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Abstract We propose a novel framework for learning normal logic programs from transi-
tions of interpretations. Given a set of pairs of interpretations (I, J ) such that J = TP (I ),
where TP is the immediate consequence operator, we infer the program P . The learning
framework can be repeatedly applied for identifying Boolean networks from basins of at-
traction. Two algorithms have been implemented for this learning task, and are compared
using examples from the biological literature. We also show how to incorporate background
knowledge and inductive biases, then apply the framework to learning transition rules of
cellular automata.

Keywords Dynamical systems · Boolean networks · Cellular automata · Attractors ·
Supported models · Learning from interpretation · Inductive logic programming

1 Introduction

There is a growing interest in learning dynamics of systems in the field of inductive logic
programming (ILP) (Muggleton et al. 2012) with applications in planning, scheduling,
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robotics, bioinformatics, and adaptive and complex systems. In the view that a logic pro-
gram is a state transition system (Inoue 2011; Inoue and Sakama 2012), given an Herbrand
interpretation representing a current state of the world, a logic program P specifies how
to define the next state of the world as an Herbrand interpretation through the immedi-
ate consequence operator (also called the TP operator) (van Emden and Kowalski 1976;
Apt et al. 1988). Based on this idea, we here propose a framework to learn logic programs
from traces of interpretation transitions.

The learning setting is as follows. We are given a set of pairs of Herbrand interpretations
(I, J ) such that J = TP (I ) as positive examples, and the goal is to induce a normal logic
program (NLP) P that realizes the given transition relations. As far as the authors know,
this concept of learning from interpretation transition (LFIT) has never been considered in
the ILP literature. In fact, LFIT is different from any method to learn Boolean functions that
has been developed in the field of computational learning theory (Kearns and Vazirani 1994)
in the sense that LFIT learns dynamics of systems, while the conventional learning setting
is not involved in dynamics. A closer setting can be found in learning from interpretations
(LFI) (De Raedt 1997), in which positive examples are given as Herbrand models of a target
program, but again the goal of LFI is not to learn dynamics of systems. Learning action the-
ories (Moyle 2003; Otero 2005; Inoue et al. 2005; Tran and Baral 2009; Corapi et al. 2011;
Rodrigues et al. 2012) can also be related with LFIT, but its goal is not exactly the same
as that of LFIT. In particular, LFIT can learn dynamics of systems with positive and neg-
ative feedbacks, which have not been much taken into account in the literature. Relational
reinforcement learning (Džeroski et al. 2001) can consider feedbacks in the learning process
as rewards, but LFIT learns how such feedbacks can be represented logically by state tran-
sition rules. Learning NLPs rather than definite programs has been considered in ILP, e.g.,
(Sakama 2001), but most approaches do not take the LFI setting. Moreover, from the seman-
tical viewpoint, our framework can learn NLPs under the supported model semantics (Apt
et al. 1988) rather than the stable model semantics (Gelfond and Lifschitz 1988).

An intended direct application of LFIT is learning transition or update rules in dynam-
ical systems such as Boolean networks (Kauffman 1993) and cellular automata (Wolfram
1994), which have been respectively used as mathematical models of genetic networks and
complex adaptive systems. It has been observed that the TP operator for an NLP P precisely
captures the synchronous update of the corresponding Boolean network, where each gene
and its regulation function correspond to a ground atom and the set of ground rules with the
atom in their heads, respectively (Inoue 2011). Then, given an input Herbrand interpretation
I , which corresponds to a gene activity profile (GAP) with gene disruptions for false atoms
in I and gene overexpressions for true atoms in I , the interactions between genes are exper-
imentally analyzed by observing an output GAP J such that J = TP (I ) is assumed to hold
after a time step has passed. In this setting, LFIT of an NLP P corresponds to inferring a set
of gene regulation rules that are complete for those experiments of 1-step GAP transitions.
Such a learning task has been analyzed in the literature (Akutsu et al. 2003, 2009), but no
ILP technique has been applied to the problem. Besides, 2-state cellular automata, in which
each cell can take either 1 or 0 as a possible value, are instances of Boolean networks, so that
their state transitions are determined by the TP operator (Blair et al. 1997). Hence it should
be possible to apply LFIT for their learning tasks. Learning transition rules (called identifi-
cation) of cellular automata has been studied in the literature (Adamatzky 1994, 2007), but
again no previous work has employed ILP techniques on this problem.

It is known that any trajectory from a GAP in a Boolean network reaches an attractor,
which is either a fixed point or a periodic oscillation. Then, we can consider a realistic
situation to use LFIT, in which the input is a set of trajectories reaching to attractors and
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the output is a Boolean network, i.e., an NLP, realizing them. In this paper, we will thus
show two supposed usages of LFIT: LF1T takes 1-step transitions, and LFBA assumes
trajectories to attractors. Moreover, two algorithms for LF1T have been implemented, and
are compared using examples of gene regulatory networks in the biological literature. We
also suggest how to incorporate background knowledge and inductive biases in LFIT, then
apply the whole framework to learning transition rules of cellular automata.

The rest of this paper is organized as follows. Section 2 reviews the logical background
of this work, and Sect. 3 shows how the semantics of logic programs is related to state tran-
sitions of dynamical systems. Section 4 introduces LF1T together with two versions of its
algorithms and proves their correctness. Section 5 considers LFBA as variations of LF1T
and incorporates background knowledge and inductive biases. Section 6 shows experimen-
tal results of two versions of LF1T on learning Boolean networks and cellular automata.
Section 7 discusses related work, and Sect. 8 concludes the paper.

2 Normal logic programs

We consider a first-order language and denote the Herbrand base (the set of all ground
atoms) as B. A (normal) logic program (NLP) is a set of rules of the form

A ← A1 ∧ · · · ∧ Am ∧ ¬Am+1 ∧ · · · ∧ ¬An (1)

where A and Ai ’s are atoms (n ≥ m ≥ 0). For any rule R of the form (1), the atom A is
called the head of R and is denoted as h(R), and the conjunction to the right of ← is called
the body of R. We represent the set of literals in the body of R of the form (1) as b(R) =
{A1, . . . ,Am,¬Am+1, . . . ,¬An}, and the atoms appearing in the body of R positively and
negatively as b+(R) = {A1, . . . ,Am} and b−(R) = {Am+1, . . . ,An}, respectively. An NLP P

is called a definite program if b−(R) = ∅ for every rule R in P . The set of ground instances
of all rules in a logic program P is denoted as ground(P ). An NLP P is called an acyclic
program (Apt and Bezem 1991) if, for every rule of the form (1) in ground(P ), |A| > |Ai |
holds for every i = 1, . . . , n and for some function | | : B → N (called a level mapping) from
the Herbrand base to natural numbers.

An (Herbrand) interpretation I is a subset of B, and is called an (Herbrand) model of P

if I satisfies all ground rules from P , that is, for any rule R ∈ ground(P ), b+(R) ⊆ I and
b−(R) ∩ I = ∅ imply h(R) ∈ I .

An Herbrand interpretation I ∈ 2B is supported in an NLP P if for any ground atom A ∈
I , there exists a rule R ∈ ground(P ) such that h(R) = A, b+(R) ⊆ I , and b−(R) ∩ I = ∅.
I is a supported model of P if I is a model of P and is supported in P (Apt et al. 1988).
It is known that the supported models of P are precisely the models of Comp(P ), which is
the Clark’s completion of P (Clark 1978). Every acyclic program has the unique supported
model (Apt and Bezem 1991), but there may be no, one or multiple supported models of an
NLP in general.

Given an NLP P and an Herbrand interpretation I , the reduct of P relative to I is defined
as the definite program: P I = {(h(R) ← ∧

B∈b+(R) B) | R ∈ ground(P ), b−(R) ∩ I = ∅}.
An Herbrand model I is a stable model (Gelfond and Lifschitz 1988) of P if I is the least
model of P I . Since P I = P holds for any definite program P and any Herbrand interpreta-
tion I , the unique stable model of a definite program is its least model.

Both the stable model semantics and the supported model semantics have been major
semantics in the field of logic programming. It is known that every stable model is a sup-
ported model (Marek and Subrahmanian 1992), but not vice versa. For example, the NLP
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{p ← p, q ← ¬p} has the supported models {p} and {q}, but only the latter is its stable
model. Every acyclic program has the unique stable model that is the same as its supported
model (Apt and Bezem 1991).

For a logic program P and an Herbrand interpretation I , the immediate consequence
operator (or TP operator) (Apt et al. 1988) is the mapping TP : 2B → 2B :

TP (I ) = {
h(R) | R ∈ ground(P ), b+(R) ⊆ I, b−(R) ∩ I = ∅}

. (2)

If P is definite, TP is monotone, i.e., I1 ⊆ I2 implies TP (I1) ⊆ TP (I2) (van Emden and
Kowalski 1976). When P is an NLP, however, TP is generally nonmonotone (Apt et al.
1988). Then, I is a model of P iff TP (I ) ⊆ I . By definition, I is supported iff I ⊆ TP (I ).
Hence, I is a supported model of P iff TP (I ) = I . Thus, the TP operator is more directly
connected to the supported model semantics than to the stable model semantics. Note that TP

is deterministic, that is, it determines a unique interpretation TP (I ) for any interpretation I .
A sequence of applications of the operator on Herbrand interpretations is called an orbit
(Blair et al. 1997). Given a logic program P and an Herbrand interpretation I , the orbit
of I with respect to the TP operator is the sequence 〈TP

k(I )〉k∈ω , where TP
0(I ) = I and

TP
k+1(I ) = TP (TP

k(I )) for k ∈ ω (ω is a limit ordinal).

3 Representing dynamics in logic programs

Here we consider logic-based representation of dynamical systems, which is a key issue for
inductive learning of them. In ILP, a first-order representation is used for a relational con-
cept, and we simply follow this line of research, e.g., (Muggleton et al. 2012). In particular,
we do not propose any new learning scheme for generalization and abstraction which are
not directly related to dynamics. For instance, if a particle A and a particle B have the same
physical properties, then a rule to decide the position of A after a perturbation is added must
be the same as a rule for B with the same kind of perturbation. Then, identification of such a
rule involves the dynamics, but the names A and B are not crucial so that we can generalize
them to be a variable in a common rule. We thus assume that any ILP method can be applied
to generalize such individuals, and will focus on learning of dynamics itself in this paper.
We here show two such representations to deal with dynamics: One is based on a first-order
notation with the time argument, and the other does not use the time argument.

Symbolic representation of dynamic changes has been studied in knowledge representa-
tion in AI such as situation calculus (McCarthy and Hayes 1969) and event calculus (Kowal-
ski and Sergot 1986), which are mostly suitable for virtual action sequences. In real-world
applications, however, the state of the world changes concurrently from time to time, and
all elements in the world may change often synchronously. Then, to represent discrete time
directly in the simplest way, we can use the time argument in a relational representation: For
each relation p(x) among the objects, where p is a predicate and x is a tuple of its argu-
ments, we can consider its state at time t as p(x, t). In this way, we shall represent any atom
A = p(x) at time t by putting the time argument of the predicate as At = p(x, t). Then, a
rule in an NLP of the form (1) can be made a dynamic rule in the first-order expression of
the form:

At+1 ← A1
t ∧ · · · ∧ Am

t ∧ ¬Am+1
t ∧ · · · ∧ ¬An

t . (3)

The rule (3) means that, if A1, . . . ,Am are all true at time step t and Am+1, . . . ,An are all
false at the same time step t , then A is true at the next time step t + 1. Note that this kind
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of dynamic rules is first-order even if the original rule is propositional. Then, any first-order
NLP that is a set of rules of the form (3) becomes an acyclic program, in which the stable
model semantics and the supported model semantics coincide. Moreover, we can simulate
state transition of Boolean networks using this representation and the TP operator (Inoue
2011).

A Boolean network (Kauffman 1993) is a pair N = (V ,F ), where V = {v1, . . . , vn} is a
finite set of nodes (n is the number of nodes) and F = {f1, . . . , fn} is a corresponding set
of Boolean functions. The value of node vi at time step t is denoted as vi(t). The value of
vi at the next time step t + 1 is then determined by vi(t + 1) = fi(vi1(t), . . . , vik (t)), where
vi1 , . . . , vik are the input nodes to vi . A state of N at time step t is (v1(t), . . . , vn(t)), and
represents a gene activity profile (GAP) at t when applied to a gene regulatory network.
A trajectory of N is a sequence of states obtained by a series of state transitions. As |V |
is finite, every trajectory always reaches to some attractor (Kauffman 1993; Garg et al.
2008; Inoue 2011), which is either a fixed point (called a point attractor) or a periodic
oscillation (called a cycle attractor). A state that reaches an attractor S is said to belong
to the basin of attraction of S . Inoue (2011) shows a translation of a Boolean network N

into an NLP τ(N) such that τ(N) is a set of rules of the form (3): For each vi ∈ V , convert
its Boolean function fi(vi1(t), . . . , vik (t)) into a DNF formula1

∨li
j=1 Bi,j

t , where Bi,j is
a conjunction of literals, then generate li rules with vi

t+1 as the head and Bi,j
t as a body

for each j = 1, . . . , li . Given a state S(t) = (v1(t), . . . , vn(t)) at time step t , let J t = {vi
t |

vi ∈ V, vi(t) is true in S(t)}. Then the translation τ has the property that the trajectory of N

from an initial state S(0) = (v1(0), . . . , vn(0)) can be precisely simulated by the sequence
of interpretations, J 0, J 1, . . . , J k, J k+1, . . . , where J k+1 = Tτ(N)(J

k) ∩ {vi
t+1 | vi ∈ V } for

k ≥ 0 (Inoue 2011).

Example 1 Consider the Boolean network N1 = (V1,F1), where V1 = {p,q, r}, and F1 and
the corresponding NLP τ(N1) are as follows.

F1: p(t + 1) = q(t), τ (N1): p(t + 1) ← q(t),

q(t + 1) = p(t) ∧ r(t), q(t + 1) ← p(t) ∧ r(t),

r(t + 1) = ¬p(t). r(t + 1) ← ¬p(t).

The state transition diagram for N1 is depicted in Fig. 1.2

Starting from the interpretation J 0 = {q(0), r(0)}, which means that q and r are true
at time 0, its transitions with respect to the Tτ(N1) operator are given as J1 = {p(1), r(1)},
J2 = {q(2)}, J3 = {p(3), r(3)}, . . . , which corresponds to the trajectory qr → pr → q →
pr → . . . of N1. Here pr → q → pr is a cycle attractor (Fig. 1, below). N1 has another,
point attractor r → r (Fig. 1, above) whose basin of attraction is {pqr,pq,p, ε, r}.

The second way to represent dynamics of Boolean networks is based on a recent work on
the semantics of logic programming. Instead of using the above direct representation (3), we
can consider another representation without the time argument. That is, we consider an NLP
as a set of rules of the form (1). In (Inoue 2011), a Boolean network N is further translated
to a propositional NLP π(N) from τ(N) by deleting the time argument from every literal At

1If no fi is given to vi , we assume the identity function for fi , i.e., vi (t + 1) = vi (t).
2Each interpretation is concisely represented as a sequence of atoms instead of a set of atoms in examples,
e.g., pq means {p,q} and the empty string ε means ∅.
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Fig. 1 The state transition
diagram of N1

appearing in τ(N). Then, we can simulate the trajectory of N from any state S(0) also by
the orbit of the interpretation I 0 = {vi ∈ V | vi(0) is true} with respect to the Tπ(N) operator,
i.e., I t+1 = Tπ(N)(I

t ) for t ≥ 0. Moreover, we can characterize the attractors of N based on
the supported class semantics (Inoue and Sakama 2012) for π(N).

A supported class of an NLP P (Inoue and Sakama 2012) is a non-empty set S of Her-
brand interpretations satisfying:

S = {
TP (I ) | I ∈ S

}
. (4)

Note that I is a supported model of P iff {I } is a supported class of P . A supported class
S of P is strict if no proper subset of S is a supported class of P . Alternatively, S is a
strict supported class of P iff there is a directed cycle I1 → I2,→ ·· · → Ik → I1 (k ≥ 1) in
the state transition diagram induced by TP such that {I1, I2, . . . , Ik} = S (Inoue and Sakama
2012). A strict supported class of π(N) thus exactly characterizes an attractor of a Boolean
network N .

Example 2 Consider the Boolean network N1 in Example 1 again. The NLP

π(N1): p ← q,

q ← p ∧ r,

r ← ¬p,

is obtained from the first-order NLP τ(N1) in Example 1 by removing the time argument
from each literal. Notice that this logic program is not acyclic, since π(N1) has both positive
and negative feedback loops: The positive loop appears between p and q , while the negative
one exists in the dependency cycle to r through p. In this case, behavior of a corresponding
Boolean network is not obvious.3

The state transition diagram induced by the Tπ(N1) operator is the same as the diagram
in Fig. 1. The orbit of pqr with respect to Tπ(N1) becomes pqr , pq , p, ε, r , r , . . . (Fig. 1,
above), and the orbit of qr is qr , pr , q , pr , . . . (Fig. 1, below). We here verify that there
are two supported classes of π(N1), {{r}} and {{p, r}, {q}}, which respectively correspond
to the point attractor and the cycle attractor of N1.

A further discussion on the selection of representation and the semantics for capturing
dynamical systems in logic programs will be given in Sect. 7.3. In the following, we can use
an NLP either with the time argument in the form of (3) or without the time argument in the
usual form (1) for learning. To simplify the discussion, however, we will mainly use NLPs
without the time argument in basic algorithms.

3The reason why behavior becomes complex in the existence of feedbacks is biologically justified as follows.
Each positive loop in a Boolean network is related to reinforcement and existence of multiple attractors, while
each negative loop is the source of periodic oscillations involved in homeostasis (Remy and Ruet 2008).
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4 Learning from 1-step transitions

Now we consider learning from interpretation transition (LFIT). LFIT is an anytime algo-
rithm, that is, whenever we process a set E of state transitions, we will guarantee that the
result of learning is a logic program P which completely represents the dynamics of the
transitions E so that a dynamical system is represented by P .

This section focuses on learning from 1-step transitions (LF1T) as LFIT. For learning,
we assume that the Herbrand base B is finite.

Learning from 1-Step Transitions (LF1T)

Input: E ⊆ 2B × 2B : (positive) examples/observations, an initial NLP P0.
Output: An NLP P such that J = TP (I ) holds for any (I, J ) ∈ E.

In LF1T, a positive example is input as a one-step state transition, which is a pair of
Herbrand interpretations.4 We can also give a prior program P0 before learning. The output
of LF1T is an NLP which realizes all state transitions given in the input. Note that only one
NLP is output by LF1T.

Here we show a bottom-up method to construct an NLP for LF1T. A bottom-up method
generates hypotheses by generalization from the most specific clauses or examples until
every positive example is covered. For two rules R1,R2 with the same head, R1 subsumes
R2 if there is a substitution θ such that b+(R1)θ ⊆ b+(R2) and b−(R1)θ ⊆ b−(R2). In this
case, R1 is more (or equally) general than R2, and R2 is less (or equally) general than R1.
A rule R is the least (general) generalization (Plotkin 1970) of R1 and R2, written as R =
lg(R1,R2), if R subsumes both R1 and R2 and is subsumed by any rule that subsumes both
R1 and R2. According to Plotkin (1970), the lg of two atoms p(s1, . . . , sn) and q(t1, . . . , tn)

is undefined if p �= q; and is p(lg(s1, t1), . . . , lg(sn, tn)) if p = q (lg(si, ti ) is defined as in
Plotkin (1970)). Then, lg(R1,R2) is written as in Sakama (2001):

lg
(
h(R1), h(R2)

) ←
∧

L∈b+(R1),K∈b+(R2)

lg(L,K) ∧
∧

L∈b−(R1),K∈b−(R2)

¬lg(L,K). (5)

The pseudo-code of LF1T is given as follows.

LF1T (E: pairs of Herbrand interpretations, P : an NLP)

1. If E = ∅ then output P and stop;
2. Pick (I, J ) ∈ E, and put E := E \ {(I, J )};
3. For each A ∈ J , let

RI
A :=

(

A ←
∧

Bi∈I

Bi ∧
∧

Cj ∈(B\I )

¬Cj

)

; (6)

4. If RI
A is not subsumed by any rule in P , then P := P ∪ {RI

A} and simplify P by general-
izing some rules in P and removing all clauses subsumed by them;

5. Return to 1.

4A negative example (I, J ) could be given if J �= TP (I) is known and no positive example (I,K) such that
K = TP (I) is known. Note that, once a positive example (I,K) is given, any pair (I, J ) such that J �= K is
regarded as a negative example.
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The LF1T algorithm can be used with or without an initial NLP P0. Given the examples
E only, LF1T is initially called by LF1T(E,∅). If an initial NLP P0 is given, LF1T(E,P0)

is called. LF1T firstly constructs the most specific rule RI
A for each positive literal A ap-

pearing in J = TP (I ) for each (I, J ) ∈ E.5 It is important here that we do not construct any
rule to make a literal false. The rule RI

A is then possibly generalized when another transition
from E makes A true, which is computed by several generalization methods.

The first generalization method we consider is based on resolution. The resolution prin-
ciple by Robinson (1965) is well known as a deductive method, but its naïve use can be
applied to a generalization method. In the following, for a literal l, l denotes the comple-
ment of l, i.e., when A is an atom, A = ¬A and ¬A = A. We firstly consider a resolution
between two ground rules as follows.

Definition 1 (Naïve/ground resolution) Let R1 and R2 be two ground rules of the form (1),
and l be a literal such that h(R1) = h(R2), l ∈ b(R1) and l ∈ b(R2). If (b(R2) \ {l}) ⊆
(b(R1) \ {l}) then the ground resolution of R1 and R2 (upon l) is defined as

res(R1,R2) =
(

h(R1) ←
∧

Li∈b(R1)\{l}
Li

)

. (7)

In particular, if (b(R2) \ {l}) = (b(R1) \ {l}) then the ground resolution is called the naïve
resolution of R1 and R2 (upon l). In this particular case, the rules R1 and R2 are said to be
complementary to each other with respect to l.

Both naïve resolution and ground resolution can be used as generalization methods of
ground rules. For two ground rules R1 and R2, the naïve resolution res(R1,R2) subsumes
both R1 and R2, but the non-naïve ground resolution subsumes R1 only.

Example 3 Suppose the three rules: R1 = (p ← q ∧ r), R2 = (p ← ¬q ∧ r), R3 = (p ←
¬q), and their resolvent: res(R1,R2) = res(R1,R3) = (p ← r).

R1 and R2 are complementary with respect to q . Both R1 and R2 can be generalized
by the naïve resolution of them because res(R1,R2) subsumes both R1 and R2. On the
other hand, the ground resolution res(R1,R3) of R1 and R3 is equivalent to res(R1,R2).
However, res(R1,R3) subsumes R1 but does not subsume R3.

Ground and naïve resolutions can be used to learn a ground NLP, and we will give the two
corresponding versions of LF1T in Sects. 4.1 and 4.2. These two algorithms are firstly used
when there is no initial program, then an initial program is given as an input in Sect. 4.3. We
also show how to learn non-ground NLPs in Sect. 4.4.

4.1 Generalization by naïve resolution

In our first implementation of LF1T, naïve resolution is used as a least generalization
method. This method is particularly intuitive from the ILP viewpoint, since each gener-
alization is performed based on a least generalization operator.

5Based on the discussion in Sect. 3, we can alternatively consider a first-order expression of the form (3) as

a rule in an output program P here. If we use a rule with the time argument, each RI
A

in LF1T becomes

At+1 ← ∧
Bi∈I Bi

t ∧ ∧
Cj ∈(B\I ) ¬Cj

t . In this case, generalization methods used in LF1T are essentially

the same as those for the propositional expression; We apply each generalization just by keeping the time
argument appearing in the body of each rule.
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Algorithm 1 LF1T(E,P )

1: INPUT: a set E of pairs of Herbrand interpretations and an NLP P

2: OUTPUT: an NLP P

3: Pold : NLP
4: Pold ← ∅
5: while E �= ∅ do
6: Pick (I, J ) ∈ E;E := E \ {(I, J )}
7: for each A ∈ J do
8: RI

A := A ← ∧
Bi∈I Bi ∧ ∧

Cj ∈(B\I ) ¬Cj

9: AddRule(RI
A, P , Pold )

10: end for
11: end while
12: return P

Proposition 1 For two complementary ground rules R1 and R2, the naïve resolution of R1

and R2 is the least generalization of them, that is, lg(R1,R2) = res(R1,R2).

Proof Let R be res(R1,R2). Since R subsumes both R1 and R2 in the case of naïve reso-
lution, we here show that it is the least among such subsuming rules. Suppose that there is
a rule R′ such that (i) R′ subsumes both R1 and R2, (ii) R′ is subsumed by R, and (iii) R′

does not subsume R. Since R and R′ are ground, (ii) implies b(R) ⊆ b(R′), and then (iii)
implies b(R′) �= b(R). Then, there is a literal l ∈ b(R′) such that l �∈ b(R). By l ∈ b(R′)
and b(R′) ⊆ b(R1), l ∈ R1 holds. But this only happens when l is resolved upon, i.e.,
R = res(R1,R2) = (h(R1) ← ∧

Li∈b(R1)\{l} Li). However, by b(R′) ⊆ b(R2), l ∈ R2 holds
too. Then l is not the literal resolved upon, a contradiction. �

When naïve resolution is used, we need an auxiliary set Pold of rules to globally store
subsumed rules, which increases monotonically. Pold is set ∅ at first. When a generated rule
is newly added at Step 4 in the pseudo-code of LF1T, we try to find a rule R′ ∈ P ∪ Pold

such that (a) h(R′) = h(R) and (b) b(R) and b(R′) differ in the sign of only one literal l. If
there is no such a rule R′, then R is just added to P ; otherwise, add R and R′ to Pold then
add res(R,R′) to P in a recursive call of Step 4.

The resulting algorithms for LF1T and AddRule are shown in Algorithms 1 and 2.

Example 4 Consider the state transition in Fig. 1. By giving the state transitions step by
step, the NLP π(N1) = {#11,#14,#19} is obtained in Table 1, where #n is the rule ID.

We now examine the correctness of the LF1T algorithm in terms of its completeness and
soundness. A program P is said to be complete for a set E of pairs of interpretations if J =
TP (I ) holds for any (I, J ) ∈ E. On the other hand, P is sound for E if for any (I, J ) ∈ E

and any J ′ ∈ 2B such that J ′ �= J , J ′ �= TP (I ) holds. A deterministic learning algorithm
is complete (resp. sound) for E if its output program is complete (resp. sound) for E. We
use the following subsumption relation between programs: Given two logic programs P1

and P2, P1 theory-subsumes P2 if for any rule R ∈ P2, there is a rule R′ ∈ P1 such that R′

subsumes R.
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Algorithm 2 AddRule(R,P,Pold) (with naïve resolution)
1: INPUT : a rule R and two NLPs P and Pold

2: if R is subsumed by a rule of P then
3: Pold := Pold ∪ {R}
4: return
5: end if
6: for each rule RP of P subsumed by R do
7: P := P \ {RP }
8: Pold := Pold ∪ {RP }
9: end for

10: P := P ∪ {R}
11: // Check for generalizations
12: for each rule R′ of P ∪ Pold with h(R) = h(R′) do
13: for each l ∈ b(R) such that l ∈ b(R′) do
14: if b(R) \ {l} = b(R′) \ {l} then
15: Pold := Pold ∪ {R}
16: Rlg := h(R) ← ∧

Li∈b(R)\{l} Li

17: AddRule(Rlg , P , Pold )
18: end if
19: end for
20: end for

Theorem 1 (Completeness of LF1T with naïve resolution) Given a set E of pairs of inter-
pretations, LF1T with naïve resolution is complete for E.

Proof For any pair of interpretations (I, J ) ∈ E, it is verified that the rule RI
A determines

the value of A in the next state of I correctly for any A ∈ J . On the other hand, for any atom
A �∈ J , the value of A in the next state of I becomes false by RI

A and the TP operator. Hence,
the set of rules P ∗ = {RI

A | (I, J ) ∈ E,A ∈ J } is complete for the transitions in E. Since a
rule R derived by the naïve resolution of R1 and R2 subsumes R1 and R2 by Proposition 1,
P ′ = (P ∗ \ {R1,R2})∪ {R} theory-subsumes P ∗. Then, P ′ is also complete for E, since TP ′
and TP agree with their transitions. Since the (theory-)subsumption relation is transitive,
an output program P , which is obtained by repeatedly applying naïve resolutions, theory-
subsumes P ∗. Hence, P is complete for E. �

The implication of Theorem 1 is very important: For any set of 1-step state transitions,
we can construct an NLP that captures the dynamics in the transitions. In other words, there
is no (deterministic) state transition diagram that cannot be expressed in an NLP. It is also
important to guarantee the soundness of the learning algorithm, that is, it never overgener-
alizes any state transition rule. The soundness can be obtained from the completeness when
the transition from any interpretation is deterministic like the assumption in this paper (that
is why it is stated as a corollary), but we show a more precise proof for it.

Corollary 1 (Soundness of LF1T with naïve resolution) Given a set E of pairs of interpre-
tations, LF1T with naïve resolution is sound for E.
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Table 1 Execution of LF1T in inferring π(N1) of Example 2

Step I → J Operation Rule ID P Pold

1 qr → pr R
qr
p p ← ¬p ∧ q ∧ r 1 1 ∅

R
qr
r r ← ¬p ∧ q ∧ r 2 1,2

2 pr → q R
pr
q q ← p ∧ ¬q ∧ r 3 1,2,3

3 q → pr R
q
p p ← ¬p ∧ q ∧ ¬r 4

res(4,1) p ← ¬p ∧ q 5 2,3,5 +1,4

R
q
r r ← ¬p ∧ q ∧ ¬r 6

res(6,2) r ← ¬p ∧ q 7 3,5,7 +2,6

4 pqr → pq R
pqr
p p ← p ∧ q ∧ r 8

res(8,1) p ← q ∧ r 9 3,5,7,9 +8

R
pqr
q q ← p ∧ q ∧ r 10

res(10,3) q ← p ∧ r 11 5,7,9,11 +3,10

5 pq → p R
pq
p p ← p ∧ q ∧ ¬r 12

res(12,4) p ← q ∧ ¬r 13 5,7,9,11,13 +12

res(13,9) p ← q 14 7,11,14 +5,9,13

6 p → ε

7 ε → r Rε
r r ← ¬p ∧ ¬q ∧ ¬r 15

res(15,6) r ← ¬p ∧ ¬r 16 7,11,14,16 +15

8 r → r Rr
r r ← ¬p ∧ ¬q ∧ r 17

res(17,15) r ← ¬p ∧ ¬q 18 7,11,14,16,18 +17

res(18,7) r ← ¬p 19 11,14,19 +7,16,18

Proof It is easy to see that the program P ∗ in the proof of Theorem 1 satisfies the soundness.
Any naïve resolution R = res(R1,R2) for any R1,R2 ∈ P ∗ deletes only one literal l such
that l ∈ b(R1) and l ∈ R2. Assume that R1 = R

I1
A and R2 = R

I2
A for some (I1, J1) ∈ E and

(I2, J2) ∈ E. Then, b(R) is satisfied by any partial interpretation I ′ such that I ′ = I1 ∩
I2 = I1 \ {l} = I2 \ {l}. Considering total interpretations that are extensions of I ′, there are
only two possibilities, i.e., I1 and I2. Since A = h(R) belongs to both J1 = TP ∗(I1) and
J2 = TP ∗(I2), it also belongs to TP ′(I1) and TP ′(I2), where P ′ = (P ∗ \ {R1,R2}) ∪ {R}.
Applying the same argument to all atoms in any J = TP ∗(I ) for any interpretation I , we
have J = TP ′(I ). This arguments can be further applied to all naïve resolutions, so that
TP (I ) is the same as TP ∗(I ) for the final NLP P . �

4.2 Generalization by ground resolution

Using naïve resolution, P ∪ Pold possibly contains all patterns of rules constructed from
the Herbrand base B in their bodies. In our second implementation of LF1T, ground res-
olution is used as an alternative generalization method in AddRule. This replacement of
resolution leads to a lot of computational gains, since we do not need Pold any more: Every
generalization which can be found in Pold can be found in P by ground resolution.

Proposition 2 All generalized rules obtained from P ∪ Pold by naïve resolution can be
obtained using ground resolution on P .
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Algorithm 3 AddRule(R,P ) (with ground resolution)
1: INPUT: a rule R and a NLP P

2: for each rule RP of P do
3: if R is subsumed by RP then
4: return
5: end if
6: if R subsumes RP then
7: P := P \ {RP }
8: else
9: // Check for generalizations

10: if h(R) = h(RP ) then
11: if ∃l ∈ b(R) such that l ∈ b(RP ) then
12: if b(R) \ {l} is subsumed by b(RP ) \ {l} then
13: Rr := h(R) ← ∧

Li∈b(R)\{l} Li

14: AddRule(Rr , P )
15: return
16: end if
17: if b(R) \ {l} subsumes b(RP ) \ {l} then
18: Rr

P := h(RP ) ← ∧
Li∈b(RP )\{l} Li

19: AddRule(Rr
P , P )

20: AddRule(R, P )
21: return
22: end if
23: end if
24: end if
25: end if
26: end for
27: P := P ∪ {R}

Proof Let R1 ∈ P and R2 ∈ Pold be ground complementary rules with respect to a literal
l ∈ b(R1). Then, h(R1) = h(R2), l ∈ b(R2) and (b(R1) \ {l}) = (b(R2) \ {l}) hold. Suppose
that by naïve resolution, R3 = res(R1,R2) is put into P and that R1 is put into Pold in
AddRule. By R2 ∈ Pold , there has been a rule R4 in P such that R4 subsumes R2, that is,
b(R4) ⊆ b(R2). We can also assume that l ∈ b(R4) because otherwise l has been resolved
upon by the naïve resolution between R2 and some rule in P and thus R1 must have been put
into Pold . Then, the rule R5 = res(R1,R4) is obtained by ground resolution, and b(R5) =
(b(R1) \ {l}) = (b(R2) \ {l}). Hence R5 is equivalent to R3. �

Ground resolution can be used in place of naïve resolution to learn an NLP from traces
of states transition. In this case, we can simplify Algorithm 1 by deleting Lines 3 and 4 and
by replacing Line 9 with AddRule(RI

A,P ). Algorithm 3 describes the new AddRule which
adds and simplify rules using ground resolution.

As in the case of naïve resolution, we can prove the correctness, i.e., the completeness
and soundness of LF1T with ground resolution.

Theorem 2 (Completeness of LF1T with ground resolution) Given a set E of pairs of
interpretations, LF1T with ground resolution is complete for E.
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Table 2 Execution of LF1T with ground resolution in inferring π(N1) of Example 2

Step I → J Operation Rule ID P

1 qr → pr R
qr
p p ← ¬p ∧ q ∧ r 1 1

R
qr
r r ← ¬p ∧ q ∧ r 2 1,2

2 pr → q R
pr
q q ← p ∧ ¬q ∧ r 3 1,2,3

3 q → pr R
q
p p ← ¬p ∧ q ∧ ¬r 4

res(4,1) p ← ¬p ∧ q 5 2,3,5

R
q
r r ← ¬p ∧ q ∧ ¬r 6

res(6,2) r ← ¬p ∧ q 7 3,5,7

4 pqr → pq R
pqr
p p ← p ∧ q ∧ r 8

res(8,5) p ← q ∧ r 9 3,5,7,9

R
pqr
q q ← p ∧ q ∧ r 10

res(10,3) q ← p ∧ r 11 5,7,9,11

5 pq → p R
pq
p p ← p ∧ q ∧ ¬r 12

res(12,5) p ← q ∧ ¬r 13

res(13,9) p ← q 14 7,11,14

6 p → ε

7 ε → r Rε
r r ← ¬p ∧ ¬q ∧ ¬r 15

res(15,7) r ← ¬p ∧ ¬r 16 7,11,14,16

8 r → r Rr
r r ← ¬p ∧ ¬q ∧ r 17

res(17,7) r ← ¬p ∧ r 18

res(18,16) r ← ¬p 19 11,14,19

Proof As in the proof of Theorem 1, if a program P is complete for E, a program P ′ that
theory-subsumes P is also complete for E. By Proposition 2, any rule produced by naïve res-
olution can be generated by ground resolution. Then, if P and P ′ are respectively obtained
by naïve resolution and ground resolution, P ′ theory-subsumes P . Since P is complete for
E by Theorem 1, P ′ is complete for E. �

Corollary 2 (Soundness of LF1T with ground resolution) Given a set E of pairs of inter-
pretations, LF1T with ground resolution is sound for E.

Proof By Theorem 2, a program P output by LF1T with ground resolution is complete
for E. Then, as in the proof of Corollary 1, P is shown to be sound for E. �

Example 5 Consider again the state transition in Fig. 1. Using ground resolution, the NLP
π(N1) = {#11,#14,#19} is obtained in Table 2.

Comparing Examples 2 and 5, all rules generated by naïve resolution are obtained by
ground resolution too. By avoiding the use of Pold , however, we can reduce time and space
for learning. As the next theorem shows, ground resolution has much complexity gain com-
pared with naïve resolution, when learning is done with the input of complete 1-step state
transitions from all 2n interpretations, where n is the size of the Herbrand base B. In the
propositional case, n is the number of propositional atoms, which correspond to the number
of nodes in a Boolean network. We here assume that each operation of subsumption and
resolution can be performed in time O(1) by assuming a bit-vector data structure.
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Theorem 3 Using naïve version, the memory use of the LF1T algorithm is bounded by
O(n · 3n), and the time complexity of learning is bounded by O(n2 · 9n), where n = |B|. On
the other hand, with ground resolution, the memory use is bounded by O(2n), which is the
maximum size of P , and the time complexity is bounded by O(4n).

Proof In both P and Pold , the maximum size of the body of a rule is n. There are n possible
heads and 3n possible bodies for each rule: Each element of B can be either positive, negative
or absent in the body of a rule. This means that both |P | and |Pold | are bounded by the size
in O(n · 3n). The memory use in the algorithm is thus O(n · 3n). In practice, however, |P | is
less than or equal to O(2n) for the following reason. In the worst case, P contains only rules
of size n; if P contains a rule with m literals (m < n), this rule subsumes 2n−m rules which
cannot appear in P . That is why we can consider only two possibilities for each literal,
i.e., positive and negative occurrences of the literal (and no blank) to estimate the size |P |.
Furthermore, P does not contain any pair of complementary rules, so that the complexity is
further divided by n, that is, |P | is bounded by O(n · 2n/n) = O(2n). But |Pold | remains in
the same complexity and the memory use of the algorithm in practice is still O(n · 3n).

In adding a rule to P in AddRule using naïve resolution, we have to compare it with
all rules in P ∪ Pold , then this operation has a complexity of O(n · 3n). Hence, using naïve
resolution, the complexity of LF1T is O(

∑n·3n

k=1 k), where k represent the number of rules in
P ∪ Pold , which increases during the process until it finally belongs to O(n · 3n). Therefore,
the complexity of learning with naïve version is O(

∑n·3n

k=1 k), which is then equal to O(n2 ·
32n−1) = O(n2 · 9n). On the other hand, using ground resolution, the memory use of the
LF1T algorithm is O(2n), which is the maximum size of P . The complexity of learning is
then O(

∑2n

k=1 k), which is equal to O((2n(2n + 1))/2) = O(22n−1) = O(4n). �

By Theorem 3, given the set E of complete state transitions, which has the size O(2n),
the complexity of LF1T(E,∅) with ground resolution is bounded by O(|E|2). On the other
hand, the worst-case complexity of learning with naïve resolution is O(n2 · |E|4.5). We will
see the difference in experiments on learning biological networks in Sect. 6.1.

4.3 Background theories and incremental learning

So far, we have not explicitly mentioned a background theory or a prior program that is
given before learning. But this is easily handled in LF1T: If we are given a prior NLP P0 as
a background theory, we can just call LF1T(E,P0).

Theorem 3 gives the upper bounds of the complexity of learning under the assumption
that the set of complete state transitions is given as the input and no initial program is
given. However, LF1T is an anytime algorithm and is hence complete for any incomplete
set of state transitions with or without a prior program. Then, the next proposition shows
the relationship between the size of inputs and the generality of programs learned by LF1T
with either naïve or ground resolution.

Proposition 3 Let E and E′ be sets of state transitions such that E ⊆ E′. Let P be an
NLP learned by LF1T(E,∅), and P ′ be an NLP learned by LF1T(E′ \ E,P ). Then, P ′
theory-subsumes P .

Proof For any rule R in P , either R remains in P ′ or is subsumed by a new rule R′ ob-
tained in P ′. In either case, there is a rule in P ′ which subsumes R. Hence, P ′ theory-
subsumes P . �
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Since LF1T is complete for any input, any learned program has the same state transitions
for any ordering of state transitions. Then, P ′ = LF1T(E′ \ E,P ) and LF1T(E′,∅) agree
with their state transitions, which is TP ′ . That is, LF1T can be performed in an incremental
manner. Proposition 3 indicates that, the more examples are given, the more general pro-
grams are obtained. Actually, for any ground atom A, we will have a more general rule with
head A than a rule in P or other new rules with head A in P ′. As in the proof of Theorem 1,
learning a rule with m body literals need 2n−m examples for the naïve resolution method.
We thus need more examples to get smaller rules in general.

4.4 Handling non-ground cases

In Sects. 4.1 and 4.2, we have assumed that no initial NLP is input to LF1T. In this case,
only examples are given, which are transitions of interpretations that are ground. That is
why we only needed ground resolution for generalization, but the resultant program is also
ground. Here, we consider the case that an initial NLP P0 is given as an input, where P0

can contain variables. The next generalization operation is defined for any two non-ground
rules, including the case that one rule is ground and the other is non-ground. Like ground
resolution, a non-ground resolution res(R1,R2) of two rules in the next definition produce
a generalized rule that subsumes R1.

Definition 2 (Non-ground resolution) Let R1 and R2 be rules, and l ∈ b(R1) and l′ ∈ b(R2)

be literals such that l = l′θ holds for some substitution θ . If (b(R2) \ {l′})θ ⊆ (b(R1) \ {l})
holds, then res(R1,R2) = (h(R1) ← ∧

Li∈b(R1)\{l} Li).

Note that non-ground resolution in Definition 2 is a special case of more general resolu-
tion in (Robinson 1965), which derives a rule with the body ((b(R1)∪b(R2)) \ {l′, l})θ such
that lθ = l′θ holds. That is, it is a special case that the relation (b(R2)\ {l′})θ ⊆ (b(R1)\ {l})
holds. We will not consider this kind of general resolution in LF1T, since such a resolvent
generalizes neither R1 nor R2.

As discussed in Sect. 3, a generalization not involving time can be performed by a stan-
dard ILP technique. For example, we can apply anti-instantiation (AI) as a generalization
operator, which replaces a sub-term with a variable. We will see examples of learning non-
ground rules in Sect. 6.2. Note that unrestricted applications of such generalization operators
do not guarantee the soundness in general, so we need to check the consistency of general-
ized rules with the examples in applying those operators.

5 Variations

5.1 Learning from basins of attraction

Identification of an exact NLP using LF1T may require 2|B| examples, and this bound can-
not be reduced in general (Akutsu et al. 2003). In biological applications, however, this does
not necessarily mean that we need an exponential number of experimental GAP samples.
Instead, we can observe changes of GAPs from time to time, and get trajectories from much
fewer initial GAPs. Fortunately, any trajectory always reaches an attractor, so we can stop
observing changes as soon as we encounter a previously observed GAP. This scenario de-
rives us to design another LFIT framework to learn a Boolean network (or an NLP) from
basins of attraction as follows.
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Learning from Basins of Attraction (LFBA)

Input: A set E of orbits of interpretations (*).
Output: An NLP P such that, for every I ∈ E , any I ∈ I belongs to the basin of
attraction of an attractor of P that is contained in I .

In LFBA, an example I ∈ E is given as a part of the basin of attraction of some attractor
of the target NLP P . We here assume for the input (*) that each I contains the Herbrand
interpretations belonging to the orbit of an initial interpretation I0 ∈ I with respect to the TP

operator, and that every transition among I is completely known so that I can be written as
a sequence I0 → I1 → ·· · → Ik−1 → J0 → ·· · → Jl−1 → J0 → ·· · , where |I| = k + l and
{J0, · · · , Jl−1} is an attractor. A set E of examples in LFBA has the property that two orbits
I, J ∈ E reach the same attractor if and only if I ∩ J �= ∅ holds.

LFBA(E : orbits of Herbrand interpretations)

1. Put P := ∅;
2. If E = ∅ then output P and stop;
3. Pick I ∈ E , and put E := E \ {I};
4. Put E := {(I, J ) | I, J ∈ I, J is the next state of I };
5. P := LF1T(E,P ); Return to 2.

The input size of learning an NLP by LFBA is bounded by the number of attractors in
the given state transition diagrams. This is practically much lower than 2|B|. However, in the
worst case, there is a Boolean network which has an exponential number of attractors. For
example, the NLP {(vi ← vi) | vi ∈ B} has 2|B| point attractors.

Example 6 Consider again the state transition in Fig. 1. But this time, the input is given
as E = {I1, I2}, where I1 is the sequence: qr → pr → q → pr → ·· · , and I2 is the
sequence: pqr → pq → p → ε → r → r → ·· · . Put E1 = {(qr,pr), (pr, q), (q,pr)}
and E2 = {(pqr,pq), (pq,p), (p, ε), (ε, r), (r, r)}. Then, in LFBA, firstly LF1T(E1,∅) is
called, and the resulting NLP P1 is obtained as P1 = {#3,#5,#7} . Next, LF1T(E2,P1) is
called and the NLP π(N1) = {#11,#14,#19} is obtained.

5.2 Exogenous events

Boolean networks are one of the simplest dynamical systems in the sense that all behaviors
are deterministic and solely depend on the initial state and state transition rules. An impor-
tant extension would be to introduce the notion of exogenous events. The importance of such
exogenous events has been discussed in the literature (Baral et al. 2008), and they generally
interfere normal transitions of states. Then, we need to distinguish those state transitions in-
duced by the dynamical system itself and other state transitions caused by exogenous events.
Learning such dynamics can be simply done in our framework by taking only those system’s
transitions as input examples and ignoring transitions perturbed or forced by external events.

Given the input state transitions, I0 → I1 → I2 → ·· · → Ik−1 → Ik ⇒ Ik+1 → Ik+2 →
·· · , suppose that the transition from Ik to Ik+1 (denoted by the double arrow ⇒) is
caused by some external event. Then, let I1 be I0 → I1 → I2 → . . . → Ik−1 → Ik and
I2 be Ik+1 → Ik+2 → . . .. In this case, LFBA({I1, I2}) is applied by calling LF1T(E1,∅)

first, and then calling LF1T(E2,P1), where E1 = {(I0, I1), (I1, I2), . . . , (Ik−1, Ik)}, E2 =
{(Ik+1, Ik+2), . . .}, and P1 is the result of LF1T(E1,∅).
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5.3 Inductive biases

Inductive biases can be incorporated into LF1T in various ways. For example, a prescribed
set of literals that can affect the value of an atom A can be given for each A ∈ B. In Boolean
networks, we often know such “neighbor” literals, but may not know its exact Boolean
function (Akutsu et al. 2009). In such a case, we can focus on those input nodes vi1 , . . . , vik ∈
V of a node vi ∈ V in each interpretation I , and pick only those values of vi1 , . . . , vik in I

when the body of RI
vi

is constructed in LF1T. In cellular automata, those neighborhood cells
are already known for every cell, so this bias can be effectively used.

As another useful inductive bias, we can restrict the length of each learned rule R, i.e.,
|b(R)| ≤ k for some integer k > 0. When |B| = n, the size of each I is also n, i.e., |I | = n

for any I ∈ 2B . When the length condition is k < n, there are two ways to meet this condi-
tion. The first method is to follow the algorithm of LF1T without restricting the length of
the body of each produced rule, and wait until the length becomes less than k by resolution
generalization. Once we have generated such a rule, the length condition is always satisfied
by resolution generalization in Definitions 1 and 2. However, if a rule has more than k lit-
erals in the body at the end of learning, we need to shorten the body to meet the condition
by selecting n literals from the body. This last selection must be done by keeping the con-
sistency with the examples. The second method is more brave and constructs a rule RI

A in
LF1T for a literal A and an interpretation I by selecting only k values from I in construct-
ing the body of RI

A. This selection is nondeterministic, and may not guarantee the soundness
by Corollaries 1 and 2. Then we need to check the consistency whenever a new example is
processed, and need to backtrack to a selection point if a conflicting rule is produced. We
will use both biases of neighbor literals and length conditions in experiments of Sect. 6.2.

5.4 Learning from transitions of partial interpretations

In LF1T, we have assumed that an example is given as a set of interpretation transitions, in
which each Herbrand interpretation is a subset of the Herbrand base B. Such a (total) inter-
pretation represents a complete assignment of truth values to all elements of B. However, it
is often the case that we can observe truth values for only a subset S of B. Such an assign-
ment I ⊆ S ⊆ B is called a partial interpretation, and those ground atoms not appearing in
I is either assigned false for S \ I or is missing in B \ S due to partial observability. We
need to distinguish two cases to handle such missing values. In the first case, truth values
of ground atoms in B \ S are just unknown. Then we can construct a rule RI

A, but as in the
second method for the length bias in Sect. 5.3, the soundness is not guaranteed, so that we
need to check the consistency whenever a new example is input. In the second case, truth
values of ground atoms in B \ S are “don’t-care”. Then we can safely construct a sound rule
RI

A, which does not need to be revised later for any input.
An interesting application of the second case is “boosting”, which runs LF1T again with

those previously learned rules as input. In boosting, each rule R learned in the previous run
is converted to a pair of partial interpretations (b(R),h(R)), and those atoms not appearing
in h(R) are just ignored (or are treated as 0) in the next state of each example. The boosting
method can be used to simplify the learned rules by applying more (non-ground) resolutions,
and further boostings can be performed again and again. Since resolution generalization in
LF1T is performed only when the size of the resolvent is reduced, repeated boostings must
terminate. The speed of convergence to the minimal reduced rules is generally much faster
than performing complete resolutions in a learned program. In fact, it takes the number of
resolutions in the factorial of the input size |E| to perform the complete saturation strategy.
With repeated boostings, however, we cannot remove all redundant rules in general. This
method will be applied in constructing the rules for Arabidopsis thalania in Sect. 6.1.
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6 Experiments

In this section, we evaluate our learning methods through experiments. We apply our LFIT
algorithms to learn Boolean networks (Kauffman 1993) in Sect. 6.1, and apply LFIT to
identification of cellular automata (Wolfram 1994) in Sect. 6.2.

6.1 Learning Boolean networks

We here run our learning programs on some benchmarks of Boolean networks taken from
Dubrova and Teslenko (Dubrova and Teslenko 2011), which include those networks for con-
trol of flower morphogenesis in Arabidopsis thaliana (Chaos et al. 2006), budding yeast cell
cycle regulation (Li et al. 2004), fission yeast cell cycle regulation (Davidich and Bornholdt
2008) and mammalian cell cycle regulation (Fauré et al. 2006). However, since our problem
setting for learning is different from that for computing attractors in (Dubrova and Teslenko
2011), we needed to reproduce these inverse problems, which are made as follows. Firstly,
we construct an NLP τ(N) from the Boolean function of a Boolean network N using the
translation in Sect. 3, where each Boolean function is transformed to a DNF formula. Then,
we get all possible 1-step state transitions of N from all 2B possible initial states I 0’s by
computing all stable models of τ(N) ∪ I 0 using the answer set solver clasp.6 Finally, we
use this set of state transitions to learn an NLP using our LFIT algorithms. Because a run
of LF1T returns an NLP which can contain redundant rules, the original NLP Porg and the
output NLP PLFIT can be different, but remain equivalent with respect to state transition, that
is, TPorg and TPLFIT are identical functions.

Table 3 shows the time of a single LF1T run in learning a Boolean network for each
problem in (Dubrova and Teslenko 2011) on a processor Intel Core I7 (3610QM, 2.3GHz).
The time limit is set to 1 hour for each experiment. We can see the good effect of using
ground resolution in place of naïve resolution. The number of learned rules in each setting
is also shown in Table 3, and is compared with the original literatures that present networks.
Except Arabidopsis thalania, LFIT succeeds to reconstruct the same gene regulation rules as
in (Dubrova and Teslenko 2011) in the first run of LF1T. However, in Arabidopsis thalania,
only 12 original rules are reproduced and the 16 other original rules are replaced with other
learned 229 rules in the output of the first run of LF1T. Although those output rules are all
minimal with respect to subsumption among them, some are subsumed by original rules.
This is because, our resolution strategy is to perform resolution only when it produces a
generalized rule, so other kinds of resolution, which was mentioned in Sect. 4.4 as general
resolution, are not allowed. For example, from R1 = (p ← p ∧ q) and R2 = (p ← ¬q ∧
r), R = (p ← p ∧ r) cannot be obtained in LF1T, since R subsumes neither R1 nor R2.

Table 3 Learning time of LF1T for Boolean networks up to 15 nodes

Name # nodes # × length of attractor # rules (org./LFIT) Naïve Ground

Arabidopsis thalania 15 10 × 1 28/241 T.O. 13.825 s

Budding yeast 12 7 × 1 54/54 6 min 01 s 0.820 s

Fission yeast 10 13 × 1 23/24 5.208 s 0.068 s

Mammalian cell 10 1 × 1, 1 × 7 22/22 5.756 s 0.076 s

6http://potassco.sourceforge.net/.

http://potassco.sourceforge.net/
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Table 4 Wolfram’s Rule 110

Current pattern 111 110 101 100 011 010 001 000

New state for center cell 0 1 1 0 1 1 1 0

Then, we applied boostings (Sect. 5.4) twice for Arabidopsis thalania, and obtained 76
rules in the first boosting, then got exactly the same 28 original rules in the second boosting.
In constructing regulation rules of fission yeast, only one rule is additionally produced:
R15 = (x5 ← ¬x2 ∧ ¬x4 ∧ x5 ∧ x6). This rule does not disappear with a boosting and the
number of learned rules does not decrease from 24. Rules like R15 are not necessary to
capture the whole transitions, but may give an alternative way to implement the dynamics.
Hence, the same transition system can be realized in different ways. If this is considered as
a redundancy, it might be useful for robustness of biological systems, but such analysis is
beyond the scope of this paper.

In this experiment, the algorithm needs to analyze 2n steps of transitions to learn an
NLP, where n is the number of nodes in a Boolean network. That is why our implemented
programs cannot handle networks with more than 20 nodes in the benchmark; computing all
1-step transitions takes too much time, since the grounding in the answer set solver cannot
handle it. In other words, the input size with more than 220 is too huge to be handled, so
that we cannot even start learning. Such a limitation is acceptable in the ILP literature; for
example, it has been stated that networks with 10 transitions and 10 nodes are reasonably
large for learning (Srinivasan and Bain 2012). Moreover, in real biological networks, we do
not observe an exponential number of the whole state transitions from all possible initial
states. Hence, anytime algorithms in this paper must be useful for such incomplete set of
transitions, since learned programs are correct for any given partial set of state transitions.

6.2 Learning cellular automata

We here test to run LF1T with a background theory and inductive biases to learn transition
rules of cellular automata. A cellular automaton (CA) (Wolfram 1994) consists of a regular
grid of cells, each of which has a finite number of possible states. The state of each cell
changes synchronously in discrete time steps according to a local and identical transition
rule. The state of a cell in the next time step is determined by its current state and the states
of its surrounding cells (called neighbors). The collection of all cellular states in the grid at
some time step is called a configuration. An elementary CA consists of a one-dimensional
array of possibly infinite cells, and each cell has one of two possible states 0 (white, dead)
or 1 (black, alive). A cell and its two adjacent cells form a neighbor of three cells, so there
are 23 = 8 possible patterns for neighbors. A transition rule describes for each pattern of a
neighbor, whether the central cell will be 0 or 1 at the next time step.

In (Adamatzky 1994), Adamatzky poses the problem to identify a CA from an arbitrary
pair of its configurations. We provide a solution to this problem using LFIT.

Example 7 We here pick up one of the most famous elementary CAs, known as Wolfram’s
Rule 110 (Wolfram 1994), whose transition rule is given in Table 4. In the table, the eight
possible values of the three neighboring cells are shown in the first row, and the resulting
value of the central cell in the next time step is shown in the second row. Rule 110 is known
to be Turing-complete. The pattern generated by Rule 110 from the initial configuration
with only one true cell (colored black) is depicted in Fig. 2. In the figure, time starts at 0 and
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Fig. 2 State changes by
Wolfram’s Rule 110

Fig. 3 State changes by
Wolfram’s Rule 110 in Torus
world

patterns are shown until time 9. The column numbers are used later, and we here assign 3 to
the column with the single black cell at time 0. We see that every cell at column 4 has the
state 0 through transitions, since its neighbors always have the state 100 (assuming that the
invisible column 5 has the state 0 at time 0).

We here reproduce the rules for Wolfram’s Rule 110 from traces of configuration
changes. Although this problem is rather simple, it illustrates how the whole system of LFIT
with a background theory and inductive biases works to induce NLPs for CAs.

Originally, an infinite space is assumed for the CA with Rules 110. To deal with the CA
in a finite space, two approximations can be considered:

1. Limited frame: Observes partially some set of cells. The problem in this setting is that,
from the same configuration, different transitions can occur. For example, the configura-
tions of cells (1,2,3) at t = 2 and at t = 4 take the same values (1,1,1) in Fig. 2, but the
next states are (1,0,1) at t = 3 and (0,0,1) at t = 5. If the frame width is only 3, then
we have two mutually inconsistent transitions from the same configuration. Hence, rules
are not constructed for the two edge cells but are learned only for the internal cells.

2. Torus world: Assumes that there is no end in the shape of circle, doughnut or sphere,
which can be constructed by chaining one edge cell with the other in one-dimensional
cell patterns. Figure 3 shows a torus world of size 4 and the state transitions by Rule 110
with the initial configuration (1,2,3,4) = (0,0,1,0). The columns numbered (4) and (1)
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are thus identical to columns 4 and 1, respectively. Note that the configurations reach to
the attractor, (1,1,1,0) → (1,0,1,1) → (1,1,1,0).

Due to these approximations, the number of possible state transitions can be made smaller
in the case of elementary CAs like Fig. 3. Our learning framework can handle both limited
frames and torus worlds by considering adequate state transitions representation as input.
For example, to represent a torus world of size 4, a configuration is represented by a vector
with 6 elements (0,1,2,3,4,5): 1,2,3,4 respectively represent their values in the corre-
sponding cells, and 0,5 respectively represent the values of cells 4 and 1 (colored gray
when the value is 1). This last information can be represented in a background theory as the
two rules with the time argument:

c(0, t) ← c(4, t),

c(5, t) ← c(1, t),

where c(x) represents a cell x and c(x, t) is its state at time step t . Unfortunately, these two
rules do not have corresponding rules without the time argument, since the head literals refer
the time step t instead of t + 1. Hence, simple removal of the time argument from the both
sides changes the dynamic meaning of the NLP in application of the TP operator that infers
about the next time step. Then, without the time argument, we should copy the rules for c(4)

to those for c(0), and copy the rules for c(1) to those for c(5).
Now we use non-ground resolution and consider the following two biases (Sect. 5.3):

– Bias I: The body of each rule contains at most n neighbor literals.
– Bias II: The rules are universal for every time step and for any position. This means that

the same states of the neighbor cells always implies the same state in the center cell at the
next time step.

Combining these two biases, we can adapt LF1T to learn dynamics of CAs. Using Bias I,
the rule construction process only considers n literals (here n = 3) in the neighbors of the
cell in the body of a rule. With Bias I, ground resolution is not sufficient to compare non-
ground rules with ground rules, for that we need non-ground resolution. We apply anti-
instantiation (AI) for getting universal rules with Bias II, whenever a newly added rule RI

A

is not subsumed by any rule in the current program. We can guarantee the soundness of
this generalization under Bias II. However, without Bias I, we cannot determine the body
literals for construction of each universal rule, so that we must examine the effects from
non-neighbor cells too.

Using Bias I only, LF1T in a limited frame of width 4 learns the following rules for
Wolfram’s Rule 110:

c(2) ← ¬c(2) ∧ c(3),

c(3) ← ¬c(2) ∧ c(3),

c(3) ← c(3) ∧ ¬c(4),

c(x) ← ¬c(x − 1) ∧ c(x + 1),

c(x) ← c(x − 1) ∧ c(x) ∧ ¬c(x + 1).

(8)
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Table 5 LF1T algorithm with Bias I on Rule 110 in Torus world

Step I → J Operation Rule ID P

1 000100 → 001100 R001
c(2)

c(2) ← ¬c(1) ∧ ¬c(2) ∧ c(3) 1 1

R010
c(3)

c(3) ← ¬c(2) ∧ c(3) ∧ ¬c(4) 2 1,2

2 001100 → 011101 R001
c(1)

c(1) ← ¬c(0) ∧ ¬c(1) ∧ c(2) 3

lg(3,1) c(x) ← ¬c(x − 1) ∧ ¬c(x) ∧ c(x + 1) 4 2,4

R011
c(2)

c(2) ← ¬c(1) ∧ c(2) ∧ c(3) 5

res(5,4) c(2) ← ¬c(1) ∧ c(3) 6 2,4,6

R110
c(3)

c(3) ← c(2) ∧ c(3) ∧ ¬c(4) 7

res(7,2) c(3) ← c(3) ∧ ¬c(4) 8 4,6,8

3 011101 → 110111 R011
c(1)

c(1) ← ¬c(0) ∧ c(1) ∧ c(2) 9

lg(9,6) c(x) ← ¬c(x − 1) ∧ c(x) ∧ c(x + 1) 10

lg(10,4) c(x) ← ¬c(x − 1) ∧ c(x + 1) 11 8,11

R110
c(3)

c(3) ← c(2) ∧ c(3) ∧ ¬c(4) 12

R101
c(4)

c(4) ← c(3) ∧ ¬c(4) ∧ c(5) 13

res(13,11) c(4) ← ¬c(4) ∧ c(5) 14 8,11,14

4 110111 → 011101 R110
c(1)

c(1) ← c(0) ∧ c(1) ∧ ¬c(2) 15

lg(15,8) c(x) ← c(x − 1) ∧ c(x) ∧ ¬c(x + 1) 16 8,11,14,16

R101
c(2)

c(2) ← c(1) ∧ ¬c(2) ∧ c(3) 17

lg(17,14) c(x) ← c(x − 1) ∧ ¬c(x) ∧ c(x + 1) 18

res(18,11) c(x) ← ¬c(x) ∧ c(x + 1) 19 8,11,16,19

R011
c(3)

c(3) ← ¬c(2) ∧ c(3) ∧ c(4) 20

res(20,19) c(3) ← c(3) ∧ c(4) 21

res(21,19) c(3) ← c(4) 22 11,16,19,22

res(8,22) c(3) ← c(3) 23 11,16,19,22,23

Instead, when we use a torus world of length 4 for Wolfram’s Rule 110 in LF1T with Bias I
only, Table 5 shows the learning process7 and the following NLP is obtained:

c(3) ← c(3),

c(3) ← c(4),

c(x) ← ¬c(x) ∧ c(x + 1),

c(x) ← ¬c(x − 1) ∧ c(x + 1),

c(x) ← c(x − 1) ∧ c(x) ∧ ¬c(x + 1).

(9)

Both programs (8) and (9) are quite different from the original rules in Table 4. On the other
hand, if we use Biases I and II in either a limited frame of width 4 or a torus world of length
4, we get the following NLP (the process is in Table 5), which are equivalent to the original

7In Tables 5 and 6, interpretations I and J are represented as configurations, that is, c(i) ∈ I iff c(i) is true.
Operation lg(R1,R2) takes the least generalization of R1 and R2 with the same pattern, which generalizes
the common terms in R1 and R2 into variables, and ai(R) takes the anti-instantiation of R.
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Table 6 LF1T algorithm with Biases I and II on Rule 110 in Torus world

Step I → J Operation Rule ID P

1 000100 → 001100 R001
c(2)

c(2) ← ¬c(1) ∧ ¬c(2) ∧ c(3) 1

ai(1) c(x) ← ¬c(x − 1) ∧ ¬c(x) ∧ c(x + 1) 2 2

R010
c(3)

c(3) ← ¬c(2) ∧ c(3) ∧ ¬c(4) 3

ai(3) c(x) ← ¬c(x − 1) ∧ c(x) ∧ ¬c(x + 1) 4 2,4

2 001100 → 011101 R001
c(1)

c(1) ← ¬c(0) ∧ ¬c(1) ∧ c(2) 5

R011
c(2)

c(2) ← ¬c(1) ∧ c(2) ∧ c(3) 6

ai(6) c(x) ← ¬c(x − 1) ∧ c(x) ∧ c(x + 1) 7

res(7,2) c(x) ← ¬c(x − 1) ∧ c(x + 1) 8 8,4

res(7,4) c(x) ← ¬c(x − 1) ∧ c(x) 9 8,9

R110
c(3)

c(3) ← c(2) ∧ c(3) ∧ ¬c(4) 10

ai(10) c(x) ← ¬c(x − 1) ∧ c(x) ∧ ¬c(x + 1) 11

res(11,9) c(x) ← c(x) ∧ ¬c(x + 1) 12 8,9,12

3 011101 → 110111 R011
c(1)

c(1) ← ¬c(0) ∧ c(1) ∧ c(2) 13

R110
c(3)

c(3) ← c(2) ∧ c(3) ∧ ¬c(4) 14

R101
c(4)

c(4) ← c(3) ∧ ¬c(4) ∧ c(5) 15

ai(15) c(x) ← c(x − 1) ∧ ¬c(x) ∧ c(x + 1) 16

res(16,8) c(x) ← ¬c(x) ∧ c(x + 1) 17 8,9,12,17

4 110111 → 011101 R110
c(1)

c(1) ← c(0) ∧ c(1) ∧ ¬c(2) 18

R101
c(2)

c(2) ← c(1) ∧ ¬c(2) ∧ c(3) 19

R011
c(3)

c(3) ← ¬c(2) ∧ c(3) ∧ c(4) 20 8,9,12,17

transition rule in Table 4:

c(x) ← c(x) ∧ ¬c(x + 1),

c(x) ← ¬c(x − 1) ∧ c(x),

c(x) ← ¬c(x − 1) ∧ c(x + 1),

c(x) ← ¬c(x) ∧ c(x + 1).

(10)

In learning an NLP for Rule 110 with Biases I and II, we get interesting generalizations.
The NLP obtained from the trace of Rule 110 with LF1T becomes more compact in 4 rules,
whereas the original transition rule representing the dynamics of this CA in Table 4 consists
of 5 rules. However, there still exists a redundancy here; we can omit either the second or the
third rule from (10). As discussed in Sect. 6.1, LF1T does not currently provide a method
to remove irredundant rules from the learned rules.

7 Related work

7.1 Learning from interpretations

As stated in Sect. 1, learning from interpretations (LFI) (De Raedt 1997) has been an ILP
framework to produce a program from its interpretations. LFI considers examples simply
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as single interpretations that are supposed to be models of an output program, hence is
different from LFIT, which takes pairs of interpretations as its input. We actually see that
LFI is a special case of LFIT. That is, LFI can be constructed from LFIT as follows. Since
I ∈ 2B is a model of P iff TP (I ) ⊆ I , we can classify each example (I, J ) ∈ 2B × 2B for
LFIT into a positive example for LFI if J ⊆ I or a negative example for LFI otherwise. Note
that information of J is only used to check if I is a model or not in this conversion.

Then, there is still a difference between the above LFI and the conventional LFI by De
Raedt (1997). The setting for De Raedt’s LFI learns a clausal theory, i.e., a set of clauses,
instead of an NLP that is a set of rules of the form (1). A clause is simply a disjunction of
literals, while a positive literal and a negative literal in the body are clearly distinguished in
a rule of an NLP. Other than this syntactical difference, the algorithm of conventional LFI
can be used to construct a clausal theory from our input.

More generally, learning Boolean functions in the field of computational learning theory
(Kearns and Vazirani 1994) is different from LFIT, since LFIT learns dynamics of systems as
a set of Boolean functions appearing in Boolean networks, while the conventional learning
setting is not involved in dynamics and often learns single Boolean functions. Similar to
LFI, computational learning theories usually do not learn dynamics of systems in general.

7.2 Learning action theories

Learning action theories (Moyle 2003; Otero 2005; Inoue et al. 2005; Tran and Baral 2009;
Corapi et al. 2011; Rodrigues et al. 2012) can be considered to share the common goals with
LFIT on learning dynamics. Moyle (2003) uses an ILP technique to learn a causal theory
based on event calculus (Kowalski and Sergot 1986), given examples of input-output rela-
tions. Otero (2005) uses logic programs based on situation calculus (McCarthy and Hayes
1969), and considers causal theories represented in logic programs. Inoue et al. (2005) in-
duce causal theories represented in an action language given an incomplete action descrip-
tion and observations. Tran and Baral (2009) define an action language which formalizes
causal, trigger and inhibition rules to model signaling networks, and learn an action descrip-
tion in this language, given a candidate set of possible abducible rules. Active learning of
action models is proposed by Rodrigues et al. (2012) in a STRIPS-like language. Proba-
bilistic logic programs to maximize the probabilities of observations are learned by Corapi
et al. (2011) by employing parameter estimation to find the probabilities associated with
each atom and rule.

Works on learning action theories suppose applications to robotics and bioinformatics.
In many action theories, one action is assumed to be performed at a time, so its learning task
becomes sequential for each example sequence. In LFIT, on the other hand, every rule is
fired as long as its body is satisfied and update is synchronously performed at every ground
atom. Moreover, the goal of learning action theories is not exactly the same as that of LFIT.
In particular, LFIT can learn dynamics of systems with positive and negative feedbacks,
which has not been considered much in the literature.

Džeroski et al. (2001)’s relational reinforcement learning (RRL) is a learning technique
that combines reinforcement learning with ILP. As in (non-relational) reinforcement learn-
ing, RRL can take into account feedbacks from the learning process as rewards: Each time
an observation is received, an action is chosen so that the state is changed with the reward
associated. The goal of RRL is then to find a suitable sequence of transitions that maximize
rewards. The merit to use ILP in RRL is to have a more expressive representation in states,
actions and Q-functions. As the motivation of RRL is different from that of LFIT, our goal
is not to find an optimal strategy for state transition but to learn the system’s dynamics itself.
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As for the treatment of positive and negative feedbacks, LFIT learns how such feedbacks
can be represented by logic programs.

7.3 Learning nonmonotonic programs

Learning NLPs has been considered in ILP, e.g., (Sakama 2001), but most approaches do
not take the LFI setting. The LFI setting in learning NLPs is seen in Sakama (2005). Our
learning framework is different from these previous works (Sakama 2001, 2005). From the
application point of view, NLPs are often used in planning and robotics domain, and hence
the difference between previous work on learning action theories and LFIT is inherited to
the comparison between previous setting of learning NLPs and LFIT. From the semantical
viewpoint, there is an additional important difference: Previous work on learning NLPs is
usually based on the stable model semantics (Gelfond and Lifschitz 1988), but LFIT learns
NLPs under the supported model (or supported set) semantics (Inoue and Sakama 2012).
Here we discuss practical differences between these two semantics.

The merit of the stable model semantics is that we can use state-of-the-art answer set
solvers for computation of stable models. In Sakama and Inoue (2013), transition rules of
CAs are represented in first-order NLPs, which consist of rules of the form (3) with the time
argument. In this case, each NLP with the time argument becomes acyclic so the supported
models and stable models coincide, and thus we can use answer set solvers for simulation
of a CA. However, each answer set becomes infinite unless a time bound is set. On the other
hand, the merit of the supported model semantics is that we can omit the time argument
from a program and make it simpler. As discussed in Sect. 3, Boolean networks can be
represented in propositional NLPs (Inoue 2011), but still we can simulate state transition by
watching the orbits of the TP operator. More importantly, attractors can be directly obtained
with the supported model or the supported set semantics. This is not possible using the
stable models of NLPs (without the time argument), since they ignore all positive feedback
loops in the dynamics (Inoue 2011). The supported models of an NLP can also be obtained
as the models of Clark’s completion of the program using modern SAT solvers. If we use
answer set solvers for an NLP with the time argument, we can simulate the dynamics of the
corresponding Boolean networks, but need to analyze each answer set to know when the
same state is encountered twice by tracing the orbit from time to time.

7.4 Learning Boolean networks and cellular automata

Learning the dynamics of Boolean networks has been considered in Bioinformatics. Liang
et al. (1998) proposed the REVEAL algorithm, which uses mutual information in infor-
mation theory as a measure of interrelationships. In REVEAL, the maximum number of
arguments of each Boolean function is assumed to deal with exponential growth of com-
putational time. Akutsu et al. (2003) analyze the problem of identifying a genetic network
from the data obtained by multiple gene disruptions and overexpressions with respect to
the number of experiments. They show algorithms for identifying the underlying genetic
network by such experiments, but their network model is a static Boolean network model
in which expression levels of genes are statically determined, and is hence different from
the standard Boolean network in which expression levels of genes change synchronously.
Pal et al. (2005) constructs Boolean networks from a partial description of state transitions.
This method is considered as a method to complete missing transitions in the state transition
table. However, Boolean functions are not constructed for each node in Pal et al. (2005).
Compared with these studies, our learning method is a complete algorithm to learn a set of
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logical state transition rules for a Boolean network. As in Pal et al. (2005), we can also deal
with partial transitions (Sect. 5.4), but will not identify or enumerate all possible complete
transitions. Akutsu et al. (2009) guess unknown Boolean functions of a Boolean network
whose network topology is known. This corresponds to learning Boolean networks with the
bias of neighbor nodes (Sect. 5.3). In Akutsu et al. (2009), only acyclic networks are con-
sidered, and the main focus is a computational analysis of such problems. Notably, all these
previous works do not use ILP techniques.

In ILP, Srinivasan and Bain (2012) present a framework to learn Petri nets from state
transitions. Petri nets can handle quantities of entities but their update schemes are different
from those of Boolean networks. In Srinivasan and Bain (2012), a hierarchical Petri net
can be obtained by iterative applications of their algorithm, but it is not possible to obtain
networks with positive and negative feedback cycles. In fact, cyclic dependencies have been
generally hard to be learned in ILP methods. Tamaddoni-Nezhad et al. (2006) combine
abduction and induction to learn rules of concentration changes of a metabolite caused by
changes in other metabolites in a metabolic pathway. This method gives an empirical way to
learn some causal effects, but its application domain does not deal with dynamical effects of
feedbacks, and a learned program does not describe complete transitions of the dynamical
system. Inoue et al. (2013) complete causal networks by meta-level abduction. A biological
network can be constructed with this method for an incomplete structure, but the abductive
method does not consider dynamical behavior of the network and cannot deal with negative
feedbacks.

In cellular automata (CAs), constructing transition rules from given configurations is
known as the identification problem. Adamatzky (1994) provides algorithms for identify-
ing different classes of CAs, and analyzes computational complexities of those algorithms.
Several algorithms are also proposed in Adamatzky (2007). To the best of our knowledge,
however, there is no algorithm which uses ILP techniques for identifying CA rules.

8 Conclusion and future work

Learning complex networks becomes more and more important, but it is hard to infer rules
of systems dynamics due to presence of positive and negative feedbacks. We here firstly
tackled the induction problem of such dynamical systems in terms of NLP learning from
synchronous state transitions. The proposed algorithm LF1T has the following properties:

– Given any state transition diagram, which is either complete or partial, we can learn an
NLP that exactly captures the system dynamics.

– Learning is performed only from positive examples, and produces NLPs that consist only
of rules to make literals true.

– Generalization on state transition rules is done by resolution, in which each rule can only
be replaced by a general rule. As a result, an output NLP is as minimal as possible with
respect to the size of each rule, but may contain redundant rules.

We have also shown how to incorporate background knowledge and inductive biases, and
have applied the framework to learning transition rules of Boolean networks and cellular
automata. The results are promising, and implemented programs can be useful for designing
the state transition rules of dynamical systems from a specification of desired or non-desired
state transition diagrams. For instance, a system can be considered to be robust if it is tol-
erant to a perturbation (or an exogenous event, see Sect. 5.2) which interferes normal state
transition. Such a transition diagram could be designed as a tree shape, in which its root node
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corresponds to an attractor, so that any forced state change is eventually recovered to reach
to the attractor (Li et al. 2004). Then we can do reverse engineering to get the corresponding
state transition rules for the Boolean network.

A promising optimization of the implementation will be to use binary decision diagrams
(BDDs) (Bryant 1986) to represent the rules of an NLP P in a compressed way. This data
structure will be more efficient with regard to memory and search spaces. With such repre-
sentation, we can divide the complexity of learning step transitions by n: For one transition
the algorithm learn n rules with the same body, if we use heads as leaves of the BDD, bodies
of these rules will be learned and represented in only one multi-terminal BDD.

More complex schemes such as asynchronous and probabilistic updates (Shmulevich
et al. 2002; Garg et al. 2008) do not obey transition by the TP operator. Not only Boolean
but multiple-state dynamical systems have been considered in the literature, so learning such
systems is a future work. Cellular automata with asynchronous or probabilistic updates and
their identification methods have also been proposed (Adamatzky 1994). Those nondeter-
ministic transition systems are more tolerant to noise, so can be expected to be applied to
real-world dynamical systems, but have not yet been sufficiently connected to existing work
on symbolic inference systems. Learning such dynamical networks by extending the algo-
rithms in this paper is thus an important future work. Probabilistic logic learning would be
useful for such learning tasks.
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