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Abstract Conformal predictors are set predictors that are automatically valid in the sense
of having coverage probability equal to or exceeding a given confidence level. Inductive
conformal predictors are a computationally efficient version of conformal predictors satis-
fying the same property of validity. However, inductive conformal predictors have only been
known to control unconditional coverage probability. This paper explores various versions
of conditional validity and various ways to achieve them using inductive conformal predic-
tors and their modifications. In particular, it discusses a convenient expression of one of the
modifications in terms of ROC curves.

Keywords Inductive conformal predictors · Conditional validity · Batch mode of
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1 Introduction

This paper continues study of the method of conformal prediction, introduced in Vovk et al.
(1999) and Saunders et al. (1999) and further developed in Vovk et al. (2005). An advantage
of the method is that its predictions (which are set rather than point predictions) automati-
cally satisfy a finite-sample property of validity. Its disadvantage is its relative computational
inefficiency in many situations. A modification of conformal predictors, called inductive
conformal predictors was proposed in Papadopoulos et al. (2002a, 2002b) with the purpose
of improving on the computational efficiency of conformal predictors. For further informa-
tion on conformal predictors and inductive conformal predictors see, e.g., Balasubramanian
et al. (2013) and Papadopoulos et al. (2013).
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Fig. 1 Eight notions of conditional validity. The visible vertices of the cube are U (unconditional), T (train-
ing conditional), O (object conditional), L (label conditional), OL (example conditional), TL (training and
label conditional), TO (training and object conditional). The invisible vertex is TOL (and corresponds to
conditioning on everything)

Most of the literature on conformal prediction studies the behavior of set predictors in
the online mode of prediction, perhaps because the property of validity can be stated in an
especially strong form in the on-line mode (as first shown in Vovk 2002). The online mode,
however, is much less popular in applications of machine learning than the batch mode of
prediction. This paper follows the recent papers by Lei et al. (2013) and Lei and Wasserman
(2013) studying properties of conformal prediction in the batch mode; we, however, concen-
trate on inductive conformal prediction. The performance of inductive conformal predictors
in the batch mode is illustrated using the well-known Spambase data set; for earlier em-
pirical studies of conformal prediction in the batch mode see, e.g., Vanderlooy et al. (2007).

We will usually be making the assumption of randomness, which is standard in machine
learning and nonparametric statistics: the available data is a sequence of examples generated
independently from the same probability distribution Q. (In some cases we will make the
weaker assumption of exchangeability; for some of our results even weaker assumptions,
such as conditional randomness or exchangeability, would have been sufficient.) Each ex-
ample consists of two components: an object and a label. We are given a training set of
examples and a new object, and our goal is to predict the label of the new object. (If we have
a whole test set of new objects, we can apply the procedure for predicting one new label to
each of the objects in the test set.)

The two desiderata for inductive conformal predictors are their validity and efficiency:
validity requires that the coverage probability of the prediction sets should be at least equal
to a preset confidence level, and efficiency requires that the prediction sets should be as
small as possible. However, there is a wide variety of notions of validity, since the “coverage
probability” is, in general, conditional probability. The simplest case is where we condition
on the trivial σ -algebra, i.e., the probability is in fact unconditional probability, but several
other notions of conditional validity are depicted in Fig. 1, where T refers to conditioning on
the training set, O to conditioning on the test object, and L to conditioning on the test label.
The arrows in Fig. 1 lead from stronger to weaker notions of conditional validity; U is the
sink and TOL is the source (the latter is not shown).

Inductive conformal predictors (slightly generalized as compared with the standard ver-
sion) will be defined in Sect. 2. They are automatically valid, in the sense of unconditional
validity. It should be said that, in general, the unconditional error probability is easier to
deal with than conditional error probabilities; e.g., the standard statistical methods of cross-
validation and bootstrap provide decent estimates of the unconditional error probability
but poor estimates for the training conditional error probability: see Hastie et al. (2009),
Sect. 7.12.
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In Sect. 3 we explore training conditional validity of inductive conformal predictors. Our
simple results (Theorem 1 and Corollaries 1 and 2) are of the PAC type, involving two pa-
rameters: the target training conditional coverage probability 1 − ε and the probability 1 − δ

with which 1 − ε is attained. They show that inductive conformal predictors achieve train-
ing conditional validity automatically (whereas for other notions of conditional validity the
method has to be modified). We give a self-contained proof of Theorem 1, but Appendix A
explains how its significant part can be deduced from classical results about tolerance re-
gions.

In the following section, Sect. 4, we introduce a conditional version of inductive confor-
mal predictors and explain, in particular, how it achieves label conditional validity. Label
conditional validity is important as it allows the learner to control the set-prediction ana-
logues of false positive and false negative rates. Section 5 is about object conditional va-
lidity and its main result (a version of a lemma in Lei and Wasserman 2013) is negative:
precise object conditional validity cannot be achieved in a useful way unless the test object
has a positive probability. Whereas precise object conditional validity is usually not achiev-
able, we should aim for approximate and asymptotic object conditional validity when given
enough data (cf. Lei and Wasserman 2013).

Section 6 reports on the results of empirical studies for the standard Spambase data
set (see, e.g., Hastie et al. 2009, Chap. 1, Example 1, and Sect. 9.1.2). Section 7 discusses
close connections between an important class of label conditional ICPs and ROC curves.
Section 8 concludes the main part of the paper, and two appendixes are devoted to related
approaches to set prediction. Appendix A discusses connections with the classical theory
of tolerance regions (in particular, it explains how part of Theorem 1 can be deduced from
classical results about the training conditional validity of tolerance regions). Appendix B
discusses training conditional validity of conformal predictors.

2 Inductive conformal predictors

The example space will be denoted Z; it is the Cartesian product X × Y of two measurable
spaces, the object space X and the label space Y. In other words, each example z ∈ Z con-
sists of two components: z = (x, y), where x ∈ X is its object and y ∈ Y is its label. Two
important special cases are the problem of classification, where Y is a finite set (equipped
with the discrete σ -algebra), and the problem of regression, where Y is the real line R.

Various predictors defined and discussed in this paper are randomized: they depend, in
addition to the data, on an element ω ∈ Ω̄ of a measurable space Ω̄ equipped with a prob-
ability distribution R (the “coin-tossing” distribution). This is important to cover various
predictors based on the MART procedure, which is randomized and used in our computa-
tional experiments in Sect. 6.

Let (z1, . . . , zl) be the training set, zi = (xi, yi) ∈ Z. We split it into two parts, the proper
training set (z1, . . . , zm) of size m < l and the calibration set of size n := l−m. An inductive
conformity m-measure is a measurable function A : Zm × Z × Ω̄ → R; the idea behind the
conformity score A((z1, . . . , zm), z,ω) is that it should measure how well z conforms to the
proper training set. We omit “m-” when it is clear from the context. A standard choice of an
inductive conformity measure is

A
(
(z1, . . . , zm), (x, y),ω

) := Δ
(
y,f (x)

)
, (1)

where f : X → Y′ is a prediction rule found (perhaps using a randomized procedure) from
(z1, . . . , zm) as the training set and Δ : Y × Y′ → R is a measure of similarity between a



352 Mach Learn (2013) 92:349–376

label and a prediction. Allowing Y′ to be different from Y (often Y′ ⊃ Y) may be useful
when the underlying prediction method gives additional information to the predicted label;
e.g., the MART procedure used in Sect. 6 gives the logit of the predicted probability that the
label is 1.

Remark 1 The idea behind the term “calibration set” is that this set allows us to calibrate
the conformity scores of test examples by translating them into a probability-type scale.

The inductive conformal predictor (ICP) corresponding to A is defined as the set predic-
tor

Γ ε(z1, . . . , zl, x,ω) := {
y | py > ε

}
, (2)

where ε ∈ (0,1) is the chosen significance level (1 − ε is known as the confidence level), the
p-values py , y ∈ Y, are defined by

py := |{i = m + 1, . . . , l | αi ≤ αy}| + 1

l − m + 1
, (3)

and

αi := A
(
(z1, . . . , zm), zi,ω

)
, i = m + 1, . . . , l,

αy := A
(
(z1, . . . , zm), (x, y),ω

)
(4)

are the conformity scores. Given the training set and a new object x the ICP predicts its label
y; it makes an error if y /∈ Γ ε(z1, . . . , zl, x,ω). All predictors considered in this paper are
randomized, and so we omit the word “randomized”.

We consider a canonical probability space Δ whose elements are all possible sequences
zi = (xi, yi), i = 1, . . . , l + 1, of l + 1 examples and which is equipped with a probabil-
ity distribution P . Random variables Zi = (Xi, Yi), i = 1, . . . , l + 1, are projections of this
probability space onto its ith coordinate: Zi(z1, . . . , zl+1) := zi , Xi(z1, . . . , zl+1) := xi , and
Yi(z1, . . . , zl+1) := yi . We often let xi , yi , and zi stand for realizations of the random vari-
ables Xi , Yi , and Zi , respectively. Our overall probability space is Δ × Ω̄ × [0,1], and it
is equipped with the product measure P × R × U , where R is the coin-tossing distribution
mentioned above and U is the uniform probability distribution on [0,1] (we will need U in
the definition of “smoothed” ICP below). The generic element of Δ × Ω̄ × [0,1] will usu-
ally be denoted (z1, . . . , zl+1,ω, θ), and the projections onto the last two components will be
denoted Ω(z1, . . . , zl+1,ω, θ) := ω and Θ(z1, . . . , zl+1,ω, θ) := θ ; Zi will also be regarded
as random variables on the overall probability space that ignore the last two coordinates.
In cases where θ is irrelevant we will also consider the probability space Δ × Ω̄ equipped
with the probability distribution P × R. It will always be clear from the context which of
the three probability spaces we are talking about.

Smoothed inductive conformal predictors are defined as ICPs except that (3) is replaced
by

py := |{i = m + 1, . . . , l | αi < αy}| + θ(|{i = m + 1, . . . , l | αi = αy}| + 1)

l − m + 1
; (5)

therefore, Γ ε now depends on θ as well (remember that θ stands for values taken by the
random variable Θ distributed uniformly on [0,1]).
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Remark 2 The smoothed inductive conformal predictors defined in this section are more
general than the corresponding smoothed predictors considered in Vovk et al. (2005): the
former involve not only the tie-breaking random variable Θ but also randomized conformity
measures. However, this generalization is straightforward: we get it essentially for free.

Proposition 1 (Vovk et al. 2005, Proposition 4.1) Let random examples Zm+1, . . . ,Zl,

Zl+1 = (Xl+1, Yl+1) be exchangeable (i.e., their distribution P is invariant under per-
mutations). The probability of error Yl+1 /∈ Γ ε(Z1, . . . ,Zl,Xl+1,Ω) does not exceed ε

for any ε and any inductive conformal predictor Γ . The probability of error Yl+1 /∈
Γ ε(Z1, . . . ,Zl,Xl+1,Ω,Θ) is equal to ε for any ε and any smoothed inductive conformal
predictor Γ .

This simple proposition of validity is proved in Vovk et al. (2005) for inductive conformal
predictors based on deterministic inductive conformity measures, but integration over Ω̄

immediately yields Proposition 1. In practice the probability of error is usually close to ε

even for unsmoothed ICPs (as we will see in Sect. 6 and Appendix B).
In conclusion of this section, let me give two specific examples of ICPs. Since an ICP is

determined by its inductive conformity measure, it suffices to specify the latter.

– In the case of regression, Y = R, we can define the inductive conformity measure by
(1) where Δ(y,f (x)) := −|y − f (x)| and f is the prediction rule found by using ridge
regression from (z1, . . . , zm) as the training set. This ICP is the inductive counterpart of
the Ridge Regression Confidence Machine (Vovk et al. 2005, Sect. 2.3).

– An example not covered by the scheme (1) is the 1-Nearest Neighbor ICP, whose induc-
tive conformity measure is

A
(
(z1, . . . , zm), (x, y),ω

) := mini=1,...,m:yi �=y d(x, xi)

mini=1,...,m:yi=y d(x, xi)
, (6)

where d is a distance on X. Intuitively, an example conforms to the proper training set if
it is closer to the examples labeled in the same way than to those labeled differently. In
the case of classification, this ICP will be called the 1-Nearest Neighbor ICP.

Another example, based on boosting, will be given in Sect. 6. For numerous other examples,
see Vovk et al. (2005), Sect. 4.2.

3 Training conditional validity

As discussed in Sect. 1, the standard property of validity of inductive conformal predictors
is unconditional. The property of training conditional validity can be formalized using a
PAC-type 2-parameter definition. It will be convenient to represent the ICP (2) in a slightly
different form downplaying the structure (xi, yi) of zi . Define Γ ε(z1, . . . , zl,ω) := {(x, y) |
py > ε}, where py is defined, as before, by (3) and (4) (therefore, py depends implicitly
on x). In this notation the first part of Proposition 1 can be restated by saying that the
probability of error Zl+1 /∈ Γ ε(Z1, . . . ,Zl,Ω) does not exceed ε provided Z1, . . . ,Zl+1 are
exchangeable. We will also use similar conventions in the smoothed case.

A set predictor Γ (outputting a subset of Z given l examples and measurable in the sense
of the set {Zl+1 ∈ Γ (Z1, . . . ,Zl,Ω,Θ)} being measurable) is (ε, δ)-valid with respect to a
probability distribution Q on Z if

(
Ql+1 × R × U

)(
Q

(
Γ (Z1, . . . ,Zl,Ω,Θ)

) ≥ 1 − ε
) ≥ 1 − δ
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(we will apply this definition to both smoothed and unsmoothed ICPs, even though the latter
in fact do not depend on θ ). We say that Γ is (ε, δ)-valid if it is (ε, δ)-valid with respect to
any probability distribution Q on Z. Our next result (Theorem 1 below) says that ICPs satisfy
this property for suitable ε and δ; we will see, however, that this is not true for smoothed
ICPs in general. Some conditions in the statement of Theorem 1 are not straightforward to
interpret; for more explicit conditions, see Corollaries 1 and 2.

Let Z be the random variable Z(z) := z on the measurable space Z (equipped with
a probability distribution usually denoted Q). We will say that an inductive conformity
measure is continuous under a probability distribution Q on Z if, for Qm-almost all
(z1, . . . , zm) ∈ Zm and R-almost all ω ∈ Ω̄ , the random variable A((z1, . . . , zm),Z,ω) on
the probability space (Z,Q) is continuous.

Theorem 1 Let binn,E be the cumulative binomial distribution function with n trials and
probability of success E; set binn,E(−1) := 0.

(a) Let Γ be an inductive conformal predictor. Suppose that ε, δ,E ∈ (0,1) satisfy

δ ≥ bin
n,E

(⌊
ε(n + 1) − 1

⌋)
, (7)

where n := l − m is the size of the calibration set. The set predictor Γ ε is then
(E, δ)-valid. Moreover, for any probability distribution Q on Z, any proper training
set (z1, . . . , zm) ∈ Zm, and any ω ∈ Ω̄ ,

Ql+1
(
Q

(
Γ ε(z1, . . . , zm,Zm+1, . . . ,Zl,ω)

) ≥ 1 − E
) ≥ 1 − δ. (8)

If Γ is based on an inductive conformity measure that is continuous under Q, Γ ε is
(E, δ)-valid with respect to Q if and only if (7) holds.

(b) Let Q be a probability distribution on Z and Γ be a smoothed inductive conformal
predictor based on an inductive conformity measure continuous under Q. Suppose
ε, δ,E ∈ (0,1) satisfy

δ ≥ bin
n,E

(⌊
ε(n + 1)

⌋)
. (9)

The set predictor Γ ε is (E, δ)-valid with respect to Q. Moreover, for Qm-almost all
proper training sets (z1, . . . , zm) ∈ Zm, R-almost all ω, and all θ ∈ [0,1],

Ql+1
(
Q

(
Γ ε(z1, . . . , zm,Zm+1, . . . ,Zl,ω, θ)

) ≥ 1 − E
) ≥ 1 − δ. (10)

The set predictor Γ ε is not (E, δ)-valid with respect to Q unless ε, δ,E satisfy (7).

In the case of smoothed ICPs there is a gap between the sufficient condition (9) and the
necessary condition (7), but it does not appear excessive. More worrying is the requirement
that the inductive conformity measure be continuous under the unknown data-generating
distribution Q. Unfortunately, without this or similar requirement there are no meaningful
guarantees of training conditional validity. Indeed, consider the trivial smoothed ICP based
on the inductive conformity measure identically equal to 0. At significance level ε, it has
coverage probability 1 with probability 1 − ε and coverage probability 0 with probability ε.
Therefore, it cannot be (E, δ)-valid for E < 1 unless δ ≥ ε. This contrasts with the case of
unsmoothed ICPs where very small δ are achievable: see, e.g., Fig. 8 below. Another natural
way to define smoothed ICPs is to use different random variables Θ when computing py for
different labels y ∈ Y; however, this version also encounters similar problems with training
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conditional validity when the inductive conformity measure is not required to be continuous
under Q.

Proof of Theorem 1 We start from part (a), namely, from proving (8). By (2) and (3), the
set predictor Γ ε makes an error, zl+1 /∈ Γ ε(z1, . . . , zl,ω), if and only if the number of i =
m + 1, . . . , l such that αi ≤ αy is at most 	ε(n + 1) − 1
; in other words, if and only if
αy < α(k), where α(k) is the kth smallest αi and k := 	ε(n + 1) − 1
 + 1. (Formally, α(k) is
defined by the requirement that |{i |αi < α(k)}| < k ≤ |{i |αi ≤ α(k)}|; in other words, α(k) is
the kth order statistic.) Therefore, the Q-probability of the complement of Γ ε(z1, . . . , zl,ω)

is Q(A((z1, . . . , zm),Z,ω) < α(k)), where A is the inductive conformity measure. Set

α∗ := inf
{
α | Q(

A
(
(z1, . . . , zm),Z,ω

)
< α

)
> E

}

= inf
{
α | Q(

A
(
(z1, . . . , zm),Z,ω

) ≤ α
)
> E

}

E′ := Q
(
A

(
(z1, . . . , zm),Z,ω

)
< α∗)

E′′ := Q
(
A

(
(z1, . . . , zm),Z,ω

) ≤ α∗).

The σ -additivity of measures implies that E′ ≤ E ≤ E′′, and E′ = E = E′′ unless α∗ is an
atom of the distribution of A((z1, . . . , zm),Z,ω). Both when E′ = E and when E′ < E, the
probability of error will exceed E if and only if α(k) > α∗. In other words, if and only if
we have at most k − 1 of the αi below or equal to α∗. The probability that at most k − 1 =
	ε(n + 1) − 1
 values of the αi are below or equal to α∗ equals P(B ′′

n ≤ 	ε(n + 1) − 1
) ≤
P(Bn ≤ 	ε(n + 1) − 1
), where B ′′

n ∼ binn,E′′ , Bn ∼ binn,E , and binn,p is also allowed to
stand for the binomial distribution with parameters (n,p). (For the inequality, see Lemma 1
below.) This completes the proof of (8) and, therefore, the first two statements of part (a).
And the last statement of part (a) follows from the fact that E′′ = E unless α∗ is an atom of
the distribution of A((z1, . . . , zm),Z,ω).

Let us now prove part (b), starting from (10). We will assume that the distribution of
A((z1, . . . , zm),Z,ω) is continuous (we can do so since (10) is required to hold only for
almost all proper training sets and ω). By (5), the set predictor Γ ε can make an error only
if the number of i = m + 1, . . . , l such that αi < αy is at most 	ε(n + 1)
 (set θ := 0 in (5)
and combine this with py ≤ ε); in other words, only if αy ≤ α(k), where α(k) is the kth
smallest αi and k := 	ε(n + 1)
 + 1. Therefore, the Q-probability of the complement of
Γ ε(z1, . . . , zl,ω, θ) is at most Q(A((z1, . . . , zm),Z,ω) ≤ α(k)). Define α∗,E′,E′′ as before;
now we know that E′ = E = E′′. The probability of error can exceed E only if α(k) > α∗.
In other words, only if we have at most k − 1 of the αi below or at α∗. The probability that
at most k − 1 = 	ε(n + 1)
 values of the αi are below or at α∗ equals P(Bn ≤ 	ε(n + 1)
),
where Bn ∼ binn,E . This proves (10).

The last statement of part (b) follows immediately from what we have already proved. �

In the proof of Theorem 1 we used the first statement of the following lemma.

Lemma 1 Fix the number of trials n. The distribution function binn,p(K) of the binomial
distribution is decreasing in the probability of success p for a fixed K ∈ {0, . . . , n}. It is
strictly decreasing unless K = n.
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Proof For the first statement of the lemma, it suffices to check that

d binn,p(K)

dp
= d

dp

K∑

k=0

(
n

k

)
pk(1 − p)n−k =

K∑

k=0

k − np

p(1 − p)

(
n

k

)
pk(1 − p)n−k

is nonpositive for p ∈ (0,1). The last sum has the same sign as the mean of the function
f (k) := k − np over the set k ∈ {0, . . . ,K} with respect to the binomial distribution, and so
it remains to notice that the overall mean of f is 0 and that the function f is increasing. This
proves the first statement, and the second statement is now obvious. �

The following corollary makes (7) and (9) in Theorem 1 less precise but more explicit
using Hoeffding’s inequality.

Corollary 1 Let ε, δ,E ∈ (0,1).

(a) If Γ is an inductive conformal predictor, the set predictor Γ ε is (E, δ)-valid provided

E ≥ ε +
√− ln δ

2n
. (11)

(b) If Γ is a smoothed inductive conformal predictor based on an inductive conformity
measure continuous under Q, the set predictor Γ ε is (E, δ)-valid with respect to Q

provided

E ≥
(

1 + 1

n

)
ε +

√− ln δ

2n
. (12)

This corollary gives the following recipe for constructing (ε, δ)-valid set predictors. The
recipe only works if the training set is sufficiently large; in particular, its size l should sig-
nificantly exceed N := (− ln δ)/(2ε2). Choose an ICP Γ with the size n of the calibration
set exceeding N . Then the set predictor Γ ε−√

(− ln δ)/(2n) will be (ε, δ)-valid.

Proof of Corollary 1 Suppose E > ε. Combining (7) with Hoeffding’s inequality (see, e.g.,
Vovk et al. 2005, p. 287), we can see that the probability of error Q(Z \ Γ ε(Z1, . . . ,Zl,Ω))

for an ICP will exceed E with probability at most

P
(
Bn ≤ ⌊

ε(n + 1) − 1
⌋) ≤ P(Bn ≤ εn) ≤ e−2(E−ε)2n,

where Bn ∼ binn,E and ε is the significance level. Solving e−2(E−ε)2n = δ we obtain that Γ ε

is (E, δ)-valid whenever (11) is satisfied.
Analogously, in the case of a smoothed ICP and (9) we have

P
(
Bn ≤ ⌊

ε(n + 1)
⌋) ≤ P

(
Bn ≤ (1 + 1/n)εn

) ≤ e−2(E−(1+1/n)ε)2n,

and solving e−2(E−(1+1/n)ε)2n = δ leads to (12). �

Remark 3 The training conditional guarantees discussed in this section are very similar
to those for the hold-out estimate of the probability of error of a classifier: compare, e.g.,
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Theorem 1(a) above and Theorem 3.3 in Langford (2005). The former says that Γ ε is (E, δ)-
valid for

E := bin
n,δ

(⌊
ε(n + 1) − 1

⌋) ≤ bin
n,δ

(εn) (13)

where bin is the inverse function to bin:

bin
n,δ

(k) := max
{
p | bin

n,p
(k) ≥ δ

}
(14)

(unless k = n, we can also say that binn,δ(k) is the only value of p such that binn,p(k) = δ:
cf. Lemma 1 above). And the latter says that a point predictor’s error probability (over the
test example) does not exceed

bin
n,δ

(k) (15)

with probability at least 1 − δ (over the training set), where k is the number of errors on
a held-out set of size n. The main difference between (13) and (15) is that whereas one
inequality contains the approximate expected number of errors εn for n new examples the
other contains the actual number of errors k on n examples. Several researchers have found
that the hold-out estimate is surprisingly difficult to beat; however, like the ICP of this sec-
tion, it is not example conditional at all.

In conclusion of this section we give a statement intermediate between Theorem 1 and
Corollary 1.

Corollary 2 Let ε, δ,E ∈ (0,1).

a If Γ is an inductive conformal predictor, the set predictor Γ ε is (E, δ)-valid provided

E ≥ ε +
√−2ε ln δ

n
− 2 ln δ

n
.

(b) If Γ is a smoothed inductive conformal predictor based on an inductive conformity
measure continuous under Q, the set predictor Γ ε is (E, δ)-valid with respect to Q

provided

E ≥ (1 + 1/n)ε +
√−2(1 + 1/n)ε ln δ

n
− 2 ln δ

n
.

Proof Inequality (7) can be rewritten as

E ≥ bin
n,δ

(⌊
ε(n + 1) − 1

⌋)

(using the notation (14)). In combination with inequality (2) in Langford (2005), p. 278, this
leads to the first statement. The second statement follows by replacing ε with (1 + 1/n)ε. �

4 Conditional inductive conformal predictors

The motivation behind conditional inductive conformal predictors is that ICPs do not al-
ways achieve the required probability ε of error Yl+1 /∈ Γ ε(Z1, . . . ,Zl,Xl+1,Ω) conditional
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on (Xl+1, Yl+1) ∈ E for important sets E ⊆ Z. This is often undesirable. If, e.g., our set
predictor is valid at the significance level 5 % but makes an error with probability 10 % for
men and 0 % for women, both men and women can be unhappy with calling 5 % the proba-
bility of error. Moreover, in many problems we might want different significance levels for
different regions of the example space: e.g., in the problem of spam detection (considered
in Sects. 6 and 7) classifying spam as email usually makes much less harm than classifying
email as spam.

An inductive m-taxonomy is a measurable function K : Zm × Z → K, where K is a
measurable space. Usually the category K((z1, . . . , zm), z) of an example z is a kind of
classification of z, which may depend on the proper training set (z1, . . . , zm).

The conditional inductive conformal predictor (conditional ICP) corresponding to K and
an inductive conformity measure A is defined as the set predictor (2), where the p-values py

are now defined by

py := |{i = m + 1, . . . , l | κi = κy & αi ≤ αy}| + 1

|{i = m + 1, . . . , l | κi = κy}| + 1
, (16)

the categories κ are defined by

κi := K
(
(z1, . . . , zm), zi

)
, i = m + 1, . . . , l, κy := K

(
(z1, . . . , zm), (x, y)

)
,

and the conformity scores α are defined as before by (4). A label conditional ICP is a
conditional ICP with the inductive m-taxonomy K(·, (x, y)) := y; this notion is useful only
in classification problems.

The following proposition is the conditional analogue of the first part of Proposition 1;
in particular, it shows that in classification problems label conditional ICPs achieve label
conditional validity.

Proposition 2 If random examples Zm+1, . . . ,Zl,Zl+1 = (Xl+1, Yl+1) are exchangeable,
the probability of error Yl+1 /∈ Γ ε(Z1, . . . ,Zl,Xl+1,Ω) given the category K((Z1, . . . ,Zm),

Zl+1) of Zl+1 does not exceed ε for any ε and any conditional inductive conformal predictor
Γ corresponding to K .

We refrain from giving the definition of smoothed conditional ICPs, which is straightfor-
ward. The categories can also be made dependent on ω ∈ Ω̄ .

5 Object conditional validity

In this section we prove a negative result (a version of Lemma 1 in Lei and Wasserman 2013)
which says that the requirement of precise object conditional validity cannot be satisfied in
a non-trivial way for rich object spaces (such as R). If Q is a probability distribution on Z,
we let QX stand for its marginal distribution on X: QX(A) := Q(A × Y). In this section we
consider only set predictors that do not depend on θ , but the case of set predictors depending
on θ (such as smoothed ICPs) is also covered by redefining ω := (ω, θ).

Let us say that a set predictor Γ has 1 − ε object conditional validity, where ε ∈ (0,1),
if, for all probability distributions Q on Z and QX-almost all x ∈ X,

(
Ql+1 × R

)(
Yl+1 ∈ Γ (Z1, . . . ,Zl,Xl+1,Ω) | Xl+1 = x

) ≥ 1 − ε.
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If P is a probability distribution on X, we say that a property F of elements of X holds
for P -almost all elements of a measurable set E ⊆ X if P (E \ F) = 0; a P -non-atom is an
element x ∈ X such that P ({x}) = 0. The Lebesgue measure on R will be denoted Λ, and
the convex hull of E ⊆ R will be denoted coE.

Theorem 2 Suppose X is a separable metric space equipped with the Borel σ -algebra.
Let ε ∈ (0,1). Suppose that a set predictor Γ has 1 − ε object conditional validity. In the
case of regression, we have, for all probability distributions Q on Z and for QX-almost all
QX-non-atoms x ∈ X,

(
Ql+1 × R

)(
Λ

(
Γ (Z1, . . . ,Zl, x,Ω)

) = ∞) ≥ 1 − ε (17)

and
(
Ql+1 × R

)(
coΓ (Z1, . . . ,Zl, x,Ω) = R

) ≥ 1 − 2ε. (18)

In the case of classification, we have, for all Q, all y ∈ Y, and QX-almost all QX-non-
atoms x,

(
Ql+1 × R

)(
y ∈ Γ (Z1, . . . ,Zl, x,Ω)

) ≥ 1 − ε. (19)

The constant ε in each of (17), (18), and (19) is optimal, in the sense that it cannot be
replaced by a smaller constant.

We are mainly interested in the case of a small ε (corresponding to high confidence),
and in this case (17) implies that, in the case of regression, the prediction interval (i.e., the
convex hull of the prediction set) can be expected to be infinitely long unless the test object is
an atom. Even an infinitely long prediction interval can be somewhat informative providing
a one-sided bound on the label of the test example; (18) says that, with probability at least
1 − 2ε, the prediction interval is completely uninformative unless the test object is an atom.
In the case of classification, (19) says that each particular y ∈ Y is likely to be included in
the prediction set, and so the prediction set is likely to be large. In particular, (19) implies
that the expected size of the prediction set is a least (1 − ε)|Y|.

Of course, the condition that the test object x be a non-atom is essential: if QX({x}) >

0, an inductive conformal predictor that ignores all examples with objects different from
the current test object can have 1 − ε object conditional validity and still produce a small
prediction set for a test object x if the training set is big enough to contain many examples
with x as their object.

Remark 4 Nontrivial set predictors having 1 − ε object conditional validity are constructed
by McCullagh et al. (2009) assuming the Gauss linear model.

Proof of Theorem 2 The proof will be based on the ideas of Lei and Wasserman (2013, the
proof of Lemma 1).

We start from showing that the ε in (17), (18), and (19) cannot be replaced by a smaller
constant. For (17) and (19) this follows from the fact that the trivial set predictor predicting
Y with probability 1− ε and ∅ with probability ε has 1− ε object conditional validity. In the
case of (18) the bound 1 − 2ε is attained by the set predictor predicting R with probability
1 − 2ε, [0,∞) with probability ε, and (−∞,0] with probability ε (this assumes ε < 1/2;
the case ε ≥ 1/2 is trivial). This predictor’s conditional probability of error given all l + 1



360 Mach Learn (2013) 92:349–376

examples is at most ε (0 if yl+1 = 0 and ε otherwise); therefore, the conditional probability
of error will be at most ε given the test object.

Next we prove the first statement about regression. Suppose (17) does not hold on a
measurable set E of QX-non-atoms x ∈ X such that QX(E) > 0. Shrink E in such a way
that QX(E) > 0 still holds but there exist δ > 0 and C > 0 such that, for each x ∈ E,

(
Ql+1 × R

)(
Λ

(
Γ (Z1, . . . ,Zl, x,Ω)

) ≤ C
) ≥ ε + δ. (20)

Let V be the total variation distance between probability measures, V (P,Q) :=
supA |P (A) − Q(A)|; we then have

V
(
P l,Ql

) ≤ √
2
√

1 − (
1 − V (P,Q)

)l

(this follows from the connection of V with the Hellinger distance: see, e.g., Tsybakov 2010,
Sect. 2.4). Shrink E further so that QX(E) > 0 still holds but

√
2
√

1 − (
1 − QX(E)

)l ≤ δ/2. (21)

(This can be done under our assumption that X is a separable metric space: see Lemma 2
below.) Define another probability distribution P on Z by the requirements that P (A×B) =
Q(A × B) for all measurable A ⊆ (X \ E), B ⊆ R and that P (A × B) = QX(A) × U(B)

for all measurable A ⊆ E, B ⊆ R, where U is the uniform probability distribution on the
interval [−DC,DC] and D > 0 will be chosen below. Since V (P,Q) ≤ QX(E), we have
V (P l,Ql) ≤ δ/2, which implies V (P l × R,Ql × R) ≤ δ/2; therefore, by (20),

(
P l+1 × R

)(
Λ

(
Γ (Z1, . . . ,Zl, x,Ω)

) ≤ C
) ≥ ε + δ/2

for each x ∈ E. The last inequality implies, by Fubini’s theorem,

(
P l+1 × R

)(
Λ

(
Γ (Z1, . . . ,Zl,Xl+1,Ω)

) ≤ C & Xl+1 ∈ E
) ≥ (ε + δ/2)PX(E),

where PX(E) = QX(E) > 0 is the marginal P -probability of E. When D (depending on
δPX(E)) is sufficiently large this in turn implies

(
P l+1 × R

)(
Yl+1 /∈ Γ (Z1, . . . ,Zl,Xl+1,Ω) & Xl+1 ∈ E

) ≥ (ε + δ/4)PX(E).

However, the last inequality contradicts

(P l+1 × R)(Yl+1 /∈ Γ (Z1, . . . ,Zl,Xl+1,Ω) & Xl+1 ∈ E)

PX(E)
≤ ε, (22)

which follows from Γ having 1 − ε object conditional validity and the definition of condi-
tional probability.

For the second statement about regression, suppose (18) does not hold on a measurable
set E of QX-non-atoms x ∈ X such that QX(E) > 0. In other words, for all x ∈ E,

(
Ql+1 × R

)(
supΓ (Z1, . . . ,Zl, x,Ω) < ∞ or infΓ (Z1, . . . ,Zl, x,Ω) > −∞)

> 2ε.

For each x ∈ E we have either

(
Ql+1 × R

)(
supΓ (Z1, . . . ,Zl, x,Ω) < ∞)

> ε (23)
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or
(
Ql+1 × R

)(
infΓ (Z1, . . . ,Zl, x,Ω) > −∞)

> ε. (24)

Therefore, either (23) or (24) holds on a subset of E of a positive QX-probability. Suppose,
for concreteness, that (23) does. Shrink E in such a way that QX(E) > 0 still holds and (23)
holds for all x ∈ E. Shrink E further in such a way that QX(E) > 0 still holds but there exist
δ > 0 and C > 0 such that, for each x ∈ E,

(
Ql+1 × R

)(
supΓ (Z1, . . . ,Zl, x,Ω) ≤ C

) ≥ ε + δ. (25)

Shrink E further so that both QX(E) > 0 and (21) hold. Define a probability distribution P

on Z by the requirements that P (A × B) = Q(A × B) for all measurable A ⊆ (X \ E) and
B ⊆ R and that P (A × {C + 1}) = QX(A) for all measurable A ⊆ E (i.e., modify Q setting
the conditional distribution of Y given X ∈ E to the unit mass concentrated at C + 1). Since
V (P l × R,Ql × R) ≤ δ/2, (25) implies

(
P l+1 × R

)(
supΓ (Z1, . . . ,Zl, x,Ω) ≤ C

) ≥ ε + δ/2

for all x ∈ E, which in turn implies
(
P l+1 × R

)(
supΓ (Z1, . . . ,Zl,Xl+1,Ω) ≤ C & Xl+1 ∈ E

) ≥ (ε + δ/2)PX(E),

which in turn implies
(
P l+1 × R

)(
Yl+1 /∈ Γ (Z1, . . . ,Zl,Xl+1,Ω) & Xl+1 ∈ E

) ≥ (ε + δ/2)PX(E),

which contradicts (22).
It remains to prove the statement about classification. Suppose (19) does not hold on a

measurable set E of QX-non-atoms x ∈ X such that QX(E) > 0. Shrink E in such a way
that QX(E) > 0 still holds but there exists δ > 0 such that, for each x ∈ E,

(
Ql+1 × R

)(
y ∈ Γ (Z1, . . . ,Zl, x,Ω)

) ≤ 1 − ε − δ.

Without loss of generality we further assume that (21) also holds. Define a probability
distribution P on Z by the requirements that P (A × B) = Q(A × B) for all measurable
A ⊆ (X \ E) and all B ⊆ Y and that P (A × {y}) = QX(A) for all measurable A ⊆ E (i.e.,
modify Q setting the conditional distribution of Y given X ∈ E to the unit mass concentrated
at y). Then for each x ∈ E we have

(
P l+1 × R

)(
y ∈ Γ (Z1, . . . ,Zl, x,Ω)

) ≤ 1 − ε − δ/2,

which implies
(
P l+1 × R

)(
Yl+1 ∈ Γ (Z1, . . . ,Zl,Xl+1,Ω) & Xl+1 ∈ E

) ≤ (1 − ε − δ/2)PX(E).

The last inequality contradicts Γ having 1 − ε object conditional validity. �

In the proof of Theorem 2 we used the following lemma.

Lemma 2 If Q is a probability measure on X, which is assumed to be a separable metric
space, E is a set of Q-non-atoms such that Q(E) > 0, and δ > 0 is an arbitrarily small
number, then there is E′ ⊆ E such that 0 < Q(E′) < δ.
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Proof We can take as E′ the intersection of E and an open ball centered at any element
of X for which all such intersections have a positive Q-probability. Let us prove that such
elements exist. Suppose they do not.

Fix a countable dense subset A1 of X. Let A2 be the union of all open balls B with
rational radii centered at points in A1 such that Q(B ∩E) = 0. On one hand, the σ -additivity
of measures implies Q(A2 ∩ E) = 0. On the other hand, A2 = X: indeed, for each x ∈ X
there is an open ball B of some radius ε > 0 centered at x that satisfies Q(B ∩E) = 0; since
x belongs to the radius ε/2 open ball centered at a point in A1 at a distance of less than ε/2
from x, we have x ∈ A2. This contradicts Q(E) > 0. �

Theorem 2 demonstrates an interesting all-or-nothing phenomenon for set predictors hav-
ing 1 − ε object conditional validity: each such predictor produces hopelessly large predic-
tion sets with probability at least 1 − ε; on the other hand, already a trivial predictor of this
kind (mentioned in the proof) produces the smallest possible prediction sets with probabil-
ity ε.

The theorem does not prevent the existence of efficient set predictors that are object
conditionally valid in an asymptotic sense; indeed, the paper by Lei and Wasserman (2013)
is devoted to constructing asymptotically efficient and asymptotically object conditionally
valid set predictors in the case of regression.

6 Experiments

This section describes some simple experiments on the well-known Spambase data set
contributed by George Forman to the UCI Machine Learning Repository (Frank and Asun-
cion 2010). Its overall size is 4601 examples and it contains examples of two classes: email
(also written as 0) and spam (also written as 1). Hastie et al. (2009) report results of several
machine-learning algorithms on this data set split randomly into a training set of size 3065
and test set of size 1536. The best result is achieved by MART (multiple additive regression
tree; 4.5 % error rate according to the second edition of Hastie et al. 2009). The R programs
used in the experiments described in this and next sections use the gbm package with virtu-
ally all parameters set to the default values (given in the description provided in response to
help("gbm")).

All our experiments are for (unsmoothed) ICPs. We randomly permute the data set and
divide it into 2602 examples for the proper training set, 999 for the calibration set, and 1000
for the test set. Our split between the proper training, calibration, and test sets, approximately
2:1:1, is inspired by the standard recommendation for the allocation of data into training,
validation, and test sets (see, e.g., Hastie et al. 2009, Sect. 7.2). We consider the ICP whose
conformity measure is defined by (1) where f is output by MART and

Δ
(
y,f (x)

) :=
{

f (x) if y = 1

−f (x) if y = 0.
(26)

MART’s output f (x) models the log-odds of spam vs email,

f (x) = log
P (1 | x)

P (0 | x)
,

which makes the interpretation of (26) as conformity score very natural.
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Fig. 2 Scatter plots of the pairs (pemail,pspam) for all examples in the test set (left plots), for email only
(middle), and for spam only (right). Email is shown as (blue) noughts and spam as (red) crosses. The three
upper plots are for the ICP and the three lower ones are for the label conditional ICP

The upper left plot in Fig. 2 is the scatter plot of the pairs (pemail,pspam) produced by
the ICP for all examples in the test set. Email is shown as (blue) noughts and spam as (red)
crosses (and when the figure is viewed in color, it is noticeable that the noughts were drawn
after the crosses). The other two plots in the upper row are for email and spam separately.
Ideally, email should be close to the horizontal axis and spam to the vertical axis; we can
see that this is often true, with a few exceptions. The picture for the label conditional ICP
looks almost identical: see the lower row of Fig. 2. However, on the log scale the difference
becomes more noticeable: see Fig. 3.

Table 1 gives some statistics for the numbers of errors, multiple set predictions {0,1}, and
empty set predictions ∅ in the case of the (unconditional) ICP Γ 5 % at significance level 5 %
(we obtain different numbers not only because of different splits but also because MART is
randomized; the columns of the table correspond to the random number generator seeds 0,
1, 2, etc.). The table demonstrates the validity, (lack of) conditional validity, and efficiency
of the algorithm (the latter is of course inherited from the efficiency of MART). We give two
kinds of conditional figures: the percentages of errors, multiple, and empty predictions for
different labels and for two different kinds of objects. The two kinds of objects are obtained
by splitting the object space X by the value of an attribute that we denote $: it shows the
percentage of the character $ in the text of the message. The condition $ < 5.55 % was
the root of the decision tree chosen both by Hastie et al. (2009, Sect. 9.2.5), who use all
attributes in their analysis, and by Maindonald and Braun (2007, Chap. 11), who use 6
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Fig. 3 The analogue of Fig. 2 on the log scale

attributes chosen by them manually. (Both books use the rpart R package for decision
trees.)

Notice that the numbers of errors, multiple predictions, and empty predictions tend to be
greater for spam than for email. Somewhat counter-intuitively, they also tend to be greater
for “email-like” objects containing few $ characters than for “spam-like” objects. The per-
centage of multiple and empty predictions is relatively small since the error rate of the
underlying predictor happens to be close to our significance level of 5 %.

In practice, using a fixed significance level (such as the standard 5 %) is not a good idea;
we should at least pay attention to what happens at several significance levels. However,
experimenting with prediction sets at a fixed significance level facilitates a comparison with
theoretical results.

Table 2 gives similar statistics in the case of the label conditional ICP. The error rates are
now about equal for email and spam, as expected. We refrain from giving similar predictable
results for “object conditional” ICP with $ < 5.55 % and $ > 5.55 % as categories.

We define the calibration plot of an ICP Γ on a test set as the percentage of errors made
by Γ ε plotted against ε ∈ (0,1). Figure 4 gives three calibration plots for the ICP: for the
full test set and for email and spam separately. It shows approximate validity even for email
and spam separately, except for the all-important lower-left corners. The latter are shown
separately in Fig. 5, where the lack of conditional validity becomes evident; cf. Fig. 6 for
the label conditional ICP.

From the numbers in the “errors overall” row of Table 1 (both given and hidden in the
. . . part) we can extract the corresponding confidence intervals for the probability of error
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Table 1 Percentages of errors, multiple predictions, and empty predictions at significance level 5 % on the
full test set and separately on email and spam and on two kinds of objects. The results are given for the
first 100 seeds for the R (pseudo)random number generator (RNG); column “Average” gives the average
percentages for all 100 seeds 0–99, and column “St. dev.” gives usual estimates of the standard deviations
(namely, the square roots of the standard unbiased estimates of the variances) of the percentages for the 100
seeds

RNG seed 0 1 2 . . . 99 Average St. dev.

errors overall 4.1 % 6.9 % 4.6 % . . . 4.2 % 5.08 % 1.00 %

for email 2.44 % 4.61 % 2.26 % . . . 2.82 % 3.35 % 0.92 %

for spam 6.77 % 10.43 % 8.42 % . . . 6.30 % 7.74 % 1.64 %

for $ < 5.55 % 4.36 % 7.91 % 5.15 % . . . 4.34 % 5.76 % 1.24 %

for $ > 5.55 % 3.29 % 4.12 % 2.69 % . . . 3.75 % 2.96 % 1.02 %

multiple overall 2.7 % 0 % 0.1 % . . . 1.2 % 0.86 % 0.98 %

for email 2.11 % 0 % 0.16 % . . . 0.83 % 0.60 % 0.68 %

for spam 3.65 % 0 % 0 % . . . 1.76 % 1.26 % 1.52 %

for $ < 5.55 % 3.04 % 0 % 0.13 % . . . 1.18 % 0.98 % 1.15 %

for $ > 5.55 % 1.65 % 0 % 0 % . . . 1.25 % 0.49 % 0.68 %

empty overall 0 % 2.7 % 0 % . . . 0 % 0.31 % 0.63 %

for email 0 % 1.48 % 0 % . . . 0 % 0.24 % 0.47 %

for spam 0 % 4.58 % 0 % . . . 0 % 0.42 % 0.96 %

for $ < 5.55 % 0 % 3.14 % 0 % . . . 0 % 0.36 % 0.73 %

for $ > 5.55 % 0 % 1.50 % 0 % . . . 0 % 0.14 % 0.40 %

Table 2 The analogue of a subset of Table 1 in the case of the label conditional ICP

RNG seed 0 1 2 . . . 99 Average St. dev.

errors overall 3.4 % 6.0 % 3.8 % . . . 3.6 % 4.92 % 0.91 %

for email 3.73 % 6.92 % 3.87 % . . . 3.48 % 4.97 % 1.15 %

for spam 2.86 % 4.58 % 3.68 % . . . 3.78 % 4.82 % 1.33 %

multiple overall 4.2 % 0 % 4.0 % . . . 2.6 % 1.68 % 1.54 %

for email 3.90 % 0 % 5.48 % . . . 2.49 % 1.94 % 1.86 %

for spam 4.69 % 0 % 1.58 % . . . 2.77 % 1.28 % 1.26 %

empty overall 0 % 1.0 % 0 % . . . 0 % 0.15 % 0.45 %

for email 0 % 1.48 % 0 % . . . 0 % 0.15 % 0.47 %

for spam 0 % 0.25 % 0 % . . . 0 % 0.15 % 0.47 %

conditional on the training set and MART’s internal coin tosses; these are shown in Fig. 7.
It can be seen that training conditional validity is not grossly violated. (Notice that the 100
training sets used for producing this figure are not completely independent. Besides, the
assumption of randomness might not be completely satisfied: permuting the data set ensures
exchangeability but not necessarily randomness.) It is instructive to compare Fig. 7 with the
“theoretical” Fig. 8 obtained from Theorem 1(a) (the thick black line), Corollary 1(a) (the
thin solid line, which may be shown in red), and Corollary 2(a) (the thin dashed line, which
may be shown in blue). The dotted black line corresponds to the significance level 5 %.
There is no obvious discrepancy between Figs. 7 and 8.
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Fig. 4 The calibration plot for the test set overall, the email in the test set, and the spam in the test set (for
the first 8 seeds, 0–7)

Fig. 5 The lower left corners of the plots in Fig. 4

Fig. 6 The analogue of Fig. 5 for the label conditional ICP

Figure 8 gives bounds on the training conditional error probability as a function of δ for
a fixed size n = 999 of the calibration set. Figure 9, on the other hand, gives bounds on the
training conditional error probability as a function of the size n of the calibration set for a
fixed δ, namely for δ = 1 %.
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Fig. 7 Confidence intervals for training conditional error probabilities: 95 % shown as thin lines (in black)
and 80 % shown as thick lines (perhaps in blue). The 5 % significance level is shown as the horizontal dotted
black line

Fig. 8 The upper bounds on the training conditional probability of error vs δ given by Theorem 1(a) (the
thick black line), Corollary 1(a) (the thin solid line, perhaps shown in red), and Corollary 2(a) (the thin dashed
line, perhaps shown in blue), where ε = 5 % and n = 999

Fig. 9 The upper bounds on the training conditional probability of error vs δ in the same format as in Fig. 8,
except that now δ is fixed at 1 % and n ranges between 19 (the smallest value giving non-trivial prediction
sets) and 1500; as before, ε = 5 %
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Fig. 10 The analogue of Fig. 8 for ε = 1 %

Figure 10 is the analogue of Fig. 8 for significance level ε = 1 %. Notice that the thin
solid line (corresponding to Corollary 1(a) and perhaps shown in red) simply shifts down
by 4 %. However, the quality of the thick black line (corresponding to Theorem 1(a)) and
the thin dashed line (corresponding to Corollary 2(a) and perhaps shown in blue) becomes
significantly better than that.

7 ICPs and ROC curves

This section discusses a close connection between an important class of ICPs (“scoring-
type” label conditional ICPs) and ROC curves. (For a previous study of connections between
conformal prediction and ROC curves, see Vanderlooy and Sprinkhuizen-Kuyper 2007.) Let
us say that an ICP or a label conditional ICP is scoring-type if its inductive conformity
measure is defined by (1) where f takes values in R and Δ is defined by (26).

The reader might have noticed that the two leftmost plots in Fig. 2 look similar to a ROC
curve. The following proposition will show that this is not coincidental in the case of the
lower left one. However, before we state it, we need a few definitions. We will now consider
a general binary classification problem and will denote the labels as 0 and 1. For a threshold
c ∈ R, the type I error on the calibration set is

α(c) := |{i = m + 1, . . . , l | f (xi) ≥ c & yi = 0}|
|{i = m + 1, . . . , l | yi = 0}| (27)

and the type II error on the calibration set is

β(c) := |{i = m + 1, . . . , l | f (xi) ≤ c & yi = 1}|
|{i = m + 1, . . . , l | yi = 1}| (28)

(with 0/0 set, e.g., to 1/2). Intuitively, these are the error rates for the classifier that predicts
1 when f (x) > c and predicts 0 when f (x) < c (our definition is conservative in that it
counts the prediction as error whenever f (x) = c); namely, α(c) is the false positive rate
and β(c) is the false negative rate. The empirical ROC curve is the parametric curve

{(
α(c),β(c)

) | c ∈ R
} ⊆ [0,1]2. (29)
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(Our version of ROC curves is the original version reflected in the line y = 1/2; in deviating
from the original version we follow Hastie et al. 2009, whose version is the original one
reflected in the line x = 1/2, and many other books and papers; see, e.g., Bengio et al. 2005,
Fig. 1.) Since α(c) and β(c) take only finitely many values, the empirical ROC curve (along
with its modifications introduced below) is not continuous but consists of discrete points.

Proposition 3 In the case of a scoring-type label conditional ICP, for any object x ∈ X, the
distance between the pair (p0,p1) (see (16)) and the empirical ROC curve is at most

√
1

(n0 + 1)2
+ 1

(n1 + 1)2
, (30)

where ny is the number of examples in the calibration set labeled as y.

Proof Let c := f (x). Then we have

(
p0,p1

) =
(

n0≥ + 1

n0 + 1
,
n1≤ + 1

n1 + 1

)
(31)

where n0≥ is the number of examples (xi, yi) in the calibration set such that yi = 0 and
f (xi) ≥ c and n1≤ is the number of examples in the calibration set such that yi = 1 and
f (xi) ≤ c. It remains to notice that the point (n0≥/n0, n1≤/n1) belongs to the empirical ROC
curve: the horizontal (resp. vertical) distance between this point and (31) does not exceed
1/(n0 + 1) (resp. 1/(n1 + 1)), and the overall Euclidean distance does not exceed (30). �

So far we have discussed the empirical ROC curve: (27) and (28) are the empirical prob-
abilities of errors of the two types on the calibration set. It corresponds to the estimate k/n

of the parameter of the binomial distribution based on observing k successes out of n. The
minimax estimate is (k + 1/2)/(n + 1), and the corresponding ROC curve (29) where α(c)

and β(c) are defined by (27) and (28) with the numerators increased by 1
2 and the denom-

inators increased by 1 will be called the minimax ROC curve. Notice that for the minimax
ROC curve we can put a coefficient of 1

2 in front of (30). Similarly, when using the Laplace
estimate (k + 1)/(n+ 2), we obtain the Laplace ROC curve. See the left panel of Fig. 11 for
the lower left corner of the lower left plot of Fig. 2 with different ROC curves added to it.

The non-standard estimate (k + 1)/(n + 1) of the parameter of the binomial distribution
leads to a version of ROC curve that is connected to the label conditional ICP in the most
direct way. Let us call this estimate the upper Venn estimate and the corresponding ROC
curve the upper Venn ROC curve (cf. the discussion of the Venn predictor in Vovk et al. 2005,
pp. 159–160). (The upper Venn estimate is unusual in that the estimate of the probability of
an event plus the estimate of the probability of its complement is different from 1.) Notice
that the upper Venn ROC curve lies Northeast of all three ROC curves discussed earlier. In
the square [0,0.5] × [0,0.5] the order of the ROC curves from Southwest to Northeast is:
empirical, minimax, Laplace, and upper Venn; the last two are very close to each other for
large n0 and n1 and small ratios n0≥/n0 and n1≤/n1, as in Fig. 11.

The rest of this section is devoted to a discussion of the upper Venn ROC curve. Remem-
ber that it is defined as the parametric curve (29), where now

α(c) := |{i = m + 1, . . . , l | f (xi) ≥ c & yi = 0}| + 1

|{i = m + 1, . . . , l | yi = 0}| + 1
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Fig. 11 Left panel: the lower left corner of the lower left plot of Fig. 2 with the empirical (solid), minimax
(dashed), and Laplace (dotted) ROC curves. Right panel: the lower left corner of the lower left plot of Fig. 2
with the upper Venn ROC curve and the partition of the plane corresponding to the label conditional ICP with
significance level 5 %

β(c) := |{i = m + 1, . . . , l | f (xi) ≤ c & yi = 1}| + 1

|{i = m + 1, . . . , l | yi = 1}| + 1
.

The pair (p0,p1) of p-values for any test example belongs to the upper Venn ROC curve;
therefore, this curve passes through all test examples in Fig. 11. The curve can serve as a
convenient classification of all possible test objects: each of them corresponds to a point on
the curve.

The label conditional ICP can also be conveniently described in terms of the upper Venn
ROC curve. An example is given as the right panel of Fig. 11. Each test object is represented
by a point (p0,p1). Let ε be the significance level; it is 5 % in Fig. 11 (but as mentioned
earlier, there is no need to have the same significance level for email and spam). If the point
(ε, ε) lies Southwest of the curve, the label conditional ICP can produce multiple predic-
tions but never produces empty predictions. If it lies Northeast of the curve, the predictor
can produce empty predictions but never produces multiple predictions. In particular, it is
impossible to produce both multiple and empty predictions for the same calibration set,
which is demonstrated by columns 0–99 of Table 2. (Lying on the curve is regarded as a
special case of lying Northeast of it. Because of the discreteness of the upper Venn ROC
curve it is also possible that (ε, ε) lies neither Northeast nor Southwest of it; in this case
predictions are always singletons.)

If the test object is in the Northeast region NE with respect to (ε, ε) (i.e., p0 > ε and
p1 > ε), the prediction set is multiple, {0,1}. If it is in the region SW (i.e., p0 ≤ ε and
p1 ≤ ε), the prediction set is empty. Otherwise the prediction set is a singleton: {1} if it is
in NW (p0 ≤ ε and p1 > ε) and {0} if it is in SE (p0 > ε and p1 ≤ ε). This is shown in the
right panel of Fig. 11.

However, a one-sided approach may be more appropriate in the case of the Spambase
data set. There is a clear asymmetry of the two kinds of error in spam detection: classifying
email as spam is much more harmful than letting occasional spam in. A reasonable approach
is to start from a small number ε > 0, the maximum tolerable percentage of email classified
as spam, and then to try to minimize the percentage of spam classified as email under
this constraint. For example, we can use the “one-sided label conditional ICP” classifying
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x as spam if and only if1 p0 ≤ ε for x; otherwise, x is classified as email. In the case of
ε = 5 %, this means classifying a test object as spam if and only if it lands to the left of (or
onto) the vertical dotted line in the right panel of Fig. 11.

Both our procedures, two-sided and one-sided, look very similar to the standard uses of
ROC curves. However, the standard justification of these uses presupposes that we know the
true ROC curve. In practice, we only have access to an estimate of the true ROC curve, and
the error of estimation is usually very significant. The upper Venn ROC curve is defined in
terms of the data rather than the unknown true distribution. Despite this, we still have guar-
antees of validity. For example, our one-sided procedure guarantees that the (unconditional)
probability of mistaking email for spam is at most ε (see Proposition 2).

This section of the paper raises a large number of questions. Not all inductive conformity
measures are scoring-type; can other types be analyzed using the notion of ROC curves?
Can other kinds of conditional ICPs be analyzed this way? What about smoothed ICPs? And
even in the case of scoring-type label conditional ICPs we have not proved their property of
training conditional validity (i.e., the version of Theorem 1 for label conditional ICPs).

8 Conclusion

The goal of this paper has been to explore various versions of the requirement of conditional
validity. With a small training set, we have to content ourselves with unconditional validity
(or abandon any formal requirement of validity altogether). For bigger training sets training
conditional validity will be approached by ICPs automatically, and we can approach exam-
ple conditional validity by using conditional ICPs but making sure that the size of a typical
category does not become too small (say, less than 100). In problems of binary classification,
we can control false positive and false negative rates by using label conditional ICPs.

The known property of validity of inductive conformal predictors (Proposition 1) can be
stated in the traditional statistical language (see, e.g., Fraser 1957 and Guttman 1970) by
saying that they are 1 − ε expectation tolerance regions, where ε is the significance level.
In classical statistics, however, there are two kinds of tolerance regions: 1 − ε expectation
tolerance regions and PAC-type 1 − δ tolerance regions for a proportion 1 − ε, in the termi-
nology of Fraser (1957). We have seen (Theorem 1) that inductive conformal predictors are
tolerance regions in the second sense as well (cf. Appendix A).

A disadvantage of inductive conformal predictors is their potential predictive ineffi-
ciency: indeed, the calibration set is wasted as far as the development of the prediction
rule f in (1) is concerned, and the proper training set is wasted as far as the calibration (3)
of conformity scores into p-values is concerned. Conformal predictors use the full training
set for both purposes, and so can be expected to be significantly more efficient. (There have
been reports of comparable and even better predictive efficiency of ICPs as compared to
conformal predictors but they may be unusual artefacts of the methods used and particular
data sets.) It is an open question whether we can guarantee training conditional validity un-
der (11) or a similar condition for conformal predictors different from classical tolerance
regions. Perhaps no universal results of this kind exist, and different families of conformal
predictors will require different methods. See Appendix B for an empirical study of a simple
conformal predictor.

1In practice, we might want to improve the predictor by adding another step and changing the classification

from spam to email if p1 is also small, in which case x looks neither like spam nor email. This step can
usually be disregarded for scoring-type ICPs unless ε is very lax.
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Appendix A: Training conditional validity for classical tolerance regions

In this appendix we compare Theorem 1 with the results (see, e.g., Fraser 1957 and Guttman
1970) about classical tolerance regions (which are a special case of conformal predictors,
as explained in Vovk et al. 2005, p. 257). It is well known that under appropriate continuity
assumptions the classical tolerance regions that discard ε(n+1) out of the n+1 statistically
equivalent blocks (in this appendix we always assume that ε(n + 1) is an integer number)
have coverage probability following the beta distribution with parameters (1−ε)(n+1) and
ε(n+ 1) (see, e.g., Tukey 1947 or Guttman 1970, Theorems 2.2 and 2.3); in particular, their
expected coverage probability is 1 − ε. This immediately implies the following corollary:
if Γ is a classical tolerance predictor with sample size n and expected coverage probability
1 − ε, it is (E, δ)-valid if and only if

δ ≥ Bet
(1−ε)(n+1),ε(n+1)

(1 − E) = 1 − Bet
ε(n+1),(1−ε)(n+1)

(E), (32)

where Betα,β is the cumulative beta distribution function with parameters α and β .
The following lemma shows that in fact (32) coincides with the condition (7) for ICPs

(under our assumption ε(n + 1) ∈ Z). Of course, n means different things in (7) and (32):
the size of the calibration set in the former and the size of the full training set in the latter.

Lemma 3 (http://dlmf.nist.gov/8.17.E5) For all n ∈ {1,2, . . .}, all k ∈ {1, . . . , n}, and all
E ∈ (0,1),

bin
n,E

(k − 1) = Bet
n+1−k,k

(1 − E) = 1 − Bet
k,n+1−k

(E). (33)

Proof The equality between the last two terms of (33) is obvious. The last term of (33) is
the probability that the kth smallest value in a sample of size n from the uniform probability
distribution U on [0,1] exceeds E. This event is equivalent to at most k−1 of n independent
random variables generated from U belonging to the interval [0,E], and so the probability
of this event is given by the first term of (33). �

The assumption of continuity was removed by Tukey (1948) and Fraser and Worm-
leighton (1951). We will state this result only for the simplest kind of classical tolerance
regions, essentially those introduced by Wilks (1941) (this special case was obtained al-
ready by Scheffé and Tukey 1945, p. 192). Suppose the object space X is a one-element set
and the label space is Y = R (therefore, we consider the problem of predicting real numbers
without objects). For two numbers L ≤ U in the set {0,1, . . . , n + 1} consider the set pre-
dictor [y(L), y(U)], where y(i) is the ith order statistics (the ith smallest value in the training
set (y1, . . . , yn), except that y(0) := −∞ and y(n+1) := ∞). This set predictor is (E, δ)-valid
provided we have (32) with (1 − ε)(n + 1) replaced by U − L and ε(n + 1) replaced by
n + 1 + L − U .

http://dlmf.nist.gov/8.17.E5
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It is easy to see that Theorem 1(a) can in fact be deduced from Scheffé and Tukey’s
result. This follows from the interpretation of inductive conformal predictors as a “condi-
tional” version of Wilks’s predictors corresponding to L := ε(n + 1) and U := n + 1. After
observing the proper training set we apply Wilks’s predictors to the conformity scores αi of
the calibration examples to predict the conformity score of a test example; the set predic-
tion of the conformity score for the test object is then transformed into the prediction set
consisting of the labels leading to a score in the predicted range.

Appendix B: Training conditional validity for conformal predictors

This appendix is a rudimentary empirical study of the training conditional validity of confor-
mal predictors (see Nouretdinov 2008, Theorem 1, for a preliminary theoretical study). The
top right figure in Table 1, 1.00 %, estimates the standard deviation of the random percentage
of errors made by the ICP. This random percentage of errors consists of two components:

– one minus the random coverage probability
– and the random percentage of errors for a given coverage probability.

The variance of the random coverage probability, which is distributed as Bet950,50 according
to Appendix A, is

950

1000
× 50

1000
× 1

1001
, (34)

which corresponds to the standard deviation 0.69 %. The conditional variance of the random
percentage of errors for a given coverage probability (approximately 95 %) is approximately

0.05 × 0.95

1000
, (35)

which also corresponds to the standard deviation 0.69 %. (Notice how similar the expres-
sions (34) and (35) are: the only difference is that (34) has 1001 where (35) has 1000.)
Therefore, the total variance of the random percentage of errors will be close to the sum of
(34) and (35), which corresponds to the standard deviation 0.69 %

√
2 ≈ 0.98 %. This agrees

with Table 1: 1.00 % ≈ 0.98 %.
This ANOVA-type decomposition of the variance of the error rate for ICPs suggests

looking at the standard deviation of the error rate for conformal predictors as a measure of
their training conditional validity. (An even more natural measure of the training conditional
validity would be the square root of the difference between the variance of the error rate and
the variance ε(1 − ε)/n corresponding to a fixed coverage probability 1 − ε, where ε is the
significance level and n is the size of the test set; however, these two measures are mono-
tonic functions of each other.) These standard deviations are given in Table 3 (see below
for details). They suggest that ICPs and conformal predictors possess training conditional
validity to a similar degree.

Table 3 describes experiments performed on the standard USPS data set (available on the
Internet) of 9298 hand-written digits. Conformal predictors are defined in, e.g., Vovk et al.
(2005). We test the 1-Nearest Neighbor ICP and 1-Nearest Neighbor conformal predictor,
both based on the (inductive) conformity measure (6) with d the tangent distance. In the
case of the ICP, we randomly choose three disjoint subsets of the USPS data set: a proper
training set of size 1000, a calibration set of size 999, and a test set of size 1000. And in the
case of the conformal predictor, we randomly choose two disjoint subsets: a training set of
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Table 3 Percentages of errors, multiple predictions, and empty predictions at significance levels 5 % and
1 % for the ICP and conformal predictor (CP) on the USPS data set. The results are given for the first 100
seeds for the MATLAB random number generator in the same format as in Table 1

RNG seed 0 1 2 . . . 99 Average St. dev.

errors for ICP at 5 % 6.3 % 5.1 % 5.7 % . . . 4.9 % 5.18 % 0.95 %

for CP at 5 % 3.0 % 4.5 % 3.9 % . . . 3.2 % 4.41 % 0.96 %

for ICP at 1 % 1.2 % 1.4 % 1.7 % . . . 2.2 % 1.06 % 0.43 %

for CP at 1 % 0.7 % 0.2 % 0.7 % . . . 0.6 % 0.85 % 0.42 %

multiple for ICP at 5 % 0 % 0 % 0 % . . . 0 % 0 % 0 %

for CP at 5 % 0 % 0 % 0 % . . . 0 % 0 % 0 %

for ICP at 1 % 7.1 % 4.1 % 4.4 % . . . 3.0 % 7.40 % 2.53 %

for CP at 1 % 6.0 % 11.3 % 10.5 % . . . 8.1 % 8.86 % 3.30 %

empty for ICP at 5 % 5.5 % 4.1 % 4.1 % . . . 3.1 % 3.78 % 1.14 %

for CP at 5 % 1.3 % 3.7 % 2.4 % . . . 2.0 % 2.82 % 1.14 %

for ICP at 1 % 0 % 0 % 0 % . . . 0 % 0 % 0 %

for CP at 1 % 0 % 0 % 0 % . . . 0 % 0 % 0 %

size 999 and a test set of size 1000. For each choice we compute the percentages of errors,
multiple, and empty set predictions. This is repeated 100 times. The experiments are run for
two significance levels: 5 %, in which case there are no multiple set predictions, and 1 %,
in which case there are no empty set predictions. Using the significance level 1 % instead of
5 % in (34) and (35) we obtain the predicted value of 0.44 % for the standard deviation of
the percentage of errors, which is close to the experimental results both for the ICP (0.43 %)
and for the conformal predictor (0.42 %). For 5 % the experimental results (0.95 % and 0.96
%) are also close to the predicted value (0.98 %).

Our discussion so far in this appendix has ignored the fact that the standard deviations in
Tables 1 and 3 are only estimates. The following figures give an idea of their sensitivity to
the choice of the seeds for the random number generators:

– Using other seeds, instead of the standard deviation 1.00 % in Table 1 we obtain: 0.91 %
(seeds 100–199), 0.87 % (seeds 200–299), 1.09 % (seeds 300–399), 0.94 % (seeds 400–
499).

– Instead of the standard deviations 0.95 % for the ICP and 0.96 % for the conformal pre-
dictor at 5 % in Table 3 we obtain:
– 0.93 % for the ICP and 1.00 % for the conformal predictor (seeds 100–199)
– 0.93 % for the ICP and 0.87 % for the conformal predictor (seeds 200–299)
– 1.04 % for the ICP and 0.88 % for the conformal predictor (seeds 300–399)
– 0.81 % for the ICP and 0.95 % for the conformal predictor (seeds 400–499).

– Instead of the standard deviations 0.43 % for the ICP and 0.42 % for the conformal pre-
dictor at 1 % in Table 3 we obtain:
– 0.37 % for the ICP and 0.44 % for the conformal predictor (seeds 100–199)
– 0.38 % for the ICP and 0.43 % for the conformal predictor (seeds 200–299)
– 0.45 % for the ICP and 0.43 % for the conformal predictor (seeds 300–399)
– 0.42 % for the ICP and 0.43 % for the conformal predictor (seeds 400–499).

We can see that the variability due to the choice of seeds does not affect our conclusion that
the ICP and conformal predictor have comparable variability of coverage probability.
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In conclusion, we discuss a theoretical result by Nouretdinov (2008, Theorem 1) about
the 1-Nearest Neighbor conformal predictor. Nouretdinov’s result is asymptotic, involving
the term o(1). A further complication is that it contains an error (Nouretdinov, private com-
munication): the proof of Corollary 2 applies Hoeffding’s inequality in a wrong way (the
e−m/ε in the last line of the proof should be e−2ε2m). In the case of the 1-Nearest Neighbor
conformal predictor, Nouretdinov’s corrected result replaces (11) by

E ≥ ε + 61/3 ln2/3 n

(nδ)1/3
, (36)

in our notation and ignoring the o(1) term (i.e., replacing it by 0), where n is the size of the
training set. The dependence on δ is much worse in (36) than in (11), and the dependence
on n is also somewhat worse. Our empirical results suggest that Nouretdinov’s result can be
improved.
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