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Abstract The vision of a Smart Electric Grid relies critically on substantial advances in in-
telligent decentralized control mechanisms. We propose a novel class of autonomous broker
agents for retail electricity trading that can operate in a wide range of Smart Electricity Mar-
kets, and that are capable of deriving long-term, profit-maximizing policies. Our brokers use
Reinforcement Learning with function approximation, they can accommodate arbitrary eco-
nomic signals from their environments, and they learn efficiently over the large state spaces
resulting from these signals. We show how feature selection and regularization can be lever-
aged to automatically optimize brokers for particular market conditions, and demonstrate the
performance of our design in extensive experiments using real-world energy market data.

Keywords Energy brokers - Feature selection - Reinforcement learning - Smart electricity
grid - Trading agents
1 Introduction

Liberalization efforts in electricity markets and the advent of decentralized power generation
technologies are challenging the traditional ways of producing, distributing, and consuming
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electricity. The Smart Grid “aims to address these challenges by intelligently integrating the
actions of all users connected to it . .. to efficiently deliver sustainable, economic and secure
electricity supplies” (ETPSG 2010). This ambitious vision requires substantial advances in
intelligent decentralized control mechanisms that increase economic efficiency, while keep-
ing the physical properties of the network within tight permissible bounds (Werbos 2009).

A fundamental objective of the Smart Grid is to maintain a tight balance of supply and
demand in real-time. Presently, the task of balancing the output of large-scale power plants
with customer demand is handled via centralized control mechanisms. The increasing pen-
etration of small-scale production from renewable sources like solar and wind, however,
introduces inherently intermittent, variable, and geographically dispersed supply, and ren-
ders real-time balancing significantly more challenging. In addition, proposals for Demand-
side Management (DSM) and for tariffs with time-of-use or dynamic pricing complicate
the prediction of consumption patterns. Existing centralized control mechanisms are unable
to accommodate this combination of intermittent and variable supply, a grid of staggering
scale including vast numbers of small-scale producers, and dynamic changes in demand in
response to price variations.

A promising approach to effective balancing in the Smart Grid is the introduction of
electricity brokers (Ketter et al. 2012b), intermediaries between retail customers and large-
scale producers of electricity. Brokers offer a distributed alternative to the centralized system
of today’s grid, facilitate localized markets that reduce inefficiencies from wide-area trans-
mission, and attain socially desirable market outcomes in response to appropriate economic
incentives. Because brokers serve as intermediaries, they must also trade in multiple inter-
related (e.g., retail and wholesale) markets simultaneously—a structure that Bichler et al.
(2010) refer to as Smart Markets. Smart Markets constitute a novel class of complex, fast-
paced, data-intensive markets, in which participants ought to employ (semi-)autonomous
trading agents in order to attain good trading results.

It is imperative that the design of an electricity broker agent can adapt to a wide vari-
ety of market structures and conditions. This is because there is considerable variability in
the structure that a future Smart Electricity Market might have, and also because such flex-
ibility is generally beneficial for high performance in dynamic environments. We present
several important innovations beyond the class of autonomous electricity brokers for retail
electricity trading that we presented in Peters et al. (2012). Our brokers can accommodate
arbitrary economic signals from their environments, and they learn efficiently over the large
state spaces resulting from these signals. Existing approaches (Reddy and Veloso 2011a,
2011b) are limited in the state space size they can accommodate, and are thus constrained in
terms of the economic environments they can be deployed into. These works have also not
considered customers’ variable daily load profiles (instead, assuming fixed consumption),
or the broker’s wholesale trading—both core challenges for real-world electricity brokers.
Our design alleviates these limitations.

The research we report here extends our previous work (Peters et al. 2012) by explor-
ing alternatives for the data-driven identification of particularly informative signals from the
broker’s data-rich Smart Electricity Market environment. We explore the role that feature
selection and regularization techniques play in the broker’s adaptation process. Specifically,
we explore the benefits of two different feature selection procedures based on Genetic Al-
gorithms and greedy forward selection, and compare them to L1-regularized online learning
techniques over the full state space. We find that the inexpensive regularization approach
yields satisfactory results under some market conditions; however, the more extensive fea-
ture selection techniques can be highly effective across different market regimes (Ketter
et al. 2012a) if adequate precautions are taken against environmental overfitting. Based on
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our empirical results, in this paper we also provide guidance on how such overfitting can
be alleviated, and discuss approaches which are specialized to the Smart Grid challenge we
study here. Our empirical evaluations are based on real-world electricity market data from
the Ontario Wholesale Market and a revised model of individual customers’ consumption
decisions. The customer model we employ captures intra-day variability in demand and has
been shown to yield realistic aggregate load curves, rendering our empirical results signif-
icantly more meaningful as compared to earlier studies, including our own work (Peters
et al. 2012). Our empirical results demonstrate that our broker design is highly effective
and that it consistently outperforms prior approaches despite the additional challenges we
consider.

More generally, research on autonomous electricity brokers for the Smart Grid consti-
tutes a nascent, emerging field, in which most of the challenges are largely unexplored.
Improving our understanding of methods that address these challenges has far-reaching im-
plications to society at large. For example, our broker design contributes to current research
on economic mechanism design for the Smart Grid by providing effective strategies against
which such mechanisms can be validated, e.g. (de Weerdt et al. 2011). Our extensive evalu-
ation of feature selection techniques raises new and interesting questions about connections
between overfitting and market stability in the presence of autonomous trading strategies.
We also offer an example of how Machine Learning research can inform important develop-
ments in the future Smart Grid in Sect. 5.5. In addition to the development of a novel broker
agent design, important objectives of this paper are to contribute to our understanding of key
design decisions that enable broker agents to operate effectively in the Smart Grid, and to
inform future work of challenges and promising research directions.

The paper is organized as follows. In Sect. 2 we give an overview of our Smart Electric-
ity Market Simulation (SEMS). Section 3 describes foundations in Reinforcement Learning,
feature selection, and regularization that our approach builds on. Section 4 introduces SELF,
our class of Smart Electricity Market Learners with Function Approximation. A thorough
empirical evaluation of our learners in comparison to strategies proposed in the literature fol-
lows in Sect. 5. In Sect. 6 we review relevant literature. Finally, we conclude with directions
for future research.

2 Smart electricity market simulation

Smart Electricity Markets aim to intelligently integrate the actions of customers, generat-
ing companies, and the Distribution Utility, cf. Fig. 1. We developed SEMS, a data-driven
Smart Electricity Market Simulation, based on wholesale prices from a real-world electric-
ity market' and a complete, micro-level model of appliance usage in private households. An
important property of our simulation, with implications for the broker we design to operate
in this environment, is to relax the assumption in previous work that consumers exhibit fixed
demand (Reddy and Veloso 2011a, 2011b). Fixed demand simplifies the broker’s task, how-
ever the resultant brokers may not offer an adequate response to the realities of electricity
markets. In particular, a key challenge for real-world brokers is to effectively deal with pat-
terns in consumer demand. This is important for effective grid balancing, as some patterns,
such as high consumption during midday peak-hours, are significantly more costly for the
broker to offset in the wholesale market (cf. Fig. 2).

1For this study we used data from Ontario’s Independent System Operator, http://www.ieso.ca, which has
also been used in a related study (Reddy and Veloso 2011b).
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Fig. 2 (a) Price distribution (mean =+ one standard deviation) for 10 years of price data from the Ontario
wholesale market; (b) Price curves for 10 randomly selected sample days

Below we outline the key elements of a Smart Grid, along with the models that represent
them in our simulation.

— Customers C = {C;} are small-to-medium-size consumers or producers of electricity,
such as private households and small firms. Each C; denotes a group of one or more cus-
tomers with similar characteristics and a joint, aggregate consumption profile. Customers
buy and sell electricity through the fariff market, where they subscribe to standardized tar-
iff offerings, including fixed-rate, time-of-use (ToU), and variable-rate tariffs. We describe
our customer model in more detail below. Presently, only a small proportion of electric-
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ity is produced decentrally, and central production will continue to play a significant role
in the near future. As a liberal upper bound consider that, of the 592 TWh of electric-
ity produced in Germany in 2009, merely 75 TWh were produced decentrally under the
country’s Renewable Energy Act (12.6 %) (European Commission 2011). Accordingly,
the customers in our model act exclusively as consumers of electricity.

— Generating Companies (GenCos) are large-scale producers of energy, such as operators
of fossil-fueled power plants and wind parks. GenCos are wholesalers of electricity pro-
duction commitments. Because changes in power plant production levels have significant
lead times, wholesale electricity is traded forward from several hours to several months
in advance.

— The Distribution Utility (DU) is responsible for operating the electric grid in real-time.
In particular, the DU manages imbalances between the total energy consumption and the
total outstanding production commitments at any given time. To this end, the DU provides
or absorbs energy on short notice and charges the responsible broker imbalance penalties.
In SEMS, the DU charges balancing fees that are roughly twice as high as the long-term
average cost of electricity in the wholesale market, and thus provides brokers a strong
incentive to build easily predictable portfolios of subscribers.

— Electricity Brokers B = { B;} are profit-seeking intermediaries, trading for their own ac-
count.” Brokers are retailers of electricity in the tariff market, and they offset the net
consumption of their tariff subscribers by acquiring production commitments in either
the tariff (small-scale producers) or wholesale market (GenCos). The portfolio of con-
tractual arrangements that brokers obtain in this way is executed in real-time by the DU.
Brokers aim to compile a portfolio of high-volume, high-margin tariff subscriptions with
predictable consumption patterns, that can be offset with production commitments at a
low cost. In SEMS, brokers publish one fixed-rate tariff at any given time. This design
reflects the fact that fixed rates are currently still the dominant tariff model, mainly due to
the absence of advanced metering capabilities among electricity customers. We are inter-
ested in the performance of methods for autonomous retail electricity trading. To this end,
we endow both, our own strategies and our benchmark strategies, with a fixed wholesale
trading algorithm based on Neural Network load forecasting, and brokers learn to develop
a profitable retail trading strategy against this backdrop. Our choice of Neural Networks
is mainly due to their good out-of-the-box performance in timeseries forecasting tasks.
Alternatives, e.g. based on ARIMA models (Conejo et al. 2005), exist but we do not con-
sider them further as they would impact the performance of all examined strategies in the
same way.

The SEMS Simulation Environment is responsible for coordinating brokers, customers,
and the DU. It manages the tariff market, and provides a wholesale market based on actual
market data from Ontario’s Independent System Operator. The wholesale market in SEMS
determines prices by randomly selecting a window of sufficient size for the simulation run
from almost ten years of real-world wholesale market pricing data. Figure 2 shows the long-
term daily price distribution as well as daily price curves for 10 randomly selected days from
that dataset. Once these prices have been determined, broker orders have no impact on them.
Modeling brokers as price-takers is reflective of liberalized retail electricity markets, where
an increasing number of small brokers compete against each other. For 2008, for example,
the European Commission reported close to 940 non-main electricity retailers in Germany
that shared 50 % of the German market (European Commission 2011).

2Electricity Brokers are sometimes also referred to as Load Serving Entities (LSEs) or Aggregators in the
electricity market literature.
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scribed in Fig. 3.

L.

Each broker B; receives information about its current customers C, (B;), the history of
wholesale prices Wy, ..., W,_, the tariffs offered by all brokers at the end of the last
timeslot T,_; = {73, ..., Thy, }, and its current cash account balance.’

. Each broker indicates the volume of energy ‘;,f that it wishes to procure in the current

timeslot. Note, that the broker has no previous knowledge of its customers’ actual con-
sumption nor of the wholesale prices for the current timeslot. There is no acquisition
uncertainty; the indicated volume V¢ is always filled by the simulation.

. Each customer C; decides the volume of electricity V,’(C;) to consume given its current

tariff, and announces this volume to the simulation. The volume consumed, V, (C)),
is derived from the corresponding customer’s consumption model, which we describe
below.

. Based on the consumption decisions of its customers, its current tariff, and its acquisition

in the wholesale market, each broker’s cash account is credited (debited) with a trading
profit (loss) t¢(V,\) — ‘7,1‘" - W,, where (V) denotes the cost of consuming V under
the current tariff ¢ to the customers (i.e., the revenue of the broker), and 17;' - W, denotes
the cost of procuring Vn" units of energy at the prevailing wholesale price W,,. Any im-
balance between the broker’s forecast, and the actual amount of energy consumed by its
customers is made up for by the Distribution Utility. An imbalance penalty of I per unit
of mismatch, or |V — \;,fl - I in total, is debited from the cash account of the broker for
this service.

. Each broker receives ex-post information on the actual aggregate consumption volume

of its customers in the current timeslot V¢, its trading profit, its imbalance penalty, and

n?’

its cash account balance at the end of the timeslot.

. Each broker is queried if it wishes to change its offered tariff. A fixed amount reflecting

administrative costs on the side of the broker is charged for each tariff update.

. Each customer is queried if it wishes to subscribe to a different tariff.

3We summarize the mathematical notation used here and below in Table 1.
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Table 1 Summary of mathematical notation

Symbol Definition

A ={qg;} Constant set of actions available to the SELF reinforcement learner

Umax, o Initial learning rate and decay of learning rate (1.0 = linear, 0.5 = square root, etc.)
B ={B;} Set of all competing brokers

C={C;}, Cu(B;) Set of all retail customers, customers of broker B; at time n

8 Temporal difference in Q(s, a) between subsequent observations

e(L), A Eligibility trace vector, e(A) has the same dimensionality as F(s, a), # and measures

the eligibility of 0’s elements for temporal difference updates based on recent obser-
vations; 0 < A < | determines the degree of recency, with greater values leading to a
longer memory of observations

Emax» € Initial exploration rate and decay of exploration rate (1.0 = linear, 0.5 = square root,
etc.)

F(s,a),0 Vector of features of the state-action pair (s, a) and their weights in a linear action-
value function, respectively

y MDP discount parameter

" Markup parameter of the benchmark strategies TableRL and Fixed

7, 7" (Optimal) policy of a given MDP

@ e {0,1}" Vector indicating the features actually employed out of the set of all available features

Y eRCR" Vector of learning parameters such as ¢y, A, €tc.

q Customer switching probability; probability that a customer model considers a new
tariff in any given timeslot

Q(s,a) Action-value of state s given action a

rm = Ra(s,s") Immediate reward earned in timeslot n when the current state is s, the learner takes
action a, and is sent to state s’ by the environment

S ={s;} Discrete set of all possible states of the environment

T Set of all tariffs offered in the tariff market

T Customer irrationality t € [0; o), where greater values represent less rational or less
informed tariff selection behavior

P=P,(s,s) Transition probability of the environment moving the learner to state s’ when in s and
choosing action a

Vi, Vi (C)) Actual net electricity consumption in time n and net consumption of customer Cj,
respectively; from the perspective of one broker

%43 Estimate of one broker for its customers’ electricity consumption at time n

Whn Actual wholesale market price of electricity at time n

Customers in SEMS are represented by a customer model, each instance of which rep-
resents the aggregate behavior of a group of customers. The customer model consists of a
consumption model, which computes the amount of energy consumed in a given timeslot,
and a tariff evaluator, which defines how customers select a tariff from a set of offered
tariffs. Separating the consumption decision from the tariff selection decision in this way is
economically well-motivated. In the short run, the electricity demand of private households
is unresponsive to changes in price level. There is some empirical evidence for customers’
willingness to shift electricity consumption over the day in response to changing electricity
prices, e.g., (Herter et al. 2007). However, this phenomenon does not apply to our scenario
of a fixed-rate tariff.
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Consumption [kWh]
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Consumption [kWh]

Mon Tue Wed Thu Fri Sat Sun
(b) 1000 households

Fig. 4 Simulated load curves from the SEMS customer model. Panel (a) shows the individual consump-
tion profiles of 10 households, panel (b) illustrates how the averaging effect leads to a smoother aggregate
consumption pattern in a population of 1000 households

The consumption model in SEMS employs a micro-level simulation of electric ap-
pliance usage in private households based on the work of Gottwalt et al. (2011). This
model incorporates statistical data on household types, household sizes, appliance satura-
tion, seasonality on multiple timescales, vacations, etc. to replicate consumption decisions
of a real-world customer population, and has been shown to yield realistic aggregate load
curves. Our model makes use of all of these features, except for long-term seasonal ef-
fects which have no significant impact on the broker’s primary challenges of short-term
demand forecasting and balancing. Figure 4 shows weekly consumption profiles gener-
ated by our consumption model for populations of 10 and 1000 households, respectively.
The profiles reflect the characteristic consumption peaks exhibited by private households
around noon and during the early evening hours, seasonality effects between weekdays
and weekends, as well as the typical consumption averaging behavior in large customer
populations (Fig. 4(b)) with significant reductions in the aggregate consumption’s noise
level.

Our tariff evaluator is based on current insights about customers’ tariff selection be-
havior and works as follows:* If the tariff that a customer is currently subscribed to is still
available, the customer considers selecting a new tariff with a fixed probability ¢g. With
probability 1 — ¢ it remains in its current tariff without considering any other offers. This

4Standard models of electricity tariff selection behavior are currently still an open question in Behavioral
Economics and Smart Grid research. Our model captures two central characteristics of customer choice that
are thought to lead to sub-optimal tariff choices by human decision-makers: Inertia or switching probability
refers to customers’ tendency to remain in their current tariff even if better alternatives surface, e.g. (Nico-
laisen et al. 2001), and customer irrationality refers to sub-optimality resulting from a range of behavioral
factors, e.g. (Wilson and Price 2010).
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behavior captures customers’ inertia in selecting and switching to new tariffs. If the tariff
that the customer is currently subscribed to is not available any longer, the customer selects
a new tariff with probability 1. To select a new tariff, the customer ranks all tariffs according
to their fixed rates; ties are broken randomly. A perfectly informed and rational customer
would simply select the lowest-rate tariff from this ranking, because the lowest-rate tariff
minimizes the expected future cost of electricity. In reality, however, customer decisions
will tend to deviate from this theoretical optimum for reasons that include (1) customers do
not possess perfect information about all tariffs, either because it is unavailable to them, or
because they eschew the effort of comparing large numbers of tariffs; and (2) they make
decisions based on non-price criteria such as trust and network effects that are absent from
our model. We capture these deviations from a simple price rank-order using a Boltzmann
distribution.

Assume a customer has to decide among a total of |T| tariffs. Then the probability of
selecting the r-th best tariffs is:

—r/t
Pr(Rank =r) = ST i

Here, 7 is the so-called temperature parameter with t € (0, 00). The temperature can be
interpreted as the customers’ degree of irrationality relative to the theoretically optimal tar-
iff decision. Consider the Cumulative Distribution Functions (CDF) depicted in Fig. 5 for
different values of t. For t — 0, only the best-ranked tariff has considerable mass, i.e.,
the tariff decision is perfectly rational. For T — oo, the distribution approaches a discrete
uniform distribution, i.e., customers select their tariff at random.

3 Reinforcement learning and strategies for high-dimensional state spaces

To operate effectively in the Smart Electricity Market outlined in Sect. 2, an electricity
broker agent ought to learn from its environment in multiple ways. In particular, it must
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learn about potential customers and their behavior in terms of tariff selection and electricity
consumption. A broker should also learn the behavior of its competitors, and derive tariff
pricing policies that strike a balance between competitiveness and profitability. Furthermore,
because a broker also acts in the wholesale market, it must learn ways to match its tariff
market actions with wholesale trading strategies in order to maximize its profit. Note, that
the broker’s only means of learning is its ability to act in the markets it trades in, and to
observe the (long-term) consequences that its actions entail.

3.1 Reinforcement learning

Reinforcement Learning (RL) offers a suitable framework to address the challenges faced by
a broker acting in environments with unknown dynamics, and with the objective to collect
the highest net present value over all current and future rewards. This can entail foregoing
some immediate rewards for higher rewards in the future (Sutton and Barto 1998). More
formally, the Reinforcement Learning task we consider here is defined as a finite Markov
Decision Process (MDP) with observable states and a known, fixed set of actions: MDP =
(S, A, P, R) where S denotes a finite set of states, A denotes a finite set of actions, and P
and R define the transition probability function and immediate reward function as follows:

P, (s, s/) = Pr(s,,+1 =5'|s, =s,a, = a)

that is, P, (s, s’) gives the probability of the environment choosing s’ as the following state
when s is the current state and the learner chooses action a. And

Ru(s.8") = E(rusilsy =5, a5 = a, 5,41 = ')

that is, R,(s,s’) denotes the expected immediate reward received from the environment
when choosing action a in state s and being sent to state s’ by the environment thereafter.
The solution to such an MDP is the optimal policy 7* that maximizes the net present value
of all current and future expected immediate rewards, i.e.,

o0
= argmax Z ynRan=n(Sn)(sns sn+l)
n=0
where the learner follows the policy 7 that gives, for each state s, a corresponding action
a =m(s) to pursue. 0 < y < 1 denotes the discount parameter where smaller values of y
lead to greater emphasis on current rewards.

Many algorithms have been proposed for finding good policies (Szepesvari 2010). For
our agent, we use SARSA: a Temporal Difference (TD) algorithm, that is designed for on-
line control problems, such as our retail electricity trading task. The algorithm starts out
with some initial model of an action-value function Q(s, a), which captures the learner’s
estimate of the net present value of being in state s, choosing action a next, and following
the policy implied by Q thereafter. The learner acts (approximately, except for occasional
exploration) greedily with respect to the policy implied by Q, and updates Q with the true
feedback it receives from the environment in each timeslot according to

0(s,a) < Q(s,@) + & [rs1 + 7 Q(sur1s dnr1) — Qs an)] (1)

temporal difference

where o denotes the learning rate. With probability ¢, the learner chooses explorative actions
instead of the greedy action implied by Q(s, a) to investigate the value of other state-action
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pairs. In our experiments below we let o and ¢ decay over time to obtain stronger learn-
ing and more aggressive exploration towards the beginning of the simulation.> In general,
SARSA only converges to an exact estimate of Q when each state-action pair is visited an
infinite number of times, and when the policy followed by the learner converges to a fixed
policy. In our empirical evaluation we show that our learner performs well in spite of not
fully meeting these theoretical requirements.

A key challenge of using RL for the problem we address here is the definition of an effec-
tive state space. Because it is not well understood which environmental features are useful
for capturing changes in the action-value, it is beneficial to employ a wide array of features
so as to avoid the exclusion of particularly relevant ones. However, even with a limited num-
ber of features, the state space quickly becomes too large to hold in memory. Furthermore,
when the state space is large, the extent of exploration required for the learner to arrive at a
reliable estimate of the action values Q(s, a) for each a € A becomes prohibitive. Previous
work has dealt with this challenge by introducing derived features that combine multiple en-
vironmental features into a single feature for the learner (Reddy and Veloso 2011a, 2011b).
However, these derived features are inherently less informative for learning, and there is
no principled approach to constructing them. We address these challenges through a two-
pronged strategy: (1) We employ function approximation to enable the learner to deal with
potentially large state spaces; and (2) we explore the performance of feature selection and
regularization techniques that reduce the (effective) state space size.

3.2 Function approximation

Function approximation refers to a parametrized, functional representation of Q(s, a) that
allows the broker to explore the effectiveness of strategies over a wider array of potentially
relevant states (see, e.g., Rummery and Niranjan 1994 for one of the earliest uses of function
approximation in online RL). The most common type of function approximation uses the
representation

O(s,a) =0F(s,a)”

where Q(s, a) is linear in F(s, a), a vector of selected features of the current state s given
an action a. The reinforcement learner continually updates the weights in 6 to make Q
more representative of the experiences gathered from the environment. With linear function
approximation this gradient descent update of @ takes the particularly simple form

0 <0 +ade(r) ()

where « again denotes the learning rate, § denotes the temporal difference (equivalent to
the update term in (1)), and e is the so-called eligibility trace which captures the weights
eligible for a learning update based on the recently visited state-action pairs. The degree of
recency is determined through the parameter 0 < A < 1 with A = O representing updates only
based on current observations, whereas greater values of A introduce increasing degrees of
memorization into the update process. Note, that the features in F(s, @) can themselves be
nonlinear functions of features from the environment. Other types of function approximation
have also been proposed instead of this linear scheme, e.g. (Busoniu et al. 2010; Pyeatt et al.
2001).

SWe use ®max and ;,qx to denote maximal rates, and &’ and &’ to denote the degree of the parameter decay
monomial, where o/, ¢’ > 0 and a value of 1.0 stands for linear decay, 0.5 for square root decay, 2.0 for
quadratic decay, and so forth.
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3.3 Feature selection and regularization

To improve our broker’s learning performance in its information-rich Smart Market envi-
ronment, we complement function approximation with a principled reduction in (effective)
state space size. To this end, we explore different feature selection techniques as well as
regularization, and examine their performance and resulting trade-offs in our setting. It
is important to note that an MDP’s state space size must be fixed and that the reduction
referred to above is achieved in two fundamentally different ways: The feature selection
techniques we study select a subset of relevant features offline, before the MDP is con-
structed. Once the relevant features are selected, the learning process proceeds on a fixed
MDP with a state space that is reduced as compared to the space over all original can-
didate features. Regularization, on the other hand, aims to reduce the dimensions of the
state space that are effectively used. That is, while the MDP is constructed using a large
fixed state space, a regularized learner will likely assign zero weights to many of these fea-
tures.

While both approaches have been studied extensively in supervised learning, e.g. (Guyon
and Elisseeff 2003), they have only recently been considered in RL (Loth et al. 2007;
Painter-Wakefield and Parr 2012; Parr et al. 2008; Petrik et al. 2010), and it is important
to understand their contributions to the effectiveness of the broker’s actions and any impli-
cations for future work.

Feature selection here refers to methods that select informative projections F'(s, a) of
the complete feature vector F(s, a) as basis for learning. Formally, let F(s, a) be a vector of n
candidate features of the current state-action pair, and ¥ a vector of m learning parameters.
Then

Brina = {BLinra(@1, ... ¢, Y1, ... ¥m) P €{0,1}", ¥ € RCR"}

is a class of linear function approximation based RL brokers that use the feature (F(s, a)); as
part of their state space iff the indicator ¢; = 1. Note, that we combine the feature selection
task (i.e., finding good values of @) and the related parameter learning task (i.e., finding
good values for ¥), because they can be conveniently tackled simultaneously during the
heuristic optimization described below.

We evaluate how well a particular broker B € By;,r4 competes in a given environment
by the fitness function F : B > [0, 1] which measures the empirical average profit share
that B captures in a given number of sample simulations. This procedure is also known as
the wrapper approach to feature selection (Blum and Langley 1997). The best broker B*
for the given environment is then B(argmaxg, 4, F (B(®, ¥))).0

Optimizing F with respect to B is, in general, intractable due to the lack of structure in
F and the size of its domain {0, 1}" x R. To alleviate this challenge, we employ one of two
types of heuristic optimization:

— Greedy Feature Selection / Hill Climbing: Starting with a cohort C! = {B], ..., B!} of
all possible single-feature brokers, we determine their fitness values F (Bll), .o F (B,i)
and select the broker B'* with the maximal F value. We then construct the next cohort C?

5Note, that a profit-maximizing fitness function does not preclude other social desiderata such as fairness, ef-
ficiency, or sustainability considerations from our Smart Market. By properly setting the market’s economic
mechanisms, market designers can create incentive structures that lead self-interested, profit-maximizing bro-
kers to jointly aim towards socially desirable outcomes. Because we are primarily interested in the perfor-
mance of autonomous retail electricity trading strategies themselves, we consider these economic mecha-
nisms to be given and refer the reader to, e.g., (Dash et al. 2003; Parkes 2007) for further details.
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by augmenting B'* with each possible second feature and evaluate F(B?),..., F(B>_))
for the n — 1 resulting brokers. We repeat the process until no further improvement in F
values is achieved between cohorts, or until a predefined time limit is reached. We select
the feature set @* of the overall F-maximizing broker B*. This process is commonly
known as forward selection (Guyon and Elisseeff 2003).

To select the broker’s parameters we use a hill-climbing procedure where we first draw
p parameter vectors ¥, ..., ¥, and corresponding gradients V¥, ..., V¥, at random.
We then construct the first cohort as C! = {B(®*, ¥)), ..., B(®*, ¥,)} and subsequently
develop each broker along the predetermined gradient until no further improvement is
possible. For example B(®*, ¥,) from C' is developed into B(®*, ¥, + V¥,) in C?,
B(®*, ¥, +2V¥)) in C3, and so forth. We finally select the learning parameters ¥* of
the overall F-maximizing broker.

— Genetic Algorithms: Genetic Algorithms are a well-suited heuristic optimization proce-
dure for our problem given their good performance over large binary domains, such as
that of our feature indicators (De Jong 1988). Starting with a randomly initialized cohort
C'={B|{,..., B}} we apply a Genetic Algorithm with Mutation and Crossover operators
defined as usual, and a small number of elite individuals that is carried over from one
cohort to the next (Liepins et al. 1989). As with the greedy procedure outlined above,
the Genetic Algorithm runs until no further improvements in fitness value take place or a
predefined time limit is reached. Note that the Genetic Algorithm modifies features and
parameter values of the individuals concurrently, whereas our greedy approach selects
features and parameters in two separate tasks.

Regularization, in contrast to feature selection, shrinks or penalizes the weights in 6 so
as to obtain sparse inner products 8F (s, a)” . The resulting approximations are less prone to
overfitting the peculiarities in action-values because strong, repeated evidence is required for
a particular weight to become and remain non-zero. Regularized function approximations
are also quicker to evaluate due to their inherent sparsity. One of the key advantages of
regularization over feature selection is its natural integration into online learning processes
which obviates the need for a separate offline learning phase.

Despite its seeming appeal, little theoretical groundwork has so far been done on the
use of regularization in online RL. One of few exceptions is the work by Painter-Wakefield
et al. (Painter-Wakefield and Parr 2012) who extend the regularized batch RL algorithm
LARS-TD (Kolter and Ng 2009) into L1TD, an L1-regularized online RL algorithm. L1TD
adds the shrinkage operation

0 < sgn(@) O max{|0| -, 0}

(with all operators defined component-wise) to the gradient descent update from Eq. (2).
The shrinkage operation effectively moves each component of # towards zero by v on each
update, and the combined procedure can be shown to yield equivalent results to the L1-
regularized regression formulation in the batch case (Painter-Wakefield and Parr 2012).

4 Learning strategies

In this section, we introduce SELF, our class of Smart Electricity Market Learners with
Function Approximation. A thorough empirical evaluation of our learners in comparison to
strategies proposed in the literature follows in Sect. 5.
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Table 2 Candidate features for SELF state-action spaces

Feature / Encoding Plain RBF RBF(T) Bin

Description

Bias
ActionIndex
ActionOneInK

BetterConsumptionRates
CashGradient
CustomerGradient
MarketBreadth
MarketShare

MarkupLeader

NumberCustomers
RateChangelndicator

TargetMargin

WholesalePrice

WorseConsumptionRates

Constant 1.0

Index of the selected action
One-In-K representation of the se-
lected action

Number of better (lower) rates in the
tariff market

Change in cash account balance over
the last 48 hours
Change in number of customers over
the last 48 hours
Range from lowest to highest rate in
the tariff market
Percentage of all customers sub-
scribed to SELF

Relative margin, as percentage of
smoothed wholesale price, between
SELF and the cheapest tariff in the
market

Number of subscribed customers

1 if selected action would result in a
rate change, 0 otherwise

Margin over smoothed wholesale
price after performing a given action

Smoothed electricity wholesale price

Number of worse (higher) rates in the

tariff market

4.1 SELF

Our candidate strategy SELF is a class of SARSA reinforcement learners with linear func-
tion approximation. The state set of each SELF instance reflects selected aspects of its ob-
servable economic environment (e.g., its own tariff rate, competitors’ tariff rates, market
competitiveness indicators, etc.), and its action set contains possible actions in the tariff mar-
ket. The learning objective is to find a policy 7 that approximately maximizes the learner’s
long-term reward in a Smart Electricity Market environment, while competing against other,
both learning and non-learning, strategies.

As outlined in Sect. 3.1, one of the key challenges in our Smart Electricity Market
setting is the definition of an effective state space for the learner to learn over. We ad-
dress this challenging problem by defining a large set of candidate features that captures
as much environmental detail as possible, and then applying feature selection and reg-
ularization techniques to identify a suitable subset of features that benefit learning. Ta-
ble 2 shows a grid of features (vertical) and related encodings (horizontal), and shaded
cells mark the feature/encoding pairs that are available to the SELF learner for learning.’

"n the table, Plain denotes the unencoded feature, RBF and RBF(T) denote Radial Basis Function encoding
(optionally with thresholding) (Sutton and Barto 1998), and Bin denotes a sign binary encoding which, given
areal value x, transforms x — (I(sgn(x) = —1), I(sgn(x) = 0), I(sgn(x) = +1)) € {0, 1}3.
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Table 3 Available actions for

SELF instances Action Margin over Wholesale Price
MarginLeader Slightly lower than cheapest competitor
MarginAvg Average of all competitors
MarginTrailer Slightly higher than most expensive competitor
LowMargin Constant 10 % margin
HighMargin Constant 20 % margin
NoOp Keep the current tariff rate. Could lead to

changes in margin if wholesale prices change.

This example list of candidate features provides a good coverage of all economic infor-
mation available from the environment. It is important to note that because a primary goal
of our design is to substitute laborious, manual state space construction with principled
optimization techniques, our methods can accommodate arbitrary additions to this feature
set.

Another important element of an electricity broker design are the actions it can take in
the retail market. Generally, a broker can either (a) set a new rate on its tariff, or (b) maintain
its existing rate. The canonical model for this action set is a continuous or a discretized set
of plausible target rates. However, our evaluations revealed that simultaneously learning the
variability in the wholesale price-level and the variability among its competitors in this way
overburdens the learner. To facilitate learning, we propose a set of economically meaning-
ful actions for the broker to choose from. In particular, SELF brokers can choose among the
discrete action set shown in Table 3, which is normalized relative to the prevailing wholesale
market price level: A SELF broker can set its tariffs relative to other tariffs in the market. In
doing so, the broker can choose among attacking its competitors (MarginLeader), position-
ing itself in the middle of the market (MarginAvg), or avoiding competition altogether by
posting the most expensive tariff (MarginTrailer). Alternatively, rather than setting its tariffs
relative to the market, the broker can set its tariffs in an absolute fashion, choosing between
LowMargin and HighMargin, irrespective of the competing tariffs in the market. We chose
the margins in Table 3 for their good observed performance in our experiments. The broker
may also leave its current tariff unchanged (NoOp).

4.2 Reference strategies

We evaluated SELF against the learning and non-learning strategies proposed in Reddy and
Veloso (2011b). To address the need for a limited state space, the reference learning strategy
uses derived features, referred to as PriceRangeStatus and PortfolioStatus. Importantly, the
simulation model for which this strategy was evaluated did not include an explicit represen-
tation of a wholesale market, represented consumers demand as fixed throughout, and the
brokers’ only sources of electricity production commitments were small-scale producers.
Brokers offer one producer tariff in addition to the consumer tariff used by the brokers in
our study. These differences make some of the published results for this strategy difficult to
interpret in the context of the market settings we consider here.?

8To incorporate these strategies in our simulation setting we used wholesale prices for producer prices, and
suppressed actions pertaining to small-scale producer tariffs. We also excluded the PortfolioStatus feature,
which is not meaningful for learning the TableRL strategy in our simulation model.
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The relevant benchmark strategies for evaluating our SELF Electricity Broker Agent are

— Learning a table-based reinforcement learner operating over the reduced, manually con-
structed state space outlined above. For clarity, we henceforth refer to the Learning strat-
egy as TableRL.

— Fixed a strategy which charges a constant markup p over the smoothed wholesale price

— Greedy an adaptive strategy which charges either the highest rate in the market or an
average rate, depending on the current PriceRangeStatus PRS,. PRS, is defined to be
Rational if the difference between consumption and production rates in the market is
at least u (i.e., if the market charges a reasonable markup). In this case, the strategy
opportunistically chooses the currently highest rate in the market. Otherwise, PRS, is
Irrational and the strategy chooses an average rate next.

— Random a strategy which chooses the next action at random

We refer the reader to Reddy and Veloso (2011b) for complete details on these strategies.

5 Experimental evaluation

We evaluated our SELF broker against the benchmark strategies from Sect. 4.2 in a series
of experiments. Each experiment ran over 10 simulated days (240 timeslots) since longer
durations had very little impact on performance differences. The performance of each indi-
vidual broker was computed as the share of the overall profits they captured. We repeated
each experiment 70 times to obtain confidence intervals; all confidence intervals and signifi-
cance claims reported below are at the 95 % confidence level. The customer population was
fixed to five customer groups based on our customer model, each representing the aggregate
behavior of a group of ten households.” Each customer model instance was parametrized
with the same switching probability ¢ and degree of irrationality t as indicated below. Note,
that the parameter settings only imply equal levels of switching probability and irrationality
among customer groups, whereas the actual decisions vary among groups. The markup pa-
rameter p of the reference strategies Fixed and TableRL was set to 0.10, at which we found
that these strategies performed best.

5.1 Manual broker construction

We first constructed several instances of SELF manually by selecting learning parameters
and features based on our best knowledge of the problem domain. One rather typical exam-
ple configuration is summarized in Table 4 where gray cells mark candidate feature/encoding
combinations, and black cells mark pairs that were actually used as part of the state space.
This particular instance uses features that reflect the broker’s own profitability (CashGra-
dient) and customer base (NumberCustomers), the competitiveness of the market (Mar-
ketBreadth), as well as the broker’s own aggressiveness in the market (MarkupLeader)—
arguably some of the fundamental variables in tariff pricing decisions.

The empirical performance of the manually constructed instance in competitions against
a Fixed and a TableRL benchmark broker is shown in Fig. 6. The tariff switching proba-
bility g was set to a low value (¢ = 0.1, left panel) and a moderate value (g = 0.5, right

9We found that a larger numbers of customer groups had no significant impact on the results as they did not
change the diversity of the population, while fewer customer groups produced an unrealistic “winner takes it
all” competition (see also Sect. 5.5).
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Table 4 Configuration of a
SELF instance constructed
manually. Gray shading indicates
all candidate features, black Bias Qmax 0.40
shading represents features that ActionIndex - o 1.00
were manually selected using ActionOnelnK Emax 0.20
domain knowledge BetterConsumptionRates & 0.70
CashGradient
CustomerGradient
MarketBreadth
MarketShare
MarkupLeader
NumberCustomers -
RateChangelndicator

Feature Plain RBF RBF(T) Bin Parameter Value

y 0.90

TargetMargin
WholesalePrice
WorseConsumptionRates

1.0 1.0
— SELF (Manual) — SELF (Manual)
- - Fixed - - Fixed

o8l TableRL | o8l TableRL

o
o
o
o

Profit Share
Profit Share

o
IS
o
IS

0.2

0.2

0.4 0.6 0.4 0.6
Customer Irrationality (1) Customer Irrationality (1)

(@¢=0.1 (®) g=0.5

Fig. 6 Performance of the manually constructed SELF instance from Table 4. While it is possible to man-
ually select features that perform well over a limited parameter range, constructing a broker that performs
universally well proves challenging

panel), and we recorded the broker’s performance while varying the customer irrational-
ity parameter t. SELF beats the reference strategies Fixed and TableRL by a statistically
significant margin in many of these environments. It is interesting to note that TableRL’s
performance lags not only behind SELF, but also behind the Fixed strategy. This does not
contradict the good performance reported in Reddy and Veloso (2011b), as the settings we
explore here differ from those for which TableRL was constructed (see Sect. 4.2). However,
this result underscores the importance of a well-chosen state space, and the need for a bro-
ker design that is able to identify and accommodate any effective state space for a given
environment.

Importantly, our results also demonstrate a common outcome for manually constructed
SELF brokers: While it is possible to construct broker instances that perform very well
under some market conditions, achieving robustness over a wide range of market conditions
is exceedingly difficult. For high levels of customer irrationality, the performance of the
manually-constructed broker approaches that of the Fixed strategy. This result may seem
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counter-intuitive, because even for the challenging case of customers choosing their tariffs
at random, there is a winning strategy: by raising tariff rates, a broker can increase its profit
margin without affecting its customer base. The diminishing performance of SELF for large
values of t stems from an implicit assumption behind its manually constructed state space.
Recall that this broker’s state space is constructed from the number of subscribed customers,
a profitability measure (CashGradient), a competitiveness measure (MarketBreadth), as well
as a measure of the broker’s own aggressiveness in the market (MarkupLeader). This is a
well-chosen feature set for capturing rational, consistent market conditions; however, these
features are far less informative or even distracting in settings with significant randomness
in customers’ choices.

In further experiments we analyzed the performance of manually constructed SELF in-
stances for a wide array of settings by varying the simulation length, the number of cus-
tomers, values of the markup parameter p of the reference strategies, and the settings of the
learning parameters. We omit details here for the sake of brevity, but we note that this SELF
instance performs competitively in all cases except for pathological choices of learning pa-
rameters.

5.2 Feature selection

To further improve the SELF broker’s learning and to overcome the challenges that arise
from manual feature and parameter selection, we explored the use of the feature selection
approaches described in Sect. 3.3 to automatically adapt SELF instances to different mar-
ket conditions. We fixed a customer population with relatively low switching probability
(¢ = 0.1) and irrationality (r = 0.1) and employed greedy feature selection or a Genetic
Algorithm to identify high performing SELF instances. Both methods were allotted a max-
imum of 24 hours for practical reasons; during the search, the fitness of each candidate
instance was evaluated over 25 simulation runs.

Figure 7 shows the performance of the broker configuration obtained with the greedy
feature selection process. In contrast to the manually constructed instance, the data-driven
feature-selection instance consistently outperforms the Fixed strategy over the full range of
environmental settings, even while declining noticeably in high-noise environments (higher
values of 7). The latter behavior may suggest an adaptation to the low-7 environment used
for feature selection, and may also reflect inherently greater difficulty of deriving a profitable
policy when customers exhibit random behaviors.

Evidence for the former hypothesis can be found in the configuration summary in Table 5.
The extremely high initial learning rate «,,,, = 0.73, along with slow decay (¢’ = 0.22), and
a high exploration rate hint at strong overfitting. This result is a direct consequence of the
relatively stable environment for which the SELF instance’s features are optimized. In fact,
in most simulation runs we observed under this configuration, SELF learned to price its
tariff slightly below the Fixed strategy’s rate very early on, and remained in that position
for the rest of the simulation. While this policy does well in many settings, it will not likely
perform well in environments with high levels of wholesale market volatility or customer
irrationality (see the remarks on winning strategies in these environments above). We give a
complete example of such a simulation run in Appendix A.

Support for the overfitting hypothesis also comes from the performance shown in Fig. 7.
Somewhat surprisingly, SELF’s performance in high-t environments first decreases with
increasing values of g (closing gap on right side in panels (a) though (c)) but then improves
significantly for ¢ = 0.9 (widening gap in panel (d)). We interpret this as a low-bias / high-
variance phenomenon with high variance results away from the original feature selection
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Fig. 7 Performance of the SELF instance obtained through greedy feature selection, see also Table 5. Its
performance compares favorably to the manually constructed instance over a wide range of environmental
parameters

environment. This insight gives rise to opportunities for increasing the robustness of the
feature selection outcome, which we explore below.

The performance of the SELF instance constructed using Genetic Algorithm feature
selection is shown in Fig. 8. This broker significantly outperforms its benchmarks, but it
performs slightly worse than the SELF instance derived with greedy feature selection. Here,
as in the greedy case, we find evidence of overfitting in the empirical results and in the learn-
ing parameters, with very high learning and exploration rates (Table 6) and high-variance
behavior in environments that are different from those for which the broker was optimized.
Moreover, the GA produces solutions to the feature selection problem that are significantly
denser than the greedy solutions and it takes the algorithm longer to find them. In all our ex-
periments, the GA feature selection exhausted the maximum allotted 24 hours, while greedy
feature selection typically terminated within 5-10 hours, well below the limit. We therefore
recommend the use of greedy feature selection over Genetic Algorithms and henceforth
employ the greedy procedure exclusively.

5.3 Market stability/guarding against overfitting

Our findings above have significant practical implications for the Smart Grid domain and
beyond: Overfitting, either from automatically adapting autonomous trading strategies to
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Table 5 SELF instance

configuration obtained through Feature Plain RBF RBF(T) Bin Parameter Value
greedy feature selection. The
resulting state space is sparse, the ~ Bias . Amax 0.73
parameter values hint at a strong ActionIndex o 0.22
overfitting effect, however ActionOnelnK Emax 0.45
BetterConsumptionRates & 0.04
CashGradient
CustomerGradient y 0.71
MarketBreadth -
MarketShare
MarkupLeader
NumberCustomers
RateChangelndicator
TargetMargin

WholesalePrice
WorseConsumptionRates

Table 6 SELF instance
configuration obtained through
GA feature selection, overfitting
effects are less pronounced than Bias Cmax 0.66
with greedy feature selection but ActionIndex o 0.37
still noticeably present ActionOnelnK Emax 0.16
BetterConsumptionRates & 0.62
CashGradient
CustomerGradient y 0.83
MarketBreadth -

MarketShare
MarkupLeader

NumberCustomers -

RateChangelndicator

TargetMargin -

WholesalePrice

‘WorseConsumptionRates _

Feature Plain RBF RBF(T) Bin Parameter Value

certain environments or from comparable manual optimization, threatens the stability of
Smart Markets. As such, measures against overtfitting are important to both designers of
autonomous trading strategies and policy makers. In this section, we first consider two mea-
sures that can be built into the optimization process, bootstrapping and noise injection,
before we turn our attention to regularization as an alternative to offline feature selection in
Sect. 5.4.

In the experiments above, all SELF instances were initialized with zero weights for their
value functions, corresponding to an initially random policy that evolves into a meaning-
ful decision-making strategy over time. Initializing brokers with a random policy has two
important implications in our setting. In the case of offline optimization, this initialization
encourages the selection of features and parameters that allow for very fast learning early
on, at the cost of not generalizing well. In addition, this sets SELF instances at a significant
disadvantage relative to non-learning strategies, such as Fixed, which can take reasonable
actions from the very beginning.
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Fig. 8 Performance of a SELF instance obtained through GA feature selection, see also Table 6. The more
thorough search for the best state space does not result in better performance as compared to a simple greedy
approach

To counteract the overfitting tendency of greedy optimization, we explored the use of
bootstrapping within the optimization process. Specifically, we first trained the candidate
on one run of the simulation, as before. The fitness measure, however, was then evaluated
on a second run of the simulation in which we bootstrapped the candidate using the policy
learned during the first run. This procedure can be interpreted as a form of cross-validation
of the broker’s configuration.

An examination of the configurations obtained in this manner reveals that several auto-
matically selected parameters now have more moderate values compared to when bootstrap-
ping is not used. Importantly, with bootstrapping the decay rates &’ = 1.41 and &’ = 1.09 are
both super-linear, yielding a quick decline in learning and exploration, and correspond to
a stable learned policy towards the end of each simulation. While the initial learning rate
Umax = 0.37 and the initial exploration rate &,,,, = 0.34 are relatively high, they are both
significantly lower than those produced without bootstrapping.'®

In comparison with the non-bootstrapping case (Fig. 7), the broker’s performance shown
in Fig. 9 is promising in two important ways. First, as shown, the broker’s performance
towards the left of the graphs (low-7, the environment for which the broker is optimized) is

10The full configuration is given in Appendix C, Table 7.
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Fig. 9 Performance of a SELF instance obtained through greedy feature selection with bootstrapping. Boot-
strapping leads to a performance increase due to the lowered impact of costly initial explorations

better than with the non-bootstrapping instance. This results from the broker taking informed
actions from the beginning. In addition, as shown in Fig. 9, while performance towards
high-t values declines, it does so in a consistent, predictable fashion across different values
of g. Taken together, our findings suggest that bootstrapping is an effective countermeasure
against the overfitting effects associated with plain greedy feature selection.

We now consider noise injection, which has long been recognized for its poten-
tial benefits in alleviating overfitting and improving generalization in supervised settings,
e.g. (Bishop 1995). A challenging choice with this approach is setting the level of noise to
be injected into the learning process, such that generalizable patterns remain while spurious
patterns are masked by noise. We propose that in competitive Smart Market settings this
problem can be circumvented by introducing additional brokers into the market. In partic-
ular, in the experiments that we present here, we included in the environment additional
brokers which follow a Random strategy. While purely random brokers cannot be expected
to be present in actual Smart Electricity Markets, they are interesting to consider because
they allow the separation of noise injection effects from the effects of additional competition,
i.e., random traders inject noise while not capturing any significant market share.'!

e also considered the case of additional smart trading strategies. Specifically, we let two instances of
SELF compete against each other, as well as against the benchmarks used earlier to explore whether our
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Fig. 10 Performance of a SELF instance obtained through greedy feature selection with noise injection.
Note, that all three random strategies are superimposed at the zero-line

The performances with noise injection are presented in Fig. 10, and reveal several in-
sightful differences to the performance of the broker learned with bootstrapping. Perhaps
the most significant of those is that the broker’s performance for high-t regimes is not only
drastically improved over brokers learned with bootstrapping and plain greedy feature se-
lection, but it is also better over a wider range of environmental settings. At the same time,
without the use of bootstrapping, the broker must initially learn a policy at the cost of un-
informed exploration; hence, the profit share of the SELF instance is lower in the low-t
regimes for which it is optimized, as compared to when bootstrapping is used. Interestingly,
the benefits from bootstrapping and noise injection are complementary. In subsequent ex-
periments, we show that the benefits of noise injection and bootstrapping can indeed be
combined to obtain even more robust strategies that achieve both improved performance in
their target environment, as well as lower-variance performance for environments that differ
from the anticipated ones. We refer the reader to Appendix C for further details on these
studies.

Finally, our findings above raise several useful questions for Reinforcement Learning
scholars as well as for designers of Smart Market mechanisms. We show that better and
more robust learning performance can be achieved via the injection of additional noise from

broker’s strategy remains stable under self-play. Our results indicate that both SELF strategies deliver stable
performance over a wide range of environments. We refer the reader to Appendix B for details.
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randomized brokers, who, importantly, do not capture market share at all. The mere presence
of these brokers prompted the greedy optimization procedure to choose a more robust con-
figuration and the resulting broker to act more profitably. While the introduction of purely
randomized traders is infeasible in Smart Markets, there may well be market designs that
introduce equivalent noise to be perceived by brokers (e.g., trading delays, artificial noise on
price and volume data, etc.). From a market design perspective, it is interesting to consider
whether such distortions can in fact lead to better allocation outcomes in the presence of au-
tomated trading strategies. From a theoretical perspective, reinforcement learners typically
face stochastic reward and transition functions, and they introduce additional randomness
through their own action selection (exploration). However, to our knowledge, the potential
benefits of noise injection into the learner’s observations have so far only been explored for
supervised learning tasks.

5.4 Regularization

As an alternative to the feature selection techniques discussed above we explored the use
of weight regularization for our function approximator. Regularization automatically selects
an effective subset from the set of all available features during online learning, and obviates
the need for an explicit, offline feature selection phase. It is conceptually simple, and it can
be easily integrated into the online learning process.

Figure 11 shows the performance of a SELF instance using regularization as roughly
comparable to that of the manually constructed instance shown in Fig. 6. While regulariza-
tion is not uniformly effective, it is important to note that this level of performance has been
achieved with far less domain knowledge and without a model of the environment against
which the broker instance could be optimized. Our regularized broker performs well for
environments with high customer switching probabilities (¢ = 0.9, right panel) and low lev-
els of customer irrationality (z small, left end of both panels). Both findings are intuitive:
a regularized function approximation requires frequent, strong, and consistent feedback to
form an effective policy; in our example such environments arise when customers exhibit
high switching probabilities (high g, more frequent retail market feedback) and low levels
of irrationality (low 7, more consistent retail market feedback). Thus, while regularization is
not consistently effective, it appears to be a beneficial low-cost strategy for learning without
explicit feature selection in stable market environments. '

5.5 Impact of customer characteristics

In a final experiment, we aim to highlight an interesting case of how Machine Learning re-
search can further inform policy decisions in the Smart Grid domain. This does not aim to
offer a full-fledged policy analysis, but a demonstration of how Machine Learning research
can contribute to shaping this important, challenging domain. Consider the concept of mi-
crogrids, self-organizing communities of small-scale electricity consumers and producers,
who act as one customer in the retail market, and who only trade net imbalances (i.e., con-
sumption they are unable to meet with own production, or production they cannot absorb
with own consumption) in the upstream grid (cf. Fig. 1).

1ZAn anonymous reviewer offered the following potential explanation for the comparatively weak perfor-
mance of regularization: Shrinkage tends to drive weights to zero in areas of the state space that the learner
is currently not exploring (based on the sequential nature of exploration in online RL). In other words, the
learner “forgets” about regions of the state space not recently visited. We find this explanation quite plausible.
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Fig. 11 Performance of a SELF instance using regularization. The instance performs at par with a manually
constructed broker instance but does not require domain knowledge

Important open questions pertaining to microgrids are whether their introduction is ben-
eficial to market stability; and, if so, what are the expected implications of the number,
size, and sophistication of microgrids in the market. One can also interpret these factors
as follows: the number of microgrids captures the lumpiness of decision making (where
fewer microgrids corresponds to fewer independent decisions in the retail market); the size
of microgrids reflects idiosyncratic risk, because the aggregated behavior of a larger num-
ber of households tends to appear smoother, cf. Fig. 4; and, finally, the sophistication of
microgrids pertains to the degree of rationality in their decision-making, and is inversely
related to T in our notation. Higher levels of sophistication can be a consequence of im-
plementing advanced decision-support within each microgrid, but can also be related to the
amount of information flowing from the upstream market into the microgrid. We expect the
autonomous retail trading task to become measurably harder as the lumpiness of decision-
making increases (up to the limiting case of “winner takes all” competition), as the size
of each microgrid decreases (up to the limiting case of single households, as in traditional
electricity retail markets), and as sophistication decreases.

We studied the implications of these factors on the performance of SELF, as it repre-
sents a state-of-the-art autonomous retail trading agent. The left column in Fig. 12 shows
increasing numbers of microgrids with low levels of sophistication (high t values), whereas
the right column presents microgrids with higher sophistication; each panel shows the per-
formances of the broker across different sizes of microgrids. One insight from these results
is that the number and sophistication of microgrids are key factors in the performance of
our strategy, whereas the implications of each microgrid’s size is less significant. Specifi-
cally, the performance curves for SELF and the alternative strategies are roughly flat, with
no clear trend as microgrid sizes change. The only exceptions are the single-grid cases in
panels (a) and (b), where SELF starts to perform consistently from about 10-20 house-
holds. This result is partly due to a degenerate “winner takes it all” competition as reflected
in the wider confidence bounds, and partly due to the Fixed strategy generally ignoring
consumption patterns and tariff selection decisions. A second useful insight is the deci-
sive role that the sophistication of individual microgrid decisions plays in autonomous re-
tail trading strategies’ performance. For low sophistication (left column), SELF performs
comparably to a simple Fixed strategy in most cases; only for relatively large numbers
of microgrids does SELF perform significantly better than the alternative strategies. In

@ Springer



30 Mach Learn (2013) 92:5-39

1.0 1.0
\\ — SELF " — SELF
| -- Fixed ' -- Fixed
sl ! TableRL 0.8 TableRL
006 006
& &
Soa =04
0.2 0.2
; A T S e
O‘OU 10 20 30 40 50 0‘00 10 20 30 40 50
Number of Households per Microgrid Number of Households per Microgrid
(a) 1 microgrid, low sophistication (b) 1 microgrid, high sophistication
1.0 1.0
— SELF — SELF
-- Fixed -- Fixed
08 TableRL 08 TableRL
o 0.6 @ 0.6
~o04 =04
o2 o2 —} l \\}‘>7//—J_i_l;;‘\ﬁ‘_{—»;l;;»{
podo] ] I i { |
00 10 20 30 50 0.0 * 10 20 30 50
Number of Households per Microgrid Number of Households per Microgrid
(c) 5 microgrids, low sophistication (d) 5 microgrids, high sophistication
1.0 1.0
— SELF — SELF
-~ Fixed -- Fixed
08 TableRL 08 TableRL
206 006
& &
s s
“ 04 0.4
02 I 0.2 \_},»»}\},_, . /,[7"{7-7}-.{_,_,
HHIMMH | }“I
o 0ot I |
o 1 20 30 40 50 o 10 20 30 40 50
Number of Households per Microgrid Number of Households per Microgrid
(e) 10 microgrids, low sophistication (f) 10 microgrids, high sophistication
1.0 1.0
— SELF — SELF
-- Fixed -- Fixed
08 TableRL 0.8 TableRL
006 006
& &
& 0.4 { I { & 0.4
0‘2}}{ % { { } I 02} Ilid IRy ___»{_7_} |
s e S O S s : T
0.0 I 0.0 T I I
0 10 40 50 10 4 50

20 30 20 30
Number of Households per Microgrid Number of Households per Microgrid

(g) 50 microgrids, low sophistication (h) 50 microgrids, high sophistication

Fig. 12 Impact of microgrid characteristics on broker performance, left column: low level of microgrid so-
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sophistication (r =0.1)
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Fig. 13 Summary of results.
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contrast, the right column shows SELF outperforming other strategies almost across the
board.

It is important to note, that the superior performance of SELF is not merely beneficial
to the self-interested broker. Rather, it also reflects higher overall economic welfare: con-
sumers’ own preference of SELF over competing strategies is indicative of its desirable,
competitive tariff offerings, especially as compared to the customer-agnostic Fixed strat-
egy. Furthermore, higher profit shares are a result of better balanced portfolios with lower
imbalance charges, and ultimately contribute to a more efficient and stable grid. From a
policy perspective, our results indicate that further research into decision-support systems
for microgrids will likely benefit both consumers and the grid overall. Specifically, fur-
ther inquiry is needed into the benefits that accrue to microgrids from using data-driven,
decision-support technology; into whether microgrids would invest in such technology by
their own choice; and, alternatively, if public-sector investments into novel decision-support
systems could lead to increased economic welfare and a more stable Smart Grid in the fu-
ture.

5.6 Summary of results

Figure 13 summarizes the characteristics of the methods we proposed by juxtaposing their
performance in a Smart Market environment, their capacity to generalize, and their compu-
tational requirements.

The simple manual and regularized approaches performed reasonably well for the en-
vironments for which they were constructed, but their performance deteriorated quickly
as environmental conditions changed. The regularized approach generalized slightly better
and, importantly, required significantly less domain knowledge in the design process. Both
approaches are computationally efficient and can be applied without a model of the target
environment.

When an environmental model is available, feature selection techniques can be lever-
aged to obtain significantly better performance in the target environment and beyond. Both,
greedy and GA feature selection, led to strategies that generalized significantly better than,
e.g., the simple regularized approach. Generalization is desirable because of potential shifts
in a Smart Market environment, but also to effectively accommodate potential mismatches
between the environmental model used for feature selection and the actual target environ-
ment. Both feature selection techniques require significant computation before executing
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the strategy, but have little impact on the derived strategies’ runtime requirements. In our
experiments we found greedy feature selection to deliver generally better, sparser results at
lower computational costs and we therefore recommend it over GA feature selection for our
application.

Finally, we demonstrated how bootstrapping and noise injection can be integrated into the
feature selection process to improve performance (bootstrapping) in a given environment,
and generalizability (noise injection). Importantly, we show that both techniques can be
combined to benefit both objectives.

6 Related work

To date, research on retail electricity trading has received relatively little attention. To our
knowledge, Reddy and Veloso (2011b) were the first to suggest RL as an appropriate frame-
work for constructing brokers for retail electricity markets. A key distinguishing feature of
our approach is the automated, data-driven construction of the state space. In contrast, the
strategies developed in (Reddy and Veloso 2011b) are derived from manually constructed
features and are limited in the number of economic signals they can accommodate as well as
in their ability to incorporate new signals when the market environment changes. Another
key distinction is that the brokers presented in (Reddy and Veloso 2011b) are derived for
an environment with fixed rates of electricity consumption and production for all market
participants where brokers source electricity exclusively from small-scale producers. Con-
sequently, the broker learns to steer towards an optimal consumer/producer ratio among its
subscribers by changing tariff rates. These settings yield a broker which is unable to de-
velop appropriate responses to any variability of consumption and production over time or
between different customers.

Reinforcement Learning has been used on a wide range of problems in electronic com-
merce in which agents aim to learn optimal policies through interaction with the environ-
ment. For example, Pardoe et al. (2010) develop a data-driven approach for designing elec-
tronic auctions based on notions from RL. In the electricity domain, RL has primarily been
used to derive wholesale trading strategies, or to build physical control systems. Examples
of electricity wholesale applications include (Rahimiyan and Mashhadi 2010), who derive
bidding strategies for electricity wholesale auctions, and (Ramavajjala and Elkan 2012) who
study Next State Policy Iteration (NSPI) as an extension to Least Squares Policy Iteration
(LSP]) (Lagoudakis and Parr 2003) and demonstrate the benefits of their extension on the
day-ahead commitment problem of a wind farm. Physical control applications of RL include
load and frequency control within the electric grid and autonomous monitoring applications,
e.g., (Venayagamoorthy 2009).

Feature selection and regularization have been studied widely in supervised settings,
e.g., (Guyon and Elisseeff 2003), but have only recently gained momentum in the Rein-
forcement Learning community. In our experiments we implemented the L1 regularized
version of LARS-TD by Painter-Wakefield and Parr (2012) due to its conceptual simplic-
ity. An alternative approach is Sparse TD with Equi-Gradient Descent (EGD) by Loth et al.
(2007) and we are planning on exploring its relative merits in future work. Wrapper ap-
proaches to feature selection are commonly used in RL as they are easily integrated as a
pre-processing step to the actual RL task. For example, Whiteson et al. (2005) present FS-
NEAT, an extension of the well-known NEAT algorithm, to incorporate feature selection
capabilities. They demonstrate the benefit of this approach on two standard RL benchmarks.
Another feature selection technique specifically targeted at RL applications is the LSTD-RP
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method by Ghavamzadeh et al. (2010). They extend the classic Least Squares TD (LSTD)
algorithm (Bradtke and Barto 1996) to work with random projections of high-dimensional
state spaces, and show how their work translates to online RL settings by replacing LSTD
with LSPIL.

Whiteson et al. (2011) provide interesting insights into the role of environment overfit-
ting in empirical evaluations of RL applications. They argue that firting, i.e., the adaptation
of a learner to environmental conditions known to be present in the target environment, is an
appropriate strategy. Overfitting, i.e., the adaptation of the learner to conditions only present
during evaluation, on the other hand, is inappropriate. Our experiments suggest techniques
that strike a good balance between fit and performance levels for autonomous trading strate-
gies.

7 Conclusions and future work

The Smart Grid vision relies critically on decentralized control methods that can help bal-
ance electric grids in real-time. Developing an understanding of such methods is one of
the cornerstones of an efficient, safe, and reliable Smart Grid, with far-reaching benefits for
society at large.

We presented SELF, a novel design for autonomous Electricity Broker Agents built on
insights from Reinforcement Learning, and from Machine Learning more generally. The key
design objectives behind SELF are flexibility and robustness. We framed the broker chal-
lenge as optimal control problem and used RL with function approximation to derive robust
long-term policies for our SELF brokers. Towards the flexibility objective, we explored
the use of feature selection and regularization techniques to automatically adapt brokers
to a broad range of market conditions. Using these techniques, SELF brokers can identify
and accommodate arbitrary sets of informative signals from their environment, resulting in
significantly better performances compared to previous designs. We also evaluated comple-
mentary bootstrapping and noise-injection methods to reduce overfitting, and we showed
how their use leads to more robust, generalizable feature selection outcomes.

Our work formalizes a class of Smart Electricity Markets by means of our simulation
model SEMS, which is a contribution in its own right. SEMS employs real-world wholesale
market data and a complete, micro-level model of electric appliance usage in private house-
holds, making it a more realistic model of future Smart Electricity Markets than those used
in previous studies. We demonstrated the efficacy of our broker design for a range of Smart
Electricity Markets which varied substantially in terms of tariff choice behaviors among
their customer populations. Our experimental results demonstrate that both, the broker’s ca-
pacity to accommodate arbitrary state spaces, and its selection of informative features, are
important for learning robust policies. Our SELF brokers are significantly more flexible in
this regard than previously suggested strategies.

Research on autonomous electricity brokers for the Smart Grid is an emerging field.
Hence, beyond the development of a novel broker agent design, we aimed to generate use-
ful insights on key design decisions that enable broker agents to operate effectively in the
Smart Grid. For instance, we studied the use of L1 regularization and found that it offers
a viable alternative to manual broker construction under stable market conditions. We con-
trasted regularization with greedy and GA feature selection and found that a simple, greedy
feature selection approach can yield significant performance improvements when a model
of the environment is available, and when overfitting can be avoided. We presented effec-
tive strategies for counteracting overfitting, including an innovative approach for injecting
effective noise via random broker strategies.
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In future work it would be beneficial to further explore SELF’s performance in increas-
ingly sophisticated Smart Electricity Markets. Key features to explore include advanced
tariff structures, renewable energy sources, and storage devices such as electric vehicles.
A question of great practical import is whether the performance of the learner we present
here, possibly extended with more advanced RL techniques, will translate to these more
complex environments as well. Customers, for example, may eventually adopt electronic
agents of their own. In fact, this is commonly thought to be a prerequisite for the success
of more complicated tariff models. Our preliminary analysis in Sect. 5.5 gives reason to
believe that the use of such agents might actually benefit broker agents if they act closer to
perfect rationality. How broker agents cope with strategic departures from perfect rationality
is, however, unclear.

Our noise injection experiments entail the question whether the extensive work on over-
fitting that the Machine Learning community has done can be connected to questions about
market stability that are under study in the Finance field. Smart Market designs could, for
example, be drastically improved if artificially introduced noise (e.g., trading delays) could
indeed be proven to be generally beneficial in the presence of autonomous trading strategies.
To our knowledge, this connection has not been studied previously.

Another related, and possibly complementary, objective is to derive policies that are com-
prehensible for human decision-makers. Comprehensible policies serve as a further safe-
guard against overfitting. But they also increase the trust of human decision-makers in au-
tonomous trading strategies, an important precondition to the adoption of Machine Learning
techniques in the safety-conscious Smart Grid domain.

We believe that our proposed strategies offer important benchmarks for future work and
that this work offers a meaningful contribution to our understanding of key design decisions
for broker agents to operate effectively in the Smart Grid.

Acknowledgements We would like to thank three anonymous Machine Learning reviewers and three
anonymous ECML-PKDD 2012 reviewers for their insightful comments on this work. The extensive ex-
ploration of alternative feature selection and regularization techniques we present here and the subsequent
enhanced performance of the agent, was, among other things, inspired by their remarks.

Appendix A: SEMS example run

We referred to the tendency of feature selection to overfit SELF instances to their target
environment in Sect. 5.2. In Fig. 14 we give a concrete example of this behavior. The figure
depicts the development of tariff rates (Fig. 14b) and cash account balances (Fig. 14c) for
various strategies in one example run of SEMS against a stylized step-function wholesale
market (Fig. 14a). After the jump in wholesale prices at timeslot 25, the TableRL strategy
first fails to adjust its rate upwards; and while SELF first increases its rate based on its target
margin over the prevailing wholesale price, it quickly reverts to its initially successful strat-
egy of offering the lowest margin in the market (recall from Sect. 4.1 that SELF learns target
margins, not target rates). In the process, it undersells the unprofitable TableRL strategy and
falls behind Fixed in terms of cash balance.

Appendix B: Robustness and self-play

In the experiments above we have considered SELF instances in competition against the
benchmark strategies available in the literature to date. As another test of robustness we let
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Fig. 14 Simulation using an overfitted strategy against a stylized step-function wholesale market

two instances of SELF compete against each other, as well as against the benchmarks used
earlier to explore whether our broker’s strategy remains stable under self-play. The results
of this evaluation are presented in Fig. 15.

As shown, both SELF brokers perform mostly better than their benchmark strategies un-
der self-play, and overall exhibit consistent performance in comparison to the situation when
only a single SELF broker is present. The two brokers’ performances are similar as well:
‘When customers exhibit low switching rate (¢g), the SELF brokers performances are statis-
tically indistinguishable; when ¢ is high their performances are barely distinguishable, but
with no clear advantage of one or the other instance. Rather, the SELF brokers’ respective
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Fig. 15 Performance of two SELF instances in self-play

Table 7 SELF instance obtained
through greedy feature selection
with bootstrapping

Feature Plain RBF RBF(T) Bin Parameter Value

Bias Umax 0.37
ActionIndex - o 1.41
ActionOnelnK Emax 0.34
BetterConsumptionRates ¢ 1.09
CashGradient

CustomerGradient y 0.76
MarketBreadth

MarketShare

MarkupLeader -

NumberCustomers -
RateChangelndicator

TargetMargin

WholesalePrice

‘WorseConsumptionRates

profit shares are lower than in previous settings, as they simply share the profit available
in the market among themselves. Overall, we interpret the consistent, good performance
shown by SELF in this more challenging setting as further evidence for the robustness of
our broker.

Appendix C: Miscellaneous experimental results

In Sect. 5.3 we explored the role that bootstrapping and noise injection can play in coun-
teracting overfitting tendencies in the feature and parameter selection process. The detailed
configurations of the SELF configuration obtained under bootstrapping and noise injection
are given in Tables 7 and 8, respectively.

An interesting property of bootstrapping and noise injection is that they work in a com-
plementary fashion. Figure 16 shows the performance of a SELF instance obtained through
greedy feature selection using both add-on techniques. The results indicate that the strategy
benefited in terms of both, performance in the target environment and generalizability.
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Table 8

SELF instance obtained

through greedy feature selection
with added noise

Feature

Plain RBF RBF(T) Bin Parameter Value

Bias

ActionIndex
ActionOneInK
BetterConsumptionRates
CashGradient
CustomerGradient
MarketBreadth
MarketShare
MarkupLeader
NumberCustomers
RateChangelndicator
TargetMargin
WholesalePrice
WorseConsumptionRates

Ymax

Emax

a/

8/

0.37
1.41
0.34
1.09

0.76
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Fig. 16 Performance of a SELF instance obtained through greedy feature selection with noise injection and
bootstrapping. Note, that all three random strategies are superimposed at the zero-line
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