class of w in ≡L. Regular languages can now be
characterized as those languages over finite alphabets where ≡L has finite index, that is,
there is a finite number of equivalence classes [w]. Therefore, a DFA AL for L can be
constructed from ≡L (cf. Hopcroft et al. 2001): For each equivalence class [w] of ≡L, there
is exactly one state q[w], with q[ε] being the initial one. Transitions are formed by one-letter

extensions, hence q[u]
a−→ q[ua]. It is clear from the definition of Nerode equivalence that this

is well-defined, or, in other words, independent of the representative word u. Finally, a state
is accepting if [u] ⊆ L (if not, then [u]∩L = ∅, as either ε is in the residual or not). No DFA
recognizing L can have less states than AL, and since it is unique up to isomorphism, it is
called the canonical DFA for L. This construction and the Nerode relation are the conceptual
backbone of active learning algorithms, as we will detail in the following section.

2.2 Angluin-style active learning of regular languages

Active automata learning, from the classical perspective, aims at inferring (unknown) regular
languages. In her seminal work presenting the L∗ algorithm, Angluin (1987) introduced a
framework which defines the types of questions a “learner” is allowed to ask. In the so-called
MAT learning model, the existence of a Minimally Adequate Teacher (MAT) is assumed,
answering two kinds of queries.

Membership queries test whether a word w ∈ Σ∗ is in the unknown language L. These
queries are employed for building hypothesis automata.

Equivalence queries test whether an intermediate hypothesis language LH equals L. If so,
an equivalence query signals success. Otherwise, it will return a counterexample: a word
w ∈ Σ∗ from the symmetric difference of LH and L.1

The key idea of many active learning algorithms, the most prominent example being
Angluin’s L∗ algorithm (Angluin 1987), is to approximate the Nerode congruence ≡L by
some equivalence relation ≡H such that ≡L always refines ≡H (for all words w1,w2 ∈ Σ∗
we have w1 ≡L w2 ⇒ w1 ≡H w2). Throughout the course of the learning process, ≡H is
then gradually refined by splitting equivalence classes, until it eventually equals ≡L. Due to

1The kind of equivalence queries which also yield a counterexample are sometimes referred to as strong
equivalence queries (for example, in De la Higuera 2010), in contrast to weak equivalence queries which
simply answer “yes” or “no”. In the remainder of this paper, “equivalence query” will always denote the
strong form.
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guaranteed progress in refining ≡H, this will inevitably happen at some point, as in the case
of regular languages ≡L only has finitely many equivalence classes.

The approximation of ≡L is achieved by identifying prefixes u, which serve as repre-
sentatives of the classes of ≡H, and suffixes v, which are used to prove inequalities of the
respective residuals, separating classes. Throughout the course of the learning process, the
sets of both prefixes and suffixes grow monotonically, allowing for an increasingly fine iden-
tification of representative prefixes.

Having identified (some) classes of ≡L, a hypothesis H is constructed in a fashion re-
sembling the construction of the canonical DFA (cf. Sect. 2.1). Of course, some further
constraints must be met in order to ensure a well-defined construction. As sketched above,
H is then subjected to an equivalence query, which either signals success (in which case
learning terminates) or yields a counterexample. This counterexample serves as a witness
that the approximation of ≡L is too coarse, triggering a refinement of ≡H (and thus of H).
This alternation of hypothesis construction and hypothesis validation is repeated until an
equivalence query finally signals success. Convergence is guaranteed as ≡H is refined with
each equivalence query, but always remains a (non-strict) coarsening of ≡L.

Extension to richer automaton models The procedure described above relies crucially on
the Nerode congruence, which is tied to regular languages and thus finite-state acceptors
(such as DFAs). However, a more universal idea can be identified, allowing to adapt active
learning algorithms to richer automaton models. Assuming that a minimal (canonical) model
of the target system exists, a congruence relation on words has to be established, such that the
classes of this equivalence relation correspond to the states in the canonical model. Defining
this equivalence relation is one of the central challenges when adapting active learning to
richer formalisms.

The MAT model in practice It has to be noted that the MAT model with its two types
of queries is merely a definition of a framework for active automata learning. It does not,
however, specify how these queries can be carried out in practice, or if this is possible
at all. In our practical applications of active learning, symbols usually relate to the invo-
cation of operations on a target system, and membership queries thus correspond to se-
quences of such invocations (Sect. 2.3 will discuss this in further detail). Although some
problems also need to be solved here, the realization of membership queries often is rela-
tively straightforward. Equivalence queries, on the other hand, cannot be realized under the
general assumption of a black-box setting, even for finite-state systems: checking whether a
black-box finite-state system conforms to a given specification (such as the current hypoth-
esis) cannot be determined conclusively by mere interaction (membership queries). How-
ever, various solutions have been proposed to overcome this problem in practice: confor-
mance testing methods like model-based testing can be used to search for counterexam-
ples. An equivalence query is then approximated by several membership queries. Under the
assumption that an upper bound on the number of states of the target system is known,
there even exist complete strategies like the Vasilevskii/Chow W-method (Chow 1978;
Vasilevskii 1973), which may however require an exponential number of membership
queries. Practically more relevant are randomized strategies that exploit information about
how the hypothesis was constructed by the learning algorithm, which have shown to perform
notably well in many cases (Howar et al. 2010).

There are two main reasons for not discussing the issue of finding counterexamples any
further in this paper. First, the rest of the learning algorithm is in no way dependent on
this part: no assumption is usually imposed on the form of counterexamples, so a learning
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algorithm does not need to care about how counterexamples were found. Second—and this is
more important—solving the problem of generating counterexamples is highly application-
specific: active automata learning is used in various domains, most of which are not purely
black-box. Depending on the concrete domain constraints, there is a very heterogeneous
number of possibilities to exploit the available domain information in order to generate
counterexamples.

2.2.1 Organizing observations

As sketched above, active automata learning algorithms designed in the above-described
fashion represent the inferred language L as a DFA using ideas from the automata construc-
tion and the Nerode-relation discussed in the previous section. Technically, they maintain
two sets of words:

– an incrementally growing prefix-closed set U ⊂ Σ∗ of words reaching states (prefixes).
This set contains a prefix-closed subset Us ⊂ U of representative words for classes of ≡L
(containing one word per class eventually). To allow for the construction of an automaton
from U , where transitions are defined using one-letter extensions of words in equivalence
classes of ≡L (cf. Sect. 2.1), the algorithm will maintain U as Us ∪ Us × Σ .

– a growing set V ⊂ Σ∗ of words distinguishing states (suffixes or futures). This set realizes
the characterization of a hypothetical state reached by some prefix u ∈ U in terms of its
partial residual for V , which is the set u−1L ∩ V . Intuitively, the suffixes in V finitely
approximate a characterization of the state with respect to ≡L.

This characterization is realized using an observation table 〈U,V,T 〉, where U is the set of
prefixes, V is the set of suffixes, and T : U → {�,×}V is the table mapping with T (u)(v) =
� if u · v ∈ L and T (u)(v) = × otherwise. Note that the condition u · v ∈ L is equivalent
to v ∈ u−1L, hence T (u) can be regarded as the characteristic (or indicator) function of the
partial residual u−1L∩V . T (u) is called the table row of a prefix u ∈ U . The row of a prefix
serves as the technical representation of its partial residual.

When visualizing observation tables, the rows are usually indexed by prefixes in U ,
whereas columns are indexed by suffixes in V . Furthermore, the table is split horizontally
into two parts, the upper part containing the representative prefixes in Us and the lower part
containing all other prefixes U \ Us .

An example for an observation table is depicted in Fig. 1(a). This observation table is a
possible result of applying a variant of the L∗ algorithm to the language described by the
regular expression L1 = a · b∗ · a.

To be able to construct a well-defined automaton from an observation table, all the one-
letter extensions of words in Us have to be in classes of ≡H for which a representative word
is in Us already—otherwise, some transitions could not be defined. Technically, we say that
an observation table is closed iff for every u ∈ U there exists a u′ ∈ Us with T (u) = T (u′).

From a closed observation table a hypothesis automaton H = 〈Q,q0,Σ, δ,F 〉 can be
constructed using the ideas from Sect. 2.1 of constructing the canonical DFA from the
Nerode relation: for every access sequence u in Us , there is a state q[u] ∈ Q, the initial
state q0 is the state reached by the prefix ε, hence q0 = q[ε], and for every prefix ua ∈ U

with a ∈ Σ there is a transition q[u]
a−→ q[u′] such that T (ua) = T (u′) and u′ ∈ Us . A state

q[u] for some u ∈ Us will be in F iff T (u)(ε) = �. The corresponding automaton for L1, as
constructed from the observation table depicted in Fig. 1(a), is shown in Fig. 1(b).

Inference is organized in two phases, alternated iteratively. In the hypothesis construction
phase a hypothesis language (represented as a DFA) is derived from the observations using
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Fig. 1 (a) Possible observation table when learning the language L1 = a · b∗ · a and (b) corresponding DFA
for L1

membership queries. In the hypothesis verification phase hypothesis models are tested for
equivalence with L by means of equivalence queries.

Hypothesis construction Most observation table-based learning algorithms initialize Us as
the singleton set {ε}, containing the only prefix known a priori, reaching the initial state.
The set of suffixes V is usually initialized as {ε} as well, separating final states (represented
by prefixes in L) from non-final ones.

During any hypothesis construction phase, a learning algorithm will use membership
queries to compute the table mapping, and resolve unclosedness of the observation table
by extending Us by those prefixes from U \ Us that cause the unclosedness. Once the table
is closed, all prefixes in U \ Us will correspond to representative prefixes (states) in Us ,
allowing us to construct a well-defined, tentative hypothesis automaton.

Hypothesis verification Once a tentative hypothesis H is produced from the observation
table, an equivalence query can be used to find a counterexample: a word w ∈ Σ+ for which
w ∈ L ⇔ w /∈ LH (or, to ensure correctness of H). An apparent reason for H being incorrect
is an insufficient number of states, as a finite set V of suffixes only allows to distinguish a
finite number of states. Extracting information from a counterexample on how to trigger
refinement of the model by adequately extending the observation table is one of, if not the
central aspect on which most of the recent works on extending automata learning to richer
formalisms focus. We will therefore highlight this in more detail in the next section.

2.2.2 Analyzing counterexamples

A counterexample w ∈ Σ+ exposes diverging behavior between the hypothesis H and the
(unknown) target system. As during hypothesis construction states are only split when this
is supported by evidence (in the form of a suffix from V ), the inferred partition of the state
space can only be too coarse, but never too fine-grained. This means that there may exist
states in the target system’s state space which are not among the states reachable by repre-
sentative words in Us , and that are therefore incorrectly identified with states of H. This can
be revealed via adequate counterexamples.

Angluin’s way to capture each system state visited by a counterexample w was to simply
add all prefixes of w to Us . This immediately guarantees that all visited states are in the
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observation table, but it comes at the cost of losing the uniqueness of representative prefixes
u ∈ Us for states of the hypothesis. This may lead to a phenomenon called inconsistency:
two distinct prefixes u,u′ ∈ Us may represent the same state in the hypothesis (in which case
we have T (u) = T (u′)), but they differ in their successors for some input symbol a ∈ Σ ,
hence T (ua) �= T (u′a). As this makes it impossible to define a (deterministic) transition
function δ, inconsistencies in the table have to be eliminated before another hypothesis can
be constructed.

From the above T (ua) �= T (u′a) we can derive that there exists some suffix v ∈ V such
that T (ua)(v) �= T (u′a)(v). Obviously, extending V by av will force u and u′ to represent
different states, as T (u)(av) = T (ua)(v) �= T (u′a)(v) = T (u′)(av).

As we pointed out in the previous section, such an augmentation of V will at some point
become unavoidable, as the cardinality of V inherently limits the number of distinguishable
states to 2|V |. In fact, augmenting the set of suffixes V alone is sufficient in order to ensure
that the table is no longer closed afterwards and hence at least one new state is added to the
hypothesis, as the following theorem states.

Theorem 1 A counterexample w contains a suffix v (w = xv for some x ∈ Σ∗), such that
there exist u ∈ Us and u′ ∈ U \ Us with T (u) = T (u′) and uv ∈ L ⇔ u′v /∈ L.

Consequently, counterexample handling strategies have been defined that augment the
set of suffixes only. In their work on learning a subclass of ω-regular languages (Maler
and Pnueli 1995), Maler and Pnueli proposed adding all suffixes of the counterexample
to V instead.2 As this can result in a significantly higher number of membership queries,
Irfan et al. (2010) proposed the counterexample processing algorithm Suffix1by1, adding
suffixes of increasing length step-by-step, stopping once a new state is discovered. As the
experimental results reported in Irfan et al. (2010) suggest, this can have a dramatic impact
for very long counterexamples.

While all these strategies in most cases require adding multiple suffixes to V , Theorem 1
implies that adding a single suffix to V is sufficient. An algorithm for finding such a suffix
was presented by Rivest and Schapire (1993), which is based on transformations to repre-
sentative words: for a hypothesis automaton H, the transformation �·� : Σ∗ → Us is defined
such that, for any word w ∈ Σ∗, w and �w� reach the same state in H.3 For a counterexample
w ∈ Σ∗, Rivest and Schapire’s algorithm finds a decomposition w = uav, where u,v ∈ Σ∗
and a ∈ Σ , such that �u�a · v ∈ L ⇔ �ua� · v /∈ L. As �ua� ∈ Us and �u�a ∈ U \ Us , adding
v will cause an unclosedness of the table in the row indexed by �u�a. This decomposition
of w is uniquely determined by the length of the prefix u and can efficiently be found using
a binary search.

An interesting property of Rivest and Schapire’s algorithm is that—in contrast to all other
approaches presented above—resulting (intermediate) hypothesis models are no longer nec-
essarily canonical. To avoid this, Steffen et al. (2011) proposed requiring observation tables
to be semantically suffix closed: for any decomposition v = v1v2 ∈ V of a distinguishing
suffix and any two representative words u,u′ ∈ Us , T (u)(v) �= T (u′)(v) needs to imply
�uv1� �= �u′v1�. If the property is violated, v2 needs to be added to V . We refer the reader
to Steffen et al. (2011) for a proof that this is sufficient to ensure canonicity of hypothesis
automata.

2This variant of L∗ is sometimes referred to as L∗
col

.
3Note that this is well-defined since words in Us are unique representatives of states in H.
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Fig. 2 Schematic view of active learning setups in practice using a mapper

2.3 Active learning in practice

In order to use active learning for inferring models of realistic systems, an active learning
algorithm has to be able to interact with these systems. While this interaction comes with a
number of problems (such as how to reset such systems), we will here put an emphasis on
how to deal with data.

Usually the inputs exposed by some system will be an API, for instance, a set of methods
or operations with data parameters or a set of protocol messages with data parts. Since learn-
ing algorithms are formulated at a more abstract level of uninterpreted alphabet symbols,
means are needed to bridge this gap. Usually, this is done by a so-called mapper (see Jons-
son 2011), a component that is placed between the learning algorithm and the actual system
under learning. A mapper translates membership queries of the learning algorithm into op-
erations (such as method invocations) on the SUL (System Under Learning), and transforms
the values returned from these method calls into a format the learning algorithm can handle.
This translation is usually performed on a per-symbol level and depending on the prefix of
the current query, with each symbol in the input alphabet corresponding to some method or
operation invocation. The symbols in the output alphabet correspond to possible responses
or return values.

We restrict ourselves here to a simpler definition of mappers, which does not include
stateful translation between the learning algorithm and the SUL (the consequence being that
each symbol can be translated independently). Approaches based on more complex, history-
dependent mappers are briefly discussed in Sect. 4.

A (simple) mapper can formally be understood as an abstraction as shown in Fig. 2:
While the learning algorithm generally works at an abstract level, using inputs ΣL and
responses ΩL (also called outputs; in the case of DFAs we simply have ΩL = {×,�}, more
complex cases will be discussed from Sect. 3.3 on), the SUL has concrete inputs ΣS and
outputs ΩS . A mapper, essentially a set of two functions α and γ , translates between these
alphabets. The input-concretization γ maps words over ΣL to words over ΣS . The output-
abstraction α maps words over ΩS to words over ΩL.

It has to be noted that in the case of learning regular languages (in the form of a DFA),
it has to be decided whether an output in (ΩL)∗ corresponds to either acceptance or rejec-
tion. Usually, this decision is made looking at the last symbol of the output word only, and
checking if it corresponds to an error condition (in which case the input word is assumed to
be rejected) or not.

2.4 Running example

As our key concern is the treatment of data in active learning, we will focus on an application
in which data plays a central role: learning behavioral models of container data structures,
whose purpose it is to serve as a collection of data values (lists, stacks, queues, and so on).
These typically also come with the property of data independence, meaning that all data
values supplied as operation arguments are treated symmetrically: while data is passed to
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Fig. 3 Stack implementation in Java (capacity of 3)

and returned by the operations, none of the data values have any special significance over
the others, and also no relations other than identity (such as ordering relations) are assumed
to be checked for by the system. It may, however, affect the system’s behavior if there exist
any equalities between data values in a single sequence of invocations. As the notion of
“behavior” is closely related to the chosen modeling formalism and abstraction, we will
give a simple example for the reader’s intuition. Consider data structures for both a list and
a set. While any value can be appended to the list, the set will remain unmodified (and might
explicitly indicate so) if the value being added is already contained in the set. In either case,
exchanging any two data values in a sequence of operations on both data structures will
neither affect the number of elements contained, whether or not the contents were modified
after any of the single operations and so on. The only difference concerns the contents of
the data structures at the level of concrete data values.

As our running example, we choose a stack with a capacity of three. A possible, very
simple array-based implementation is shown in Fig. 3, exposing the following (Java) API:
boolean push(Object) pushes a (non-null) object onto the stack, returning true if
the operation was successful and false if the stack is full. Object pop() removes and
returns the topmost object, returning null if the stack was empty.

Using a restricted data domain D = N instead of allowing any Object as data parame-
ter, the set ΣS of concrete system-level inputs to the stack can be described as the union of
the two sets {push(p) | p ∈N} and {pop()}. Accordingly, the set of concrete outputs ΩS is
the union of N and {true,false,null}.

In the course of the paper we will show the impact of advances in active automata learn-
ing over the past 10 years along this example. In every step we will introduce a learning
algorithm for the increasingly complex modeling formalisms, along with a discussion on
their advantages and disadvantages.

As most learning algorithms are not designed to natively deal with data parameters, the
description of those cannot be separated from the problem of defining a suitable mapper.
We will therefore also take this aspect into account, demonstrating the direct correlation
between richer modeling formalisms and simpler mappers.

3 From DFAs to interface programs

In this section, we will use the above example to illustrate the models obtained by different
approaches for inferring models of black-box systems. Starting from active learning of reg-
ular languages in various flavors, we will review Mealy Machines as a model that natively
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Fig. 4 DFA for stack with a capacity of 3. Accepting locations marked by double circles

includes output in models, (automated) alphabet abstraction as a means for dealing with infi-
nite sets of inputs, and finally present Register Automata and the even more powerful Regis-
ter Mealy Machines as models capturing the influence of data on the behavior explicitly. For
each of these approaches, we will focus on the necessary mapper, the obtained models, and
their features. Additionally, whenever this is adequate we will discuss the specific technical
challenges needed to be solved in order to adapt the partition-refinement based approach as
presented in Sect. 2 to the new setting.

3.1 Error-free usage patterns: DFAs and LTSs

Active automata learning, in particular the L∗ algorithm (Angluin 1987), in the first place
was designed for inferring regular languages, described as DFAs. The stack API presented
in Sect. 2.4, in contrast, can receive a (virtually) arbitrary number of distinct method in-
vocations, and additionally as a reaction does not produce a binary verdict such as “ac-
cept”/“reject”, but returns (arbitrarily many distinct) output values. It therefore exceeds the
scope of regular languages simultaneously in two dimensions.

For now, we will concentrate on the first problem: an infinite set of inputs. Clearly, it
is not the mere set of provided operations which causes the alphabet to be infinite, but the
operations’ parameters, which can be instantiated from an unbounded data domain D. An
easy way to obtain finiteness therefore is to prune D to some small, finite set D′ ⊂ D. In our
example, this will also lead to a finite set of different system outputs (return values), which
however still exceeds the DFA notion of “output”, consisting of acceptance and rejection
only.

A natural approach is to aim at capturing whether method invocations are error-free or
not. As this does not allow to capture data-flow aspects in any form, the concrete data values
are of no importance, hence ΣL = {push,pop} is a natural choice: the mapper then could
translate push to push(1) and pop to an invocation of pop(). This obviously corresponds
to restricting to the singleton data domain D′ = {1}. The output alphabet is fixed to ΩL =
{�,×} by the DFA formalism. As the model should tell apart successful and erroneous
inputs, it maps the output to × if the return value is false or null, and to � otherwise.
The DFA learning algorithm then projects this output word onto the last symbol only.

The resulting model is shown in Fig. 4. The model has four accepting states, one per
number of elements in the stack. Additionally, there are two non-accepting states, q4 and q5,
one representing the null that is obtained when performing a pop on the empty stack and
the other representing the false that is returned when trying to push an element onto a full
stack.

Although the mapper in this example was rather simple, it involved manual effort in a
number of ways: for instance, a representative data value had to be chosen. Even more com-
plex is the notion of “error-free invocation”: while mapping return values of false and
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null to rejection appears automatable, this is not as easy when, for example, an enumera-
tion data type (enum in Java) with several possible error and non-error values is returned. In
this case, manual effort is inevitable. Finally, when stating that a single representative input
value would suffice, we actually employed domain knowledge about the concrete target sys-
tem: when considering, for instance, a set data structure, the return value of add (signaling
whether the collection was modified or not).

3.1.1 Deterministic finite LTSs

Looking at the model depicted in Fig. 4, states q4 and q5 seem a bit out of place: First,
they do not really add anything to structure reflected in the rest of the model: that we can
insert at most three elements, and that we can never remove more elements from the stack
than we added before. Second—and more gravely—when looking at the implementation in
Fig. 3, the internal state of the stack object is determined by the contents of the contents
array and the size size alone. push on a full and pop on an empty stack thus are in fact
operations that do not alter this internal state! The model in Fig. 4 actually uses states to
encode information about the returned value of the last operation, which is not part of the
object’s state as such.

As the only information we can get from our restricted subset is which sequences of
invocations are error-free (more precisely: end with an error-free invocation), an obvious
aim is to infer a model which contains only these error-free sequences. This can be achieved
by learning a maximal prefix-closed subset of the target regular language: a maximal subset
L′ ⊆ L such that if a word w = uv with w,u, v ∈ Σ∗ is in L′, then also u ∈ L′.

In active automata learning, such a subset is usually learned employing a so-called prefix
closure filter (cf. Margaria et al. 2005). This actually is a misnomer, as a prefix closure in fact
is a minimal prefix-closed superset of the language. In its simplest form, it stores minimum
words known to be rejected, and automatically rejects all extensions of these words without
querying the SUL at all.

The resulting (canonical) DFA always has at most one rejecting state, which is a sink state
that, once entered, cannot be left again. All other states are accepting. A more amenable
representation of these models is in terms of a deterministic finite labelled transition sys-
tem (LTS), which do not distinguish between accepting and rejecting states, but allow the
transition relation to be partial.

Definition 3 (Deterministic finite LTS) A deterministic finite labeled transition system (de-
terministic finite LTS) is a tuple 〈Q,q0,Λ, δ, 〉, where

– Q is the finite set of states,
– q0 ∈ Q is the dedicated initial state,
– Λ is the finite set of transition labels,
– δ ⊆ Q × Λ × Q is the (partial) transition function, i.e., a partially defined function from

Q × Λ to Q.

The correspondence between a prefix-closed DFA and a deterministic finite LTS is pretty
obvious: the set of labels is Λ = Σ , and the states of the LTS are the accepting states of
the DFA. The transition relation is simply the result of pruning all rejecting states and their
ingoing transitions from the DFA model.

Applying the presented techniques to our running example, the resulting model is de-
picted in Fig. 5, which can be regarded as a slightly more concise variant of Fig. 4: the error
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Fig. 5 LTS for stack with a capacity of 3

states are no longer present, and the other states need no longer be explicitly marked as ac-
cepting. The set of all paths (originating from the initial state q0) or traces is exactly the set
of fully error-free invocation sequences on the target system.

While information on error-free usage patterns has its use for some applications (for
example, computing safe interfaces for components), it fails to capture the central aspect of
a container data structure: how the stored data is organized. For example, a FIFO (queue)
organization would result in the exact same model, which is highly unsatisfactory. This calls
for extending our setting in order to distinguish a larger set of possible outputs.

3.2 Encoding I/O in LTSs

The first attempts to directly capture input/output behavior in the learned models were made
by incorporating them into the learned DFA (or LTS) (Hungar et al. 2003). This was accom-
plished by extending the set of transition labels Λ to also contain information about outputs.
The set Λ thus no longer coincides with the set of inputs ΣL (cf. Fig. 2), but instead is a
more complex structure. This calls for realizing the mapper as a structure on two levels:

– the first (lower) level is responsible for the tasks depicted in Fig. 2: translating the abstract
system inputs from (ΣL)∗ to concrete system inputs from (ΣS)∗, and translating concrete
system outputs from (ΩS)∗ back to the abstract level (ΩL)∗.

– the second (higher) level is responsible for mapping complex I/O queries from Λ∗ to
abstract inputs from (ΣL)∗, and the resulting abstract system outputs from (ΩL)∗ to either
acceptance or rejection, depending on the I/O query.

Inputs ΣL and outputs ΩL can be expressed simultaneously in a single transition label,
choosing Λ = ΣL × ΩL.4 For a word wΛ = (a1, o1)(a2, o2) · · · (an, on) ∈ Λ∗, we define the
input projection as

w
(Σ)
Λ = a1a2 · · ·an,

the output projection w
(Ω)
Λ is defined analogously. Performing a membership query for some

word wΛ ∈ Λ∗ then consists of the following three steps:

1. For wΛ, the input projection wI = w
(Σ)
Λ ∈ (ΣL)∗ is calculated.

2. wI is passed to the lower level of the mapper, yielding an output word wO ∈ (ΩL)∗.
3. wO is compared to w

(Ω)
Λ . If both words are equal, acceptance (�) is returned, otherwise

rejection (×).

With the ability to encode an arbitrary (finite) number of output values, it is reasonable
to enlarge the pruned data domain D′ to contain several representative values. In order to
obtain more compact representations, we will use D′ = {1,2}. In general, the adequate size
of D′ is highly dependent on the concrete application: for data structures allowing to store
a maximum of n values, D′ should generally contain n + 1 distinct values in order to be

4An alternative approach is to choose Λ = ΣL ∪ ΩL , considering alternating sequences of input and output
symbols.
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Fig. 6 LTS with I/O labels for a stack with capacity 3 (D′ = {1,2})

able to relate faithfully values appearing in inputs to values appearing in outputs. For a set,
|D′| ≥ n is even a necessity for reaching the capacity limit.

The construction Λ = ΣL × ΩL drastically increases the size of the input alphabet, and
hence the size of the observation table as well as the required amount of membership queries.
The latter consequence can partly be reduced: as directly querying the SUL is often a very
expensive operation, in practice it is common to use a cache for membership queries, such
that each possible input word is executed at most once on the SUL. In DFA learning, the
usual approach is to store a partial mapping from Σ∗ to {�,×}, and extending this mapping
upon each membership query posed to the SUL. When dealing with I/O behavior, it is more
prudent to realize the cache as a partial mapping from (ΣL)∗ to (ΩL)∗. This way it is no
longer necessary to query the SUL for each word wΛ ∈ Λ∗, but only once for each possible
input projection w

(Σ)
Λ . From the cached output wO ∈ (ΩL)∗, rejection or acceptance of wΛ

can then obviously be computed without further interaction with the SUL.

Application to running example Applying the data domain D′ = {1,2} yields the set of
inputs ΣL = {push(1),push(2),pop()}. It is important to note here that push(1), despite
the notation, is to be understood as a single, atomic symbol: to the learner, the symbols
push(1) and push(2) are as distinct as push(1) and pop(). The set of outputs we can ob-
serve is ΩL = {1,2, true, false,null}. The lower level of the mapper maps ΣL to concrete
invocations, as well as return values to symbols from ΩL in the obvious way.

A part of the resulting model is shown in Fig. 6. The actual model would be twice as big;
we omitted the part after an initial push(2), which is symmetric to the shown part of the
model. In contrast to the model depicted in Fig. 5, some relation between data values in the
input and output parts of the transition label is visible: specifically, a pair of two opposed
edges between two distinct states always contains the same data value in the input portion
of the first and the output portion of the second edge.

Still, this is not satisfactory: the organization of data values is reflected in a purely syn-
tactical way. Compared to the LTS in Fig. 5, whose size is linear in the capacity of the stack,
we now have a model of exponential size, also leading to the learning process being much
more expensive. In our small example, the inferred model already has 15 states; in general,
the model for a stack with a capacity of n requires |D′|n+1 − 1 states.

On top of that, considerable manual effort and domain knowledge is required for defining
the abstraction, as it required us to know beforehand that, when limiting the push invocations
to push(1) and push(2), we would not have to deal with output values other than 1
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and 2. Before discussing solutions to this problem, we will first present an optimization
technique shown to be quite successful in practice.

3.2.1 Symmetry reduction

One of the main reasons we chose data structures as an example application was their prop-
erty of data independence: the system as such treats all data values symmetrically (in the
sense that there are no constants with “special” semantics). This also means we can arbitrar-
ily interchange the values in D′, without affecting the principal behavior of the system; we
might however possibly observe the effect of this permutation on D′ in the output.

Formally, a permutation π on some set M is a one-to-one mapping (bijection)
π : M → M . The set of all permutations on M is denoted by Perm(M). Together with
the function composition ◦, this set forms a group. For any distinct m,m′ ∈ M , a trans-
position θm,m′ ∈ Perm(M) is the special permutation interchanging m and m′. Hence,
θm,m′(m) = m′, θm,m′(m′) = m and θm,m′(x) = x for all other x ∈ M \ {m,m′}. Considering
some set of symbols Σ , we extend the domain of π : Σ → Σ to Σ∗ by applying it point-
wisely to every symbol: let w = w1 · · ·wn ∈ Σ∗ be a word, then π(w) = π(w1) · · ·π(wn).

Transferring the above to the level of alphabet symbols, we formally have some group
Π ⊆ Perm(ΣL ∪ ΩL) of permutations on the input and output symbols, such that (1) no
input symbol is interchanged with an output symbol and vice versa, hence, π(ΣL)∩ΩL = ∅,
and (2) applying π ∈ Π point-wisely on a word wI ∈ (ΣL)∗, the system’s output for π(wI )

differs from the one for wI exactly in the application of π .
It was shown by Margaria et al. (2005) that in practice, employing such a symmetry (re-

duction) filter can reduce the number of required membership queries by several orders of
magnitude. Technically, this filter is based on applying a normalizing permutation π ∈ Π

from some set Π of allowed permutations on an input word wI , yielding a representative
(with respect to Π ) word w′

I = π(wI ). Normalizing wI is accomplished by fixing an order
on ΣL, and then determining the permutation π ∈ Π that lexicographically minimizes w′

I .
The performance improvement is due to the combination with a cache: only the represen-
tative words with respect to Π have to be executed as queries on the SUL. For all other
words, the output can be calculated from the output w′

O for the representative word by ap-
plying π−1.

A symmetry filter has a large impact on the amount of (real, SUL-level) membership
queries, but leaves several problems unresolved. For instance, it does not reduce the size of
the observation table at all. More importantly, the inferred model is not affected by whether
a symmetry filter was employed or not. Considering that the model presented in the above
Fig. 6 has exponential size, this would be highly desirable. That said, a symmetry filter
is in practice a valuable asset, often rendering learning of realistic systems feasible in the
first place. Another advantage is its rather general formulation, which makes it possible to
employ it also for all other approaches considered in this paper.

3.3 Active learning for mealy machines

Learning LTS with an extended label set of Λ = ΣL × ΩL (or Λ = ΣL ∪ ΩL), we can
incorporate arbitrary finite output alphabets in our learned model. However, this does not
come without cost: in any case, the effective learning alphabet grows, and while—using
caching and symmetry reduction—this does not necessarily affect the number of required
membership queries, it significantly increases the size of the observation table maintained
by the algorithm.
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Furthermore, until now we only considered active learning algorithms for (arbitrary) reg-
ular languages. A more natural notion is to describe reactive systems in terms of a function
(ΣS)∗ → (ΩS)∗ (or (ΣL)∗ → (ΩL)∗ at the abstract level) instead of using the concept of
languages. We even renounced the full expressivity of the DFA formalism, since we consid-
ered prefix-closed languages only.

It is obvious that there is a more natural modeling formalism for (finite-state) reactive
systems like the ones considered here: Mealy machines. A Mealy machine evolves through
a finite set of states Q just like a DFA, but instead of rejecting or accepting input words, it
outputs in each step an output symbol o from some finite output alphabet Ω according to an
output function λ : Q × Σ → Ω .

Definition 4 (Mealy machine) A Mealy machine is a tuple M = 〈Q,q0,Σ,Ω, δ,λ〉 where

– Q is a finite nonempty set of states,
– q0 ∈ Q is the initial state,
– Σ is a finite input alphabet,
– Ω is a finite output alphabet,
– δ : Q × Σ → Q is the transition function, and
– λ : Q × Σ → Ω is the output function.

We write q
a/o−→ q ′ for δ(q, a) = q ′ and λ(q, a) = o. By q

wI /wO=⇒ q ′ we denote that for wI =
a1 · · ·an ∈ Σ∗ and wO = o1 · · ·on ∈ Ω∗ there is a sequence q = q0, q1, . . . , qn = q ′ of states

such that qi−1 ai /oi−−→ qi for 1 ≤ i ≤ n.

Comparing a Mealy machine to a DFA, we have exchanged the set of final states for an
output alphabet and an output function, assigning an output to every transition. While a DFA
is an acceptor, recognizing words over a fixed alphabet, a Mealy machine is a transducer,
translating a word over an input alphabet into a word over some output alphabet. To be
precise, a Mealy machine according to Definition 4 forms a special case of a sequential
transducer (De la Higuera 2010), requiring all transition outputs to be of length 1 exactly.

While it is possible to encode a Mealy machine into a DFA-like structure in the fashion
of Sect. 3.2, yielding a notion of the language of a Mealy machine, it is more natural to
define its semantics as a mapping from words of input symbols to words of outputs. Let

[[M]] : Σ∗ → Ω∗ be defined by [[M]](wI ) = wO where q0
wI /wO=⇒ q for some q ∈ Q.

Active learning for Mealy machines was initially devised by Niese (2003), who trans-
ferred the principal ideas of Angluin’s L∗ to learning Mealy machines. The algorithm
L∗

M was then further analyzed by Shahbaz and Groz (2009). It is based on adapting the
concept of residuals to the output function [[M]]. Analogously to DFAs, the residual
of [[M]] with respect to a word u ∈ Σ∗ is a mapping u−1[[M]] : Σ∗ → Ω∗ defined by
(u−1[[M]])(v) = [[M]](uv)(|[[M]](u)|). Here, w(i) for some word w and i ∈N denotes the suf-
fix of length |w| − i, i.e., after deleting the first i symbols. (u−1[[M]])(v) yields the output
generated by v after having executed u first. It expresses the future behavior at the state
reached by some prefix u, similar to residual languages.

This gives rise to introducing an equivalence relation ≡[[M]], which relates words having
the same residuals:

∀w,w′ ∈ Σ∗ : w ≡[[M]] w′ ⇔ (∀v ∈ Σ∗ : (w−1[[M]])(v) = (
w′−1[[M]])(v)

)
.

Adapting L∗ to Mealy machine learning is achieved by approximating ≡[[M]] the same way
as for ≡L in case of a regular language L (Margaria et al. 2004), i.e., by some finite set of
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Fig. 7 Observation table
(fragment) generated by L∗

M
for

the running example

T push(1) pop() pop()pop()

ε true null null null
push(1)/true true 1 1 null
push(1)push(2)/true true 2 2 1
push(1)push(2)push(3)/true false 3 3 2
.
.
.

suffixes V ⊂ Σ∗. As the partial residuals that distinguish states are now functions instead
of sets, the observation table data structure has to be adapted to store this more complex
information.

A fragment of an observation table for our running example (see below) is shown in
Fig. 7. In L∗, a cell T (u)(v) of the observation table contained either � or × to denote
whether or not v is in the partial residual of u. Consequently, L∗

M stores in a table cell
T (u)(v) the value of (u−1[[M]])(v). Since when constructing a model from an observation
table we also have to define the output function λ, we also store in each row of our table
corresponding to a transition (i.e., each row labeled by a non-empty prefix u = u′ ·a, a ∈ Σ )
the output (u−1[[M]])(a). This constitutes a difference to the original L∗

M algorithm, which
ensured by initialization that the set V of distinguishing suffixes would always contain all
one-letter words (i.e., Σ interpreted as words). In the case of large alphabets, as they fre-
quently occur in practice, this can have a hugely negative impact on performance. Irfan et al.
(2012) introduced the idea of storing the outputs separately, and performed an experimental
evaluation of both this and the classical approach.

Application to running example Coming back to our running example, we assume the
same small data domain D′ = {1,2} with the respective sets ΣL = {push(1),push(2),

pop()} and ΩL = {1,2, true, false,null} of inputs and outputs. These are also the sets the
learning algorithm natively operates on, hence the “lower level” mapper as described in the
previous approach (cf. Sect. 3.2) suffices. It maps push(1) and push(2) to method invoca-
tions push(1) and push(2), respectively.

The set ΩL of abstract outputs is mapped one-to-one from the concrete outputs 1, 2,
true, false, and null. It has to be noted here that this output abstraction is technically
incomplete, as it is not defined for D \ {1,2}. As only values that have previously been
pushed onto the stack can be returned, this will not cause any problems here, but in general
this does not need to be the case. In the next section we will show a solution to this problem
by imposing a (complete) output abstraction a priori, and let the algorithm infer an optimal
input abstraction automatically.

The resulting Mealy machine model is shown partly in Fig. 8. The model closely resem-
bles the LTS in Fig. 6, with a slightly different form of transition labels. This superficial
similarity should however not distract from the fact that the inference of the Mealy machine
happened in a much more natural way: while the LTS was inferred by constructing a new
learning alphabet Λ, providing a two-level mapper and subsequently pruning the inferred
DFA model, the Mealy machine was inferred directly, requiring a mapper solely responsible
for concretization and abstraction again. As noted above, inferring Mealy machines directly
is usually much more efficient than inferring an LTS with encoded I/O behavior.

That said, the inferred model generally suffers from most of the LTS model’s deficien-
cies: The relation between input and output values is represented purely syntactically, an
inherent restriction of the data-unaware Mealy formalism. On the other hand, techniques
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Fig. 8 Mealy machine for stack with a capacity of 3 and data domain D′ = {1,2}

like symmetry reduction (cf. Sect. 3.2.1) can be employed as well, along with the limita-
tions discussed previously.

Before introducing Register Automata, which natively capture data-flow aspects at a
model level, we will first focus on a problem sketched above: technically, the output ab-
straction was incomplete, as data values apart from 1 and 2 were not considered. This did
not impose a problem as we only considered these data values on the input side, knowing
that all data values returned by pop operations must have been pushed onto the stack before.
In general, incompleteness of the output abstraction may cause the mapper to either fail, or
may render the inferred model unusable.

3.4 Automated alphabet abstraction refinement

In the previous section we showed how to obtain a model for the stack by restricting the
input alphabet to a small finite subset. Finding such a small representative subset is very
difficult in practice, in particular, as the choice must also guarantee that the corresponding
system appears deterministic under the chosen abstraction in order to be learned.

On the other hand, the requirements on the output side are often clear. For example, for
DFAs one simply knows that the output alphabet consists of � (“accept”) and × (“reject”)
only, and also in other more elaborate cases knowing which effects one wants to observe is
much simpler than knowing how to deterministically steer the corresponding behavior via
adequate inputs.

It turns out that it is possible to enhance the learning process so that it automatically
infers not only the corresponding state set, but also the coarsest abstraction of the input
alphabet that guarantees a deterministic behavior relative to the chosen abstraction of the
output alphabet. Like the automaton itself, the input abstraction can be inferred in a fully
black-box MAT setting.

Similarly to the Nerode relation, we define an equivalence relation on input symbols
which does not depend on states, but rather on (concrete) input words.

Definition 5 (Equivalent inputs) Given an output function [[M]] : Σ∗ → Ω∗, two inputs
a, a′ ∈ Σ are equivalent (a ∼[[M]] a′) if for all u,v ∈ Σ∗

[[M]](uav) = [[M]](ua′v
)
.
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As detailed in Sect. 2.2, active learning centers around the idea of identifying states by
approximating an equivalence relation on words, the Nerode relation ≡L (or ≡[[M]] in the
case of Mealy machines). Obviously, ∼[[M]]⊆ Σ × Σ , too, is an equivalence relation. This
allows us to extend the partition-refinement based approach used to infer states, to alphabet
symbols (respectively their equivalence classes). (Automated) Alphabet Abstraction Refine-
ment (AAR), presented by Howar et al. (2011), is a technique for extending active learning
algorithms to simultaneously infer optimal abstractions of the concrete input alphabet, with-
out changing the assumed MAT model: counterexamples now serve for either refining the
state set or the alphabet abstraction (or both).

Assuming the mapper provides a finite abstraction on the system outputs, the algorithm
requires nothing more than an initial abstraction on the input alphabet (which may be ar-
bitrarily coarse, for instance, consisting of a single representative symbol only). This setup
slightly deviates from the general description as given in Fig. 2: as the abstraction on the
input alphabet is maintained by the learning algorithm, the mapper only provides an ab-
straction on the system’s concrete output alphabet. Regarding the input alphabet, the learner
operates on the concrete level, maintaining a growing set of representative input symbols.

The AAR technique can be integrated with virtually every existing learning algorithm,
the only restriction being that dynamically growing input alphabets have to be supported.
As this growth is purely monotonic, it usually does not cause any complication.

The main challenge in implementing AAR is to adequately handle counterexamples.
Equivalence queries are assumed to be performed on the concrete input level, hence a coun-
terexample might contain symbols which are not yet part of the learning algorithm’s abstract
alphabet. The symbols in the counterexample are therefore stepwisely transformed to the
corresponding representative symbols, beginning with the first. In each step, a query to the
SUL is used to determine if this changes the observable output behavior for the partly trans-
formed word compared to the original counterexample. In this case, the counterexample is
used to refine the alphabet abstraction instead of the state space.

Active learning with AAR enjoys the same convergence properties as classical active
learning, since both the abstraction on words, approximating ≡[[M]], as well as the abstrac-
tion on input symbols, approximating ∼P , are refined monotonically. A full formal descrip-
tion of the algorithm, along with correctness and convergence proofs, is provided in the
paper referenced above (Howar et al. 2011).

Application to running example Returning our focus to the running example, a possible
way of defining a (complete) abstraction on the non-null output values i ∈ N would be to
map i to 1 when i is odd, and to 2 if i is even. Using this abstraction, we get structurally
the same model as displayed in Fig. 8, without the requirement of providing both input and
output abstractions. We therefore omit an illustration at this point.

In terms of semantic, there is however considerable difference between the models. In the
one produced by AAR, push(1) and push(2) serve as representatives for infinite classes of
input symbols (push(i) with odd/even arguments, respectively), while in the Mealy machine
case they are—apart from pop()—the only elements of the chosen set of inputs.

This approach clearly reduces the required manual effort for the construction of adequate
abstractions. However, it still does not semantically capture the data flow in the system.
Another, even more severe drawback of AAR is that the models are not self-contained: they
contain representative symbols only, along with an abstraction on the alphabet symbols.
Determining the correct abstraction class for an arbitrary concrete input symbol, however,
requires to query the SUL itself. For applications which are applied at a model level only,
such as model checking, this is usually not a problem. However, when automata learning is



84 Mach Learn (2014) 96:65–98

combined with run-time techniques such as monitoring (as is done in the CONNECT project,
cf. Bertolino et al. 2012), the need to query the SUL to relate concrete input symbols to
abstraction classes is a serious problem.

AAR and symmetry reduction For the previous approaches, we presented symmetry re-
duction as a means of reducing the amount of membership queries required. In principle,
a symmetry filter can be used whenever the underlying assumption is met (i.e., data inde-
pendence). It normalizes membership queries applying a transformation, but also transforms
the output back to match the original query. Combining AAR and symmetry reduction does
not impose any problems, as long as the said assumption is fulfilled.

However, it should be noted that AAR and symmetry reduction are not fully orthogonal.
While a symmetry filter reduces push(2) to push(1), these two symbols are in fact separated
by AAR. Symmetry reduction relies on a symbolic treatment of data, while AAR is based
on a very general notion of abstraction on alphabet symbols.

3.5 Learning register automata

The AAR technique presented in the previous section solves the problem of having to pro-
vide an abstraction on the concrete system inputs ΣS . Nevertheless, we identified several
drawbacks: an output abstraction had to be provided manually (which still is an improve-
ment compared to all the other approaches), the models were not self-contained, and data-
flow aspects were expressed only syntactically.

Common for all of the approaches presented until here is that the learning algorithm treats
symbols atomically. Even with AAR, where some semantics are assigned to the (represen-
tative) symbols in terms of inferred equivalence classes, the symbols push(1) and push(2)

have—once the learning has terminated—not more in common than push(1) and pop().
However, it is quite obvious that a symbol like push(1) can be split into the operation or
action push, and the (concrete) argument 1.

3.5.1 Register automata and data languages

With Register Automata (RA), we introduce a modeling formalism that allows capturing
this aspect natively at the model level. In this setting, it is assumed that the (system-level)
input alphabet is provided as a set Σ of parameterized actions, each with a certain arity.
For a ∈ Σ , we also use the notation a(p1, . . . , pk) to express that the arity of a is k. The
vector p̄ = p1, . . . , pk contains the formal parameters of a. A parameterized symbol a can
be instantiated with data values d̄ = d1, . . . , dk ∈ D, forming the concrete input symbol a(d̄).
The set of all concrete input symbols is denoted by ΣD . A sequence of concrete input
symbols is called a data word, and we denote the set of all data words by WΣ,D (we slightly
abuse notation and denote by W+

Σ,D the set of all non-empty data words, i.e., W+
Σ,D =

WΣ,D \ {ε}). Consequently, a subset L ⊆ WΣ,D is called a data language.
Register Automata inherently depend on the notion of data-independence, introduced

at the beginning of this paper, meaning that not the concrete data values are important,
but merely equalities or negated equalities among them. At this point we recall the defini-
tion of permutations, given in Sect. 3.2.1. Considering a permutation π : D → D on data
values, we first extend it to ΣD by applying it point-wisely to all argument values (i.e.,
π(a(d1, . . . , dk)) = a(π(d1), . . . , π(dk))), and then further extend it to data words in WΣ,D
as described in Sect. 3.2.1.
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Fig. 9 A simple register automaton

This allows us to express the property of data-independence very concisely. A data lan-
guage L ⊆ WΣ,D is data-independent iff it is closed under permutations, formally:

∀π ∈ Perm(D) : ∀w ∈ WΣ,D : w ∈ L ⇔ π(w) ∈ L.

The Register Automaton model as introduced by Cassel et al. (2011) can be regarded as
an extension of the classic DFA formalism to data languages. At a model level, a Reg-
ister Automaton equips the structural skeleton of a DFA with a finite set of registers
X = {x1, . . . , xn}. A Register Automaton serves as an acceptor for data languages. Data
values appearing in input symbols can be stored in registers as well as compared against
previously stored values.

Before presenting a formal definition of RAs, we will let the picture do the talking and
show a visualization of a very simple Register Automaton. Figure 9 is an RA over the sin-
gleton alphabet Σ = {a(p1)} recognizing the language of all data words in WΣ,D where two
subsequent data values differ.5 One immediately notices that the form of the transitions con-
stitutes the main difference to a DFA: apart from the parameterized action a(p1), transitions
are also equipped with a guard and an assignment.

A guard allows to impose restrictions on the viable transitions depending on the current
contents of the registers and the data arguments supplied with the concrete input action.
Technically, it is a propositional formula of equalities and negated equalities over formal
parameters and registers of the form

G ::= G ∧ G | G ∨ G | xi = pj | xi �= pj | true,

where true denotes the atomic predicate that is always satisfied.
An assignment determines the new contents of the registers after executing a tran-

sition. For an action a(p1, . . . , pk), it can be described as a partial mapping σ : X ↪→
X ∪ {p1, . . . , pk} from registers X to registers and parameters, where σ(xi) = pj expresses
that when a concrete input action a(d1, . . . , dk) is executed, the value dj is stored in reg-
ister xi . For the mere cause of representing assignments, we will however prefer the more
amenable form xi := pj .

Definition 6 (Register Automaton) A Register Automaton (RA) is a tuple A = (L, l0,Σ,X,

Γ,F ), where

– L is a finite set of (control) locations,
– l0 ∈ L is the initial location,
– Σ is a finite set of parameterized inputs,
– X is a finite set of registers,

5For once, we prefer this example to our running example, as the discussion about modeling issues is post-
poned to Sect. 3.5.3.



86 Mach Learn (2014) 96:65–98

– Γ is a finite set of transitions, each of which is of form 〈l, a(p̄), g, σ, l′〉, where l is the
source location, l′ is the target location, a(p̄) is a symbolic input, g is a guard, σ is an
assignment.

– F ⊆ L is the set of accepting locations.

An important difference in contrast to the machine models previously considered is the
new concept of locations. A state, on the other hand, is a pair 〈l, ν〉 consisting of the active
control location l and a valuation ν, i.e., a partial mapping from X to data values in D. Given
that D is unbounded, Register Automata thus actually describe infinite state-space systems.

Let us now define the semantics of an RA A = (L, l0,Σ,X,Γ,F ). The initial state is
the pair of the initial location and the empty valuation 〈l0,∅〉. A step of A, denoted by

〈l, ν〉 (a,d̄)−−→ 〈l′, ν ′〉, transfers A from 〈l, ν〉 to 〈l′, ν ′〉 on input (a, d̄) if there is a transition
〈l, (a, p̄), g, σ, l′〉 ∈ Γ such that

1. for all registers x occurring in g or on the right-hand side of an assignment in σ , ν(x) is
defined,

2. g is modeled by d̄ and ν, i.e., it becomes true when replacing all pi by di and all xi by
ν(xi), and

3. ν ′ is the updated valuation, where ν ′(xi) = ν(xj ) wherever σ(xi) = xj , and ν ′(xi) = dj

wherever σ(xi) = pj .

A run of A over a data word (a1, d̄1) · · · (ak, d̄k) is a sequence of steps

〈l0,∅〉 (a1,d̄1)−−−→ 〈l1, ν1〉 · · · 〈lk−1, νk−1〉 (ak,d̄k )−−−→ 〈lk, νk〉.
A run is accepting if lk ∈ F , otherwise it is rejecting. The data language LA recognized by A
is the set of data words that it accepts. A register automaton A is determinate if no data word
has accepting and non-accepting runs in A.6 A data word w is accepted by a determinate
register automaton (DRA) A if all runs of w in A are accepting.

An RA A is called well-formed iff in no state 〈l, ν〉 reachable from 〈l0,∅〉, any of the
guards or assignments of any of the outgoing transitions for l contains a register x for which
ν(x) is undefined (i.e., the above condition 1. always holds for any transition in question).
Our learning algorithms will ensure that hypothesis models are always well-formed.7

3.5.2 Keys to learning register automata

The central idea behind classical DFA learning is to identify the states of the target automa-
ton using a growing set of distinguishing suffixes, which is very closely related to the Nerode
relation (cf. Definition 2). The AAR approach presented in Sect. 3.4 combines this with a
simultaneous identification of alphabet equivalence classes, resulting in a two-dimensional
partition refinement process.

Howar et al. (2012) present an L∗-style algorithm for learning Register Automata in the
MAT learning model. It is based on identifying three aspects of the model in parallel:

6Determinacy is a way of encoding disjunctions in guards implicitly (instead of working with explicit disjunc-
tions and determinism). It allows us to relate data languages and register automata more easily than explicit
disjunctions when constructing canonical automata for data languages.
7Technically, the more adequate perspective would be to define per-location sets of variables Xl , and treat σ

and ν as total functions on the respective domains, instead of partial ones. However, our experience suggests
that a global set of variables is easier to understand for the reader.
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1. The control locations have to be inferred. This corresponds closely to identifying states
in the classical setting, and is based on adapting the Nerode relation to data languages.

2. It has to be determined when data values have to be stored in registers, and when these
values can be “forgotten” or overwritten. We refer to these values as memorable data
values.

3. Guards for the transition have to be inferred.

In the following paragraphs, we will sketch the key ideas behind each of these steps. Due
to the high complexity of Register Automata learning, a truly technical description would
exceed the scope of this paper; for this, we refer the reader to Howar et al. (2012).

Identifying locations For identifying locations, the concepts of residual languages and the
Nerode relation have to be adapted adequately. The corresponding definitions do not assume
the input alphabet to be finite, but a naïve application would lack the desirable properties.
Regular languages are characterized by a finite number of equivalence classes of the Nerode
relation, which is also crucial for the termination of active automata learning algorithms.
This is generally not the case for data languages recognizable by register automata: consid-
ering the data language recognized by the Register Automaton depicted in Fig. 9, there are
infinitely many classes of the Nerode relation. For some data value d ∈ D, a(d) is not in the
residual language of the prefix a(d), while it is in the residual of a(d ′) for any d ′ �= d .

It is evident from this example that it is necessary to abstract from the concrete data
values. In the context of a data language L we hence (re-)define the equivalence relation ≡L.

Definition 7 (Data-independent Nerode relation) Given a data-independent data language
L over a data domain D, two words u,u′ are equivalent (u ≡L u′) iff

∃π ∈ Perm(D) : ∀v ∈ WΣ,D : uv ∈ L ⇔ u′π(v) ∈ L.

The permutation π in the above definition accounts for differing valuations of an RA
after having processed u and u′, respectively. As this may only depend on the prefixes, it
has to be fixed for all suffixes v ∈ WΣ,D . Considering our above example, it is easy to see
that for any d, d ′ ∈ D the equivalence a(d) ≡L a(d ′) always holds, as the transposition θd,d ′
interchanging d and d ′ equalizes their residual languages.

Identifying registers Operating on representative prefixes, we need to derive from a word
alone the information about which data values need to be stored in registers (these data
values are called memorable). Intuitively, a data value needs to be stored if it has an impact
on the future behavior.

Definition 8 (Memorable data values) Let u ∈ WΣ,D be a data word. A data value d ∈ D
occurring in u is memorable (with respect to L) if there exists a suffix v ∈ WΣ,D and a data
value d ′ ∈ D such that d ′ neither occurs in u nor v, and

uv ∈ L ⇔ uθd,d ′(v) /∈ L.

Here, θd,d ′ is the transposition interchanging d and d ′.

Identifying memorable data values is accomplished by deliberately removing some
equalities between data values in the prefix u and the suffix v, checking if the observable
behavior (acceptance or rejection) changes.
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Fig. 10 RA Observation table
for the automaton in Fig. 9

T Mem. Loc. ε a(p1)

ε ∅ (l0) ε → � a(1) → �

a(1) {1} (l1) ε → � a(1) → ×
a(2) → �

a(1)a(1) ∅ (l2) ε → × a(2) → ×

a(1)a(2) {2} ε → � a(2) → ×
a(3) → �

a(1)a(1)a(2) ∅ ε → × a(3) → ×

Refining guards Initially, transitions are constructed with the maximally liberal guard true,
which is refined if proven too coarse by some counterexample. This resembles the AAR
approach (cf. Sect. 3.4), where a maximally coarse abstraction is gradually refined up to an
optimal level.

Identifying transition guards is closely related to identifying memorable data values, as
comparisons against subsequent data arguments are the sole reason for storing values in
registers. However, identifying guards is a much more involved task: while for the identi-
fication of memorable data values it is sufficient that they are of importance at some point
in the future, identifying guards requires the algorithm to locate the exact position where
the equality is checked. As there may be multiple occurrences of the same data value in a
counterexample, and also equalities in the suffix may affect the overall behavior, an isolated
perspective on the data arguments in the counterexample is not sufficient. Rather, one has
to consider several combinations of (in-)equalities on the complete suffix. It is certainly ad-
equate to rate the identification of transition guards as the hardest task in learning Register
Automata, which is also reflected in terms of an exponential (membership query) complex-
ity in our algorithm. It in fact remains an open challenge to investigate if a sub-exponential
approach to this problem exists, or to prove that the exponential bound is tight.

At this point, we content ourselves with this rather superficial description, and again refer
to Howar et al. (2012) for a more technical description.

Extending observation tables As the hypothesis automaton is constructed from the obser-
vation table, the latter has to reflect the more complex structure of the RA formalism. While
the general structure of a table with rows corresponding to states/transitions identified by
representative prefixes is preserved, a difficulty arises when considering the distinguishing
suffixes. Future behavior is crucially affected by the relation between data values in pre-
fixes and suffixes. However, there is no globally consistent set of data values which can be
referenced in the suffixes—the empty word ε for example does not contain any data values.

The suffixes in v are therefore abstract, only consisting of actions with formal parameters,
not concrete arguments. Cells in the observation table, on the other hand, no longer contain
single output values, but so-called closures. A closure is a mapping from a concrete suffix
(corresponding to a special case of the abstract suffix) to the corresponding observed output
behavior. The number of special cases that need to be considered is affected by the number
of (memorable) data values occurring in the respective prefix, but in any case limited to a
finite amount due to the assumption of data independence.

As an example, an observation table for the Register Automaton depicted in Fig. 9 is
shown in Fig. 10. Apart from the representative prefixes, rows also contain the respective
location (assuming the RA in Fig. 9 is the hypothesis corresponding to the observation table)
and the set of memorable data values. We again assume D = N, but the only theoretical
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requirement of our algorithm is to be able to enumerate an unbounded number of distinct
values from D. Rows in the observation tables are indexed by data words. For the sake of
simplicity, data values in the parameters are chosen such that the first occurrences of values
are in ascending order, and the set of integer values is contiguous, starting at 1. It has to
be noted that these data words, despite their concrete values, serve as mere representatives:
only the equality (or distinctness) of values matters in this context.

The closures are reflected in the table as mappings, associating instantiations of abstract
suffixes (such as a(p1)) to their respective outcomes. (Concrete) data values for these in-
stantiations are chosen in a similar fashion as described above: they either have to equal one
of the data values marked as memorable, or be distinct from any data value occurring in the
prefix data word. Looking at Fig. 10, in the row for the prefix ε the abstract suffix a(p1)

has only the single instantiation a(1), as no (memorable) data values occur in the prefix.
However, in the row for the prefix a(1)a(2), the same abstract suffix has two instantiations:
a(2), with the data value for p1 matching the only memorable data value 2, and a(3), with
a data value distinct from all data values (1 and 2) occurring in the prefix.

It has to be observed that when matching rows (closures) from the lower part of the
table against those in the upper part, as a result of the data-independent Nerode relation
(cf. Definition 7) the possibility of applying a permutation has to be taken into account.
As stated above, this permutation accounts for possible register assignments. For example,
the first row in the lower part is matched against the row a(1), corresponding to l1, by
applying the permutation π = (1 3 2). As 1 is memorable for a(1), the value corresponding
to π−1(1) = 2 in the lower row has to be stored into the respective register.

3.5.3 Application to running example

We will now discuss how our running example can be modeled using the Register Automa-
ton formalism. As Register Automata are language acceptors, we again are faced with the
problem of adequately expressing output behavior on a model level. Luckily, resorting to
the techniques presented in Sect. 3.2, this is rather easy. We again aim at capturing only the
error-free operation invocations, hence encoding false and null return values as rejec-
tion and learning a prefix-closed subset of the corresponding data language. What remains
to be expressed is the return value of a (successful) pop() operation. This can be accom-
plished by considering also the return value as a parameter, treating pop as a unary instead
of a nullary action and using a guard to express the returned value.

The input alphabet is ΣL = {push(p),pop(p)}, the output alphabet is fixed by the lan-
guage acceptor formalism to ΩL = {�,×}. Note that this is very similar to the very first
approach presented in Sect. 3.1, and is in fact the simplest input output alphabet description
considered since then.

Regarding the input symbols, there is not much to do for the mapper: it has to translate
symbols push and pop into invocations push and pop, but it is not concerned with any
data-related aspects—data values are simply passed on to the system. On the output side,
it needs to check if a return value signals an error (false, null), or not. Furthermore, it
has to be checked whether a non-error return value of pop is equal to the argument supplied
to the respective pop symbol, or not. This is essentially the way in which output was treated
when learning LTS (cf. Sect. 3.2), but now purely on the data level.

The resulting model is depicted in Fig. 11. For the first time, we now have a model
which explicitly addresses the aspect of storing (in terms of assignments) and retrieving
(in terms of guards) data values. The size of the automaton now is linear in the capacity,
again distinguishing this from all other (partly) data-aware approaches. As the algorithm
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Fig. 11 RA for stack with a capacity of 3. All locations displayed are accepting, while the non-accepting
sink location is omitted

for learning Register Automata fundamentally relies on data independence, it exploits the
symmetry of all data values at a native level: symmetry reduction as described in Sect. 3.2.1
does no longer yield any additional advantage.

However, there still is room for improvement. Modeling the return value of pop as a for-
mal parameter might seem confusing for the reader. Moreover, again we have to manually
instruct the mapper which return values to treat as acceptance or rejection. As a consequence,
the model is partial, not reflecting the exact results of erroneous method invocations. In the
following section, we will therefore present a modeling formalism which takes the expres-
sive power in terms of data-flow properties of Register Automata, and adapts them to a
Mealy setting, where input/output behavior is considered instead of languages.

3.6 Learning register mealy machines

We finally present a model which combines the inherent data-awareness of Register Au-
tomata with the clear separation of input/output at the model level, as known from Mealy
machines. The model developed by Howar et al. is called Register Mealy Machines
(RMMs) (Howar et al. 2012). They are an enhancement of Register Automata: RMMs,
in addition, also comprise (parameterized) output symbols. Data values occurring in input
symbols can not only be stored in registers and compared against the stored values, they
can also be referenced in output symbols. Outputs are specified by symbolic outputs, i.e.,
expressions of form o(r1, . . . , rk), where o ∈ Ω is a parameterized output and ri,1 ≤ i ≤ k,
are references to either register or actual parameter values.

Since a picture is worth a thousand words, we refer the reader at this point to Fig. 12,
which is the RMM model of our running example. Transitions are annotated with labels
of form a(p̄)|g

σ
/o(r̄), where g is the guard and σ the set of assignments. For the sake of

completeness, we give a formal definition of this model.

Definition 9 (Register Mealy Machine) A Register Mealy Machine (RMM) is a tuple M =
(L, l0,Σ,Ω,X,Γ ), where

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– Σ is a finite set of parameterized inputs,
– Ω is a finite set of parameterized outputs,
– X is a finite set of registers,
– Γ is a finite set of transitions, each of which is of form 〈l, a(p̄), g, o(r̄), σ, l′〉, where l is

the source location, l′ is the target location, a(p̄) is a symbolic input, g is a guard, o(r̄) is
a symbolic output, and σ is an assignment.

The semantics of an RMM are very similar to those of a Register Automaton, thus we
content us with a brief sketch: maintaining the current control location l ∈ L and a valua-
tion ν, upon reading a concrete input symbol a(d̄) the transition is selected, which (1) con-
tains no references to registers x such that ν(x) is undefined, (2) has a matching symbolic
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Fig. 12 RMM for a stack with a capacity of 3

input a(p̄) and (2) has a guard which is satisfied by ν and d̄ (i.e., it becomes true by replac-
ing all references to registers and parameters by their actual values). The RMM outputs the
concrete output symbol o(d̄ ′), which is constructed from the transition’s symbolic output
o(r̄) (again by replacing all references to registers and parameters by their actual values).
The new control location is the successor of this transition, and ν is updated by executing
all assignment statements in parallel. We adapt the notion of well-formedness by mandating
that condition (1) is necessarily for every possible location in every reachable state. Note that
“references to registers” in the case of RMMs also includes the references in the symbolic
outputs of transitions.

Similar to a Mealy machine, a system modeled by an RMM M realizes a function
[[M]] : WΣ,D → WΩ,D . Adapting the idea of the Nerode relation requires us to combine
the approaches presented in Sect. 3.3 and Definition 7. We thus (re-)define data words u,u′
to be equivalent, u ≡[[M]] u′, iff

(
u−1[[M]])(π(v)

) = π
((

u′−1[[M]])(v)
) ∀v ∈ WΣ,D

for some fixed permutation π on D.
Considering the RA learning algorithm presented in the previous section, the concept of

closures in the observation table has to be adapted accordingly: closures in the context of
RMMs map concrete suffixes to the respective (suffixes of) output words. Another modifica-
tion concerns memorable data values. When learning RAs, we had to infer memorable data
values from analyzing counterexamples containing equalities, some memorable data values
are now provided “for free”: any data value occurring in a future output symbol needs to be
memorable, as only register contents and input arguments can occur in output arguments.

Application to running example The RMM model for our running example is depicted in
Fig. 12. (Parameterized) input symbols are now push(p) and pop(), and the output consists
of true (representing true), false (false), null (null) and o(p) (wrapping a non-null
data value). For the sake of a more amenable representation, we omit the empty pair of
parentheses for nullary output symbols.

This model now faithfully captures the causal relationship between data values in inputs
and outputs by register assignments and symbolic outputs instead of representative symbols.
It also differs in a key aspect from most of the previous approaches: Finiteness of the DFA or
Mealy Machine models of the stack was accomplished by restricting the set of inputs and/or
outputs to a finite set of “representative” symbols, merely sufficient to capture the behavioral
skeleton and simple forms of some data dependencies. The RMM model, in contrast, is not
only an intuitive representation from a human perspective, but also has executable semantics:
if executed corresponding to the semantics described above, the model in Fig. 12 could in
fact be used as an implementation for a stack with a capacity of 3.

It is also notable that while delivering the most expressive model, the mapper in this ex-
ample was the most simple. Considering the input alphabet, its only task was to translate
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T Mem. Loc. push(p1) pop()

ε ∅ (l0) push(1) → true pop() → null
push(1)/true {1} (l1) push(2) → true pop() → o(1)

push(1)push(2)/true {1,2} (l2) push(3) → true pop() → o(2)

push(1)push(2)push(3)/true {1,2,3} (l3) push(4) → false pop() → o(3)

push(1)pop()/o(1) ∅ push(2) → true pop() → null
.
.
.

Fig. 13 RMM Observation table for the running example

those into corresponding method invocations, no special treatment of data was required. But
also the output abstraction of the mapper is fully automatable: apart from wrapping arbi-
trary objects into some special symbol o(p) (which is due to the formalism), only constant
values (true, false, +null+, possibly \verb+enum+ constants)had to be
translated into their corresponding output symbols.

We conclude this section by showing the corresponding observation table (Fig. 13).
Again we assume that the model depicted in Fig. 12 is the corresponding hypothesis, and
the locations in the table correspond to those in the model (and vice versa). In contrast to
Fig. 10, each closure only contains a single entry. This is due to the fact that we do not need
any guards in our model. This is a property of the considered application only: as RMMs
are an extension of Register Automata, they naturally come with the ability to constrain the
set of viable transitions in terms of guards. In total, observation tables for Register Mealy
Machines comprise features from both Mealy machine (cf. Fig. 7) and Register Automaton
(cf. Fig. 10) learning algorithms.

4 Related work

Active automata learning in the MAT framework with membership queries and equivalence
queries was first presented by Angluin (1987). It has been adapted to Mealy Machines by
Niese (2003) (see also Margaria et al. 2004). A number of variants and optimizations have
been presented for learning DFAs as well as for learning Mealy Machines. Since then, it has
inspired numerous works focusing on both improving and extending various aspects of the
original L∗ algorithm, many of these inspired by its use as a model generation technique in
software generation.

4.1 Automata learning in software engineering

The idea of using Angluin’s L∗ algorithm to learn an automaton from experiments on a
black-box system in a software engineering context was introduced by Peled et al. (1999).
The original goal was to enable model checking of black-box systems, i.e. checking whether
such a system conforms to some (temporal logic) specification. In this setting, membership
queries were realized by experiments on the black-box system, while equivalence queries
were realized both by model checking revealing error traces (in case those were merely
caused by an incomplete model, and not by the system itself not conforming to the speci-
fication) and black-box conformance testing, namely the Vasilevskii-Chow method (Chow
1978; Vasilevskii 1973). This seminal work has spun off a lot of related approaches focusing
on enabling model checking or other model-based techniques in the setting of inexistent or
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inadequate models, among them the well-known Adaptive Model Checking (AMC) (Groce
et al. 2002), providing a means to deal with inconsistencies between the model and the actual
system.

The first works that did not merely present a theoretical approach, but also put a large
emphasis on actually transferring those techniques into practice reported on case studies
applying active learning to infer models of CTI systems (Hagerer et al. 2002, 2001). The
results were in consequence used to better organize test suites. In these case studies, DFA
learning was used—input/output behavior was encoded in the fashion presented in Sect. 3.2
of this paper. Data was not handled at all, as described in Sect. 3.1: the learning algorithm
did work on an abstract, entirely data-unaware alphabet. However, in these early works the
gap between active learning and real system interfaces was not a primary focus. Mappers
have become the object of research in their own right only quite recently (see Jonsson 2011).

Furthermore, Angluin-style active automata learning plays a major role in compositional
assume-guarantee verification (Cobleigh et al. 2003): here, L∗ (or possibly other active
learning algorithms) are used not to learn the model of some (software) component itself, but
instead to infer a weakest assumption under which some properties about the component’s
behavior can be guaranteed.

Finally, also passive forms of automata learning are used in a software engineering con-
text, inferring models from a set of execution traces of a program. As the inference engine
has no control over which information is available (as opposed to an active learning sce-
nario), this often is a computationally hard task. On the other hand, this limitation to only
a subset of all possible traces is regarded an advantage in specification mining (Ammons
et al. 2002). This technique has the aim of inferring properties describing normal program
behavior, as opposed to active learning which tries to explore all possible behaviors. A mix-
ture between active and passive approaches forms inductive testing due to Walkinshaw et al.
(2010): passive inference techniques such as evidence-driven state merging (EDSM) (Lang
et al. 1998) are used to construct a model from a given set of traces. This model however
is then used as a basis for test-case generation. These test-cases then are actively executed,
and in turn extend the set of traces and may lead to refinements in the inferred model.

4.2 Handling infinite-state systems in automata learning

As we pointed out in this paper, the limitation to finite alphabets and state-spaces is one of
the biggest hurdles for a practical and fully automated application of automata learning for
the numerous software engineering applications as listed above. It is hence not surprising
that a lot of work has been dedicated to addressing this point, and presented alternative
approaches to those revisited in this paper.

Attempts to capture the influence of data parameters can be further grouped into cate-
gories. One approach is to use a Mealy Machine learning algorithm working on uninter-
preted alphabet symbols in combination with a sophisticated (stateful) mapper, taking care
of data values. This approach is taken by many recent case studies, for instance, by Raffelt
et al. (2009), by Aarts et al. (2010, 2010), by Shahbaz et al. (2011), and by Bauer et al.
(2012). For the case of I/O-automata, Aarts and Vaandrager (2010) show how the mapper
can be combined with the inferred Mealy Machine model to become an I/O-automaton. One
drawback of this class of approaches is the domain knowledge and effort that is needed to
construct a mapper prior to learning.

Recently, this approach has been extended to automatically inferring mappers (using
abstraction refinement techniques) during learning that can be combined with the inferred
Mealy machine model into a data-aware model (Aarts et al. 2012a, 2012b), so-called scalar-
set Mealy machines. These scalar-set Mealy machines are almost identical to Register Mealy
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Machines: in particular, they also have to obey the restriction that parameter values may only
be checked for equality against other values. For this reason, of all the discussed alternative
approaches this one is probably the most similar in effect to our learning of Register Mealy
Machines presented in Sect. 3.6.

However, there are some limitations: the set of registers is not inferred, instead the first
and last (most recent) data value of each parameter are assumed to be stored automatically
(in our words: are considered “memorable”). As a direct consequence, register-to-register
assignments are not possible. This would not suffice to learn a model of our running exam-
ple (cf. Sect. 2.4), as the values of several recent successful push(·) operations need to be
remembered. On a bigger scale, the main difference is that the approach is not complete,
in the sense that not every system that can be modeled as a scalar-set Mealy machine can
be learned by the approach described in Aarts et al. (2012a). This contrasts our approach,
for which the resulting target model (deterministic RMMs) precisely describes the kind of
target systems for which it is applicable.

Aarts et al. (2012a) have successfully applied their approach to fully automatically infer
models of software components, such as the SIP protocol. The implementation is publicly
available as part of the Tomte tool.8

A different approach commonly used is to infer Mealy machine models of systems using
(small) explicit data domains, and from these models construct models capturing data as-
pects in a post-processing step. Using this approach, Berg et al. (2008) present a technique
for inferring symbolic Mealy machines, i.e., automata with guarded transitions and state-
local sets of registers. A very similar problem as the one that motivated the research reviewed
in this paper was tackled by Lorenzoli et al. (2008) in the context of passive learning: their
algorithm GK-tail enables the generation Extended Finite-State Machines (EFSMs), i.e.,
FSMs equipping transitions with guards on data values, from a set of interaction traces. It
does so by combining the extraction of an FSM model from a set of traces with the Daikon
invariance detector (Ernst et al. 2007) to infer likely guards, applying subsumption and state
merging to obtain compact EFSM models.

The approach of directly extending active automata learning to systems with parameter-
ized inputs and guarded transitions has been studied in a number of works. Shahbaz et al.
(2007b, 2007a) take a set-based approach to inferring and representing guards (i.e., symbol
instances with concrete data values are grouped into sets based on their behavior). Berg et al.
(2006) combine ideas for inferring logical formulas with active automata learning. In these
cases, the underlying automata are still Mealy machines (or sometimes DFA) with a finite
state space for which the classic Nerode equivalence remains valid.

For the special case of the data of interest being time, Grinchtein et al. presented a fam-
ily of algorithms for inferring Event-Recording Automata (ERA) (Grinchtein et al. 2010),
a subclass of the well-known timed automata (Alur and Dill 1994). These algorithms require
a priori knowledge about the number of real-valued clocks and clock resets, while inferring
the location/transition graph and the clock guards automatically.

In the context of learning-based assume-guarantee reasoning (see above), the problem of
intractably large alphabets is addressed by Gheorghiu et al. (2007). In this work, the learn-
ing alphabet during assumption generation is automatically refined on an as-needed basis.
Though this might sound very similar to Alphabet Abstraction Refinement as presented in
Sect. 3.4 of this paper, the notion of refinement is somewhat different, as it concerns not the
granularity of an abstraction but merely which symbols are visible to, respectively hidden
from the learner.

8http://www.italia.cs.ru.nl/tomte/.

http://www.italia.cs.ru.nl/tomte/
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Giannakopoulou et al. (2012) have recently presented an approach for inferring safe in-
terfaces of software components. The resulting models contain transition guards, i.e., con-
straints on the operation’s parameters. This technique is however more related to AAR than
to register automaton learning: data values cannot be stored, so the guards rather serve as
a symbolic representation of concrete alphabet symbols than actually have the power to
encode data-flow into the behavior. Similarly to AAR, this is technically accomplished by
on-the-fly refinement of the learning alphabet. As the application scenario is fully white-
box, however, it is possible to extract the precise guards from the component’s source code
(using symbolic execution (King 1976)) instead of having to infer the optimal abstraction in
a black-box scenario.

A similar approach is taken in the Sigma∗ algorithm by Botinčan et al. (2013). Targeting
stream filters, i.e., programs which process an incoming stream of data and in turn output
the stream of computed results, they extend L∗ to learn symbolic lookback transducers that
are suitable for modeling such programs. The symbolic information about the input/output
steps of the programs are again discovered using symbolic execution (King 1976), making
this a pure white-box approach also.

Mostly in the context of learning-based testing (LBT) (Meinke and Niu 2011), Meinke
and Niu (2012) propose an algebraic approach to regular inference based on term rewriting.
Their CGE algorithm can infer a so-called Extended Mealy Automata (EMA), which can
be regarded as a Mealy machine over abstract data types (ADT) as inputs and outputs.
These can be used to model data parameters and even infinite-state systems. However, the
only guarantee for finite convergence of the learning process according to Meinke and Niu
(2012) is the finite-state nature of the system under learning. On the other hand, our register
automaton learning algorithm is guaranteed to finitely converge if the (infinite-state) system
can be modeled as an RA/RMM. Moreover, automatically inferring the number of required
registers and internal register-register assignments appears to be beyond the scope of this
approach.

5 Conclusions and perspectives

This paper revisited the development of active learning in the last decade under the perspec-
tive of the treatment of data, a key problem to achieve practicality.

As a running example, we have chosen a data-centric software component—an imple-
mentation of a bounded stack—to detail the improvements, regarding both the practical
applicability and the expressivity of the respective modeling formalism: with DFAs, the au-
tomaton model initially supported by automata learning algorithms, only basic structural in-
vocation patterns can be captured. The relation between data values stored in and retrieved
from the data structure cannot be expressed in this limited formalism. A major improve-
ment is the adaption of the L∗ algorithm to Mealy Machines, which allows for employing
automata learning to a large class of reactive systems. Data over large/infinite domains, how-
ever, can not be treated. AAR has proved to overcome this problem to some extent by fully
automatically inferring an optimal alphabet abstraction alongside the classical learning pro-
cess. This is a big aid concerning scalability, but it still does not allow to represent data flow
explicitly.

The generalization of automata learning to RMMs has been a breakthrough. It makes it
possible to treat (data-independent) flow of data explicitly, while at the same time leading to
extremely concise and intuitive models; sometimes even surprisingly fast: one of the exam-
ples considered by Howar et al. (2012) is an RMM for a nested stack of dimensions four by
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four (i.e., with an overall capacity of 16) and with 781 locations, which could be learned in
only 20 seconds. A corresponding Mealy Machine model would have to be inferred using
a data domain of at least 17 data values (to be stored in the 16 registers) in order to defini-
tively capture all relevant relations between data values in inputs and outputs. Such a model
would have considerably more than 1716 states, which is far beyond tractability, even with
symmetry reduction.

However, it is not scalability that is the most notable characteristic of RMMs. It is
their similarity to programs. They have actions, assignments, and conditional branching,
even though in a restricted form: actions are uninterpreted, conditionals are restricted to
(in)equality, and assignments are restricted to parameters and variables. This is already suf-
ficient to capture what we call interface programs, which are suited for modeling interesting
classes of protocols. On the other hand, many system’s that can be learned by (manually)
defining a relatively simple mapper, for instance, involving the computation of sequence
numbers or encryption/decryption.

Still, hand-crafting mappers does not scale well, and we are convinced that in order for
automata learning to become wider accepted, it needs to become more of a push-button
approach, i.e., accessible to users with little knowledge about automata or formal meth-
ods in general. These limitations and challenges mark new avenues for future research: to
which kinds of actions or operations in combinations with which kind of conditionals can
the ideas of active learning be extended? A first step in this direction is taken by Cassel
et al. (2012), who present a generalized Nerode-relation and a canonical automaton model,
capturing “richer” predicates in guards.

Register Automata describe infinite-state systems, which is why a large number of their
properties cannot be decided in general. It should therefore not surprise that potential gener-
alizations will—very likely—still be quite restrictive. We are however convinced that there
are numerous other interesting application-specific extensions that will enable automata
learning to position itself as a powerful tool for dealing with legacy and third party soft-
ware, or for helping to control and manage the inevitable change of custom software.
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