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Abstract Judging by the increasing impact of machine learning on large-scale data analysis
in the last decade, one can anticipate a substantial growth in diversity of the machine learn-
ing applications for “big data” over the next decade. This exciting new opportunity, however,
also raises many challenges. One of them is scaling inference within and training of graphi-
cal models. Typical ways to address this scaling issue are inference by approximate message
passing, stochastic gradients, and MapReduce, among others. Often, we encounter inference
and training problems with symmetries and redundancies in the graph structure. A promi-
nent example are relational models that capture complexity. Exploiting these symmetries,
however, has not been considered for scaling yet. In this paper, we show that inference and
training can indeed benefit from exploiting symmetries. Specifically, we show that (loopy)
belief propagation (BP) can be lifted. That is, a model is compressed by grouping nodes
together that send and receive identical messages so that a modified BP running on the lifted
graph yields the same marginals as BP on the original one, but often in a fraction of time.
By establishing a link between lifting and radix sort, we show that lifting is MapReduce-
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able. Still, in many if not most situations training relational models will not benefit from this
(scalable) lifting: symmetries within models easily break since variables become correlated
by virtue of depending asymmetrically on evidence. An appealing idea for such situations
is to train and recombine local models. This breaks long-range dependencies and allows to
exploit lifting within and across the local training tasks. Moreover, it naturally paves the
way for the first scalable lifted training approaches based on stochastic gradients, both in
an online and a MapReduced fashion. On several datasets, the online training, for instance,
converges to the same quality solution over an order of magnitude faster, simply because it
starts optimizing long before having seen the entire mega-example even once.

Keywords Statistical relational learning · Lifted inference · Lifted online training ·
MapReduce

1 Introduction

Machine learning thrives on large datasets and models, and one can anticipate substantial
growth in the diversity and the scale of impact of machine learning applications over the
coming decade. Such datasets and models originate for example from social networks and
media, online books at Google, image collections at Flickr, and robots entering the real life.
And as storage capacity, computational power, and communication bandwidth continue to
expand, today’s “large” is certainly tomorrow’s “medium” and next week’s “small”.

This exciting new opportunity, however, also raises many challenges. One of them is
scaling inference within and training of graphical models. Statistical learning provides a
rich toolbox for scaling. Actually, statistical learning is unthinkable for many practical ap-
plications without techniques such as inference by approximate message passing, stochastic
gradients, and MapReduce, among others. Often, however, we face inference and training
problems with symmetries and redundancies in the graph structure. A prominent example
are relational models, see De Raedt et al. (2008), Getoor and Taskar (2007) for overviews,
that tackle a long standing goal of AI, namely unifying first-order logic—capturing regu-
larities and symmetries—and probability—capturing uncertainty. They often encode large,
complex models using few weighted rules only and, hence, symmetries and redundancies
abound. However, symmetries, stemming from relational models or not, have not been con-
sidered for scaling inference and training yet.

The situation is detailed in Table 1. For instance, (loopy) belief propagation (Pearl 1991)
has been proven successful in many real-world applications. Gonzalez et al. (2009a, 2009b)
have presented parallel versions for large factor graphs in shared memory as well as the
distributed memory setting of computer clusters. Unfortunately,

Limitation 1 Loopy belief propagation does not exploit symmetries.

Indeed, for relational models, lifted belief propagation has been proposed that exploits sym-
metries, see e.g. Singla and Domingos (2008). It often renders large, previously intractable
probabilistic inference problems quickly solvable by employing symmetries to handle whole
sets of indistinguishable random variables. However, symmetries are present in abundance
in traditional, non-relational models, too. Moreover, although with the availability of afford-
able commodity hardware and high performance networking, we have increasing access to
computer clusters,



Mach Learn (2013) 92:91–132 93

Ta
bl

e
1

M
ac

hi
ne

le
ar

ni
ng

th
ri

ve
s

on
la

rg
e-

sc
al

e
da

ta
se

ts
an

d
m

od
el

s.
Se

ve
ra

l
ap

pr
oa

ch
es

ha
ve

be
en

de
ve

lo
pe

d
to

sc
al

e
tr

ad
iti

on
al

st
at

is
tic

al
le

ar
ni

ng
su

ch
as

ap
pr

ox
im

at
e

m
es

sa
ge

pa
ss

in
g,

st
oc

ha
st

ic
gr

ad
ie

nt
s,

an
d

M
ap

R
ed

uc
e,

am
on

g
ot

he
rs

(d
en

ot
ed

by
“x

”
if

it
is

m
ai

n
st

re
am

or
by

a
re

pr
es

en
ta

tiv
e

ci
ta

tio
n)

.
Sc

al
in

g
by

lif
tin

g,
i.e

.,
ex

pl
oi

tin
g

sy
m

m
et

ri
es

w
ith

in
th

e
gr

ap
hi

ca
l

m
od

el
st

ru
ct

ur
e,

ho
w

ev
er

,
ha

s
no

t
re

ce
iv

ed
a

lo
t

of
at

te
nt

io
n.

In
th

is
pa

pe
r,

w
e

ai
m

at
cl

os
in

g
th

is
ga

p
(d

en
ot

ed
as

“S
ec

t.”
)

in
or

de
r

to
bo

os
t

cr
os

s-
fe

rt
ili

za
tio

n.
Pl

ea
se

no
te

th
at

th
e

re
fe

re
nc

es
ar

e
na

tu
ra

lly
no

te
xh

au
st

iv
e

bu
tr

ep
re

se
nt

at
iv

es
of

th
e

tw
o

w
or

ld
s

St
at

is
tic

al
L

ea
rn

in
g

St
at

is
tic

al
R

el
at

io
na

lL
ea

rn
in

g

si
ng

le
co

re
on

lin
e

M
ap

R
ed

uc
e

si
ng

le
co

re
on

lin
e

M
ap

R
ed

uc
e

L
oo

py
B

P
st

an
da

rd
x

A
ca

r
et

al
.(

20
08

)
G

on
za

le
z

et
al

.(
20

09
a)

x
de

Sa
lv

o
B

ra
z

et
al

.(
20

09
)

G
on

za
le

z
et

al
.

(2
00

9a
)

lif
te

d
Se

ct
.4

H
ad

iji
et

al
.(

20
11

)
Se

ct
.5

Si
ng

la
an

d
D

om
in

go
s

(2
00

8)
,S

ec
t.

4

N
at

h
an

d
D

om
in

go
s

(2
01

0)
,H

ad
iji

et
al

.(
20

11
)

Se
ct

.5

T
ra

in
in

g
st

an
da

rd
x

x
Z

in
ke

vi
ch

et
al

.(
20

10
)

x
H

uy
nh

an
d

M
oo

ne
y

(2
01

1)
Se

ct
.6

lif
te

d
–

–
–

Se
ct

.6
Se

ct
.6

Se
ct

.7



94 Mach Learn (2013) 92:91–132

Limitation 2 Lifted belief propagation is still carried out on a single core.

That is, there are no inference approaches that exploit both symmetries and MapReduce for
scaling. But even if so, in many if not most situations, training relational models will not
benefit from scalable lifting.

Limitation 3 Symmetries within models easily break since variables become correlated by
virtue of depending asymmetrically on evidence,

so that lifting produces models that are often not far from propositionalized, therefore can-
celing the benefits of lifting for training. And, in relational learning we typically face a single
mega-example (Mihalkova et al. 2007) only, a single large set of inter-connected facts. Con-
sequently, many if not all standard statistical learning methods do not naturally carry over to
the relational case. Consider, for example, stochastic gradient methods. Similar to the per-
ceptron method (Rosenblatt 1962), stochastic gradient approaches update the weight vector
in an online setting. We essentially assume that the training examples are given one at a
time. The algorithms examine the current training example and then update the parameter
vector accordingly. Stochastic gradient approaches often scale sub-linearly with the amount
of training data, making them very attractive for large training data as targeted by statisti-
cal relational learning. Empirically, they are even often found to be more resilient to errors
made when approximating the gradient. Unfortunately, stochastic gradient methods do not
naturally carry over to the relational cases:

Limitation 4 Stochastic gradients coincide with batch gradients in the relational case since
there is only a single mega-example.

Consequently, while there are efficient parallelized gradient approaches such as developed
by Zinkevich et al. (2010) that impose very little I/O overhead and are well suited for a
MapReduce implementation, these have not been used for lifted training.

In this paper, we demonstrate how to overcome all four limitations, that is we fill in most
gaps in Table 1, and thereby move statistical and statistical relational learning closer together
in order to boost cross-fertilization. Specifically, we make the following contributions:

– We introduce lifted loopy belief propagation that exploits symmetries and hence often
scales much better than standard loopy belief propagation. Its underlying idea is rather
simple: group together nodes that are indistinguishable in terms of messages received
and sent given the evidence. The lifted graph is often significantly smaller and can be
used to perform a modified loopy belief propagation yielding the same results as loopy
belief propagation applied to the unlifted graph. This overcomes Limitation 1, and our
experimental results show that considerable efficiency gains are obtainable.

– We present the first MapReduce lifted belief propagation approach. More precisely, we
establish a link between color-passing, the specific way of lifting the graph, and radix
sort, which is well-known to be MapReduce-able. Together with Gonzalez et al. (2009a,
2009b) MapReduce belief propagation approach, this overcomes Limitation 2. Our exper-
imental results show that MapReduced lifting scales much better then single-core lifting.

– We develop the first lifted training approach. More specifically, we shatter a model into
local pieces. In each iteration, we then train the pieces independently and re-combine the
learned parameters from each piece. This breaks long-range dependencies and allows one
to exploit lifting across the local training tasks. Hence, it overcomes Limitation 3.
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– Based on the lifted piece-wise training, we introduce the first online training approach
for relational models that can deal with partially observed training data. The idea is, we
treat (mini-batches of) pieces as training examples and process one piece after the other.
This overcomes Limitation 4. Our experimental results on several datasets demonstrate
that the online training converges to the same quality solution over an order of magnitude
faster than batch learning, simply because it starts optimizing long before having seen
the entire mega-example even once. Moreover, it naturally paves the way to MapReduced
lifted training. Indeed, the way we shatter the full model into pieces greatly effects the
learning quality: important influences between variables might get broken. To overcome
this, we randomly grow relational piece patterns that form trees. Our experimental results
show that tree pieces can balance lifting and quality of the online training.

All experimental results on several datasets together demonstrate that scaling inference and
training can greatly benefit from symmetries.

The present paper is a significant extension of the ECML/PKDD 2012 and the UAI 2009
conference papers (Ahmadi et al. 2012; Kersting et al. 2009). It provides the first coherent
view on lifted inference and training using loopy belief propagation suggesting (piecewise)
symmetries as a novel but promising dimension for scaling statistical machine learning.
It develops the first MapReduce approaches to both tasks by establishing a link between
color-passing and radix sort, which is well-known to be MapReduce-able. Additionally, the
present paper provides a detailed description of the color-passing procedure and the resulting
lifted equations for lifted BP as well as a characterization of the lifting in terms of colored
computation trees (CCTs). Finally, and probably most importantly, it experimentally proves
that exploiting symmetries and MapReduce together can scale much better than exploiting
one of them alone.

We proceed as follows. After touching upon related work, we recap factor graphs, loopy
belief propagation and Markov logic networks, the probabilistic relational framework we
focus on for illustration purposes only. We then show how to scale message-passing infer-
ence in two dimensions, namely by exploiting symmetries and by MapReduce. Then, we
develop stochastic relational gradients that naturally paves the way to MapReduce training.
Each section is concluded by presenting the respective experimental results.

2 Related work

The paper aims at getting mainstream statistical and statistical relational learning closer
together. As argued above, we do so by employing symmetries, MapReduce and stochastic
gradients. Consequently, there are several related lines of research.

Lifted probabilistic inference Employing symmetries in graphical models for speeding up
probabilistic inference, called lifted probabilistic inference, has recently received a lot of
attention, see e.g. Kersting (2012) for an overview. The closest work to our approach for
exploiting symmetries within message passing is the work by Singla and Domingos (2008).
Actually, an investigation of their approach was the seed that grew into our proposal. Singla
and Domingos’ lifted first-order belief propagation (LFOBP) builds upon Jaimovich et al.
(2007) and also groups random variables, i.e., nodes that send and receive identical mes-
sages. Lifted BP, the approach introduced in the present paper, differs from LFOBP on
two important counts. First, lifted BP is conceptually easier than LFOBP. This is because
efficient inference approaches for first-order and relational probabilistic models are typi-
cally rather complex. Second, LFOBP requires as input the specification of the probabilistic
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model in first-order logical format. Only nodes over the same predicate can be grouped to-
gether to form so-called clusternodes. That means LFOBP coincides with standard BP for
propositional MLNs, i.e., MLNs involving propositional variables only. The reason is that
propositions are predicates with arity 0 so that the clusternodes are singletons. Hence, no
nodes and no features are grouped together. In contrast, our lifting can directly be applied to
any factor graph over finite random variables. In this sense, lifted BP is a generalization of
LFOBP.

Sen et al. (2008) presented another “clustered” inference approach based on bisimulation.
Like lifted BP, which can also be viewed as running a bisimulation-like algorithm on the
factor graph, Sen et al.’s approach also does not require a first-order logical specification.
In contrast to lifted BP, it is guaranteed to converge but is also much more complex. Its
efficiency in dynamic relational domains, in which variables easily become correlated over
time by virtue of sharing common influences in the past, is unclear and its evaluation is an
interesting future work.

Others such as Poole (2003), Braz et al. (2005, 2006), Milch et al. (2008), Kisyn-
ski and Poole (2009), Choi et al. (2011) and Taghipour et al. (2012) have developed
lifted versions of the variable elimination (VE) algorithm. They typically also employ
a counting elimination operator that is equivalent to counting indistinguishable random
variables and then summing them out immediately. The different variations of these al-
gorithms improve upon Poole (2003) and Braz et al. (2005, 2006) work by introduc-
ing counting formulas (Milch et al. 2008), aggregation operators (Choi et al. 2011;
Kisynski and Poole 2009) and handling arbitrary constraints (Taghipour et al. 2012). Choi
et al. (2010) developed variable elimination algorithm when the underlying distributions are
continuous random variables. These exact inference approaches are extremely complex, so
far do not easily scale to realistic domains, and hence have only been applied to rather small
artificial problems. Recently, Van den Broeck et al. (2012) proposed a method that relaxes
first-order conditions to perform exact lifted inference on the model and then incrementally
improve the approximation by adding more constraints back into the model. This can be
viewed as bridging the lifted VE and the lifted BP methods presented above. Again, as for
LFOBP, a first-order logical specification of the model is required.

An alternative to BP and VE is to use search-based methods based on recursive condi-
tioning. That is, we decompose by conditioning on parameterized variables a lifted network
into smaller networks that can be solved independently. Each of these subnetworks is then
solved recursively using the same method, until we reach a simple enough network that can
be solved (Darwiche 2001). Recently, several lifted search-based methods have been pro-
posed (Gogate and Domingos 2010, 2011; Van den Broeck et al. 2011; Poole et al. 2011)
that assume a relational model given. Gogate and Domingos (2011) reduced the problem of
lifted probabilistic inference to weighted model counting in a lifted graph. Van den Broeck
et al. (2011) employ circuits in first-order deterministic decomposable negation normal form
to do the same, also for higher order marginals (Van den Broeck and Davis 2012). Both
these approaches were developed in parallel and have promising potential to lifted inference.
There are also sampling methods that employ ideas of lifting. Milch and Russell developed
an MCMC approach where states are only partial descriptions of possible worlds (Milch and
Russell 2006). Zettlemoyer et al. (2007) extended particle filters to a logical setting. Gogate
and Domingos introduced a lifted importance sampling (Gogate and Domingos 2011). Re-
cently, Niepert proposed permutation groups and group theoretical algorithms to represent
and manipulate symmetries in probabilistic models, which can be used for MCMC (Niepert
2012). And Bui et al. (2012) have shown that for MAP inference we can exploit the symme-
tries of the model before evidence is obtained. It is an interesting question whether one can
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characterize these symmetries more precisely. Work on symmetry in exponential families
(Bui et al. 2012) shows that one can create clusternodes using the automorphism group of
the graph, using the notion of orbit partitions. Mladenov et al. (2012) explored color-passing
in the setting of linear programming and showed that symmetries can be found and exploited
in linear programs.

As of today, none of these approaches have been shown to be MapReduce-able. More-
over, many of them have exponential costs in the treewidth of the graph, making them in-
feasible for most real-world applications, and none of them have been used for training
relational models.

Local training Our lifted training approach is related to local training methods well known
for propositional graphical models. Besag (1975) presented a pseudolikelihood (PL) ap-
proach for training an Ising model with a rectangular array of variables. PL, however, tends
to introduce a bias and is not necessarily a good approximation of the true likelihood with
a smaller number of samples. In the limit, however, the maximum pseudolikelihood coin-
cides with that of the true likelihood (Winkler 1995). Hence, it is a very popular method
for training models such as Conditional Random Fields (CRF) where the normalization can
become intractable while PL requires normalizing over only one node. An alternative ap-
proach is to decompose the factor graph into tractable subgraphs (or pieces) that are trained
independently (Sutton and Mccallum 2009), that the present paper also follows. This piece-
wise training can be understood as approximating the exact likelihood using a propagation
algorithm such as BP. Sutton and Mccallum (2009) also combined the two ideas of PL and
piecewise training to propose piecewise pseudolikelihood (PWPL) which in spite of being a
double approximation has the benefit of being accurate like piecewise and scales well due to
the use of PL. Another intuitive approach is to compute approximate marginal distributions
using a global propagation algorithm like BP, and simply substitute the resulting beliefs into
the exact ML gradient (Lee et al. 2007), which will result in approximate partial derivatives.
Similarly, the beliefs can also be used by a sampling method such as MCMC where the true
marginals are approximated by running an MCMC algorithm for a few iterations. Such an
approach is called contrastive divergence (Hinton 2002) and is popular for training CRFs.

Statistical relational learning All the above training methods were originally developed
for propositional data while real-world data is inherently noisy and relational. Statisti-
cal Relational Learning (SRL) (De Raedt et al. 2008; Getoor and Taskar 2007) deals
with uncertainty and relations among objects. The advantage of relational models is that
they can succinctly represent probabilistic dependencies among the attributes of different
related objects leading to a compact representation of learned models. While relational
models are very expressive, learning them is a computationally intensive task. Recently,
there have been some advances in learning SRL models, especially in the case of Markov
Logic Networks (Khot et al. 2011; Kok and Domingos 2009, 2010; Lowd and Domin-
gos 2007). Algorithms based on functional-gradient boosting (Friedman 2001) have been
developed for learning SRL models such as Relational Dependency Networks (Natara-
jan et al. 2012), and Markov Logic Networks (Khot et al. 2011). Piecewise learning has
also been pursued already in SRL. For instance, the work by Richardson and Domingos
(2006) used pseudolikelihood to approximate the joint distribution of MLNs which is in-
spired from the local training methods mentioned above. Though all these methods ex-
hibit good empirical performance, they apply the closed-world assumption, i.e., whatever
is unobserved in the world is considered to be false. They cannot easily deal with miss-
ing information. To do so, algorithms based on classical EM (Dempster et al. 1977) have
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been developed for ProbLog, CP-logic, PRISM, probabilistic relational models, Bayesian
logic programs (Getoor et al. 2002; Gutmann et al. 2011; Kersting and De Raedt 2001;
Sato and Kameya 2001; Thon et al. 2011), among others, as well as gradient-based ap-
proaches for relational models with complex combining rules (Natarajan et al. 2009;
Jaeger 2007). Poon and Domingos (2008) extended the approach of Lowd and Domingos
(2007) which is using a scaled conjugate gradient with preconditioner to handle missing
data. All these approaches, however, assume a batch learning setting; they do not update the
parameters until the entire data has been scanned. In the presence of large amounts of data
such as relational data, the above method can be wasteful. Stochastic gradient methods as
considered in the present paper, on the other hand, are online and scale sub-linearly with the
amount of training data, making them very attractive for large data sets. Only Huynh and
Mooney (2011) have recently studied online training of MLNs. Here, training was posed
as an online max margin optimization problem and a gradient for the dual was derived and
solved using incremental-dual-ascent algorithms. Huynh and Mooney’s approach, however,
is orthogonal to our approach in that they do discriminative learning as opposed to genera-
tive learning in the current paper. Also, they do not employ lifted inference for training and
make the closed-world assumption. It would be interesting to see where the approaches can
complement each other, e.g. by employing parallel lifted max-product belief propagation for
the max margin computation.

Distributed inference and training To scale probabilistic inference and training, Gonzalez
et al. (2009a, 2009b) present algorithms for parallel inference on large factor graphs using
belief propagation in shared memory as well as the distributed memory setting of computer
clusters. Although, Gonzalez et al. report on map-reducing lifted inference within MLNs,
they actually assume the lifted network to be given. We here demonstrate for the first time
that lifting per se is MapReduce-able, thus putting scaling lifted SRL to “Big Data” within
reach. As our experimental results illustrate, we achieve orders of magnitude improvement
over existing methods using our approach. As far as we are aware, the only other method that
has addressed scaling up of SRL algorithms is the work by Niu et al. (2011) that considered
the problem of scaling up ground inference and learning over factor graphs that are multiple
terabytes in size. They achieve these using database technology with two key observations:
First, grounding of the entire SRL model into a factor graph is seen as a RDBMS join that
is realized using distributed RDBMS. Second, they make learning I/O bound by using a
storage manager to run inference efficiently over factor graphs that are larger than main
memory. It remains a very interesting and exciting future work to implement our algorithm
using this database technology.

3 Loopy belief propagation and Markov logic networks

Let X = (X1,X2, . . . ,Xn) be a set of n discrete-valued random variables and let xi represent
the possible realizations of random variable Xi . Graphical models compactly represent a
joint distribution over X as a product of factors (Pearl 1991), i.e.,

P (X = x) = 1

Z

∏

k

fk(xk). (1)

Here, each factor fk is a non-negative function of a subset of the variables xk , and Z is a nor-
malization constant. As long as P (X = x) > 0 for all joint configurations x, the distribution



Mach Learn (2013) 92:91–132 99

Fig. 1 An example for a factor
graph with associated potentials.
Circles denote variables (binary
in this case), squares denote
factors

can be equivalently represented as a log-linear model:

P (X = x) = 1

Z
exp

[∑

i

wi · ϕi(x)

]
, (2)

where the features ϕi(x) are arbitrary functions of (a subset of) the configuration x.
Graphical models can be represented as factor graphs. A factor graph, as shown in Fig. 1,

is a bipartite graph that expresses the factorization structure in Eq. (1). It has a variable node
(denoted as a circle) for each variable Xi , a factor node (denoted as a square) for each fk ,
with an edge connecting variable node i to factor node k if and only if Xi is an argument
of fk . We will consider one factor fi(x) = exp[wi · ϕi(x)] per feature ϕi(x), i.e., we will not
aggregate factors over the same variables into a single factor.

An important inference task is to compute the conditional probability of variables given
the values of some others, the evidence, by summing out the remaining variables. The belief
propagation (BP) algorithm is an efficient way to solve this problem that is exact when the
factor graph is a tree, but only approximate when the factor graph has cycles. One should
note that the problem of computing marginal probability functions is in general hard (#P-
complete).

Belief propagation makes local computations only. It makes use of the graphical structure
such that the marginals can be computed much more efficiently. We will now describe the
BP algorithm in terms of operations on a factor graph. The computed marginal probability
functions will be exact if the factor graph has no cycles, but the BP algorithm is still well-
defined when the factor graph does have cycles. Although this loopy belief propagation has
no guarantees of convergence or of giving the correct result, in practice it often does, and
can be much more efficient than other methods (Murphy et al. 1999).

To define the BP algorithm, we first introduce messages between variable nodes and their
neighboring factor nodes and vice versa. The message from a variable X to a factor f is

μX→f (x) =
∏

h∈nb(X)\{f }
μh→X(x) (3)

where nb(X) is the set of factors X appears in. The message from a factor to a variable is

μf →X(x) =
∑

¬{X}

(
f (x)

∏

Y∈nb(f )\{X}
μY→f (y)

)
(4)

where nb(f ) are the arguments of f , and the sum is over all the values of these except X,
denoted as ¬{X}. The messages are usually initialized to 1.
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Table 2 (Top) Example of Markov logic network inspired by Singla and Domingos (2008). Free variables
are implicitly universally quantified. (Center) Grounding of the MLN for constants Anna and Bob. (Bottom)
Additional clause about similar smoking habits of buddies instead of friends

English First-Order Logic Weight

Smoking causes cancer Smokes(x) ⇒ Cancer(x) 1.5

Friends have similar smoking habits Friends(x,y) ⇒ (Smokes(x) ⇔ Smokes(y)) 2.0

1.5 : Smokes(Anna) ⇒ Cancer(Anna)

1.5 : Smokes(Bob) ⇒ Cancer(Bob)

2.0 : Friends(Anna,Bob) ⇒ (Smokes(Anna) ⇔ Smokes(Bob))

2.0 : Friends(Bob,Anna) ⇒ (Smokes(Bob) ⇔ Smokes(Anna))

English First-Order Logic Weight

Buddies have similar smoking habits Buddies(x,y) ⇒ (Smokes(x) ⇔ Smokes(y)) 2.0

Now, the unnormalized belief of each variable Xi can be computed from the equation

bi(xi) =
∏

f ∈nb(Xi )

μf →Xi
(xi) (5)

Evidence is incorporated by setting f (x) = 0 for states x that are incompatible with it.
Different schedules may be used for message-passing.

Since, loopy belief propagation is efficient, it can directly be used for inference within
statistical relational models that have recently gained attraction within the machine learning
and AI communities. Statistical relational models provide powerful formalisms to compactly
represent complex real-world domains. These formalisms enable us to effectively represent
and tackle large problem instances for which inference and training is increasingly challeng-
ing. One of the most prominent examples of statistical relational models are Markov logic
networks (Richardson and Domingos 2006).

A Markov logic network (MLN) F is defined by a set of first-order formulas (or
clauses) Fi with associated weights wi , i ∈ {1, . . . ,m}. Together with a set of constants
C = {C1,C2, . . . ,Cn} F can be grounded, i.e. the free variables in the predicates of the for-
mulas Fi are bound to be constants in C, to define a Markov network. This ground Markov
network contains a binary node for each possible grounding of each predicate, and a feature
for each grounding fk of each formula. The joint probability distribution of an MLN is given
by

P (X = x) = Z−1 exp

( |F |∑

i=1

θini(x)

)
(6)

where for a given possible world x, i.e. an assignment of all variables X, ni(x) is the number
groundings of the ith formula that evaluate to true and Z is a normalization constant.

An example of a simple Markov Logic network is depicted in Table 2 (top). It consist of
two first order clauses with associated weights. Together with a set of constants, say Anna
and Bob, it can be grounded to the ground clauses depicted in Table 2 (center). This set
of ground clauses now defines a Markov network and in turn a factor graph with binary
variables and factors. Each ground atom, e.g. Smokes(Anna), is represented by a variable
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node in the factor graph and each ground clause is represented by a factor node. There is
an edge between a variable and a factor iff the ground atoms appears in the corresponding
ground clause and fi(x{i}) = eθini (x), where x{i} are the truth values of the variables appearing
in fi , wi the weights of the clause and ni(x) is the truth value of the clause, given the
assignment x. For example, f1(Smokes(Anna) = True,Cancer(Anna) = False) = e1.5∗0 = 1.
For more details we refer to Richardson and Domingos (2006).

4 Scaling up inference: lifted belief propagation

Although already quite efficient, many graphical models produce inference problems with
a lot of additional regularities reflected in the graphical structure but not exploited by BP.
Probabilistic graphical models such as MLNs are prominent examples. As an illustrative
example, reconsider the factor graph in Fig. 1. The associated potentials are identical. In
other words, although the factors involved are different on the surface, they actually share
quite a lot of information. Standard BP cannot make use of this information. In contrast,
lifted BP—which we will introduce now—can make use of it and speed up inference by
orders of magnitude.

Lifted BP performs two steps: Given a factor graph G, it first computes a compressed
factor graph G and then runs a modified BP on G. We will now discuss each step in turn
using fraktur letters such as G, X, and f to denote compressed graphs, nodes, and factors.

Step 1—compressing the factor graph Essentially, we simulate BP keeping track of which
nodes and factors send the same messages, and group nodes and factors together correspond-
ingly.

Let G be a given factor graph with Boolean variable and factor nodes. Initially, all vari-
able nodes fall into three groups (one or two of these may be empty), namely known true,
known false, and unknown. For ease of explanation, we will represent the groups by col-
ored/shaded circles, say, magenta/white, green/gray, and red/black. All factor nodes with the
same associated potentials also fall into one group represented by colored/shaded squares.
For the factor graph in Fig. 1 the situation is depicted in Fig. 2. As shown on the left-
hand side, assuming no evidence, all variable nodes are unknown, i.e., red/black. Now, each
variable node sends a message to its neighboring factor nodes saying “I am of color/shade
red/black”. A factor node sorts the incoming colors/shades into a vector according to the
order of the variables in its arguments. The last entry of the vector is the factor node’s own
color/shade, represented as light blue/gray square in Fig. 2. This color/shade signature is sent
back to the neighboring variables nodes, essentially saying “I have communicated with these

Fig. 2 From left to right, the steps of CFG compressing the factor graph in Fig. 1 assuming no evidence. The
shaded/colored small circles and squares denote the groups and signatures produced running CFG. On the
right-hand side, the resulting compressed factor graph is shown. For details we refer to Sect. 4 (Color figure
online)
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nodes”. To lower communication cost, identical signatures can be replaced by new colors.
The variable nodes stack the incoming signatures together and, hence, form unique signa-
tures of their one-step message history. Variable nodes with the same stacked signatures, i.e.,
message history can now be grouped together. To indicate this, we assign a new color/shade
to each group. In our running example, only variable node B changes its color/shade from
red/black to yellow/gray. The factors are grouped in a similar fashion based on the incoming
color/shade signatures of neighboring nodes. Finally, we iterate the process. As the effect
of the evidence propagates through the factor graph, more groups are created. The process
stops when no new colors/shades are created anymore.

The final compressed factor graph G is constructed by grouping all nodes with the same
color/shade into so-called clusternodes and all factors with the same color/shade signatures
into so-called clusterfactors. In our case, variable nodes A,C and factor nodes f1, f2 are
grouped together, see the right hand side of Fig. 2. Clusternodes (resp. clusterfactors) are
sets of nodes (resp. factors) that send and receive the same messages at each step of carrying
out BP on G. It is clear that they form a partition of the nodes in G.

Algorithm 1 summarizes our approach for computing the compressed factor graph G

Note that, we have to keep track of the position a variable appeared in a factor. Since factors
in general are not commutative, it matters where the node appeared in the factor. Recon-
sider our example from Fig. 1, where f1(A = True,B = False) �= f1(A = False,B = True).
However, in cases where the position of the variables within the factor does not matter, one
can gain additional lifting by neglecting the variable positions in the node signatures and
by sorting the colors within the factors’ signatures. The ordering of the factors in the node
signatures, on the other hand, should always be neglected, thus we perform a sort of the
node color signatures (Algorithm 1, line 15).

The clustering we do here, groups together nodes and factors that are indistinguishable
given the belief propagation computations. To better understand the color-passing and the
resulting grouping of the nodes, it is useful to think of BP and its operations in terms of its
computation tree (CT), see e.g. Ihler et al. (2005). The CT is the unrolling of the (loopy)
graph structure where each level i corresponds to the i-th iteration of message passing.
Similarly we can view color-passing, i.e., the lifting procedure as a colored computation
tree (CCT). More precisely, one considers for every node X the computation tree rooted in X
but now each node in the tree is colored according to the nodes’ initial colors, cf. Fig. 3(a).
For simplicity edge colors are omitted and we assume that the potentials are the same on
all edges. Each CCT encodes the root nodes’ local communication patterns that show all
the colored paths along which node X communicates in the network. Consequently, color-
passing groups nodes with respect to their CCTs: nodes having the same set of rooted paths
of colors (node and factor names neglected) are clustered together. For instance, Fig. 3(b)
shows the CCTs for the nodes X1 to X4. Because their set of paths are the same, X1 and X2

are grouped into one clusternode, X3 and X4 into another.1

Now we can run BP with minor modifications on the compressed factor graph G.

Step 2—BP on the compressed factor graph Recall that the basic idea is to simulate BP
carried out on G on G. An edge from a clusterfactor f to a cluster node X in G essentially
represents multiple edges in G. Let c(f,X,p) be the number of identical messages that
would be sent from the factors in the clusterfactor f to each node in the clusternode X that

1The partitioning of the nodes obtained by color-passing corresponds to the so-called coarsest equitable
partition of the graph (Mladenov et al. 2012). However, a formal characterization of the symmetries is beyond
the scope of the current paper.
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Algorithm 1: CFG—CompressFactorGraph

Data: A factor Graph G with variable nodes X and factors f , Evidence E

Result: Compressed Graph G with clustervariable nodes X and clusterfactor nodes f

Compute initial clusters of the Xis w.r.t. E;1

repeat2

// Form color signature for each factor
foreach factor fk do3

signaturefk
= [ ];4

foreach node Xi ∈ nb(fk) do in order of appearance in fk5

signaturefk
.append(Xi.color);6

signaturefk
.append(fk.color);7

Group together all fks having the same signature;8

Assign each such cluster a unique color;9

Set fk.color correspondingly for all fks;10

// Form color signature for each variable
foreach node Xi ∈ X, i = 1, . . . , n do11

signatureXi
= [ ];12

foreach factor fk ∈ nb(Xi) do13

signatureXi
.append((fk.color,p(Xi, fk)));14

sort signatureXi
according to ordering given by color;15

signatureXi
.append(Xi.color);16

Group together all Xis having the same signature;17

Assign each such cluster a unique color;18

Set Xi.color correspondingly for all Xis;19

until grouping does not change;20

Fig. 3 (a) Original factor graph
with colored nodes. (b) Colored
computation trees for nodes X1
to X4. As one can see, nodes X1
and X2, respectively X3 and X4,
have the same colored
computation tree, thus are
grouped together during
color-passing (Color figure
online)

appears at position p in f if BP was carried out on G. The message from a clustervariable X

to a clusterfactor f at position p is

μX→f,p(x) = μf,p→X(x)c(f,X,p)−1
∏

h∈nb(X)

∏

q∈P(h,X)
(h,q)�=(f,p)

μh,q→X(x)c(h,X,q), (7)

where nb(X) now denotes the neighbor relation in the compressed factor graph G and
P (h,X) denotes the positions nodes from X appear in f. The c(f,X,p) − 1 exponent re-
flects the fact that a clustervariable’s message to a clusterfactor excludes the corresponding
factor’s message to the variable if BP was carried out on G. The message from the factors
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to neighboring variables essentially remains unchanged. The difference is that we now only
send one message per clusternode and position, given by

μf,p→X(x) =
∑

¬{X}

(
f(x)

∏

Y∈nb(f)

∏

q∈P(f,Y)

μY→f,q (y)c(f,Y,q)−δXYδpq

)
, (8)

where δXY and δpq are one iff X = Y and p = q respectively. The unnormalized belief of
Xi , i.e., of any node X in Xi can be computed from the equation

bi(xi) =
∏

f∈nb(Xi )

∏

p∈P(f,Xi)

μf,p→Xi
(xi)

c(f,Xi,p). (9)

Evidence is incorporated either on the ground level by setting f (x) = 0 or on the lifted
level by setting f(x) = 0 for states x that are incompatible with it.2 Again, different schedules
may be used for message-passing. If there is no compression possible in the factor graph,
i.e. there are no symmetries to exploit, there will be only a single position for a variable X in
factor f and the counts c(f,X,1) will be 1. In this case the equations simplify to Eqs. (3)–(5).

To conclude the section, the following theorem states the correctness of lifted BP.

Theorem 1 Given a factor graph G, there exists a unique minimal compressed G factor
graph, and algorithm CFG(G) returns it. Running BP on G using Eqs. (7) and (9) produces
the same results as BP applied to G.

The theorem generalizes the theorem of Singla and Domingos (2008) but can essentially
be proven along the same ways. Although very similar in spirit, lifted BP has one important
advantage: not only can it be applied to first-order and relational probabilistic models, but
also directly to traditional, i.e., propositional models such as Markov networks.

Proof We prove the uniqueness of G by contradiction. Suppose there are two minimal lifted
networks G1 and G2. Then there exists a variable node X that is in clusternode X1 in G1

and in clusternode X2 in G2, X1 �= X2; or similarly for some clusterfactor f. Since all nodes
in X1, and X2 respectively, send and receive the same messages X1 = X2. Following the
definition of clusternodes, any pair of nodes X and Y in G send and receive different mes-
sages, therefore no further grouping is possible. Hence, G is a unique minimal compressed
network.

Now we show that algorithm CFG(G) returns this minimal compressed network. The
following arguments are made for the variable nodes in the graph, but can analogously be
applied to factor nodes. Reconsider the colored computation trees (CCT) which resemble
the paths along which each node communicates in the network. Variables nodes are being
grouped if they send and receive the same messages. Thus nodes X1 and X2 are in they same
clusternode iff they have the same colored computation tree. Unfolding the computation tree
to depth k gives the exact messages that the root node receives after k BP iterations. CFG(G)

finds exactly the similar CCTs. Initially all nodes are colored by the evidence we have, thus
for iteration k = 0 we group all nodes that are similarly colored at the level k in the CCT.
The signatures at iteration k + 1 consist of the signatures at depth k (the nodes own color
in the previous iteration) and the colors of all direct neighbors. That is, at iteration k + 1 all

2Note that, the variables have been grouped according to evidence and their local structure. Thus all factors
within a clusterfactor are indistinguishable and we can set the states of the whole clusterfactor f at once.
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nodes that have a similar CCT up to the (k + 1)-th level are grouped. CFG(G) is iterated
until the grouping does not change. The number of iterations is bounded by the longest
path connecting two nodes in the graph. The proof that modified BP applied to G gives the
same results as BP applied to G also follows from CCTs, Eqs. (7) and (8), and the count
resembling the number of identical messages sent from the nodes in G. �

In contrast to the color-passing procedure, Singla and Domingos (2008) work on the
relational representation and lift the Markov logic network in a top-down fashion. Color-
passing on the other hand starts from the ground network and groups together nodes and
factor bottom-up. While a top-down construction of the lifted network has the advantage
of being more efficient for liftable relational models since the model does not need to be
grounded, a bottom-up construction has the advantage that we do not rely on a relational
model such as Markov logic networks. Color-passing can group ground instances of similar
clauses and atoms even if they are named differently. Reconsider the two clause example
from Table 2 (top). Now, we add the clause from Table 2 (bottom) which has the same
weight as the second clause and is similar in the structure, i.e. it has the same neighbors.
Starting top-down, these two clauses would never be grouped by Singla and Domingos
(2008) whereas color-passing would initially give these clauses the same color. More im-
portantly, as long as we can initially color the nodes and factors, based on the evidence and
the potentials respectively, color-passing is applicable to relational as well as propositional
data such as Boolean formulae shown in the following.

4.1 Evaluation: lifted belief propagation

Our intention here is to investigate the following question:

(Q1) Can we scale inference in graphical models by exploiting symmetries?

To this aim, we implemented lifted belief propagation (LBP) (Ahmadi et al. 2011;
Kersting et al. 2009) in C++ based on libDAI3 with bindings to Python. We will evalu-
ate the gain for inference by presenting significant showcases for the application of lifted
BP, namely approximate inference for dynamic relational models and model counting of
Boolean formulae.

Showing highly impressive lifting ratios for inference is commonly done by restricting
to the classical symmetrical relational models without evidence. The two showcases for
which we demonstrate lifted inference in the following, however, are particularly suited to
not only show the benefits but also the shortcomings of lifted inference. Our first showcase,
dynamic relational domains consists of long chains that destroy the indistinguishability of
variables which might exist in a single time-step. Due to long chains, within and across
time-steps, variables become correlated by virtue of sharing some common influence. The
second showcase, the problem of model counting of Boolean formulae, as we will see later,
is an iterative procedure that repeatedly runs inference. In each iteration new asymmetrical
evidence is introduced and lifted inference is run on the modified model. Both are very
challenging tasks for inference and in particular for lifting. Thus, in this section, we already
address random evidence and randomness in the graphical structure that are major issues for
lifted inference and training, as we will learn in the following sections.

3http://cs.ru.nl/~jorism/libDAI/.

http://cs.ru.nl/~jorism/libDAI/
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Table 3 (Top) Example of a social network Markov logic network inspired by Singla and Domingos (2008).
Free variables are implicitly universally quantified. (Bottom) Dynamic extension of the static social network
model

English First-Order Logic Weight

Most people do not smoke ¬Smokes(x) 1.4

Most people do not have cancer ¬Cancer(x) 2.3

Most people are not friends ¬Friends(x,y) 4.6

Smoking causes cancer Smokes(x) ⇒ Cancer(x) 2.0

Friends have similar smoking
habits

Friends(x,y) ⇒ (Smokes(x) <=> Smokes(y)) 2.0

Apriori most people do not smoke ¬Smokes(x,0) 1.4

Apriori most people do not have
cancer

¬Cancer(x,0) 2.3

A priori most people are not friends ¬Friends(x,y,0) 4.6

Smoking causes cancer Smokes(x,t) ⇒ Cancer(x,t) 2.0

Friends have similar smoking
habits

Friends(x,y,t) ⇒ (Smokes(x,t) <=>

Smokes(y,t))

2.0

Most friends stay friends Friends(x,y,t) ⇔ Friends(x,y,succ(t)) 5.0

Most smokers stay smokers Smokes(x,t) ⇔ Smokes(x,succ(t)) 5.0

Lifted inference in dynamic relational domains Stochastic processes evolving over time
are widespread. The truth values of relations depend on the time step t . For instance, a
smoker may quit smoking tomorrow. Therefore, we extend MLNs by allowing the model-
ing of time. The resulting framework is called dynamic MLNs (DMLNs). Specifically, we
introduce fluents, a special form of predicates whose last argument is time.

Here, we focus on discrete time processes, i.e., the time argument is non-negative integer
valued. Furthermore, we assume a successor function succ(t), which maps the integer
t to t+ 1. There are two kinds of formulas: intra-time and inter-time ones. Intra-time
formulas specify dependencies within a time slice and, hence, do not involve the succ
function. To enforce the Markov assumption, each term in the formula is restricted to at most
one application of the succ function, i.e., terms such as succ(succ(t)) are disallowed.
A dynamic MLN is now a set of weighted intra- and inter-time formulas. Given the domain
constants, in particular the time range 0, . . . , Tmax of interest, a DMLN induces a MLN and
in turn a Markov network over time.

As an example consider the social network DMLN shown in Table 3 (Bottom). The first
three clauses encode the initial distribution at t = 0. The next two clauses are intra-time
clauses that talk about the relationships that exist within a single time-step. They say that
smoking causes cancer and that friends have similar smoking habits. Of course, these are not
hard clauses as with the case of first-order logic. The weights presented in the right column
serve as soft-constraints for the clauses. The last two clauses are the inter-time clause and
talk about friends and smoking habits persisting over time.

Assume that there are two constants Anna and Bob. Let us say that Bob smokes
at time 0 and he is friend with Anna. Then the ground Markov network will have
a clique corresponding to the first two clauses for every time-step starting from 0.
There will also be edges between Smokes(Bob) (correspondingly Anna) and between
Friends(Bob,Anna) for consecutive time-steps.

To perform inference, we could employ any known MLN inference algorithm. Unlike
the case for static MLNs, however, we need approximation even for sparse models: Random
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variables easily become correlated over time by virtue of sharing common influences in the
past.

Classical approaches to perform approximate inference in dynamic Bayesian networks
(DBN) are the Boyen-Koller (BK) algorithm (Boyen and Koller 1998) and Murphy and
Weiss’s factored frontier (FF) algorithm (Murphy and Weiss 2001). Both approaches have
been shown to be equivalent to one iteration of BP but on different graphs (Murphy and
Weiss 2001). BK, however, involves exact inference, which for probabilistic logic models is
extremely complex, so far does not scale to realistic domains, and hence has only been ap-
plied to rather small artificial problems. In contrast, FF is a more aggressive approximation.
It is equivalent to (loopy) BP on the regular factor graph with a forwards-backwards mes-
sage protocol: each node first sends messages from “left” to “right” and then sends messages
from “right” to “left”. Therefore a frontier set is maintained. Starting from time-step t = 0
we first send local messages then messages to the next time-step. A node is included in the
frontier set iff all of its parents, that is all neighbors from time-step t − 1, and its neighbors
from the same time-step are included. Only then it receives a message from its neighbors.
The basic idea of lifted first-order factored frontier (LFF) is to plug in lifted BP in place of
BP in FF. The local structure is replicated for all time-step in the dynamic network. Thus,
the initial coloring of the nodes is the same for all time-steps. However, the communica-
tion patterns of the instantiation from different time-steps are different. Therefore, when we
compress such a dynamic network nodes and factors from different time-steps end up being
in different clusternodes and clusterfactors respectively. To see this, suppose we have a net-
work consisting of a single node over three time-steps Xt , t ∈ {0,1,2}, i.e. a chain of length
three. Initially all nodes get the same color. However, the signatures are different. Node X0

only has a right neighbor, node X1 has two neighbors (left and right) and node X2 has a left
neighbor. The frontier set for the lifted network is still well defined and we can run the lifted
factored frontier algorithm.

We used the social network DMLN in Table 3 (bottom). There were 20 people in the
domain. For fractions r ∈ {0.0,0.25,0.5,0.75,1.0} of people we randomly choose whether
they smoke or not and who 5 of their friends are, and randomly assigned a time step to the
information. Other friendship relations are still assumed to be unknown. Cancer(x,t) is
unknown for all persons x and all time steps. The “observed” people were randomly chosen.
The query predicate was Cancer.

In the first experiment, we investigated the compression ratio between standard FF and
LFF for 10 and 15 time steps. For HMM’s one iteration of the “forwards-backwards” is
guaranteed to give the correct marginals, in loopy graphs, however, more iterations are nec-
essary to propagate local as well as global information. Thus all experiments have been run
to convergence with a threshold of 10−8 maximum of 1000 iterations. Figure 4 (left) shows
the results for 10 time steps. The results for 15 were similar and therefore omitted here. As
one can see, the size of the factor graph as well as the number of messages sent is much
smaller for LFF.

In the second experiment, we compared the “forwards-backwards” message protocol
with the “flooding” protocol, the most widely used and generally best-performing method
for static networks. Using the “flooding” protocol, messages are passed from each variable
to each corresponding factor and back at each iteration. Again, we considered 10 time steps.
The results shown in Fig. 4 (Middle) clearly favor the FB protocol.

For a qualitative comparison, we finally computed the probability estimates for
cancer(A,t) using LFF and MC-SAT, the default inference of the ALCHEMY system.4

4http://alchemy.cs.washington.edu/.

http://alchemy.cs.washington.edu/
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Fig. 4 (Left) Ratios (LFF / FF) of number of edges and messages computed. The lower the value, the greater
the speed-up when using LFF in place of FF. (Middle) Ratios (Forwards-Backwards/Flooding protocol) of
number of messages computed. The lower the value, the greater the speed-up when using the FB protocol in
place of the FL protocol. (Right) Probability estimates for cancer(A,t) over time

For MC-SAT, we used default parameters. There were four persons (A, B, C, and D) and
we observed that A smokes at time step 2. All other relations where unobserved for all time
steps. We expect that the probability of A having cancer has a peak at t = 2 smoothly fading
out over time. Figure 4 (right) shows the results. In contrast to LFF, MC-SAT does not show
the expected behavior. The probabilities drop irrespective of the distance to the observation.

So far Q1 is affirmatively answered. The results clearly show that by lifting we can
exploit symmetries for inference in the graphical model. A compression and thereby a speed-
up, however, is not guaranteed. If there are no symmetries—such as the random 3-CNF in
the next section—lifted BP essentially coincides with BP.

Model counting using (lifted) belief propagation Model counting is the classical problem
of computing the number of solutions of a given propositional formula. It vastly generalizes
the NP-complete problem of propositional satisfiability, and hence is both highly useful
and extremely expensive to solve in practice. Interesting applications include multi-agent
reasoning, adversarial reasoning, and graph coloring, among others.

Our approach, called LBPCOUNT, is based on BPCOUNT for computing a probabilistic
lower bound on the model count of a Boolean formula F , which was introduced by Kroc
et al. (2008). The basic idea is to efficiently obtain a rough estimate of the “marginals”
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of propositional variables using belief propagation with damping. The marginal of variable
u in a set of satisfying assignments of a formula is the fraction of such assignments with
u = true and u = false respectively. If this information is computed accurately enough, it
is sufficient to recursively count the number of solutions of only one of “F with u = true”
and “F with u = false”, and scale the count up accordingly. Kroc et al. have empirically
shown that BPCOUNT can provide good quality bounds in a fraction of the time compared
to previous, sample-based methods.

The basic idea of LBPCOUNT now is to plug in lifted BP in place of BP. However, we
have to be a little bit more cautious: propositional variables can appear at any position in the
clauses. This makes high compression rates unlikely because, for each clusternode (set of
propositional variables) and clusterfeature (set of clauses) combination, we carry a count for
each position the clusternode appears in the clusterfeature. Fortunately, however, we deal
with disjunctions only (assuming the formula f is in CNF). Propositional variables may
appear negated or unnegated in the clauses which is the only distinction we have to make.
Therefore, we can safely assume two positions (negated, unnegated) and besides sorting the
node color signatures we can now also sort the factor color signatures by position. Recon-
sider the example from Fig. 2 and assume that the potentials associated with f1, f2 encode
disjunctions. Indeed, assuming B to be the first argument of f1 does not change the seman-
tics of f1. As our experimental results will show this can result in huge compression rates
and large efficiency gains.

We have implemented (L)BPCOUNT based on SAMPLECOUNT5 using our (L)BP im-
plementation. We ran BPCOUNT and LBPCOUNT on the circuit synthesis problem 2bit-
max_6 with damping factor 0.5 and convergence threshold 10−8. The formula has 192
variables, 766 clauses and a true count of 2.1 × 1029. The resulting factor graph has 192
variable nodes, 766 factor nodes, and 1800 edges.

The statistics of running (L)BPCount are shown in Fig. 5 (left). As one can see, a sig-
nificant improvement in efficiency is achieved when the marginal estimates are computed
using LIFTED BP instead of BP: LIFTED BP reduces the messages sent by 88.7 % when
identifying the first, most balanced variable; in total, it reduces the number of messages sent
by 70.2 %. Both approaches yield the same lower bound of 5.8 × 1028, which is in the same
range as Kroc et al. report. Getting exactly the same lower bound was not possible because
of the randomization inherent to BPCOUNT. Constructing the compressed graph took 9 %
of the total time of LIFTED BP. Overall, LBPCOUNT was about twice as fast as BPCOUNT,
although our LIFTED BP implementation was not optimized.

Unfortunately, such a significant efficiency gain is not always obtainable. We ran BP-
COUNT and LBPCOUNT on the random 3-CNF wff-3-100-150. The formula has 100
variables, 150 clauses and a true count of 1.8 × 1021. Both approaches yield again the same
lower bound, which is in the same range as Kroc et al. report. The statistics of running
(L)BPCount are shown in Fig. 5 (middle). LIFTED BP is not able to compress the factor
graph at all. In turn, it does not gain any efficiency but actually produces a small overhead
due to trying to compress the factor graph and to compute the counts.

In real-world domains, however, there is often a lot of redundancy. As a final experi-
ment, we ran BPCOUNT and LBPCOUNT on the Latin square construction problem ls8-
norm. The formula has 301 variables, 1601 clauses and a true count of 5.4 × 1011. Again,
we got similar estimates as Kroc et al. The statistics of running (L)BPCount are shown in
Fig. 5 (right). In the first iteration, Lifted BP sent only 0.6 % of the number of messages

5www.cs.cornell.edu/~sabhar/#software/.

http://www.cs.cornell.edu/~sabhar/#software/
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Fig. 5 Ratios LBPCOUNT/BPCOUNT between 0.0 and 1.0 of the cumulative sum of edges computed re-
spectively messages sent. A ratio of 1.0 means that LIFTED BP sends exactly as many messages as BP; a
ratio of 0.5 that it sends half as many messages. (Left) 2bitmax_6: Using LIFTED BP saved 88.7 % of the
messages BP sent in the first iteration of LBPCOUNT; in total, it saved 70.2 % of the messages. (Middle)
Random 3-CNF wff-3-100-150: No efficiency gain. The small difference in number of edges is due to a
differently selected proposition due to tie breaking. (Right) ls8-norm: In the first iteration of LBPCOUNT,
using LIFTED BP saved 99.4 % of the messages BP sent. In total, this value dropped to 44.6 %

BP sent. This corresponds to 162 times fewer messages sent than BP. The result on model
counting and lifted inference in dynamic relational domains clearly affirm Q1 and show that
lifted belief propagation can exploit symmetries and thus scale inference.

5 Scaling up inference: MapReduced lifting

Indeed lifted belief propagation as introduced is an attractive avenue to scaling inference.
The empirical evaluation has shown lifting can render large, previously intractable proba-
bilistic inference problems quickly solvable by employing symmetries to handle whole sets
of indistinguishable random variables.

With the availability of affordable commodity hardware and high performance network-
ing, however, we have increasing access to computer clusters providing an additional di-
mension to scale lifted inference. We now show that this is indeed the case. That is, we can
distribute the inference and in particular the color-passing procedure for lifting message-
passing using the MapReduce framework (Dean and Ghemawat 2008).
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The MapReduce programming model allows parallel processing of massive data sets
inspired by the functional programming primitives map and reduce and is basically divided
into these two steps, the Map- and the Reduce-step. In the Map-step the input is taken,
divided into smaller sub-problems and then distributed to all worker nodes. These smaller
sub problems are then solved by the nodes independently in parallel. Alternatively, the sub-
problems can be further distributed to be solved in a hierarchical fashion. In the subsequent
Reduce-step all outputs of the sub-problems are collected and combined to form the output
for the original problem.

If one takes a closer look at color-passing, see Algorithm 1, one notices that each iteration
of color-passing basically consists of three steps, namely

1. Form the colorsignatures
2. Group similar colorsignatures
3. Assign a new color to each group

for the variables and the factors, respectively. We now show how each step can be carried
out within the MapReduce framework.

Algorithm 2: MR-CP: MapReduce Color-passing

repeat1

// Color-passing for the factor nodes
forall f ∈ G do in parallel2

s(f ) = (s(X1), s(X2), . . . , s(Xdf
)), where Xi ∈ nb(f ), i = 1, . . . , df3

Sort all of the signatures s(f ) in parallel using MapReduce;4

Map each signature s(f ) to a new color, s.t. col(s(fi)) = col(s(fj )) iff5

s(fi) = s(fj )

// Color-passing for the variable nodes
forall X ∈ G do in parallel6

s(X) = ((s(f1),p(X,f1)), (s(f2),p(X,f2)), . . . , (s(fdX
),p(X,fdX

))), where7

fi ∈ nb(X), i = 1, . . . , dX and p(X,fi) is the position of X in fi

Sort all of the signatures s(X) in parallel using MapReduce;8

Map each signature s(X) to a new color, s.t. col(s(Xi)) = col(s(Xj )) iff9

s(Xi) = s(Xj )

until grouping does not change;10

The resulting MapReduce color-passing is summarized in Algorithm 2 and has to be re-
peated in each iteration for the factors and the nodes respectively. Specifically, recall that
color-passing is an iterative procedure so that we only need to take care of the direct neigh-
bors in every iteration, i.e. building the colorsignatures for the variables (factors) requires the
variables’ (factors’) own color and the color of the neighboring factors (variables). Step-1
can thus be distributed by splitting the network into k parts and forming the colorsignatures
within each part independently in parallel. However, care has to be taken at the borders of
the splits. Figure 6 shows the factor graph from Fig. 1 and how it can be split into parts for
forming the colorsignatures for the variables (Fig. 6 (left)) and the factors (Fig. 6 (right)).
We see that to be able to correctly pass the colors in this step we have to introduce copynodes
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Fig. 6 The partitions when passing colors to build the signatures for the variables (left) and factors (right)
and the corresponding colorsignatures that have to be sorted. Copynodes (-factors) have to be introduced at
the borders to form the correct neighborhood (Color figure online)

at the borders of the parts.6 In the case of the node signatures, for example (Fig. 6 (left)),
both f1 and f2 have to be duplicated to be present in all signatures of the variables. The
structure of the network does not change during color-passing, only the colors may change
in two subsequent iterations and have to be communicated. To reduce communication cost
we thus split the network into parts before we start the color-passing procedure and use this
partitioning in all iterations.7 The next step that has to be carried out is the sorting of the
signatures of the variables (factors) within the network (Step-2). These signatures consist
of the node’s own color and the colors of the respective neighbors. Figure 6 also shows the
resulting colorsignatures after color-passing in the partitions of the example from Fig. 1. For
each node (Fig. 6 (left)) and factor (Fig. 6 (right)) we obtain the colorsignatures given the
current coloring of the network. These colorsignatures have to be compared and grouped
to find nodes (factors) that have the same one-step communication pattern. Finding similar
signatures by sorting them can be efficiently carried out by using radix sort (Cormen et al.
2001) which has been shown to be MapReduce-able (Zhu et al. 2009). Radix sort is linear
in the number of elements to sort if the length of the keys is fixed and known. It basically
is a non-comparative sorting algorithm that sorts data with grouping keys by the individual
digits which share the same significant position and value. The signatures of our nodes and
factors can be seen as the keys we need to sort and each color in the signatures can be seen
as a digit in our sorting algorithm. Radix sort’s efficiency is O(kn) for n keys which have
k or fewer digits. The close connection of color-passing to radix sort paves the way for an
efficient MapReduce implementation of the lifting procedure.

Indeed, although radix sort is very efficient—the sorting efficiency is in the order of edges
in the ground network—one may wonder whether it is actually well suited for an efficient
implementation of lifting within a concrete MapReduce framework such as Hadoop. The
Hadoop framework performs a sorting between the Map- and the Reduce-step. The key-
value pair that is returned by the mappers has to be grouped and is then sent to the respective
reducers to be processed further. This sorting is realized within Hadoop using an instance
of quick sort with an efficiency O(n logn). If we have a bounded degree of the nodes in the
graph as in our case, however, this limits the length of the signatures and radix sort is still
the algorithm of choice.

6Note that in the shared memory setting this is not necessary. Here we use the MapReduce framework, thus
we have to introduce copynodes.
7Note that how we partition the model greatly affects the efficiency of the lifting. Finding an optimal par-
titioning that balances communication cost and CPU-load, however, is out of the scope of this paper. In
general, the partitioning problem for parallelism is well-studied (Chamberlain 1998), there are efficient tools,
e.g. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/. We show that color-passing is MapReduce-able and
dramatically improves scalability even with a naive partitioning.

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/
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Moreover, our main goal is to illustrate that—in contrast to many other lifting
approaches—color-passing is naturally MapReduce-able. Consequently, for the sake of sim-
plicity, we stick to the Hadoop internal sorting to group our signatures and leave a highly ef-
ficient MapReduce realization for future work. Algorithms 3 and 4 show the map and the re-
duce function respectively. In the map phase we form the signatures of all nodes (factors) in
a split of the graph and return a key-value pair of (s(Xi),Xi) which are the signature and the
id of the node (factor). These are then grouped by the reduce function and a pair (s(L),L)

for all nodes having the same signature, i.e. s(L) = s(Xi) for all Xi ∈ L. In practice one
could gain additional speed-up the if the sorting of Hadoop is avoided, for example by real-
izing a Map-only task using a distributed ordered database like HBase.8 The signatures that
are formed in Step-1 would be written directly into the database as (s(Xi)_Xi,Xi), i.e. for
each node an entry with a key that is composed of the signature and the node’s id is inserted
and the groupings could be found by sequentially reading out the values for the next step.

Algorithm 3: Map Function for Hadoop Sorting

Input: Split S of the network
Output: Signatures of nodes Xi ∈ S as key value pairs (s(Xi),Xi)

forall Xi ∈ S do in parallel1

s(Xi) = (s(f1), s(f2), . . . , s(fdX
)), where fj ∈ nb(Xi), j = 1, . . . , dXi

2

return key-value pairs (s(Xi),Xi)3

Algorithm 4: Reduce Function for Hadoop Sorting

Input: Key-value pairs (s(Xi),Xi)

Output: Signatures with corresponding list of nodes
Form list L of nodes Xi having same signature1

return key-value pairs (s(L),L)2

The Map-phase of (Step-2) could also be integrated into the parallel build of the signa-
tures (Step-1), such that we have one single Map-step for building and sorting the signatures.

Finally, reassigning a new color (Step-3) is an additional linear time operation that does
one pass over the nodes (factors) and assigns a new color to each of the different groups.
That is, we first have to build the color signatures. The splits of the network are the input
and are distributed to the mappers. In the example shown in Fig. 7 there is one line for every
node and its local neighborhood, i.e. ids of the factors it is connected to. The mappers take
this input and form the signatures of the current iteration independently in parallel. These
signatures are then passed on to MapReduce sort. Figure 7 shows the sorting procedure for
the signatures. The mappers in the sorting step, output a tuple of key-value pairs consisting
of the signature and the id of the respective node (Algorithm 3).9 These are then grouped
by the reduce operation, such that all nodes having the same signatures are returned in a list
(Algorithm 4). The internal sorting of the Hadoop framework takes place between the map-
and the reduce-phase, such that the key-value pairs can be sent to the right reducers.

8http://hbase.apache.org/.
9Since this is essentially the output of the previous step that is passed through the two steps can easily be
integrated. We keep them separate for illustration purposes of the two distinct steps of color-passing.

http://hbase.apache.org/
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Fig. 7 MapReduce jobs for Step-1 (left) and Step-2 (right) of color-passing. For building the signatures the
local parts are distributed to the mappers that form the signature based on the colorings of the current iteration.
The output is sorted and for each signature a list of nodes with the same signature is returned (Color figure
online)

Taking the MapReduce arguments for (Step-1) to (Step-3) together this proves that color-
passing itself is MapReduce-able. Together with the MapReduce-able results of Gonzalez et
al. (2009a, 2009b) for the modified belief propagation, this proves the following Theorem.

Theorem 2 Lifted belief propagation is MapReduce-able.

Moreover, we have the following time complexity, which essentially results from running
radix sort h times.

Theorem 3 The runtime complexity of the color-passing algorithm with h iterations is
O(hm), where m is the number of edges in the graph.

Proof Assume that every graph has n nodes (ground atoms) and m edges (ground atom
appearances in ground clauses). Defining the signatures in step 1 for all nodes is an O(m)

operation. The elements of a signature of a factor are s(f ) = (s(X1), s(X2), . . . , s(Xdf
)),

where Xi ∈ nb(f ), i = 1, . . . , df . Now there are two sorts that have to be carried out. The
first sort is within the signatures. We have to sort the colors within a node’s signatures and
in the case where the position in the factor does not matter, we can safely sort the colors
within the factor signatures while compressing the factor graph. Sorting the signatures is an
O(m) operation for all nodes. This efficiency can be achieved by using counting sort, which
is an instance of bucket sort, due to the limited range of the elements of the signatures.
The cardinality of this signature is upper-bounded by n, which means that we can sort all
signatures in O(m) by the following procedure. We assign the elements of all signatures to
their corresponding buckets, recording which signature they came from. By reading through
all buckets in ascending order, we can then extract the sorted signatures for all nodes in
a graph. The runtime is O(m) as there are O(m) elements in the signatures of a graph in
iteration i. The second sorting is that of the resulting signatures to group similar nodes
and factors. This sorting is of time complexity O(m) via radix sort. The label compression
requires one pass over all signatures and their positions, that is O(m). Hence all these steps
result in a total runtime of O(hm) for h iterations. �

5.1 Evaluation: lifting with MapReduce

We have just shown for the first time that lifting per se can be carried out in parallel. Thus,
we can now combine the gains we get from the two orthogonal approaches to scaling infer-
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ence, putting scaling lifted SRL to Big Data within reach. That is, we investigate the second
question:

(Q2) Does the MapReduce lifting additionally improve scalability?

We compare the color-passing procedure with a single-core Python/C++ implementation
and a parallel implementation using MRJob10 and Hadoop.11 We partitioned the network
per node (factor) and introduced copynodes (copyfactors) at the borders. The grouping of
the signatures was found by a MapReduce implementation of Algorithm 3 and Algorithm 4
and mappers and reducers were distributed to four cores. Note that for this experiment the
amount of lifting is not important. Here, we compare how the lifting methods scale. Whether
we achieve lifting or not does not change the runtime of the lifting computations. As The-
orem 3 shows, the runtime of color-passing depends on the number of edges present in the
graph. Thus, we show the time needed for lifting on synthetic grids of varying size to be
able to precisely control their size and the number of edges in the network. Figure 8 shows
the results on grids of varying size. We scaled the grids from 5 × 5 to 500 × 500, result-
ing in networks with 25 to 250,000 variables. The ratio is 1 at the black horizontal line
which indicates that at this point both methods are equal. Figure 8 (left) shows the ratio
of the runtime for single-core color-passing and MapReduce color-passing (MR-CP) using
four cores. We see that due to the overhead of MapReduce the single core methods is faster
for smaller networks. However, as the number of variables grows, this changes rapidly and
MR-CP scales to much larger instances. Figure 8 (right) shows the running time of single-
core color-passing and MapReduce color-passing. One can see that MR-CPs scales orders of
magnitude better than single-core color-passing. The results clearly favor MR-CP for larger
networks and affirmatively answers (Q2)

Fig. 8 (Left) The ratio of the runtime for single-core color-passing and MapReduce color-passing (MR-CP)
on grids of varying size. The ratio is 1 at the black horizontal line which indicates that at this point both
methods are equal. We see that due to the overhead of MapReduce for smaller networks the single core
methods is a few orders of magnitude faster. However, as the number of variables grows, this changes rapidly
and the MR-CP scales to much larger instances. (Right) Runtimes for color-passing and MR-CP. One can
clearly see that MR-CP scales lifting to much larger instances

10https://github.com/Yelp/mrjob.
11http://hadoop.apache.org/.

https://github.com/Yelp/mrjob
http://hadoop.apache.org/
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6 Scaling up training of relational models: lifted online training

Now, we have everything together for scaling up training of relational probabilistic models.
Relational models are a prominent example where symmetries abound since they combine
aspects of first-order logic and probability to encode large, complex models using few prob-
abilistic rules only. The standard parameter learning task for Markov logic networks12 can be
formulated as follows. Given a set of training instances D = {D1,D2, . . . ,DM} each consist-
ing of an assignment to the variables in X, the goal is to output a parameter vector θ speci-
fying a weight for each Fi ∈ F . Typically, however, only a single mega-example (Mihalkova
et al. 2007) is given, a single large set of inter-connected facts. For the sake of simplicity we
will sometimes denote the mega-example simply as E. To train the model, we can seek to
maximize the log-likelihood or equivalently minimize the negative log-likelihood function
− logP (D | θ) given by

�(θ,D) = − 1

M

∑

D

logPθ(X = xDi
). (10)

The likelihood, however, is computationally hard to obtain. A widely-used alternative is to
maximize the pseudo-log-likelihood instead i.e.,

logP ∗(X = x | θ) =
n∑

l=1

logPθ

(
Xl = xl |MBx(Xl)

)
(11)

where MBx(Xl) is the state of the Markov blanket of Xl in the data, i.e. the assignment of all
variables neighboring Xl . In this paper, we minimize the negative log-likelihood (Eq.(10)).
No matter which objective function is used, one typically runs a gradient-descent to train
the model. That is, we start with some initial parameters θ0—typically initialized to be zero
or at random around zero—and update the parameter vector using θt+1 = θt − ηt · gt . Here
gt denotes the gradient of the negative log-likelihood function and is given by:

∂�(θ,D)/∂θk = MEx∼Pθ

[
nk(x)

] − nk(D). (12)

This gradient expression has a particularly intuitive form: the gradient attempts to make the
feature counts in the empirical data equal to their expected counts relative to the learned
model. Note that, to compute the expected feature counts, we must perform inference rela-
tive to the current model. This inference step must be performed at every step of the gradient
process. In the case of partially observed data, we cannot simply read-off the feature counts
in the empirical data and have to perform inference there as well. Consequently, there is
a close interaction between the training approach and the inference method employed for
training such as lifted belief propagation.

When training a relational model for a given set of observations, however, the presence
of evidence on the variables mostly destroys the symmetries. This makes lifted approaches
virtually of no use if the evidence is asymmetric. In the fully observed case, this may not be a
major obstacle since we can simply count how often a clause is true. Unfortunately, in many
real-world domains, the mega-example available is incomplete, i.e., the truth values of some
ground atoms may not be observed. For instance in medical domains, a patient rarely gets

12We develop our lifted training approach within the framework of Markov logic networks for illustration
purposes only. We would like to stress that it naturally carries over to other relational frameworks.
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all of the possible tests. In the presence of missing data, however, the maximum likelihood
estimate typically cannot be written in closed form. It is a numerical optimization problem,
and typically involves nonlinear, iterative optimization and multiple calls to a relational
inference engine as subroutine.

Since efficient lifted inference is troublesome in the presence of partial evidence and
most lifted approaches easily fall back to the ground case, we need to seek a way to make
the learning task tractable. An appealing idea for efficiently training large models is to break
the asymmetries, i.e., to divide the model into pieces that are trained independently and to
exploit symmetries across multiple pieces for lifting.

6.1 Breaking asymmetries: piecewise shattering

In piecewise training, we decompose the mega-example and its corresponding factor graph
into tractable but not necessarily disjoint subgraphs (or pieces) P = {p1, . . . , pk} that are
trained independently (Sutton and McCallum 2009). Intuitively, the pieces turn the single
mega-example into a set of many training examples and hence pave the way for online
training. This is a reasonable idea since in many applications, the local information in each
factor alone is already enough to do well at predicting the outputs. The parameters learned
locally are then used to perform global inference on the whole model.

More formally, at training time, each piece from P = {p1, . . . , pk} has a local likelihood
as if it were a separate graph, i.e., training example and the global likelihood is estimated by
the sum of its pieces: �̂(θ,D) = ∑

pi∈P �(θ |pi
,D|pi

). Here θ |pi
denotes the parameter vector

containing only the parameters appearing in piece pi and D|pi
the evidence for variables

appearing in the current piece pi . The standard piecewise decomposition breaks the model
into a separate piece for each factor. Intuitively, however, this discards dependencies of
the model parameters when we decompose the mega-example into pieces. Although the
piecewise model helps to significantly reduce the cost of training, the way we shatter the full
model into pieces greatly effects the learning and lifting quality. Strong influences between
variables might get broken. Consequently, we next propose a shattering approach that aims
at keeping strong influence but still features lifting.

6.2 Breaking asymmetries: relational tree shattering

Assume that the mega-example has been turned into a single factor graph for performing
inference, cf. Fig. 9(a). Now, starting from each factor, we extract networks of depth d rooted

Fig. 9 Schematic factor-graph depiction of the difference between likelihood (a), standard piecewise (b, c)
and treewise training (d). Likelihood training considers the whole mega-example, i.e., it performs inference
on the complete factor graph induced over the mega-example. Here, circles denote random variables, and
boxes denote factors. Piecewise training normalizes over one factor at a time (b) or higher-order, complete
neighborhoods of a factor (c) taking longer dependencies into account, here shown factors f1 and f3. Tree-
wise training (d) explores the spectrum between (b) and (c) in that it also takes longer dependencies into
account but does not consider complete higher neighborhoods; shown for tree features for factors f1 and f3.
In doing so it balances complexity and accuracy of inference
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Algorithm 5: RELTREEFINDING: Relational Treefinding

Input: Set of clauses F , a mega example E, depth d , and discount t ∈ [0,1]
Output: Set of tree pieces T

// Tree-Pattern Finding
Initialize the dictionary of tree patterns to be empty, i.e., P = ∅;1

for each clause Fi ∈ F do2

Select a random ground instance fj of Fi ;3

Initialize tree pattern for Fi , i.e., Pi = {fj } ;4

// perform random walk in a breadth-first manner
starting in fj

for fk = BFS.next() do5

if current_depth > d then break;6

sample p uniformly from [0,1] ;7

if p > t |Pi | or fkwould induce a cycle then8

skip branch rooted in fk in BFS ;9

else10

add fk to Pi ;11

12

Variabilize Pi and add it to dictionary P;13

14

// Construct tree-based pieces using the relational tree
patterns

for each fj ∈ E do15

Find Pk ∈ P matching fj , i.e., the tree pattern rooted in the clause Fk16

corresponding to factor fj ;
Unify Pk with fj to obtain piece Tj if possible and add Tj to T;17

return T;18

in this factor. A local network of depth d = 0 thus corresponds to the standard piecewise
model as shown in Fig. 9(b), i.e. each factor is isolated in a separate piece. Networks of
depth d = 1 contain the factor in which it is rooted and all of its direct neighbors, Fig. 9(c).
Thus when we perform inference in such local models using say belief propagation (BP)
the messages in the root factor of such a network resemble the BP messages in the global
model up to the d-th iteration. Longer range dependencies are neglected. A small value for d

keeps the pieces small and makes inference and hence training more efficient, while a large
d is more accurate. However, it has a major weakness since pieces of densely connected
networks may contain considerably large subnetworks, rendering the standard piecewise
learning procedure useless.

To overcome this, we now present a shattering approach that randomly grows piece pat-
terns forming trees. Formally, a tree is defined as a set of factors such that for any two factors
f1 and fn in the set, there exists one and only one ordering of (a subset of) factors in the
set f1, f2, . . . , fn such that fi and fi+1 share at least one variable, i.e. there are no loops.
A tree of factors can then be generalized into a tree pattern, i.e., conjunctions of relational
“clauses” by variabilizing their arguments. For every clause of the MLN we thus form a tree
by performing a random walk rooted in one ground instance of that clause. This process can
be viewed as a form of relational pathfinding (Richards and Mooney 1992).
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Table 4 Example of a Markov Logic network about promotions and a resulting raise in income. Grounding
this example leads to the ground model in Fig. 10. Figure 10 also shows the tree shattering for this network

English First-Order Logic Weight

Only one person can be promoted Promotion(x) ⇔!Promotion(y) 2.0

A promotion comes with an increased income Promotion(x) ⇒ HighIncome(x) 1.5

Promotion(x) ⇒!HighIncome(y) 1.1

The relational treefinding is summarized in Algorithm 5. For a given set of Clauses F

and a mega example E the algorithm starts off by constructing a tree pattern for each clause
Fi (lines 1–13). Therefore, it first selects a random ground instance fj (line 3) from where
it grows the tree. Then it performs a breadth-first traversal of the factor’s neighborhood and
samples uniformly whether they are added to the tree or not (line 7). If the sample p is
larger than t |Pi |, where t ∈ [0,1] is a discount threshold and |Pi | the size of the current tree,
or the factor would induce a cycle, the factor and its whole branch are discarded and skipped
in the breadth-first traversal, otherwise it is added to the current tree (lines 8–11). A small
t basically keeps the size of the tree small while larger values for t allow for more factors
being included in the tree. The procedure is carried out to a depth of at most d , and then stops
growing the tree. This is then generalized into a piece-pattern by variablizing its arguments
(line 13). All pieces are now constructed based on these piece patterns. For fj we apply the
pattern Pk of clause Fk which generated the factor (lines 15–18). In case a pattern is not
applicable we apply it to the root clause, which is always possible, and as far down the tree
as we can, sacrificing lifting potential for that particular piece.

These tree-based pieces can balance efficiency and quality of the parameter estimation
well. To see this, consider the MLN in Table 4. It has three rules stating that there is only
one position available and if a person gets promotion the income will be high. Grounding
this example for a domain of two constants Anna and Bob leads to the ground model in
Fig. 10 (left).13 Figure 10 (center) shows the set of clauses that corresponds to the tree
rooted in the factor f3 where green colors show that the factors have been included in
the piece while all red factors have been discarded. The neighborhood of the factor f3

which corresponds to the ground clause “Promotion(Anna) ⇔ !Promotion(Bob)” is
traversed in a breadth-first manner, i.e., first its direct neighbors in random order. Assume
we have reached the clause factor f4 = “Promotion(Bob) ⇒ HighIncome(Bob)” first.
The two ground clauses share the ground atom Promotion(Bob). We uniformly sample
p ∈ [0,1]. It was small enough, e.g. p = 0.3 < 0.91 so f4 is added to the tree. For the ground
clause f2 =“ Promotion(Anna) ⇒ HighIncome(Anna)” we sample p = 0.85 > 0.92

so f2 and all of its branches are discarded. Continuing, for the next ground clause f1 =
“Promotion(Anna) ⇒ HighIncome(Bob)” we sample p = 0.5 < 0.92 so f1 could be
added. If we added f1, however, it would together with f3 and f4 form a cycle, so its
branch is discarded. For f5 = “Promotion(Bob) ⇒ HighIncome(Anna)” we sample
p = 0.4 < 0.92 so it is added to the tree. Note that now we cannot add any more edges
without including cycles. The set of clauses is then variablized, as shown in Fig. 10(right),
to obtain the tree pattern Pk that can be applied to all groundings of the clause the root
originated from. “Promotion(Anna) ⇔ !Promotion(Bob)” was the root clause of the

13In fact grounding the MLN would lead to more factors however for illustration purposes we assume
e.g. “Promotion(Anna) ⇔ !Promotion(Bob)” and “Promotion(Bob) ⇔ !Promotion(Anna)” are
simplified to a single factor.
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tree pattern. Thus if we encounter another ground instance of the same clause, in this case
“Promotion(Bob) ⇔ !Promotion(Anna)”, we find the substitution to apply this pat-
tern, e.g. Pk{X 
→ Bob, Y 
→ Anna}. If the substitution is not unique, for example when we
have more than two co-workers seeking for a promotion, we choose a substitution at ran-
dom. as we can, sacrificing lifting potential for that particular piece. The connectivity of a
piece and thereby its size can be controlled via the discount t . In this way, we include longer
range dependencies in our pieces without sacrificing efficiency. And more importantly, by
forming tree patterns and applying them to all factors we ensure that we have a potentially
high amount of lifting: Since we have decomposed the model into smaller pieces, the influ-
ence of the evidence is limited to a shorter range and hence allows lifting the local models.
Maximum-likelihood learning can be phrased in terms of maximizing the log-partition func-
tion A(θ) of a graphical model, and we can actually use a network decomposed into trees to
maximize an upper bound on A(θ), i.e., we introduce a piecewise approximation of maxi-
mum likelihood training of relational models.

This follows from the convexity of A(θ). To see why this is the case, we first write
the original parameter vector θ as a mixture of parameter vectors θTt induced by the non-
overlapping tractable subgraphs.14 For each edge in our mega-example E, we add a tree Tt

which contains all the original vertices but only the edges present in t . With each tree Tt we
associate an exponential parameter vector θTt . Let μ be a strictly positive probability distri-
bution over the non-overlapping tractable subgraphs of each clause, such that the original
parameter vector θ can be written as a combination of per-tree clause parameter vectors

θ =
∑

F

∑

t∈F

μt,F θTt ,

where we have expressed parameter sharing among the ground instance of the clauses. Now
using Jensen’s inequality, we can state the following upper bound to the log partition func-
tion:

A(θ) = A

(∑

F

∑

t∈F

μt,F θTt

)
= A

(∑

t

μt θTt

)
≤

∑

t

μtA(θTt ) (13)

with μt = ∑
F μt,F . Since the μt,F are convex, the μt are convex, too, and applying Jensen’s

inequality is safe. So we can follow Sutton and Mccallum (2009) arguments. Namely, for
tractable subgraphs and a tractable number of models the right-hand side of (13) can be
computed efficiently. Generally, it forms an optimization problem, which according to Wain-
wright et al. (2002) can be interpreted as free energy and depends on a set of marginals and
edge appearance probabilities, in our case the probability that an edge appears in a tree, i.e.
is visited in the random walk. Also, it is easy to show that standard pieces, i.e. one factor per
piece, are an upper bound to this bound since, we can apply Jensen’s inequality again when
breaking the trees into independent paths from the root to the leaves.

Now, we show how to turn this upper bound into a lifted online training for relational
models.

6.3 Lifted online training via stochastic meta-descent

Stochastic gradient descent algorithms update the weight vector in an online setting. We es-
sentially assume that the pieces are given one at a time. The algorithms examine the current

14The subgraphs produced by Algorithm 5 may overlap. We will show how to account for this in Sect. 6.3.



122 Mach Learn (2013) 92:91–132

piece and then update the parameter vector accordingly. They often scale sub-linearly with
the amount of training data, making them very attractive for large training data as targeted
by statistical relational learning. To reduce variance, we may form mini-batches consisting
of several pieces on which we learn the parameters locally. In contrast to the propositional
case, however, mini-batches have another important advantage: we can now make use of
the symmetries within and across pieces for lifting. The pieces within a mini-batch can be
seen as disconnected parts of a larger network. Now if we perform inference for the whole
mini-batch we naturally exploit the symmetries within each piece and across the pieces in
the mini-batch.

The bound of Eq. (13) holds for tree pieces that partition the graph into disjoint sets of
factors. The relational tree shattering finds a pattern for each clause and applies it to all the
ground instances. To cope for the multiplicity introduced we normalize the gradient by the
number of appearances of a clause. More formally, the gradient in (12) is approximated by

∑

i

#−1
i · ∂�(θ,Di)

∂θk

, (14)

where the mega-example D is broken up into pieces respectively mini-batches of pieces Di .
Here the vector #i denotes a per-clause normalization that counts how often each clause ap-
pears in mini-batch Di and · is the component-wise multiplication. This is a major difference
to the propositional case and avoids “double counting” parameters which otherwise would
be the case when training from the tree pieces due to potential multiplicity of factors. Recall
that we build a piece from every grounding of each clause. During the random walk ground
clauses can be visited repeatedly such that they appear in multiple different pieces. The
normalization by #i accounts for this fact. For example, let gi be a gradient over the mini-
batch Di . For a single piece we count how often a ground instance of each clause appears in
the piece Di . If Di consists of more than one piece we add the count vector of all pieces to-
gether. For example, if for a model with 4 clauses the single piece mini-batch Di has counts
(1,3,0,2) the gradient is normalized by the respective counts. If the mini-batch, however,
has an additional piece with counts (0,2,1,0) we normalize by the sum, i.e. (1,5,1,2).

Since the gradient involves inference per batch only, inference is again feasible and more
importantly liftable as we will show in Sect. 8.1. Consequently, we can scale to problem
instances traditional relational methods can not easily handle. However, the asymptotic con-
vergence of first-order stochastic gradients to the optimum can often be painfully slow if
e.g. the step-size is too small. One is tempted to just employ standard advanced gradient
techniques such as L-BFGS. As the gradient is stochastically approximated by random sub-
samples, the measurements are inherently noisy. This confuses the line searches of conjugate
gradient and quasi-Newton methods as conjugacy of the search direction over multiple it-
erations can not be maintained (Schraudolph and Graepel 2003). Gain adaptation methods
like Stochastic Meta-Descent (SMD) overcome these limitations by using second-order in-
formation to adapt a per-parameter step size (Vishwanathan et al. 2006). However, while
SMD is very efficient in Euclidean spaces, Amari (1998) showed that the parameter space is
actually a Riemannian space of the metric C, the covariance of the gradients. Consequently,
the ordinary gradient does not give the steepest direction of the target function which is
instead given by the natural gradient, that is by C−1g. Intuitively, the natural gradient is
more conservative and does not allow large variances. If the gradients highly disagree in one
direction, one should not take the step. Thus, whenever we have computed a new gradient
gt we integrate its information and update the covariance at time step t by the following
expression:

Ct = γCt−1 + gtg
T
t (15)
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where C0 = 0, and γ is a parameter that controls how much older gradients are discounted.
Now, let each parameter θk have its own step size ηk . We update the parameter by

θ t+1 = θ t − ηt · gt , (16)

where · denotes component-wise multiplication. The gain vector ηt thus serves as a diagonal
conditioner. The vector η containing the individual per-parameter step sizes is adapted with
the meta-gain μ:

ηt+1 = ηt · exp(−μgt+1 · vt+1) ≈ ηt · max

(
1

2
,1 − μgt+1 · vt+1

)
(17)

where v ∈ Θ characterizes the long-term dependence of the system parameters on gain his-
tory. The time scale is determined by the decay factor 0 ≤ λ ≤ 1. The vector v is iteratively
updated by

vt+1 = λvt − η · (gt + λC−1vt

)
. (18)

To ensure a low computational complexity and a good stability of the computations, one can
maintain a low rank approximation of C, see Le Roux et al. (2007) for more details. Us-
ing per-parameter step-sizes considerably accelerates the convergence of stochastic natural
gradient descent.

Algorithm 6: Lifted Online Training of Relational Models

Input: Markov Logic Network M , mega-example E, decay factors t , γ , and λ, initial
step-size η

Output: Parameter vector θ

// Generate mini-batches
Generate set of tree pieces T using RELTREEFINDING;1

Randomly form mini-batches B = {B1, . . . ,Bm} each consisting of l pieces;2

// Perform lifted stochastic meta-descent
Initialize θ and v0 with zeros and the covariance matrix C to the zero matrix;3

while not converged do4

Shuffle mini-batches B randomly;5

for i = 1,2, . . . ,m do6

Compute gradient g for Bi using lifted belief propagation;7

Update covariance matrix C using (15);8

Update parameter vector θ using (16) and the involved equations;9

10

return θ ;11

Putting everything together, we arrive at the lifted online learning for relational models
as summarized in Algorithm 6. We form mini-batches of tree pieces (lines 1–2). After ini-
tialization (line 3), we then perform lifted stochastic meta-descent (lines 4–9). That is, we
randomly select a mini-batch, compute its gradient using lifted inference, and update the
parameter vector. Note that pieces and mini-batches can also be computed on the fly and
thus their construction be interweaved with the parameter update. We iterate these steps un-
til convergence, e.g. by considering the change of the parameter vector in the last l steps. If



124 Mach Learn (2013) 92:91–132

the change is small enough, we consider it as evidence of convergence. To simplify things,
we may also simply fix the number of times we cycle through all mini-batches. This also
allows to compare different methods.

7 Scaling up training of relational models: MapReduced stochastic gradient

So far, we have shown how the model can be shattered into smaller pieces to efficiently
learn the parameters. This shattering makes training large models tractable and improves
on the speed of the convergence, as we will show in the experimental section. Even more
importantly, as each lifted piece is processed one after the other it naturally paves the way
for a MapReduce approach. The gradients of the shattered pieces can be computed locally in
a distributed fashion which in turn allows a MapReduce friendly parallel approach without
bandwidth constrains and considerable latency, see e.g. Zinkevich et al. (2010), Langford
et al. (2009). This proves the following theorem.

Theorem 4 Lifted approximate training of relational models is MapReduce-able.

Now, we have everything together to investigate scalable lifted inference and training.

8 Scalable lifted inference and training: experimental evaluation

Our intention here is to investigate the following questions:

(Q3) Does piecewise lifted inference help in non-symmetric cases?
(Q4) Can we efficiently train relational models using stochastic gradients?
(Q5) Are there symmetries within mini-batches that result in lifting?
(Q6) Can relational treefinding produce pieces that balance accuracy and lifting well?
(Q7) Is it even possible to achieve one-pass relational training?

To this aim, we implemented lifted online learning for relational models in Python and
C++. As a batch learning reference, we used scaled conjugate gradient (SCG) (Møller
1993). SCG chooses the search direction and the step size by using information from the
second order approximation. For inference we used our lifted belief propagation (LBP) (Ah-
madi et al. 2011; Kersting et al. 2009) implementation. Inference as a subroutine for the
training methods was also carried out by LBP to convergence with a threshold of 10−8 max-
imum of 1000 iterations.

For the evaluation of the training approaches, we computed the conditional marginal log-
likelihood (CMLL) (Lee et al. 2007), which is defined with respect to marginal probabilities.
More precisely, we first divide the variables into two groups: Xhidden and Xobserved . Then, we
compute

CMLL =
∑

X∈Xhidden

logP (X|Xobserved) (19)

for the given mega-example. To stabilize the metric, we divided the variables into four
groups and calculated the average CMLL when observing only one group and hiding the
rest. Instead of the global log-partition function it is defined in terms of the marginal prob-
abilities. CMLL measures the ability to predict each variable separately. All experiments
were conducted on a single machine with 2.4 GHz and 64 GB of RAM.
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Fig. 11 Lifting Ratio for CORA entity resolution MLN with varying amount of evidence. Although there is
some lifting initially for LBP, with a certain amount of evidence lifted belief propagation is basically ground.
Piecewise lifted inference, on the other hand, achieves networks that are orders of magnitude smaller than
standard lifting. The trees keep some dependencies compared to the standard pieces and still manage to
achieve compression for LBP

8.1 Lifted piecewise inference (Q3)

The experiments in the previous sections have shown that we can considerably speed up
inference by lifting. However, in cases where there are no symmetries or symmetries are
broken by asymmetric evidence we do not gain and lifted belief propagation basically falls
back to the propositional case. This is the case when naively applying lifted inference to
the training of relational models. An appealing idea for such situations is to run inference
locally. By breaking the model into pieces the influence is limited and we can gain significant
lifting of the model. Figure 11 shows the results for the Cora entity resolution MLN, which
we will also train later in Sect. 8.4. We sampled 10 bibliography entries and extracted all
facts corresponding to these bibliography entries. Then we varied the amount of evidence on
the facts. One can see that lifted BP achieves some compression at the beginning. However,
with a certain amount of evidence lifted belief propagation is basically ground and achieves
very little compression. Piecewise lifted inference, on the other hand, achieves networks
that are orders of magnitude smaller compared to standard lifting. However, by shattering
the model into pieces all dependencies are broken. Tree-pieces balance this trade-off. The
trees keep some dependencies and still manage to achieve compression for LBP. As we will
see in the training experiments in Sect. 8 these additional dependencies will help to train
the model faster. Lifted Piecewise inference clearly enables lifting in non-symmetric cases
where standard lifting fails.

8.2 Training of friends-and-smokers MLN (Q4, Q5)

In our first training experiment we learned the parameters for the “Friends-and-Smokers”
MLN (Singla and Domingos 2008), which basically defines rules about the smoking be-
havior of people, how the friendship of two people influences whether a person smokes or
not, and that a person is more likely to get cancer if he smokes. The “Friends-and-Smokers”
MLN, however, is an oversimplification of the effects and rich interactions in social net-
works. Thus we enriched the network by adding two clauses: if someone is stressed he is
more likely to smoke and people having cancer should get medical treatment. For a given
set of parameters we sampled 5 datasets from the joint distribution of the MLN with 10 per-
sons. For each dataset we learned the parameters on this dataset and evaluated on the other
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Fig. 12 “Passes over mega-example” vs. Test-CMLL for the Friends-and-Smokers (left) (the higher the
better). Lifted online learning has already learned before seeing the mega example even once (dashed vertical
line). (Right) Benefit of local training for lifting. Lifting ratio for varying mini-batch size versus the full batch
model on the Friends-and-Smokers MLN. Clearly for a batch size of 1 there is no lifting but with larger
mini-batch sizes there is more potential to lift the pieces within each batch; the size can be an order of
magnitude smaller (Color figure online)

four. The ground network of this MLN contains 380 factors and 140 variables. The batch
size was 10 and we used a stepsize of 0.2. Other parameters for SMD were chosen to be
λ = .99, μ = 0.1, and γ the discount for older gradients as 0.9. Figure 12 (left) shows the
CMLL averaged over all of the 5 folds.

As one can see, the lifted SMD using single factor pieces has a steep learning curve and
has already learned the parameters before seeing the mega example even once (indicated by
the dashed vertical line). Note that we learned the models without stopping criterion and for
a fixed number of passes over the data thus the CMLL on the test data can decrease. SCG
on the other hand requires four passes over the entire training data to have a similar result
in terms of CMLL. Thus Q4 can be answered affirmatively. Moreover, as Fig. 12 (right)
shows, piecewise learning greatly increases the lifting compared to batch learning, which
essentially does not feature lifting at all. Thus, Q5 can be answered affirmatively.

8.3 Voting MLN (Q5)

To investigate whether tree pieces although more complex can still yield lifting, we con-
sidered the Voting MLN from the Alchemy repository. The network contains 3230 factors
and 3230 variables. Note that it is a propositional Naive Bayes (NB) model. Hence, depth 0
pieces will yield greater lifting but hamper information flow among attributes if the class
variable is unobserved. Tree pieces intuitively couple depth 0 hence will indeed yield lower
lifting ratios. However, with larger mini-batches they should still yield higher lifting than the
batch case. This is confirmed by the experimental results summarized in Fig. 13 (left) that
shows the lifting ratio for standard pieces vs. tree pieces with depth d = 1 with a threshold
of t = 0.9. Thus, (Q5) can be answered affirmatively.

8.4 Training of CORA entity resolution MLN (Q6, Q7)

Here we learned the parameters for the Cora entity resolution MLN,15 one of the standard
datasets for relational learning. In the current paper, however, it is used in a non-standard,

15http://alchemy.cs.washington.edu/.

http://alchemy.cs.washington.edu/
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Fig. 13 Experimental results. (Left) Lifting ratio for standard pieces vs. tree pieces on the Voting MLN. Due
to rejoining of pieces, additional symmetries are broken and the lifting potential is smaller. However, the
sizes of the models per mini-batch still gradually decrease with larger mini-batch sizes. (Right) “passes over
mega-example” vs. Test-CMLL for the CORA MLN (the higher the better) (Color figure online)

more challenging setting. For a set of bibliography entries (papers) the Cora MLN has facts,
e.g., about word appearances in the titles and in author names, the venue a paper appeared
in, its title, etc. The task is now to infer whether two entries in the bibliography denote the
same paper (predicate samePaper), two venues are the same (sameVenue), two titles are
the same (sameTitle), and whether two authors are the same (sameAuthor). We sampled 20
bibliography entries and extracted all facts corresponding to these bibliography entries. We
constructed five folds then trained on four folds and tested on the fifth. The mega-example
E is composed of the four folds we train on. We employed a transductive learning setting
for this task. The MLN was parsed with all facts for the bibliography entries from the five
folds, i.e., the queries were hidden for the test fold. The query consisted of all four predicates
(sameAuthor, samePaper, sameBib, sameVenue). The resulting ground network consisted of
36,390 factors and 11,181 variables. We learned the parameters using SCG, lifted stochastic
meta-descent with standard pieces as well as pieces using relational treefinding with a depth
d of 1 and a threshold t of 0.9. The trees consisted of around ten factors on average. So we
updated with a batch size of 100 for the trees and 1000 for standard pieces with a stepsize
of 0.05. Furthermore, other parameters were chosen to be λ = .99, μ = 0.9, and γ = 0.9.
Figure 13 (right) shows the averaged learning results for this entity resolution task. Again,
online training does not need to see the whole mega-example; it has learned long before
finishing one pass over the entire data. Thus, (Q6) can be answered affirmatively.

Moreover, Fig. 13 also shows that by building tree pieces one can considerably speed-up
the learning process. They convey a lot of additional information such that one obtains a
better solution with a smaller amount of data. This is due to the fact that the Cora dataset
contains a lot of strong dependencies which are all broken if we form one piece per factor.
The trees on the other hand preserve parts of the local structure which significantly helps
during learning. Thus, (Q7) can be answered affirmatively.

8.5 Lifted imitation learning in the Wumpus domain (Q6, Q7)

To further investigate (Q6) and (Q7), we considered imitation learning in a relational domain
for a Partially Observed Markov Decision Process (POMDP). We created a simple version
of the Wumpus task (Russell and Norvig 2003) where the location of Wumpus is partially
observed. We used a 5×5 grid with a Wumpus placed in a random location in every training
trajectory. The Wumpus is always surrounded by stench on all four sides. We do not have
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Fig. 14 Experimental results for the Wumpus MLN. (Left) “number of batches” vs. Test-CMLL (the higher
the better). (Right) Runtime vs. CMLL. As one can see, lifted online learning has already converged before
seeing the mega example even once (black vertical line). For the Wumpus MLN, SCG did not converge within
72 hours (Color figure online)

any pits or breezes in our task. The agent can perform 8 possible actions: 4 move actions
in each direction and 4 shoot actions in each direction. The agent’s task is to move to a cell
so that he can fire an arrow to kill the Wumpus. The Wumpus is not observed in all the
trajectories although the stench is always observed. Trajectories were created by real human
users who play the game.

The cells of the 5×5 grid were numbered and we use predicates like cellAtRow(cell, row)
and cellAbove(cell, cell) to define the structure of the grid and were the cell is located. These
facts were always given. Other predicates were wumpus(cell), stench(cell), agent(cell, t ) and
actions move/shoot for all for directions, e.g. shootUp(t). The rules we learn the weights for
describe the state or whether an action should be performed. Two examples of such rules
are:

w1: stench(scell) ∧ cellAbove(scell,wcell) => wumpus(wcell)
w2: wumpus(wcell) ∧ agent(acell, t) ∧ cellCol(acell,acol) ∧ cellCol(wcell,wcol)

∧ less(acol,wcol) => shootRight(t)

The resulting network contains 182400 factors and 4469 variables. We updated with
a batch size of 200 for the trees (depth d = 0, threshold t = 0.9) and 2000 for standard
pieces with a stepsize of 0.05. As for the Cora dataset used λ = .99, μ = 0.9, and γ = 0.9.
Figure 14 shows the result on this dataset for lifted SMD with standard pieces as well as
pieces using relational treefinding with a threshold t of 0.9. For this task, SCG did not
converge within 72 hours. Note that this particular network has a complex structure with lots
of edges and large clauses. This makes inference on the global model intractable. Figure 14
shows the learning curve as a function of the total number of batches seen (left) as well as
the runtime (right) for one pass over the data. As one can see, tree pieces actually yield faster
convergence, again long before having seen the dataset even once. Thus, (Q6) and (Q7) can
be answered affirmatively.

Taking all experimental results together, all questions Q1–Q7 can be clearly answered
affirmatively.

9 Conclusions

Symmetries can be found almost everywhere, in arabesques and French gardens, in the rose
windows and vaults in Gothic cathedrals, in the meter, rhythm, and melody of music, in the
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metrical and rhyme schemes of poetry as well as in the patterns of steps when dancing. Sym-
metric faces are even said to be more beautiful to humans. Actually, symmetry is both a con-
ceptual and a perceptual notion often associated with beauty-related judgments (Zaidel and
Hessamian 2010). Or, to quote Hermann Weyl “Beauty is bound up with symmetry” (Weyl
1952). This link between symmetry and beauty is often made by scientists. In physics, for
instance, symmetry is linked to beauty in that symmetry describes the invariants of nature,
which, if discerned, could reveal the fundamental, true physical reality (Zaidel and Hes-
samian 2010). In mathematics, as Herr and Bödi note, “we expect objects with many symme-
tries to be uniform and regular, thus not too complicated” (Herr and Bödi 2010). Therefore,
it is not surprising that symmetries have also been explored in many AI tasks. For instance,
there are symmetry-aware approaches in (mixed-)integer programming (Bödi et al. 2011;
Margot 2010), linear programming (Herr and Bödi 2010; Mladenov et al. 2012), SAT
and CSP (Sellmann and Van Hentenryck 2005) as well as MDPs (Dean and Givan 1997;
Ravindran and Barto 2001).

Surprisingly, however, symmetries have not been the subject of great interest within sta-
tistical learning. In this paper, we have shown that scaling inference and relational training
of graphical models can actually greatly benefit from symmetries. We have introduced lifted
belief propagation and shown that lifting is MapReduce-able. However, already in 1848,
Louis Pasteur recognized “Life as manifested to us is a function of the asymmetry of the
universe”. This remark characterizes somehow one of the main challenges we are facing:
Not only are almost all large graphs asymmetric (Erdös and Rényi 1963), but even if there
are symmetries within a model, they easily break when it comes to inference and training
since variables become correlated by virtue of depending asymmetrically on evidence. This,
however, does not mean that lifted inference and training is hopeless. We have demonstrated
that breaking long-term dependencies via piece-wise inference and training naturally breaks
asymmetries and paves the way to lifted online respectively MapReduced relational training.

The symmetry-aware framework for learning outlined in the present paper puts many
interesting research goals into reach. For instance, one should tackle one-pass relational
learning by investigating different ways of gain adaption and scheduling of pieces for up-
dates. Since piecewise training is a simple form of dual decomposition, further exploration
of dual decomposition methods is an attractive future direction. One should also investigate
budget constraints on both the number of examples and the computation time per iteration.
Another interesting avenue for future work is to use sequences of increasingly finer ap-
proximations to control the trade-off between lifting and accuracy (Kiddon and Domingos
2011). Besides belief propagation, lifted message passing approaches have been introduced
for Gaussian belief propagation (Ahmadi et al. 2011), warning propagation and survey prop-
agation (Hadiji et al. 2011). The definition of an abstract lifted message passing framework
that unifies these and other message passing algorithms remains to be done and is very in-
teresting future work. Finally, one should start investigating symmetries in general machine
learning approaches such as support-vector machines and Gaussian processes. So, while
there have been considerable advances, there are more than enough problems, in particular
asymmetric ones, to go around to really establish symmetry-aware machine learning.
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