Mach Learn (2015) 98:301-330
DOI 10.1007/s10994-013-5393-0

Greedy learning of latent tree models
for multidimensional clustering

Teng-Fei Liu - Nevin L. Zhang - Peixian Chen - April
Hua Liu - Leonard K.M. Poon - Yi Wang

Received: 15 May 2012 / Accepted: 8 June 2013 / Published online: 29 June 2013
© The Author(s) 2013

Abstract Real-world data are often multifaceted and can be meaningfully clustered in more
than one way. There is a growing interest in obtaining multiple partitions of data. In previous
work we learnt from data a latent tree model (LTM) that contains multiple latent variables
(Chen et al. 2012). Each latent variable represents a soft partition of data and hence mul-
tiple partitions result in. The LTM approach can, through model selection, automatically
determine how many partitions there should be, what attributes define each partition, and
how many clusters there should be for each partition. It has been shown to yield rich and
meaningful clustering results.

Our previous algorithm EAST for learning LTMs is only efficient enough to handle data
sets with dozens of attributes. This paper proposes an algorithm called BI that can deal
with data sets with hundreds of attributes. We empirically compare BI with EAST and other
more efficient LTM learning algorithms, and show that BI outperforms its competitors on

Editors: Emmanuel Miiller, Ira Assent, Stephan Giinnemann, Thomas Seidl, and Jennifer Dy.

T.-F. Liu - N.L. Zhang (=) - P. Chen - A.H. Liu

Department of Computer Science and Engineering, The Hong Kong University of Science and
Technology, Hong Kong, Hong Kong

e-mail: 1zhang @cse.ust.hk

T.-F. Liu
e-mail: liutf@cse.ust.hk

P. Chen
e-mail: pchenac@cse.ust.hk

A.H. Liu
e-mail: aprillh@cse.ust.hk

L.K.M. Poon

Department of Mathematics and Information Technology, The Hong Kong Institute of Education, Hong
Kong, Hong Kong

e-mail: kmpoon@ied.edu.hk

Y. Wang

Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore 138632, Singapore
e-mail: wangyi@ihpc.a-star.edu.sg

@ Springer

mailto:lzhang@cse.ust.hk
mailto:liutf@cse.ust.hk
mailto:pchenac@cse.ust.hk
mailto:aprillh@cse.ust.hk
mailto:kmpoon@ied.edu.hk
mailto:wangyi@ihpc.a-star.edu.sg

302 Mach Learn (2015) 98:301-330

data sets with hundreds of attributes. In terms of clustering results, BI compares favorably
with alternative methods that are not based on LTMs.

Keywords Model-based clustering - Multiple partitions - Latent tree models

1 Introduction

Latent tree models (LTMs) are tree-structured probabilistic graphical models where the
leaf nodes represent observed variables, while the internal nodes represent latent vari-
ables. Special LTMs such as phylogenetic trees (Durbin et al. 1998) and latent class mod-
els (Bartholomew and Knott 1999) have been studied for decades. General LTMs were
first investigated by Zhang (2004), where they are called hierarchical latent class mod-
els. LTMs can be used for latent structure discovery (Zhang et al. 2008a, 2008b; Chen
et al. 2008), density estimation (Wang et al. 2008), and clustering (Chen et al. 2012;
Poon et al. 2010). This paper is concerned with the use of LTMs for clustering. We con-
sider only the case where all variables (observed and latent) are discrete.

Previous algorithms for learning LTMs can be divided into three groups. Algorithms in
the first group aim at finding models that are optimal according to a scoring metric. They
conduct search in the space of LTMs and are hence called search algorithms (Zhang 2004;
Zhang and Kocka 2004; Chen et al. 2012). Algorithms in the second group introduce
latent variables based on results of attribute clustering (Harmeling and Williams 2011;
Mourad et al. 2011). We call them AC-based algorithms, where AC stands for attribute
clustering. Algorithms in the third group are inspired by work on phylogenetic tree re-
construction (PTR) (Choi et al. 2011; Anandkumar et al. 2011). We will refer to them as
PTR-motivated algorithms.

Empirical results reported by Mourad et al. (2013) indicate that search algorithms usually
find the best models on small data sets with dozens of attributes, while AC-based algorithms
can handle data sets with as many as 10,000 attributes. PTR-motivated algorithms have
theoretical guarantees, but they require all latent variables have the same number of states
and the number be known beforehand.

Liu et al. (2012) propose an algorithm, called the bridged-islands (BI) algorithm, for
learning LTMs. The algorithm aims at finding flat LTMs where each latent variable is di-
rectly connected to at least one observed variable. All the observed variables that are directly
connected to a given latent variable are said to be siblings and form a sibling cluster. Sim-
ilar to AC-based algorithms, BI determines potential siblings by considering how closely
correlated each pair of observed variables are. Unlike AC-based algorithms, BI has a novel
procedure called uni-dimensionality (UD) test to detect highly correlated observed variables
that should be siblings. Initial sibling clusters are thereby created. One latent variable is
then introduced for each sibling cluster and the latent variables are connected to form a tree
structure using Chow-Liu’s algorithm (Chow and Liu 1968). There is also a final global
adjustment step that refines the model.

This paper builds upon and extends Liu et al. (2012). We compare BI with previous
algorithms for learning LTMs in terms of computational complexity and model quality. We
also study the impact of key parameters and sample size to the performance of BI. A variety
of experiments on both synthetic and real-world data sets are presented. As it turns out, Bl is
significantly more efficient than search algorithms. It can handle data sets with hundreds of
attributes. Moreover, it produces better models on such data sets than AC-based and PTR-
motivated algorithms. As in Liu et al. (2012), we also use BI as a clustering method that

@ Springer

Mach Learn (2015) 98:301-330 303

@ Q P(AS) AS=low AS=high

0.7 0.3
MG SG EG HG
(a) Structure of an LTM (b) Distribution P(AS)
P(MG | AS) MG=low MG=high P(LS| AS) LS=low LS=high
AS=low 0.8 0.2 AS=low 0.4 0.6
AS=high 0.2 0.8 AS=high 0.6 0.4
(c¢) Conditional distribution P(MG | AS) (d) Conditional distribution P(LS | AS)

Fig. 1 An example LTM for high school students. Diagram (a) shows the structure of the model. It consists
two discrete latent variables AS (Analytical Skill) and LS (Literacy Skill), and four discrete observed variables
MG (Math Grade), SG (Science Grade), EG (English Grade) and HG (History Grade). We simply assume
that all the variables have two possible values ‘low’ and ‘high’. Edges between variables indicate probabilistic
dependence. The fables show some probability distributions for the model. Other distributions are not shown
to save space. The conditional distributions characterize dependence between variables. The edge widths
visually show the strength of correlation between variables. They are not part of the model definition and are
computed from the probability distributions of the model

produces multiple partitions of data, and compare BI with previous methods for the task that
are not based on LTMs.

This paper is divided into two parts. In the first part, we briefly review LTMs (Sect. 2) and
previous algorithms for learning LTMs (Sect. 3). Then we describe BI algorithm (Sect. 4)
and compare it with previous algorithms (Sect. 5). In the second part, we survey previous
methods for multi-partition clustering (Sect. 6) and investigate the use of BI for the task
(Sects. 7-9). The paper concludes in Sect. 10.

2 Latent tree models

A latent tree model (LTM) is a Markov random field over an undirected tree, where variables
at leaf nodes are observed and variables at internal nodes are hidden. An example LTM is
shown in Fig. 1. For technical convenience, we often root an LTM at one of its latent nodes
and regard it as a directed graphical model, i.e., a Bayesian network (Pearl 1988). In the
example, suppose that we root the model at the node AS. Then numerical information of the
model includes a marginal distribution P (AS) for the root and one conditional distribution
for each edge. For the edge AS — MG, for instance, we have distribution P (MG | AS), which
characterizes the dependence of MG on AS. The product of all these distributions defines a
joint distribution over all the latent and observed variables. Note that we can choose to root
the model at any of the latent nodes because the selection of root node would not change the
joint distribution (Zhang 2004). In other words, different choices of root nodes lead to an
equivalent class of directed tree models.

In general, suppose there are n observed variables X, ..., X, and m latent variables
Yy, ..., Y, in an LTM. Assume the model be rooted at one of the latent variables. Denote
the parent of a variable Z as parent(Z) and let parent(Z) be the empty set when Z is the
root. The LTM defines a joint distribution over Xy, ..., X,, Y1, ..., ¥,, as follows:

PXy, oo s X, Yiy oo, Vo) = I P(Z | parent(2)).
Ze{Xq,..., Xn. Y1V}

@ Springer

304 Mach Learn (2015) 98:301-330

Throughout the paper, we use the terms ‘node’ interchangeably with ‘variable’, and term
‘leaf node’ interchangeably with ‘attribute’ and ‘observed variable’. The set of attributes that
are connected to a given latent variable is called a sibling cluster. Attributes in the cluster are
said to be siblings. In Fig. 1, MG and SG form one sibling cluster because they all connected
to latent node AS. Attributes EG and HG form another sibling cluster.

To learn an LTM from a data set D, one needs to determine: (1) the number of latent
variables, (2) the number of states of each latent variable, which is sometimes called the
cardinality of the variable, (3) the connections among the latent variables and observed
variables, and (4) the probability parameters. In the following, we will use m to denote the
information for the first three items and 6 to denote the collection of parameter values.

To see how LTMs can be used for clustering, imagine that the model in Fig. 1 is learned
from student transcript data. Then two partitions of the data are obtained, each being rep-
resented by a latent variable. In this scenario the latent variables were introduced during
data analysis and are not properly named. We refer to them using their relative positions.
The latent variable on the left is mainly related to Math grade and Science grade. Hence,
it represents a soft partition of the students based primarily on their analytical skill. The
latent variable on the right is mainly related to English grade and History grade. Hence, it
represents a soft partition of the students based primarily on their literacy skill. We refer the
reader to Sect. 7 for a much more detailed discussion of the use of LTMs for multi-partition
clustering.

3 Previous algorithms for learning LTMs

A variety of algorithms for learning LTMs have been proposed previously. In this section,
we give a brief overview of those algorithms. The reader is referred to Mourad et al. (2013)
for a detailed survey.

We start with search algorithms which aim at finding the model m that maximizes the
BIC score (Schwarz 1978):

d(m)
2

where 6* is the maximum likelihood estimate of the parameters, d(m) is the number of
free probability parameters in m, and N is the sample size. The first search algorithm for
learning LTMs was proposed by Zhang (2004). It is capable of handling only small toy data
sets. Later two other search-based algorithms HSHC (Zhang and Kocka 2004) and EAST
(Chen et al. 2012) were developed. These two algorithms gain efficiency by reducing the
number of candidate models examined during search and by reducing the time spent on
evaluating the candidate models. Between the two, EAST has a more principled method for
evaluating candidate models and adopts a more intelligent search strategy. It is capable of
handling data sets with dozens of attributes. However, it is unable to deal with data sets
with hundreds of or more attributes because it still needs to evaluate a quadratic number of
candidate models at each step of search.

Although search algorithms usually find high quality models, they are relatively slow.
Greedy algorithms were consequently developed (Harmeling and Williams 2011; Mourad
et al. 2011). These algorithms determine the structure of an LTM by performing agglomer-
ative hierarchical clustering of observed variables. A latent variable is introduced for each
node in the resulting dendrogram. The number of states for the latent variable is determined
by considering its neighbors and using model selection criteria or some heuristics. The final

BIC(m | D) =log P(D | m,0%) —

log N,

@ Springer

Mach Learn (2015) 98:301-330 305

model can be a binary tree, a non-binary tree, or a forest. These AC-based algorithms are
efficient, and can handle data sets with as many as 10,000 observed variables (Mourad et al.
2013). As will be demonstrated in Sect. 4, however, the efficiency comes with a compromise
of model quality.

Phylogenetic trees (PTs) (Durbin et al. 1998) are diagrams depicting the evolutionary
relationships among organisms. They can be viewed as special LTMs where all the (latent
and observed) variables take the same possible values (i.e., A, C, G, T) and the conditional
probability distributions are parameterized by edge lengths, which represent evolution time.
Phylogenetic tree reconstruction (PTR) refers to the task of inferring the evolution tree for
a collection of current species. A large number of algorithms have been developed for the
task, including neighbor-joining (Saitou and Nei 1987) and quartet-based methods (Ranwez
and Gascuel 2001). A key property that those algorithm exploits is that, in PTs, a concept of
distance is defined for any two nodes.

Recently, new algorithms for learning LTMs have been proposed by drawing ideas from
research on PTR. Choi et al. (2011) and Song et al. (2011) identify classes of LTMs where
a concept of distance between nodes can be defined, while Mossel et al. (2011) and Anand-
kumar et al. (2011) define classes of LTMs where quartet tests can be performed. Unlike
search algorithms and AC-based algorithms introduced above which are designed for dis-
crete data, the PTR-motivated methods can deal with both discrete data and continuous data.
For continuous data, they usually assume data are normally distributed. In the discrete case,
they require all the observed variables have the same number of states. Theoretical results
on consistence and sample complexity for PTR-motivated methods have been proved.

4 The bridged-islands algorithm

We now set out to present the greedy algorithm for learning LTMs. The algorithm aims at
obtaining flat LTMs where each latent variable is connected to at least one observed variable.
This restriction is motivated by the observation that search algorithms almost always yield
flat LTMs. The algorithm proceeds in four steps:

1. Partition the set of attributes into sibling clusters;
2. Introduce a latent variable for each sibling cluster;
3. Connect the latent variables to form a tree;

4. Refine the model based on global considerations.

If we imagine the sibling clusters formed in Step 1, together with the latent variables added
in Step 2, as islands in an ocean, then the islands are connected in Step 3. So we call the
algorithm the bridged-islands (BI) algorithm.

The pseudo code for Bl is given in Algorithm 1. In the following four subsections, we
describe the steps of Bl in details.

4.1 Sibling cluster determination

The first step of BI consists of lines 1-18 of the pseudo code. The objective is to determine
sibling clusters. To identify potential siblings, BI considers how closely correlated each
pairs of attributes are in terms of mutual information. The mutual information (MI) 1(X;Y)
(Cover and Thomas 2006) between the two variables X and Y is defined as follows:

P(X,Y)

P(X)P(Y)’ M

[(X;Y)=)_P(X.Y)log
XY

@ Springer

306 Mach Learn (2015) 98:301-330

Algorithm 1 BI(D, §)
Inputs: D—A data set with attributes V, —A real number.
Output: An LTM over V.
1: Calculate the empirical MI between each pair of variables in V.
2: §* <0
3: while V # ¢ do
4: § <« the pair of variables with the highest MI.

5 loop

6: X <« the variable in V \ § that has the highest MI with S.

7: S —SU{X}L V<« V\{X}

8: D’ < projection of D onto S.

9: m; < learnLCM(D’), my < learnL.TM-2L(D’).

10: if (m, contains 2 latent variables and BIC(m, | D') — BIC(m, | D) > §) then

11: Obtain a sibling cluster C from m, as described in Sect. 4.1. Add C to S$* and
put the other observed variables in m, back to V. Break.

12: else

13: if (V =0) then

14: Make S a sibling cluster and add it to S*.

15: end if

16: end if

17: end loop

18: end while

19: for each sibling cluster C € S* do

20: D¢ < projection of D onto C.

21: Learn an LCM for C by running learnLCM(Dc¢).

22: end for

23: L* < the set of the latent variables of all LCMs.

24: m < Link up the latent variables of the LCMs by running LearnCL(L*).
25: m* < Optimize the parameters of m by running EM.

26: m* < ModelRefinement(m™).

27: Optimize the parameters of m* by running EM, and return m*.

where the summation is taken over all possible states of X and Y. In BI, the joint distribution
P(X,7Y) is estimated from data. It is the joint empirical distribution of the two variables. The
MI value calculated from the empirical distribution is called the empirical MI.

To determine the first sibling cluster, BI maintains a working set S of attributes that
initially consists of the pair of attributes with the highest MI (line 4). Other attributes are
added to the set one by one. At each step, BI chooses to add the attribute that has the highest
MI with the current set (lines 6 and 7). The MI between a variable X and a set S of variables
is estimated as follows:

P(X,Z)

P(X)P(Z) @

1(X; S) = max XXZ: P(X, Z)log

A key question is when to stop expanding the working set S. BI answers the question by

performing a Bayesian statistical test to determine whether correlations among the variables

in S can be properly modeled using one single latent variable (lines 8—11). The test is hence

called the uni-dimensionality test or simply the UD-test. The expansion stops when the UD-
test fails.

@ Springer

Mach Learn (2015) 98:301-330 307

Fig. 2 The two models m| and

my considered in the UD-test @ e @
m1 m2

An LTM that contains only one latent variable is called a latent class model (LCM). To
perform the UD-test, BI first projects the original data set D onto the working set S to get a
smaller data set D’ (line 8). Then it obtains from D’ the best LCM m; and the best mode m,
that contains 1 or 2 latent variables (line 9). The subroutines for these two tasks are given
in Sect. 4.4. BI concludes that the UD-test passes if and only if one of these two conditions
is satisfied: (1) m, contains only one latent variable, or (2) m, contains two latent variables
and

BIC(my | D') — BIC(m; | D') <6, A3)

where 4§ is a threshold parameter.

The left hand side of inequality (3) is an approximation to the natural logarithm of the
Bayes factor (Kass and Raftery 1995) for comparing m, with m;. In Kass and Raftery
(1995), guidelines are given for the use of Bayes factor (page 777). One set of guidelines are
given in terms of twice the natural logarithm of Bayes factor. In terms of simply the natural
logarithm of Bayes factor, the guidelines are as follows: a value between 1 and 3 is positive
evidence favoring m,, a value between 3 and 5 is strong evidence favoring m,, and a value
larger than 5 is very strong evidence favoring m,. In our empirical evaluation, we usually
set § = 3. Sometimes, we also consider § =1, 5 or 10.

To illustrate the process, suppose that the working set S = {X;, X,} initially. Two
other attributes X3 and X4 are added to the set one by one and the UD-test passes in
both cases. Then X5 is added. Suppose the models m; and m, obtained at line 9 for
S ={X1, X2, X3, X4, X5} are as shown in Fig. 2. Further suppose the BIC score of m, ex-
ceeds that of m, by threshold 6. Then UD-test fails and BI stops growing the set S.

When the UD-test fails, the model m, contains two latent variables. Each gives us a
potential sibling cluster. Hence there are two potential sibling clusters. BI chooses one of
them at line 11. If one of the two potential sibling clusters contains both the two initial
attributes, it is picked. Otherwise, BI picks the one with more attributes and breaks ties
arbitrarily.

In the aforementioned example, the two potential sibling clusters are {X, X», X4} and
{X3, Xs}. Bl picks {X, X2, X4} because it contains both the two initial attributes X; and X>.

After the first sibling cluster is determined, BI removes the attributes in the cluster from
the data set (line 11), and repeats the process to find other sibling clusters (line 3). This
continues until all attributes grouped into sibling clusters.

4.2 Tree formation

The second step of Bl is to learn an LCM for each sibling cluster (lines 19-22). One latent
variable is introduced for each sibling cluster and the cardinality of the latent variable is
determined. This is done using a subroutine that will be described in Sect. 4.4.

After the second step, we have a collection of LCMs. In Step 3, BI links up the latent
variables of the LCMs to form a tree (lines 23-24). Chow and Liu (1968) give a well-known
algorithm for learning tree-structured models among observed variables. It first estimates the

@ Springer

308 Mach Learn (2015) 98:301-330

MI between each pair of variables from data, then constructs a complete undirected graph
with the MI values as edge weights, and finally finds the maximum spanning tree of the
graph. The resulting tree model has the maximum likelihood among all tree models.

Chow-Liu’s algorithm can be adapted to link up the latent variables of the LCMs. We call
the algorithm (i.e., subroutine LearnCL in line 24) to learn a Chow-Liu tree among latent
variables. Then all LCMs are connected and form an LTM (line 24). We only need to specify
how the MI between two latent variables is to be estimated. Let m and m’ be two LCMs with
latent variables Y and Y’ respectively. We calculate the MI 1 (Y; Y’) between Y and Y’ using
(1) from the following joint distribution:

P(Y.Y'|D.mm)=CY P |m.d)P(Y' |m'.d) 0))
deD
where P(Y | m,d) is the posterior distribution of Y in m given data case d, P(Y’' | m’,d) is
that of Y’ in m’, and C is the normalization constant.

4.3 Model refinement

The sibling clusters and the cardinalities of the latent variables were determined in Step 1
and Step 2. Each of those decisions was made in the context of a small number of attributes.
In Step 4 (lines 25-27), Bl tries to detect the possible mistakes made in those steps based on
global considerations and adjust the model accordingly. Specifically BI checks each attribute
to see whether it should be relocated and each latent variable to see if its cardinality should
be changed (i.e., subroutine ModelRefinement). To facilitate global considerations, BI first
optimizes the probability parameters of the model resulted from Step 3 using EM algorithm
(Dempster et al. 1977). The optimized model is denoted by m* (line 25).

To detect beneficial node relocations, BI completes the data using the model m*, re-
estimates the MI between each pair of variables using the completed data, and considers
adjusting connections among variables accordingly. To be specific, let X be an observed
variable and Y be a latent variable. BI calculates the mutual information 7 (X; Y) using (1)
from the following distribution:

1
P(X,Y|D,m*)=—» P(X,Y|m",d), 5
(XY 1 D,m*) == 3 P(X.Y |m",d) 8
deD
where P(X,Y | m*,d) is the joint posterior distribution of X and Y in m* given data case.
Note that X is an observed variable. When the data set D contains no missing values, the
equation can be rewritten as

P(x,y|D,m*):iZP(x|m*,d)P(Y|m*,d). (6)
N
deD

With this new formula, we need to compute only the posterior distribution for each latent
variable, rather than for each latent variable—observed variable combination. It is computa-
tionally more efficient. In implementation, we use (6) even when there are missing values.

Let Y be the latent variable that is currently directly connected to X and Y* be the latent
variable that has the highest MI with X. If Y* # Y, then BI deems beneficial to relocate X
from Y to Y*. This means to remove the edge between X and Y, and add an edge between
X and Y*.

To determine whether a change in the cardinality of a latent variable is beneficial, BI
freezes all the parameters that are not affected by the change, runs EM locally (Chen et al.
2012) to optimize the parameters affected by the change, and recalculates the BIC score. The

@ Springer

Mach Learn (2015) 98:301-330 309

change is deemed beneficial if the BIC is increased. BI starts from the current cardinality
of each latent variable and considers increasing it by one. If it is beneficial to do so, further
increases are considered.

All the potential adjustments (node relocation and cardinality change) are evaluated with
respect to the model m*. The beneficial adjustments are executed in one batch after all the
evaluations. Adjustment evaluations and adjustment executions are not interleaved because
that would require parameter optimization after each adjustment and hence be computation-
ally expensive.

After model refinement, BI runs the EM algorithm on the whole model one more time to
optimize the parameters (line 27).

It is well known that the EM algorithm generally converges to a local maxima likelihood
estimate. To avoid the local maxima, we adopt the scheme proposed by Chickering and
Heckerman (1997). The scheme first randomly generates a number « of initial values for
the new parameters, resulting in « initial models. One EM iteration is run on all the models
and afterwards the bottom «//2 models are discarded. Then two EM iterations are run on
the remaining models and afterwards the bottom «/4 models are discarded. Then four EM
iterations are run on the remaining models, and so on. The process continues until there is
only one model. After that, more EM iterations are run on the remaining model, until the
total number of iterations reaches a predetermined number.

4.4 Two subroutines

The BI algorithm needs two subroutines learnL.CM and learnLTM-2L. The input to
learnLCM is a data set D’ with attributes S. This subroutine aims at finding the LCM for
S that has the highest BIC score. To do so, it first creates an initial LCM for S and sets
the cardinality of the only latent variable to 2. The parameters of the initial model are opti-
mized by running EM and its BIC score is calculated. The subroutine considers repeatedly
increasing the cardinality of the latent variable. After each increase, model parameters are
re-optimized. The process stops when the BIC score ceases to increase.

The subroutine 1earnL TM-2L is more complex than learnLCM. Its pseudo code is
given in Algorithm 2 to aid understanding. The objective is to find, among LTMs for S that
contain 1 or 2 latent variables, the model that has the highest BIC score. The subroutine
achieves the goal by searching the restricted model space. It starts with the LCM where the
latent variable has only two states (line 1). At each step of search, it generates a collection of
candidate models by modifying the current model m (lines 4 and 6). Each candidate model
is evaluated. The one with the highest BIC score is picked as the next model. This last step
is achieved using another subroutine pickBestModel. The search continues until model
score ceases to increase (line 15).

When the current m contains two latent variables, we consider only candidate models
produced by the state introduction (SI) operator (line 6). The operator creates a new model
by increasing the cardinality of each latent variable by one. Hence two candidate models are
produced.

When the current model m contains only one latent variable Y, the node introduction
(NI) operator is also considered in addition to SI (line 4). This operator considers each pair
of neighbors of Y. It creates a new model by introducing a new latent node Y’ to mediate
between Y and the two neighbors. The cardinality of Y’ is set to be the same as that of Y. In
the model m; shown in Fig. 2, if we introduce a new latent variable Y, to mediate of ¥; and
its neighbors X3 and Xs, we get the model m;. In this example, there are totally (;) many

possible ways to apply the NI operator. Hence NI produces (g) candidate models. Because

there is only one latent variable, SI produces only one candidate model.

@ Springer

310 Mach Learn (2015) 98:301-330

Algorithm 2 1earnLTM-2L(D’)

Inputs: D’'—a data set with attributes S.
QOutput: An LTM over S that contains 1 or 2 latent variables.

1: m < LCM with observed variables S and one latent variable Y with two values.
2: loop

3: if (m has only 1 latent variable) then

4: m’ < pickBestModel (NI(m) U SI(m)).
5: else

6: m’ < pickBestModel (SI(m)).

7 end if

8 if (m’ was obtained from m by introducing a new latent variable Y’) then
9: loop
10: m” < pickBestModel (NR(m',Y,Y")).
11: if (BIC(m" | D") < BIC(m' | D)), break.
12: m < m".
13: end loop
14: end if

15 if (BIC(m' | D") < BIC(m | D)), return m.
16: m<«—m'.
17: end loop

Line 8 tests whether the best candidate model m’ is produced at line 4 by the NI operator.
The condition can be true for at most once. When it is true, suppose m’ was obtained by
introducing a new latent variable ¥’ mediates the existing latent variable Y and two of its
neighbors. Then 1earnL TM-2L repeatedly tries to relocate other neighbors of Y to Y’ until
it is no longer beneficial to do so (lines 9-13). In the pseudo code, NR(m', Y, Y’) stands for
the collection of models that can be obtained from m’ by relocating one neighbor of Y to Y’.

4.5 Complexity analysis

The running time of BI is dominated by calls to the subroutine 1earnLTM-2L at line 9
and the two calls to EM on the whole model at lines 25 and 27. We analyze the complexity
in terms of the following quantities: N—the sample size; n—the number of observed vari-
ables; /—the number of latent variables in the final model; c—the maximum cardinality of a
latent variable; k—the maximum number of observed variables in the working set S; e—the
maximum number of iterations of EM.

Let us first consider the complexity of one call to learnL.TM-2L. Lines 4 and 6 in
Algorithm 2 are executed no more than 2(c — 2) times in total. In each of those calls, there
are no more than (%) < k? candidate models. Line 11 is executed no more than k — 2 times.
In each of those calls, there are no more than k candidate models. Therefore, one call to
learnLTM-2L involves no more than 2(c — 2)k* + (k — 2)k < 2ck® candidate models.

To evaluate each candidate model, we need to run EM once to optimize its parameters.
A candidate model contains no more than k + 2 variables. There are N samples. Since in-
ference in trees takes linear time, each EM iteration takes O ((k + 2) N) time. Consequently,
the time it takes to evaluate one candidate model is O (ekN).

The while-loop of BI is executed / times. In each pass through the while-loop,
learnLTM-2L is called no more then k — 2 times. Putting everything together, we see that
the total time that all calls to learnLTM-2Lis O(l - (k —2) - 2ck? - ekN) = O (Nleck*). It

@ Springer

Mach Learn (2015) 98:301-330 311

is linear in the sample size N and the number of latent variables /. In a more careful analysis,
N can be replaced by the number of distinct data cases one gets by projecting N samples
onto the working set S. It can be much smaller than N. The maximum cardinality c is usu-
ally very small relative to N and / and can be regarded as a constant. The maximum number
of EM iterations e can be controlled. The term k* looks bad. Fortunately, & is usually much
smaller than total number of observed variables .

Now consider the two calls to EM at lines 25 and 27. They are run on the global
model, which consists of n observed variables and [latent variables. Each iteration takes
O((I +n)N) times. Hence, the total time is O (2N (I 4+ n)e). It is linear in the sample size
and the number of observed variables 7.

In implementation, we let EM run from multiple random starting points to avoid local
maxima. It is allowed to run a large number of random starts and a large number of iterations
at line 27 since the parameters of the final model are optimized here. The number of random
starts and the number of iterations take smaller values in other places, e.g., in learnLTM-
2L. The reason is that the models encountered in 1earnL TM-2L contain no more than
k + 2 variables, which is much fewer than in the global model. Hence convergence can be
reached in much fewer iterations.

5 Empirical comparison with previous LTM learning algorithms

In this section we empirically compare BI with previous algorithms for learning LTMs.! As
discussed in Sect. 3, previous algorithms can be divided into three groups. Representative
algorithms from each of the three groups are included in the comparisons, namely the search
algorithm EAST (Chen et al. 2012), the AC-based algorithm BIN (Harmeling and Williams
2011), and the PTR-motivated algorithms CLNJ and CLRG (Choi et al. 2011).

5.1 Comparisons on synthetic data
We first compare the algorithms on synthetic data.
5.1.1 The setups

One objective of our experimental work is to demonstrate the scalability of BI. To this end,
we created several generative models with different numbers of observed variables. The
simplest one is shown in Fig. 3(a). It consists of 3 levels of latent variables and one level of
observed variables. Each latent variable has exactly 4 neighbors. The model is hence called
the 4-complete model. We denote it as M4C. It contains 36 observed variables. Two other
models were created by adding latent variables to levels 2 and 3 and observed variables to
level 4 so that each latent variable has exactly 5 and 7 neighbors respectively. Those two
models are called the 5-complete and 7-complete models and will be denoted as M5C and
M7C. They contain 80 and 252 observed variables respectively.

The models M4C, M5C and M7C are not flat because latent variables at level 1 and 2
are not directly connected to observed variables. Three flat models were created by adding
more observed variables to the model so that each latent variable at level 1 and 2 has the
same number of observed neighbors as a latent variable at level 3. The resulting flat models

1Key programs and data used in this paper are available at http://www.cse.ust.hk/~Izhang/ltm/index.htm.

@ Springer

http://www.cse.ust.hk/~lzhang/ltm/index.htm

312 Mach Learn (2015) 98:301-330

(b) Flattened 4-complete model M4CF

Fig.3 Two of the generative models: (a) shows the 4-complete model (M4C). It consists of 3 levels of latent
variables and one level of observed variables. Each latent variable has exactly 4 neighbors. The total number
of observed variables is 36. (b) shows a flat model obtained from M4C by adding 3 observed variables to
each of the latent variables on levels 1 and 2. It is called M4CF. It contains 51 observed variables

are denoted as M4CF, M5CF and M7CF respectively and they contain 51, 104, and 300
observed variables. M4CF is shown in Fig. 3(b). The numbers n of observed variables in the
6 generative models are summarized in the following table:

Models M4C M4CF M5SC MSCF M7C M7CF

n 36 51 80 104 252 300

In the six models, cardinalities of the variables (observed and latent) were set to 2. The
model parameters were randomly generated so that the normalized MI (Strehl et al. 2002)
between each pair of neighboring nodes is between 0.05 and 0.75. From each generative
model, a training set of 5,000 samples and a testing set of 5,000 samples were obtained.
Each sample contains values for all the observed variables. It does not contain values for
latent variables.

Each algorithm was run on the training set for 10 times. All experiments were conducted
on a desktop machine. The maximum time allowed was 60 hours. All the algorithms have
parameters that the user needs to set. For the previous algorithms, we use the default settings
given by the authors. For BI, we always set § at 3 except when investigating its impact
(Sect. 5.1.3). For the call of EM in line 27, we used 64 random starting points and the
maximum iteration was set at 100. For the calls of EM in other places, we used 32 random
starting points and the maximum iteration was set at 32.

The model m learned by an algorithm from a training set is evaluated using the following
metrics:

1. The Robinson-Foulds (RF) distance (Robinson and Foulds 1981) that measures how
much the structure of m deviates from the structure of the corresponding generative
model m is computed as follows:

|C(m) — C(mog)| 4 |C(mp) — C(m)]

> @)

drp(m, mg) =

@ Springer

Mach Learn (2015) 98:301-330 313

Fig. 4 Running time (seconds) 1000000

of the algorithms on the 6

training sets. The statistics were 100000 /

collected on a desktop machine. .—/ ——EAST

All the training sets contain the
same number (5,000) of data
cases, but they involve different
number of attributes

10000

—a—B|

/ BIN

1000 - — —=CLN)
L

100 f CLRG

10 T T T T T T T T
0 40 80 120 160 200 240 280 320

number of attributes

logqo(Time)

where C(m) denotes the set of bipartitions defined by all edges in tree m. For example,
in Fig. 2, removing the edge between Y, and Y, in model m, separates the observed
variables into two subsets {X|, X, X3} and {X4, X5}. So this edge defines a bipartition
X1X,2X3|X4X5. C(m) is the set of all such bipartitions defined by all edges in tree m.
Term |C(m) — C(mg)| represents the number of bipartitions that appear in C(m) but
not in C(mg). Term |C (mo) — C(m)| represents the number of bipartitions that appear
in C(mg) but not in C(m). The sum of this two terms is the number of bipartitions that
differ between tree m and tree my.

2. The empirical KL divergence of m from the generative model m is computed from the
testing set Dyogc as follows:

1
KL(mo, m|Deese) = (Y logPim) -) 10gP(d|m)>, ®)

N,
test de€Dtest deDtest

where Ni gt is the size of the testing set. Note that the first term inside the parentheses
is the loglikelihood of m on the testing set and the second is that of m. The second term
measures how well the model m predicts unseen data.

5.1.2 The results

Running time statistics are shown in Fig. 4. We see that BI is much more efficient than EAST.
On the M4C, M4CF and MS5C data sets, BI took only 9, 14 and 25 minutes while EAST took
8, 9 and 51 hours respectively. BI was about 55, 39 and 120 times faster than EAST. EAST
did not finish in 60 hours on the other three data sets, while BI took 30 minutes, 1.7 hours
and 2.4 hours respectively. Those results indicate that BI scales up fairly well. However, BI
is not as efficient as BIN, CLNJ and CLRG. In our experiments, it was several times slower
than the alternative algorithms.

Table 1 shows the performances of the algorithms on data sampled from the three flat
generative models M4CF, M5CF and M7CF. The RF values for BIN are missing because
it produced forests rather than trees, and RF is not defined for forests. On the M4CF data,
EAST found the best models. The models obtained by BI are also of high quality. They
are better than those produced by BIN, CLNJ and CLRG both in terms of empirical KL
and RF values. The differences between BI and the three alternative algorithms are more
pronounced on the M5CF and M7CF data. Those results indicate that BI was significantly
better in recovering the structures of the generative models, and the models it obtained can
predict unseen data much better than those produced by the three alternative algorithms.

@ Springer

314 Mach Learn (2015) 98:301-330

Table 1 Performances of LTM learning algorithms on data sets from flat models

MA4CF MS5CF M7CF
RF emp KL RF emp KL RF emp KL

BIN - 0.15£0.01 - 0.56 £0.01 - 2.82+£0.07
CLNJ 8.50+0.00 0.06 £ 0.00 39.50£0.00 0.14 £0.02 49.50£0.00 0.17£0.01
CLRG 3.00+0.00 0.07 £0.00 22.50£0.00 0.09£0.01 11.50£0.00 0.35+0.00
EAST 0.50 +0.00 0.02 £+ 0.00 - - - -

BI 2.60+0.32 0.04 £ 0.00 2.15+0.34 0.03 +0.00 4.00 £ 0.62 0.12 +0.01

Table 2 Performances of LTM learning algorithms on data sets from non-flat models

M4cC M5C M7C
RF emp KL RF emp KL RF emp KL

BIN - 0.03+0.00 - 0.11£0.02 - 0.79 +£0.19
CLNJ 15.00£0.00 0.03 +£0.00 23.00£0.00 0.08 £0.01 49.50+0.00 0.30+0.01
CLRG 10.50£0.00 0.03 +£0.00 10.50£0.00 0.09 £0.01 17.50£0.00 0.34 +£0.00
EAST 5.20+0.79 0.02 +0.00 0.75 +0.42 0.03£0.00 - -

BI 5.50£0.00 0.01 £ 0.00 8.35+£0.94 0.08 £0.01 5.00 £+ 0.00 0.18 £ 0.02

Bl is restricted to find flat LTMs. How does this restriction influence the performance of
BI when the generative models are not flat? To answer the question, we show in Table 2 the
results on the data sampled from the three non-flat models. EAST found the best models on
MS5C data. In terms of empirical KL, the models obtained by BI are of similar quality as
those produced by the other three alternative methods on the M4C and MS5C data, and are
clearly better on the M7C data. In terms of RF values, BI performed much better than the
other three alternative methods in all cases. This means that, despite the restriction imposed
on it, Bl recovered the generative structures much better than the three alternative algorithms
BIN, CLNJ and CLRG. The results on real-world data to be presented in the next subsection
also show that the restriction does not put BI at a disadvantage relative to other algorithms.

The PTR-motivated algorithms CLNJ and CLRG require that all the variables (observed
and latent) have the same cardinality. The other algorithms, including BIN, EAST and BI,
do not have the restriction and allow the cardinalities of variables to vary. To investigate the
impact of this restriction, we created three other models by modifying M4CF, M5CF and
M7CEF. Specifically, the cardinalities of the latent variables at level 1 and 3 were increased
from 2 to 3. The resulting models are denoted as M4CF1, M5CF1 and M7CF1. Data were
sampled from those models as before and the algorithms were run on the data. For the PTR-
motivated algorithms, the cardinalities of latent variables are automatically set to 2 since
they should be the same as that of the observed variables as the algorithms required. For
other algorithms, the cardinalities are determined automatically during the learning.

The results are presented in Table 3. We see that CLNJ and CLRG performed substan-
tially worse than before relative to BI. On the M7CF1 data, for instance, the empirical KL
values for CLNJ and CLRG are several times larger than that for BI. The results indicate
that the restriction imposed by the PTR-algorithms put them at a severe disadvantage as
compared to BI when the latent variables in the ‘true model’ have different cardinalities.

@ Springer

Mach Learn (2015) 98:301-330 315

Table 3 Performances of LTM learning algorithms on data sets from flat models where cardinalities of latent
variables vary

MA4CF1 MS5CF1 M7CF1
RF emp KL RF emp KL RF emp KL

BIN - 0.18£0.01 - 0.84+0.01 - 3.48+£0.03
CLNJ 19.00£0.00 0.08 £0.01 36.00+0.00 0.23£0.01 98.00£0.00 1.394+0.00
CLRG 9.50£0.00 0.07£0.00 21.504+0.00 0.24+£0.01 52.90£0.52 1.524+0.03
EAST 4.0040.00 0.04 £ 0.01 - - - -

BI 2.75+1.06 0.04 £0.01 12.45+1.40 0.14 £ 0.02 7.10+1.47 0.24 £ 0.06

Table 4 Impact of § on the

performance of BI. For this set of RF emp KL Time (sec)
experiments, only data sampled
from the model M5CF1 were s=1 14.30 £2.57 0.15+£0.03 2,181
used §=3 12.45+1.40 0.14+0.02 2,205
§=5 13.20 £ 1.21 0.13£0.01 2,101
=10 11.95+1.07 0.13 £0.01 2,236

5.1.3 Impact of § and sample size on Bl

BI has one parameter that the user has to set, namely the threshold § for the UD-test. To get
some intuition about the impact of the parameter, take another look at Algorithm 1. We see
that the larger § is, the harder it is to satisfy the condition at line 10, and the longer the set §
would keep expanding, which often implies larger sibling clusters.

In all the experiments reported so far, § was set at 3 as suggested by Kass and Raftery
(1995). In the context of this paper, the use of the value 3 implies that we would conclude the
correlations among attributes in the set S can be properly modeled using one single latent
variable if there is no strong evidence pointing to the opposite. Two other possible values 1
and 5 for § were also suggested by Kass and Raftery (1995). The use of those values would
mean, respectively, to draw the same conclusion when there is no positive or very strong
evidence pointing to the opposite.

To investigate the impact of §, we tried both 1 and 5 in addition to 3. The value 10 was
also included as a reference. The results are shown in Table 4. We see that the choice of §
did not influence performance of BI significantly in terms of RF values, empirical KL, and
running time.

In all the experiments reported so far, the sample size for the training set was 5,000. To
investigate the impact of sample size, we sampled from the model M5CF1 two other training
sets that contain 1,000 and 10,000 data cases respectively. So we have three different training
sets for the model. Experiments were carried out on all those three data sets. The results are
shown in Table 5. It is clear that model quality increases almost monotonically with sample
size, and running times increases with it more or less linearly.

@ Springer

316 Mach Learn (2015) 98:301-330

Table 5 Impact of sample size

on the performances of BI. For Sample size RF emp KL Time (sec)
this set of experiments, only the
data sampled from the model 1k 18.85+1.33 0.53 +£0.01 652
MS5CF1 were used 5k 12.45 £ 1.40 0.14+0.02 2,205
10k 14.55 £ 1.04 0.11£0.01 4,431
Table 6 Information about - . - - -
real-world data sets used in our # attributes Cardinality Size (train) Size (test)
experiments
Coil-42 42 2-9 5,822 4,000
Alarm 37 2-4 1,000 1,000
News-100 100 2 8,121 8,121
WebKB 336 2 830 208

5.2 Comparisons on real-wold data

We now compare the algorithms on four real-world data sets: Coil-42 (Zhang et al. 2008a),
Alarm (Mourad et al. 2013), WebKB? and News-100.? Information about the version of the
data sets used in our experiments is shown in Table 6. Note that all attributes in WebKB and
News-100 have 2 possible values, while attributes in Coil-42 and Alarm have between 2 to
9 possible values.

We tested the algorithms on the four data sets. Note that the CLNJ and CLRG require
that all the observed variables have the same cardinalities. As such they are not applicable
to Coil-42 and Alarm. For the applicable cases, each algorithm was run on each data set for
10 times. The average running time is reported in Table 7. The quality of a learned model
is measured using BIC score on the training set and loglikelihood on the testing set. The
statistics are shown in Table 8.

We see that EAST found best models on Coil-42 data both in terms of BIC score and
loglikelihood. For the Alarm data, the models found by EAST also have higher BIC scores
than those obtained by BI, indicating that they fit the training data better. But their loglikeli-
hood scores on the test set of the Alarm data are slightly lower than that of BI. For this two
data that EAST can handle, it took 11 hours to process the Coil-42 data and 1.7 hours to
process the Alarm data while BI only took about 9 minutes and 3 minutes respectively. For
News-100 data and WebKB data, BI was able to process within 1 hour while EAST did not
finish in 60 hours.

In comparison with BIN, CLNJ and CLRG, BI was several times slower. However, the
models that it obtained are much better in terms of both BIC score on training data and
loglikelihood on test data. Those results indicate that the restriction to flat models does not
put BI at a disadvantage relative to the alternative algorithms when it comes to the analysis
of real-world data. However, the restriction that all attributes must have the same cardinality
makes the PTR-algorithms inapplicable to real world data sets such as Coil-42 and Alarm.

2 Available from http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/.

3 Available from http://cs.nyu.edu/~roweis/data/20news_w100.mat.

@ Springer

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
http://cs.nyu.edu/~roweis/data/20news_w100.mat

Mach Learn (2015) 98:301-330 317

Table 7 Average running time

(seconds) of LTM learning Coil-42 Alarm News-100 ‘WebKB
algorithms on the real-world data
sets BIN 506 97 1,941 628
CLNJ - - 917 193
CLRG - - 594 144
EAST 38,355 6,122 - -
BI 528 153 2,494 2,254
Table 8 Performances of LTM learning methods on the real world data
BIC (train)
Coil-42 Alarm News-100 WebKB
CLRG - - —116,973 £ 042 —66,492 + 11
CLNJ - - —117,015 £ 050 —66,723 + 11
BIN —53,568 £ 000 —13,295 £ 000 —119,331 £ 000 —70,473 £ 00
EAST —51,482 £ 075 —11,551 £+ 069 - -
BI —52,461 £ 143 —11,760 £ 110 —116,451 £ 125 —65,854 + 90
Loglikelihood (test)
Coil-42 Alarm News-100 WebKB
CLRG - - —116,242 £ 045 —16,349 £ 05
CLNJ - - —116,059 £ 058 —16,365 £ 03
BIN —35,861 £ 000 —16,221 £000 —117,920 £ 000 —16,794 £ 00
EAST —34,344 £+ 057 —10,706 £ 100 - -
BI —35,217 £ 097 —10,666 + 106 —115,619 £ 185 -16,112+17

5.3 Summary

We have compared BI with previous algorithms for learning LTMs on a host of data sets.
The number of attributes ranges from dozens to hundreds. In comparison with the search
algorithm EAST, the advantage of BI is efficiency. While EAST could handle only small
data sets (M4C, M4CF, M5C, Coil-42 and Alarm), BI was able to deal with all the data sets.
On those small data sets, BI found models of similar quality as those obtained by EAST. In
comparison with the AC-based algorithm BIN and the PTR-motivated algorithms CLNJ and
CLRG, the advantage of BI is model quality. In fact, BI found better models in most cases.
On the other hand, it was several times slower.

6 Multi-partition clustering

Clustering is a primary and traditional task in knowledge discovery and data mining. Con-
ventional clustering methods usually assume that there is only one true clustering in a data
set. This assumption does not hold for many real-world data which are multifaceted and
can be meaningfully clustered in multiple ways. For example, a student population can be
clustered in one way based on course grades and in another way based on extracurricular
activities. Movie reviews can be clustered based on both sentiment (positive or negative) and

@ Springer

318 Mach Learn (2015) 98:301-330

genre (comedy, action, war, etc.). The respondents in a social survey can be clustered based
on demographic information or views on social issues.

In this section, we briefly survey previous methods proposed to produce multiple clus-
terings. We refer to them as multi-partition clustering (MPC) methods. MPC is not to be
confused with multi-view clustering (Bickel and Scheffer 2004), which makes use of mul-
tiple views of data to improve the quality of one single clustering solution. MPC methods,
according to the way that partitions are found, can be divided into two categories: sequential
MPC methods and simultaneous MPC methods.

Sequential MPC methods produce multiple partitions sequentially. One such method is
known as alternative clustering (Cui et al. 2007; Gondek and Hofmann 2007; Qi and David-
son 2009; Bae and Bailey 2006). It aims at discovering a new clustering that is different
from a previously known clustering. The key issue is how to ensure the novelty of the new
clustering with respect to the previous clustering. Gondek and Hofmann (2007) adopt the
information bottleneck framework and maximize the mutual information between the new
clustering and the attributes, conditioned on the previous clustering. Bae and Bailey (2006)
suggest that two objects placed into the same group in the previous clustering should be
pushed into different groups in the new clustering. Cui et al. (2007) project data into a space
that is orthogonal to the previous solution and find a new clustering in the projected space.
Qi and Davidson (2009) first transform data with respect to the previous clustering and then
cluster the projected data. During transformation, constraints are imposed to pull data points
away from their original clusters.

Simultaneous MPC methods, on the other hand, produce multiple partitions simultane-
ously. Both distance-based and model-based methods have been proposed. The distance-
based methods require as inputs the number of partitions and the number of clusters in each
partition. They try to optimize the quality of each individual partition while keeping dif-
ferent partitions as dissimilar as possible. Jain et al. (2008) propose a method to find two
clusterings simultaneously by iteratively minimizing the sum-squared errors of each clus-
tering along with the correlation between the two clusterings. Niu et al. (2010) try to find
multiple clusterings by optimizing an objective function that has one spectral-clustering
term for each clustering, plus a term that penalizes the similarity among different cluster-
ings. Dasgupta and Ng (2010) use the suboptimal solutions of spectral clustering as multiple
clusterings.

Model-based MPC methods fit data with probabilistic models that contain multiple latent
variables. Each latent variable represents a soft partition and can be viewed as a hidden di-
mension of data. Because of this, model-based simultaneous MPC is sometimes also called
multidimensional clustering (Chen et al. 2012). Unlike distance-based methods, model-
based methods can automatically determine the number of partitions and the number of
clusters in each partition based on statistical principles. Galimberti and Soffritti (2007)
determine the number of partitions and the composition of each partition through greedy
search guided by a scoring function. Guan et al. (2010) propose a nonparametric Bayesian
approach. Prior distributions are placed on both attribute partitions and object partitions us-
ing Dirichlet process. The number of partitions and partition composition are determined
from the posterior distributions. Both Galimberti and Soffritti (2007) and Guan et al. (2010)
assume that each latent variable, which gives one facer of data, is associated with a distinct
subset of attributes, and that the latent variables are mutually independent. In contrast, Chen
et al. (2012) uses LTMs where that latent variables are not assumed independent and the
dependence among them are explicitly modeled.

Among the methods mentioned above, the method proposed by Chen et al. (2012) is de-
signed for discrete data. Bae and Bailey (2006) presented two versions of their algorithm

@ Springer

Mach Learn (2015) 98:301-330 319

which can handle categorical and continuous data separately. The methods presented in
Gondek and Hofmann (2007) can handle binary data and continuous data. The other algo-
rithms mainly work with continuous data.

MPC is related to another research area known as subspace clustering (Parsons et al.
2004). Here, we use the term subspace clustering in a general manner. It includes pattern-
based clustering, bi-clustering, and correlation clustering. Kriegel et al. (2009) give a good
survey on these topics. Subspace clustering attempts to find all clusters in all subspaces.
A cluster is defined as a group of data points that are densely clustered in the subspace de-
termined by a subset of attributes. To explain the relationship between subspace clustering
and MPC, we note that the clusters resulting from MPC can be arranged into columns such
that clusters in each column constitute a partition of all the data points and all can be char-
acterized using the same subset of attributes. In contrast, subspace clustering imposes no
such constraints on the collection of clusters it produces. It usually yields a large number of
clusters.

7 LTMs for multi-partition clustering

In this section, we demonstrate with an example how LTMs can be used for MPC and discuss
some practical issues.

The example we use is the WebKB data used in Sect. 5.2. It consists of web pages col-
lected in 1997 from the computer science departments of 4 universities, namely Cornell,
Texas, Washington and Wisconsin. The web pages were originally divided into seven cate-
gories. The categories which contain very few web pages or do not have clear class labels
are removed in preprocessing. Only four categories of web pages remain, namely stu-
dent, faculty, project and course. There are totally 1041 pages in the collection.
Stop words and words with a low occurrence frequency are also removed in preprocessing.
Afterwards, there are totally 336 different words left in the whole collection. Each of them
is regarded as an attribute. It takes value 1 when it appears in a web page and 0 otherwise.

The WebKB data has two class labels. One identifies the university from which a web
page is collected, and the other denotes the category to which it belongs. The class labels
were removed prior to analysis.

Performing latent tree analysis on a data set can result in a large number of latent vari-
ables. Figure 5 shows part of the model learned from the WebKB data using the BI algo-
rithm. There are 75 latent variables in the model. Theoretically, each latent variable rep-
resents a soft partition of the data. From the application point of view, several questions
arise: (1) What exactly constitutes a partition? (2) What is the meaning of the partition?
(3) How can one quickly identify interesting partitions among all the partitions? A software
tool called Lantern* has been created to help finding answers to those questions.

The meaning of a latent variable is determined based on how it is related to observed
variables. Lantern allows one to see which observed variables are closely correlated with a
latent variable using the concept of information curves. We introduce the concept through
an example. Consider the latent variable Y,g from the WebKB model. It has 4 values and
hence represents a soft partition of the data into four clusters. We will refer to the partition
as the Y,g partition. The information curves of Y,g are shown in Fig. 6(a). There are two
curves. Suppose there are totally n attributes. The lower curve shows the pairwise mutual
information (PMI) I (Y»3; X;) between Y,g and each attribute X; (i = 1,2,...,n). The at-

4 Available from http://www.cse.ust.hk/~1zhang/ltm/index.htm.

@ Springer

http://www.cse.ust.hk/~lzhang/ltm/index.htm

320

Mach Learn (2015) 98:301-330

learning

machine

seminar

lisp
artificial

intelligence

intelligent
planning
ai
reasoning
knowledge
logic
neural

protocol

simulation
hardware
software

network
processors
communicati
machines
workstations
advanced
architecture

TN
Y54

global
computing
distributed
parallel

editor
member
faculty
transactions
icee

acm

implementat
- efficient
> architectures
design
o areas
ommunication interest <>~
protocols e .
projects
networks project
p@rformance organization
high processor
cache 9 shared
instruction cost o~

ph
fax
professor
improve
area
thesis
dept
commercial
education
prof

phd

group
publications
research
interests

Y5

progress

I8

memory (o

september
e october
december
november
march
s e february
april
january
principles
a june
- workshop
symposium
ca
9 san
berkeley

california

abstract

foundation
american
national
association
technology,
institute

technical
annual
report
international
proceedings
conference
august

(=)
o
Qg

experiencd
lectures

instructor
sections
section
introduction
schedule
feedback
problem
grade
grades
exams
grading
modified

lab
sample

examples
suggestions
quiz
discussion
questions
answers
asked

WWW

http
oriented
object
languages
language
programs
program

programming

/

dynamic
compilers
compiler
structure

Fig. 5 Part of the latent tree model learned from the WebKB data using BI

@ Springer

linear
scientific
mathematical
methods
mathematics
numerical
algorithm
computation
theory
computational
analysis
algorithms
complexity
vision
image
pattern
images
digital

video

visual
automatic
multiple
generation
objects
optimization
goal
theoretical
operations
press

model
developed
approach
results
homepage
application
support
large
techniques

%{fﬁm m i

)
©
>

applications
multi
server
query
stored
database
databases
management
storage
disk
operating
system
systems
paper
version
issues
work
evaluation
July
papers
electronic

<
©

AN 57

Mach Learn (2015) 98:301-330 321

o Yag: IC=95%

07t | | —; IO(M_ cluster 1 2 3 4
E 0.57 80% g', programming | 1.00| 0.77| 0.06| 0.72
® 3 oriented 0.16| 0.00| 0.00| 1.00
€ 0.43 60% object 0.51| 0.05| 0.02| 0.91
«g § languages 0.12| 0.41| 0.01| 0.50
= 0.28 40% 9 language 0.81| 0.34| 0.05| 0.61
2 H program 0.92| 0.29| 0.09| 0.31
2014 [I 20% g programs 0.53| 0.23| 0.04| 0.17
0.00 EMI | | | i Loy © compiler 0.31| 0.18| 0.01| 0.17
' , y y .) ° Size 0.04| 0.21| 0.69| 0.06

% (@ o e gl a5 el
«\\0‘ QL7 G 2% (o (B &
; FESAPS \,a(\%“ o 9(0% Q‘o% o
B

(a) (b)

Fig. 6 (a) Information curves of latent variable Y,g. The left Y-axis indicates the values of mutual informa-
tion, while the right Y-axis indicates the value of information coverage. (b) Occurrence probability of the top
words in the four clusters

tributes are sorted in decreasing order of PMI. We see that Y,g is most highly correlated
with word variables programming, oriented, ..., etc. in that order. This means that
the clusters in Y,g partition differ the most on those variables.

The upper curve shows the cumulative mutual information (CMI) I (Yas; X1—X;)
(i=2,3,...,n) between Ypg and the first i attributes. It increases monotonically with i.
Intuitively, the CMI value is a measure of how much the differences among the clusters in
the Y,g partition are captured by the first i attributes. In particular, /(Y; X;—X,,) is a mea-
sure of how much the differences among the clusters are captured by all the attributes. The

ratio
I(Y; X1—X)/1(Y; X1—X,) 9

is called the information coverage (IC) of the first i attributes.’ It is a relative measure
of how much the characteristics of the Y»g partition is captured by the first i attributes. The
information coverage of the 8 word variables shown in Fig. 6(a) exceeds 95 %. Hence we can
say that the partition is primarily based on those variables. It is then clear that the partition
is about the occurrence/absence of words related to programming.

Lantern also allows one to see the statistical characteristics of each cluster by giving its
class conditional probability distributions (CCPDs). The CCPDs for the four clusters in the
Y,g partition are given in Fig. 6(b). The value 0.77 at line 2 and column 3, for instance,
is the probability that word programming appears in cluster Y3 = 2. We see that the
words programming, oriented and object occur with high probability in the cluster
Y>3 = 4. Hence we interpret it as the collection of web pages on objected-oriented program-
ming (OOP). In the cluster Y>3 = 2, the word programming occurs with high probability,
but oriented and object almost do not occur at all. Hence we interpret it as a collection
of web pages on programming but not OOP. Those might be web pages of OOP courses and
of introductory programming courses respectively. The cluster Y,3 = 1 seems to correspond
to web pages of other courses that involve programming, while Y,g = 3 seems to mean web
pages not on programming.

Further, Lantern allows one to check the membership of each cluster. It facilitates both
soft assignment and hard assignment. In soft assignment, it shows the posterior distribu-
tions of latent variables for each data case. In hard assignment, it assigns each data case to
the value of a latent variable (which represents a cluster) that has the maximum posterior
probability.

SThe quantity is approximately calculated by sampling.

@ Springer

322 Mach Learn (2015) 98:301-330

Table 9 Word variables that have highest MI with Y55 and Y57 and their distributions in the clusters given
by the two latent variables

Ys55: IC=96 % Y57: IC =100 %

Cluster 1 2 3 Cluster 1 2
networks 0.88 0.43 0.01 intelligence 0.03 0.59
communication 0.03 0.39 0.01 artificial 0.03 0.58
neural 0.77 0.00 0.01 knowledge 0.03 0.60
protocols 0.00 0.23 0.00 ai 0.02 0.49
protocol 0.00 0.19 0.00 intelligent 0.01 0.34
intelligence 0.68 0.03 0.05 planning 0.01 0.32
artificial 0.66 0.03 0.05 reasoning 0.01 0.33
parallel 0.20 043 0.11 learning 0.05 0.31
network 0.14 0.33 0.06 logic 0.05 0.30
architecture 0.15 0.33 0.07 neural 0.02 0.19
high 0.17 0.38 0.09 lisp 0.01 0.11
performance 0.17 0.36 0.09 networks 0.09 0.26
Size 0.04 0.14 0.82 Size 0.93 0.07

Using Lantern, we were able to quickly identify interesting partitions given by the We-
bKB model. Table 9 shows two examples in details. We see that Yss represents a partition
based on the occurrence/absence of words such as networks, communication, neu-
ral, protocols, artificial and intelligence. The cluster Y55 = 1 seems to
correspond to web pages on neural networks, while Ys5s = 2 seems to correspond to web
pages on networking and high performance computing area. Similarly, Y5; = 2 seems to
correspond to web pages related to Al, while Ys; = 1 seems to identify web pages that are
not related to Al

Table 10 shows more intuitively interesting latent variables. CCPDs are not given here
to save space. The latent variables Y73 and Y49 represent partitions based on words that
usually appear on faculty homepages; Ys9, Y71 and Y59 represent partitions based on words
that distinguish different research areas. Yo, Y47, Y46 and Y35 represents partitions based
on words that identify the four universities from which the data were collected. Finally,
Ys represents a partition based on words that usually appear on course web pages.

8 Comparisons of MPC methods on labeled data

In this and the next sections, we compare BI, as an MPC algorithm, with previous MPC
algorithms on labeled data and unlabeled data respectively. Three previous MPC algorithms
Orthogonal Projection (OP) (Cui et al. 2007), Singular Alternative Clustering (SAC) (Qi
and Davidson 2009) and DK-means (DK) (Jain et al. 2008). OP and SAC are representative
sequential MPC algorithms, while DK is a representative distance-based simultaneous MPC
algorithm.

In this section, we compare the algorithms on the WebKB data. Each data case in this
data set has two class labels. Hence the are two true partitions. The first partition divides
the data into 4 classes according to where the web pages were collected. The four classes
are Cornell, Texas, Washington and Wisconsin. The second partition divides the

@ Springer

Mach Learn (2015) 98:301-330 323

Table 10 More latent variables
that are intuitively meaningful.
For each latent variable, a list of Y73 Ya9 Yeo Y71 Y59
word variables are given. Those
are the variables that have the

Faculty homepage Research areas

journal ph image management high
highest MI with the latent .
variables. In each case, the juy) fax video database performance
information coverage of the vol research vision systems hardware
variables listed exceeds 95 % conference professor images system software
proceedings university pattern databases instruction
international publications digital storage parallel
symposium interests applications large network
acm support architecture
workshop applications cache
Universities Course
Y10 Yar Ya6 Y35 Ye
ithaca washington utexas wisc assignments
ny cse texas madison instructor
cornell uw austin wisconsin hours
upson ut dayton syllabus
hall wi class
grading
pm
lecture
homework

data into another 4 classes according to the nature of the web pages. The four classes are
student, faculty, project and course.

In our experiments, the class labels were first removed. The algorithms were then run on
the resulting unlabeled data. DK can only produce two partitions. In our experiments, it was
instructed to find two partitions each with four clusters. For OP, we, following the authors,
first ran K-means (MacQueen 1967) to find a partition of four clusters, and then continue to
run OP to find one more partition with four clusters. The same was done for SAC. So, all
the three alternative methods were all told to find two partitions each with four clusters.

Table 11 shows some information about the partitions. We see that the partitions obtained
by the three algorithms are similar in terms of the variables that they rely on. One of the
partitions is primarily based on words that often appear on course web pages, while the
other is primarily based on words that identify the four universities.

We compare the performances of BI and the alternative algorithms quantitatively by con-
sidering how well they have recovered the ground truth. It is clear from Table 10 that BI
has recovered the four university classes. However, they are given in the form of four latent
variables instead of one. For comparability, we transform the true university partition into
four logically equivalent binary class partitions. Each binary partition divides the web pages
according to whether they are from a particular university. The same transformation is ap-
plied to the other true partition. After transformation, we calculate the normalized mutual
information (NMI) (Strehl et al. 2002) between each true binary partition C and each latent
variable Y as follows:

@ Springer

324 Mach Learn (2015) 98:301-330

Table 11 Information about partitions obtained by DK, OP and SAC on the unlabeled WebKB data. Top
20 word variables that have the highest MI with the partitions are shown. The information coverage of these
variables exceeds 80 % in all cases

DK OP SAC

Partition 1 Partition 2 Partition 1 Partition 2 Partition 1 Partition 2
hours madison university wisc assignments austin
assignments austin computer utexas hours madison
instructor dayton department cornell instructor university
lecture texas assignments asutin lecture texas
syllabus wi research madison research wisconsin
pm wisconsin hours texas syllabus science
class utexas science wisconsin class utexas
grading wisc instructor washington homework computer
homework seattle lecture wi pm wisc
exam computer publications dayton publications department
thursday department class cse grading wi

acm washington pm ithaca conference dayton
office university conference seattle proceedings seattle
monday wa grading wa exam washington
research street syllabus upson handouts street
wednesday west office ut thursday cornell
final ut acm street monday wa
handouts science homework west due west
assignment box interests ny office ut
conference st exam uw notes research

Table 12 NMI values between

the true binary partitions and the DK SAC Op BI

closest partitions obtained by

each algorithm. They show how course 0.43£0.01 0.47+£0.01 0.474+0.02 0.63+£0.02
well the algorithms have faculty 0.18£0.04 0.17£0.07 0.18+0.01 0.30+0.01

recovered the true partitions project 0.044£000 0.04+0.00 0.05%0.04 0.07+0.00

student 0.18+0.00 0.20£0.00 0.20£0.01 0.25+0.01
cornell 0.22+0.15 0.09+£0.02 0.36+0.24 0.34+0.01
texas 0.31+0.18 0.20£0.20 0.45£0.23 0.61 £0.02
washington 0.22£0.13 0.41+0.23 0.56+0.25 0.55+0.12
wisconsin 0.38+0.12 0.16+0.12 0.45+0.13 0.55+0.11

I(C;Y)
VH(C)H(Y)

where H (.) denotes the entropy of a variable. NMI ranges from O to 1, with a higher value
meaning a closer match between C and Y. Then we match each true binary partition with
the latent variable with which it has the highest NMI, and we use the NMI between the pair
as a measure of how well BI has recovered the partition. The results are shown in the last
column of Table 12. The average was taken over 10 runs.

NMI(C;Y) =

@ Springer

Mach Learn (2015) 98:301-330 325

Each of the partitions found by the alternative method consists of four clusters. For com-
patibility, it is also transformed into four logically equivalent binary partitions. Those par-
titions are matched up with the true binary partitions. The NMI between the matched pairs
are also shown in Table 12.

We see that the NMI values for BI are the highest with regard to 6 of the 8 true binary
partitions. They are significantly higher than those for the alternative methods with regard
to course, faculty, student, texas and wisconsin. This means that BI has re-
covered those true binary partitions much better than the other methods. The performance
of BI is only slightly worse than OP with regard to the binary partitions cornell and
washington.

To get a global picture, compare the results given in Table 11 and those presented in
the previous section. It is clear that BI has found many more interesting partitions than the
alternative algorithms. None of the alternative methods have found partitions similar to those
represented by Yag, Yss, Ys7, Yeo, Y71 and Ysg.

9 Comparisons of MPC methods on unlabeled data

In this section we compare BI and other MPC algorithms on an unlabeled data set known
as ICAC data. The data set originates from a survey in 2004 of public opinions on corrup-
tion in Hong Kong and the performance of ICAC—the anti-corruption agency of the city.
After preprocessing, the data set consists of 31 attributes and 1200 records. The attributes
correspond to questions in the survey.

9.1 Results on the ICAC data by BI

On the ICAC data, BI produced an LTM with 7 latent variables. It will be referred to as the
ICAC model. The structure is shown in Fig. 7. Basic information about the latent variables
is given in Table 13. For each latent variable, we list the observed variables that are highly
correlated with it.

It is clear from Table 13 that Y, represents a partition of the data based on people’s
view on change of corruption level; Y, represents a partition based on de-
mographic information; Y3 represents a partition based on people’s tolerance
toward corruption; Y, represents a partition based on people’s view on the

R m 7i< %T\N ﬁ/ﬁ T

© 0L PFEEEZY 555 F9O0CTITZER SRR 2 20 F F
= o _— e =
£ 5 g E£€5E°%7 558 25i33¢¢£g¢8 =28 28 ¢ ¢ ¢
X 2 2 o §F g 8 g 8 3 2 7+ 38 & 5 6 ¢ & & = @& o 92
= = S =2 o 5 5 @ Q =] o a == e 5
=% FLREC iR SEIEEIEE 258 g2
= ! o o = o 2 5 5 w»nm G DN
g = C0g EgaF £2:z8 £%E28 g 7
P =2 5 ox 2 I3 B, S A2 @
> = QUJ,._Q 2 = S o @ < =
& < S £ A = < S s =
% < © Iod 32 Q
= =3
=<

Fig. 7 The structure of LTM learned by BI from the ICAC data. The width of edges represent
strength of probabilistic dependence. Abbreviations: C—Corruption, [I—ICAC, Y—Year, Gov—Government,
Bus—Business Sector. Meanings of attributes: Tolerance-C-Gov means ‘tolerance towards corruption in the
government’; C-City means ‘level of corruption in the city’; C-NextY means ‘change in the level of cor-
ruption next year’; I-Effectiveness means ‘effectiveness of ICAC’s work’; I-Powers means ‘ICAC powers’;
etc.

@ Springer

326 Mach Learn (2015) 98:301-330

Table 13 Information about the latent variables in the ICAC model. For each latent variable, a list of ob-
served variables is given. Those are the variables that have the highest MI with the latent variables. In each
case, the information coverage of the variables listed exceeds 95 %

Y1 C-NextY, C-PastY, I-Confidence-NextY

)%) Income, Age, Education, Sex

Y3 Tolerance-C-Bus, Tolerance-C-Gov

Yy I-Impartiality, I-Confidence, I-PowerAbused, I-Effectiveness, I-Deterrence, I-Powers,
I-EncourageReport, Saw-I-Publicity, I-Supervised

Ys I-Effectiveness, I-Deterrence, I-EncourageReport, I-Impartiality, I-Confidence

Yo C-City, C-Gov, C-Bus

Y7 Economy-PastY, Economy-Now

accountability of ICAC; Y5 represents a partition based on people’s view on
the performance of ICAC; Y represents a partition based on people’s view on
corruption level; and Y; represents a partition based on people’s view on the
economy.

Let us examine the partitions given by Y, and Y3. Y, has four states and hence it represents
a partition of 4 clusters. The CCPDs are given in Table 14. We see that 99 % of the people in
cluster Y, = 4 are under the age of 24. The average income is quite low. So ¥, = 4 can be in-
terpreted as youngsters. Cluster Y, = 2 only consists of women. There is no income (sy)
or the income is low. So it can be interpreted as women with no/low income. For
the remaining two classes, the people in ¥, = 1 have higher education and higher income
than the people in Y, = 3. Hence Y| = 1 can be interpreted as people with good ed-
ucation and good income, while Y, =3 as people with poor education
and average income.

Y3 has three states and hence it represents a partition of 3 clusters. The CCPDs are given
in Table 15. It is clear that the three latent classes Y3 = 1, Y3 =2, and Y3 = 3 can be in-
terpreted as classes of people who find corruption tolerable, intolerable and to-
tally intolerable respectively.

In addition to identifying interesting partitions, BI also determines relationships between
different partitions. As an example, consider the relationship between Y, and Y. The con-
ditional probability P (Y3 | Y,) is shown in Table 16. We see that ¥, = 1 (people with
good education and good income) is the class with the least tolerance towards
corruption. In fact, 93 % (31 % + 62 %) of the people in this class think corruption in-
tolerable or totally intolerable (Y3 = 2 or 3). On the other hand, ¥, =3 (people with
poor education and average income) is the class with more tolerance towards
corruption. In fact, 39 % of the people in the class who find corruption tolerable (Y3 = 1).
The other two classes fall in between those two extreme classes.

9.2 Results on the ICAC data by other MPC algorithms

The ICAC data contains missing values. However, the MPC algorithms DK, OP and SAC
do not allow missing values. Two options are tried to handle this issue. In the first option,
data cases with missing value are simply removed. In the second option, the missing values
are replaced with the most prevalent values. Two complete versions of the data set result in.
They consist of 523 and 1,200 records respectively.

The three alternative MPCs were run on each of the two complete versions of the data.
As in the previous section, the algorithms were instructed to find two partitions. Several

@ Springer

Mach Learn (2015) 98:301-330 327

Table 14 Information about the partition represented by Y;. The information coverage of the four variables
shown is 98 %. The states of variables are: Income: sg (none), s1 (less than 4k), sp (4-7k), s3 (7-10k), s4
(10-20k), s5 (20-40k), s (more than 40k); Age: sg (15-24), 51 (25-34), 57 (35-44), 53 (45-54), 54 (above
55); Education: sg (none), sy (primary), so (Form 1-3), s3 (Form 4-5), s4 (Form 6-7), s5 (diploma), s¢
(degree); Sex: s (male), s1 (female)

P(-|Y2) 50 1 52 3 54 S5 56
Y, = Income 0.02 0 0.04 0.10 0.42 0.28 0.14
Size: 0.37 Age 0.05 0.35 0.39 0.17 0.03

Education 0 0 0.04 0.41 0.09 0.09 0.37

Sex 0.57 0.43

P(1Y) S0 S1 §2 $3 S4 55 S6
Yo =2 Income 0.43 0.29 0.24 0.04 0 0 0
Size: 0.24 Age 0.03 0.08 0.41 0.35 0.13

Education 0.05 0.29 0.35 0.26 0.04 0 0.01

Sex 0 1

P(-1Y2) 50 1 52 3 54 S5 56
Y, =3 Income 0.10 0.11 0.17 0.25 0.31 0.07 0
Size: 0.22 Age 0 0.07 0.22 0.40 0.30

Education 0.02 0.29 0.43 0.19 0.05 0.01 0

Sex 0.80 0.20

P(|Yr) 50 S1 52 $3 S4 S5 S6
Y, =4 Income 0.02 0.78 0.08 0.09 0.03 0 0
Size: 0.17 Age 0.99 0.01 0 0 0

Education 0 0 0.08 0.47 0.21 0.10 0.16

Sex 0.50 0.50

Table 15 Information about the partition represented by Y3. States of the two observed variables: sq (totally
intolerable), s1 (intolerable), s, (tolerable), and s3 (totally tolerable). The information coverage for these two
attributes is around 99 %

P(-|V3) P(Y3=1)=0.18 P(Y3=2)=0.24 P(Y3=3)=0.58
S0 S1 §2 53 S0 S1 52 53 S0 S1 sy 83

Tolerance-C-Bus 0 0.08 084 0.08 0.02 097 002 0 1 0 0 0
Tolerance-C-Gov 031 024 041 0.04 054 046 O 0 097 002 0 O

Table 16 The conditional

probability distribution r3=1 Y3 =2 Y3=3
P(Y3|Y?)
Yo=1 0.07 0.31 0.62
Y, =2 0.18 0.14 0.68
Yr=3 0.39 0.12 0.49
Y, =4 0.17 0.40 0.42

@ Springer

328 Mach Learn (2015) 98:301-330

Table 17 Information about the partitions found by DK, OP and SAC on the ICAC data. For each partition,
we show the variables that have the highest MI with the partition. In each case, the information coverage of
the variables listed exceeds 95 %

When data cases with missing values are removed

DK-1 Age, Income, I-Confidence, I-Effectiveness, C-City, [-PowerAbused, I-Impartiality, I-Deterrence

DK-2 Tolerance-C-Gov, Tolerance-C-Bus, I-Impartiality, I-Powers, C-City, I-Confidence,
I-PowerAbused, C-NextY, I-Deterrence, C-Bus, C-PastY

OP-1 Sex, C-PastY, C-NextY, Income, I-PowerAbused, WillingReport-C

OP-2 LeaveContackInfo, I-Supervised

SAC-1 Sex, C-PastY, C-NextY, Income, I-PowerAbused, WillingReport-C
SAC-2 I-Supervised, I-Impartiality

When missing values are replaced by the most prevalent values

DK-1 Tolerance-C-Bus, Tolerance-C-Gov, I-Confidence, I-Deterrence, C-City, I-Effectiveness,
I-Impartiality, I-PowerAbused, C-Bus, C-Gov, C-NextY, I-Powers

DK-2 Tolerance-C-Bus, Tolerance-C-Gov, C-City, I-Deterrence, I-Confidence,
I-Effectiveness, I-PowerAbused, I-Impartiality, C-Bus, C-Gov, C-NextY

OP-1 I-Supervised, Sex
OP-2 Saw-I-Publicity, C-NextY, C-PastY, C-Gov, C-Bus, Income, I-Deterrence

SAC-1 Sex, C-NextY, C-PastY, Income, I-Deterrence
SAC-2 LeaveContackInfo, I-Supervised

options were tried with regard to the number of clusters in each partition. Table 17 shows
information about the resulting partitions that we deem the most reasonable.

Comparing Table 17 with Table 13, we see that the partitions found by the alternative
methods are not as meaningful as those found by BI. Take DK-1 from the top table as an
example. This partition is based on demographic variables age and income, variables
that reflect people’s confidence in ICAC (e.g., I-Confidence and I-PowerAbused),
variables that reflect people’s view on the performance of ICAC (I-Ef fectiveness and
I-Deterrence), and people’s view on the prevalence of corruption in the city (C-City).
Since it is a mixture of variables, it is not clear what the partition is about. In contrast, all
the partitions given by BI on the ICAC data seem meaningful. It seems to the authors that
BI has discovered most, if not all, the meaningful ways to cluster the data.

10 Conclusions

Many real-world data sets are multifaceted and can be meaningfully clustered in multi-
ple ways. There is a growing interest in methods that produce multiple partitions of data.
Latent tree models (LTMs) are a promising tool for multi-partition clustering. When one
analyzes data using LTM, one typically gets a model with multiple latent variables. Each
latent variable represents a soft partition of data and hence multiple partitions are obtained.
As a model-based approach, the LTM-based method can automatically determine how many
partition views there should be, what attributes constitute each partition, and how many clus-
ters there should be for each partition through model selection. The relationships between
different partitions can also be inferred from the model.

@ Springer

Mach Learn (2015) 98:301-330 329

In this paper, we propose a novel greedy algorithm called BI for learning LTMs. It is
significantly more efficient than the state-of-the-art search algorithm EAST. While EAST
can only handle data sets with dozens of attributes, BI can deal with data sets with hundreds
of attributes. On data sets with dozens of attributes, BI learns models of similar quality to
those obtained by EAST.

Bl is not as efficient as AC-based algorithms and PTR-motivated algorithms, which can
handle thousands of observed variables. However, those algorithms place restrictions on
cardinalities of latent and observed variables or connections between variables. On data sets
with hundreds of attributes, BI finds better models than the AC-based algorithms and PTR-
motivated algorithms.

When used as a tool for multi-partition clustering, BI performs much better than previous
methods for the same task. It yields more meaningful and richer clustering results than the
alternative methods.

Acknowledgements We thank the anonymous reviewers for their valuable comments. Research on this
paper was supported by Hong Kong RGC grants FSGRF12EG63 and FSGRF13EG31, China National Ba-
sic Research 973 Program project No. 2011CB505101 and Guangzhou HKUST Fok Ying Tung Research
Institute.

References

Anandkumar, A., Chaudhuri, K., Hsu, D., Kakade, S. M., Song, L., & Zhang, T. (2011). Spectral methods for
learning multivariate latent tree structure. In The twenty-fifth conference in neural information process-
ing systems (NIPS-11).

Bae, E., & Bailey, J. (2006). Coala: a novel approach for the extraction of an alternate clustering of high
quality and high dissimilarity. In Proceedings of the IEEE international conference on data mining
(ICDM 2006) (pp. 53-62).

Bartholomew, D. J., & Knott, M. (1999). Latent variable models and factor analysis (2nd ed.). London:
Arnold.

Bickel, S., & Scheffer, T. (2004). Multi-view clustering. In Proceedings of the IEEE international conference
on data mining (ICDM 2004).

Chen, T., Zhang, N. L., & Wang, Y. (2008). Efficient model evaluation in the search-based approach to latent
structure discovery. In Proceedings of the 4th European workshop on probabilistic graphical models
(PGM 2008) (pp. 57-64).

Chen, T., Zhang, N. L., Liu, T. F.,, Poon, K. M., & Wang, Y. (2012). Model-based multidimensional clustering
of categorical data. Artificial Intelligence, 176, 2246-2269.

Chickering, D. M., & Heckerman, D. (1997). Efficient approximations for the marginal likelihood of Bayesian
networks with hidden variables. Machine Learning, 29, 181-212.

Choi, M. J,, Tan, V. Y. F,, Anandkumar, A., & Willsky, A. S. (2011). Learning latent tree graphical models.
Journal of Machine Learning Research, 12, 1771-1812.

Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees.
IEEE Transactions on Information Theory, 14, 462-467.

Cover, T. M., & Thomas, J. A. (2006). Elements of information theory. New York: Wiley.

Cui, Y., Fern, X. Z., & Dy, J. G. (2007). Non-redundant multi-view clustering via orthogonalization. In
Proceedings of the IEEE international conference on data mining (ICDM 2007) (pp. 133-142).

Dasgupta, S., & Ng, V. (2010). Mining clustering dimensions. In Proceedings of the IEEE international
conference on data mining (ICDM 2010) (pp. 263-270).

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society. Series B. Methodological, 39(1), 1-38.

Durbin, R., Eddy, S. R., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge: Cambridge University Press.

Galimberti, G., & Soffritti, G. (2007). Model-based methods to identify multiple cluster structures in a data
set. Computational Statistics & Data Analysis, 52, 520-536.

Gondek, D., & Hofmann, T. (2007). Non-redundant data clustering. Knowledge and Information Systems,
12(1), 1-24.

@ Springer

330 Mach Learn (2015) 98:301-330

Guan, Y., Dy, J. G., Niu, D., & Ghahramani, Z. (2010). Variational inference for nonparametric multiple
clustering. In KDD10 workshop on discovering, summarizing and using multiple clusterings.

Harmeling, S., & Williams, C. K. I. (2011). Greedy learning of binary latent trees. I[EEE Transactions on
Pattern Analysis and Machine Intelligence, 33(6), 1087-1097.

Jain, P., Meka, R., & Dhillon, I. S. (2008). Simultaneous unsupervised learning of disparate clusterings.
Statistical Analysis and Data Mining, 1(3), 195-210.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430),
773-795.

Kriegel, H. P, Kroger, P., & Zimek, A. (2009). Clustering high-dimensional data: a survey on subspace clus-
tering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery
from Data, 3, 1-58.

Liu, T. F, Zhang, N. L., Liu, A. H., & Poon, L. K. M. (2012). A novel LTM-based method for multidi-
mensional clustering. In Proceedings of the sixth European workshop on probabilistic graphical models
(PGM-2012).

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceed-
ings of the fifth Berkeley symposium on mathematical statistics and probability, California, USA (Vol. 1,
p. 14).

Mossel, E., Roch, S., & Sly, A. (2011). Robust estimation of latent tree graphical models: inferring hidden
states with inexact parameters. In Proceedings of CoRR.

Mourad, R., Sinoquet, C., & Leray, P. (2011). A hierarchical Bayesian network approach for linkage disequi-
librium modeling and data- dimensionality reduction prior to genome-wide association studies. BMC
Bioinformatics, 12, 16.

Mourad, R., Sinoquet, C., Zhang, N. L., Liu, T., & Leray, P. (2013). A survey on latent tree models and
applications. Journal of Artificial Intelligence Research, 47, 157-203.

Niu, D., Dy, J. G., & Jordan, M. 1. (2010). Multiple non-redundant spectral clustering views. In Proceedings
of the 27th international conference on machine learning (ICML2010).

Parsons, L., Haque, E., & Liu, H. (2004). Subspace clustering for high dimensional data: a review. ACM
SIGKDD Explorations Newsletter, 6(1), 90-105.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. San Mateo:
Morgan Kaufmann.

Poon, K. M., Zhang, N. L., Chen, T., & Wang, Y. (2010). Variable selection in model-based clustering: to do
or to facilitate. In Proceedings of the 27th international conference on machine learning (ICML2010).

Qi, Z., & Davidson, 1. (2009). A principled and flexible framework for finding alternative clusterings. In Pro-
ceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining
(KDD2009) (pp. 717-726).

Ranwez, V., & Gascuel, O. (2001). Quartet-based phylogenetic inference: improvements and limits. Molecu-
lar Biology and Evolution, 18(6), 1103-1116.

Robinson, D. F.,, & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53,
131-147.

Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic
trees. Molecular Biology and Evolution, 4, 406-425.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464.

Song, L., Parikh, A., & Xing, E. (2011). Kernel embeddings of latent tree graphical models. In Twenty-fifth
conference in neural information processing systems (NIPS-11).

Strehl, A., Ghosh, J., & Cardie, C. (2002). Cluster ensembles—a knowledge reuse framework for combining
multiple partitions. Journal of Machine Learning Research, 3, 583-617.

Wang, Y., Zhang, N. L., & Chen, T. (2008). Latent tree models and approximate inference in Bayesian net-
works. Journal of Artificial Intelligence Research, 32, 879-900.

Zhang, N. L. (2004). Hierarchical latent class models for cluster analysis. Journal of Machine Learning
Research, 5, 697-723.

Zhang, N. L., & Kocka, T. (2004). In Proceedings of the 16th IEEE international conference on tools with
artificial intelligence (ICTAI 2004) (pp. 585-593).

Zhang, N. L., Wang, Y., & Chen, T. (2008a). Discovery of latent structures: experience with the COIL chal-
lenge 2000 data set. Journal of Systems Science and Complexity, 21, 172—183.

Zhang, N. L., Yuan, S. H., Chen, T., & Wang, Y. (2008b). Latent tree models and diagnosis in traditional
Chinese medicine. Artificial Intelligence in Medicine, 42, 229-245.

@ Springer

	Greedy learning of latent tree models for multidimensional clustering
	Abstract
	Introduction
	Latent tree models
	Previous algorithms for learning LTMs
	The bridged-islands algorithm
	Sibling cluster determination
	Tree formation
	Model refinement
	Two subroutines
	Complexity analysis

	Empirical comparison with previous LTM learning algorithms
	Comparisons on synthetic data
	The setups
	The results
	Impact of delta and sample size on BI

	Comparisons on real-wold data
	Summary

	Multi-partition clustering
	LTMs for multi-partition clustering
	Comparisons of MPC methods on labeled data
	Comparisons of MPC methods on unlabeled data
	Results on the ICAC data by BI
	Results on the ICAC data by other MPC algorithms

	Conclusions
	Acknowledgements
	References

