
Mach Learn (2015) 98:331–357
DOI 10.1007/s10994-013-5339-6

Probabilistic consensus clustering using evidence
accumulation

André Lourenço · Samuel Rota Bulò ·
Nicola Rebagliati · Ana L.N. Fred ·
Mário A.T. Figueiredo · Marcello Pelillo

Received: 25 May 2012 / Accepted: 2 March 2013 / Published online: 3 April 2013
© The Author(s) 2013

Abstract Clustering ensemble methods produce a consensus partition of a set of data points
by combining the results of a collection of base clustering algorithms. In the evidence accu-
mulation clustering (EAC) paradigm, the clustering ensemble is transformed into a pairwise
co-association matrix, thus avoiding the label correspondence problem, which is intrinsic
to other clustering ensemble schemes. In this paper, we propose a consensus clustering ap-
proach based on the EAC paradigm, which is not limited to crisp partitions and fully ex-
ploits the nature of the co-association matrix. Our solution determines probabilistic assign-

Editors: Emmanuel Müller, Ira Assent, Stephan Günnemann, Thomas Seidl, and Jennifer Dy.

A. Lourenço
Instituto Superior de Engenharia de Lisboa, Lisboa, Portugal

A. Lourenço · A.L.N. Fred · M.A.T. Figueiredo
Instituto de Telecomunicações, Lisboa, Portugal

A. Lourenço
e-mail: arlourenco@lx.it.pt

A.L.N. Fred
e-mail: afred@lx.it.pt

M.A.T. Figueiredo
e-mail: mario.figueiredo@lx.it.pt

S. Rota Bulò (�) · M. Pelillo
DAIS, via Torino, 155, Mestre, Venezia, Italy
e-mail: srotabul@dais.unive.it

M. Pelillo
e-mail: pelillo@dais.unive.it

N. Rebagliati
VTT Technical Research Center of Finland, P.O. Box 1000, VTT 02044, Finland
e-mail: nicola.rebagliati@gmail.com

A.L.N. Fred · M.A.T. Figueiredo
Instituto Superior Técnico, 1049-001 Lisboa, Portugal

mailto:arlourenco@lx.it.pt
mailto:afred@lx.it.pt
mailto:mario.figueiredo@lx.it.pt
mailto:srotabul@dais.unive.it
mailto:pelillo@dais.unive.it
mailto:nicola.rebagliati@gmail.com

332 Mach Learn (2015) 98:331–357

ments of data points to clusters by minimizing a Bregman divergence between the observed
co-association frequencies and the corresponding co-occurrence probabilities expressed as
functions of the unknown assignments. We additionally propose an optimization algorithm
to find a solution under any double-convex Bregman divergence. Experiments on both syn-
thetic and real benchmark data show the effectiveness of the proposed approach.

Keywords Consensus clustering · Evidence Accumulation · Ensemble clustering ·
Bregman divergence

1 Introduction

Clustering ensemble methods look for consensus solutions from a set of base clustering
algorithms, thus trying to combine into a single partition the information present in many
different ones. Several authors have shown that these methods tend to reveal more robust and
stable cluster structures than the individual clusterings in the ensemble (Fred 2001; Fred and
Jain 2002; Strehl and Ghosh 2003). Leveraging an ensemble of clusterings is considerably
more difficult than combining an ensemble of classifiers, due to the label correspondence
problem: how to put in correspondence the cluster labels produced by different clustering
algorithms? This problem is made more serious if clusterings with different numbers of
clusters are allowed in the ensemble.

A possible solution to sidestep the cluster label correspondence problem has been pro-
posed in the Evidence Accumulation Clustering (EAC) framework (Fred and Jain 2005).
The core idea is based on the assumption that similar data points are very likely grouped
together by some clustering algorithm and, conversely, data points that co-occur very of-
ten in the same cluster should be regarded as being very similar. Hence, it is reasonable
to summarize a clustering ensemble in terms of a pair-wise similarity matrix, called co-
association matrix, where each entry counts the number of clusterings in the ensemble in
which a given pair of data points is placed in the same cluster. This new mapping can then
be used as input for any similarity-based clustering algorithm. In Fred and Jain (2005), ag-
glomerative hierarchical algorithms are used to extract the consensus partition (e.g. Single
Link, Average Link, or Ward’s Link). In Fred and Jain (2006), an extension is proposed,
entitled Multi-Criteria Evidence Accumulation Clustering (Multi-EAC), filtering the clus-
ter combination process using a cluster stability criterion. Instead of using the informa-
tion of the different partitions, it is assumed that, since algorithms can have different levels
of performance in different regions of the space, only certain clusters should be consid-
ered.

The way the co-association matrix is exploited in the literature is very naïve. Indeed,
standard approaches based on EAC simply run a generic pairwise clustering algorithm with
the co-association matrix as input. The underlying clustering criteria of ad hoc algorithms,
however, do not take advantage of the statistical interpretation of the computed similarities,
which is an intrinsic part of the EAC framework. Also, the direct application of a clus-
tering algorithm to the co-association matrix typically induces a hard partition of the data.
Although having crisp partitions as baseline for the accumulation of evidence of data organi-
zation is reasonable, this assumption is too restrictive in the phase of producing a consensus
clustering. Indeed, the consensus partition is a solution that tries to accommodate the differ-
ent clusterings in the ensemble and by allowing soft assignments of data points to clusters we
can preserve some information about their intrinsic variability and capture the level of uncer-
tainty of the overall label assignments, which would not be detected in the case of hard con-
sensus partitions. The variability in the clustering solution of the ensemble might depend not

Mach Learn (2015) 98:331–357 333

only on the different algorithms and parametrizations adopted to build the ensemble, but also
on the presence of clusters that naturally overlap in the data. This is the case for many im-
portant applications such as clustering micro-array gene expression data, text categorization,
perceptual grouping, labelling of visual scenes and medical diagnosis. In these cases, having
a consensus solution in terms of a soft partition allows to detect also overlapping clusters
charactering the data. It is worth mentioning that the importance of dealing with overlapping
clusters has been recognized long ago (Jardine and Sibson 1968) and, in the machine learn-
ing community, there has been a renewed interest around this problem (Banerjee et al. 2005a;
Heller and Ghahramani 2007). As an alternative, the consensus extraction could be obtained
by running fuzzy k-medoids (Mei and Chen 2010) on the co-association matrix as it were a
standard similarity matrix, or fuzzy k-means (Bezdek 1981) by interpreting each row of the
co-association matrix as a feature vector. However, such solutions would not take into ac-
count the underlying probabilistic meaning of the co-association matrix and lack any formal
statistical support.

In this paper, we propose a consensus clustering approach which is based on the EAC
paradigm. Our solution fully exploits the nature of the co-association matrix and does not
lead to crisp partitions, as opposed to the standard approaches in the literature. Indeed, it
consists of a model in which data points are probabilistically assigned a cluster. Moreover,
each entry of the co-association matrix, which is derived from the ensemble, is regarded as
a realization of a Binomial random variable, parametrized by the unknown cluster assign-
ments, that counts the number of times two specific data points are expected to be clustered
together. A consensus clustering is then obtained by means of a maximum likelihood estima-
tion of the unknown probabilistic cluster assignments. We further show that this approach
is equivalent to minimizing the Kullback-Leibler (KL) divergence between the observed
co-occurrence frequencies derived from the co-association matrix and the co-occurrence
probabilities parametrizing the Binomial random variables. By replacing the KL-divergence
with any Bregman divergence, we come up with a more general formulation for consensus
clustering. In particular we consider, as an additional example, the case where the squared
Euclidean distance is used as divergence. We also propose an optimization algorithm to
solve the minimization problem derived from our formulation, which works for any double-
convex Bregman divergence, and a comprehensive set of experiments shows the effective-
ness of our new consensus clustering approach.

The remainder of the paper is organized as follows. In Sect. 2 we provide definitions
and notations that will be used across the manuscript. In Sects. 3 and 4, we describe the
proposed formulation for consensus clustering and the corresponding optimization problem.
In Sect. 5, we present an optimization algorithm the can be used to find a consensus solution.
Section 6 briefly reviews related work, and Sect. 7 reports experimental results. Finally,
Sect. 8 presents some concluding remarks. A preliminary version of this paper appeared in
Rota Bulò et al. (2010).

2 Notation and definitions

Sets are denoted by upper-case calligraphic letters (e.g., O, E , . . .) except for R and R+
which represent as usual the sets of real numbers and non-negative real numbers, respec-
tively. The cardinality of a finite set is written as | · |. We denote vectors with lower-case
boldface letters (e.g., x, y, . . .) and matrices with upper-case boldface letters (e.g., X, Y,
. . .). The ith component of a vector x is denoted as xi and the (i, j)th component of a ma-
trix Y is written as yij . The transposition operator is given by the symbol �. The �p-norm

334 Mach Learn (2015) 98:331–357

Table 1 Examples of double-convex Bregman divergences

Divergence φ(x) dφ(x,y) Domain

Squared �2 ‖x‖2 ‖x − y‖2 x,y ∈ R
K

Mahalanobis x�Ax (x − y)�A(x − y) x,y ∈ R
K , A � 0

Kullback-Leibler −H(x)
∑K

j=1 xj log(
xj
yj

) x,y ∈ ΔK

Generalized I-div. −H(x) − e�x
∑K

j=1 xj log(
xj
yj

) − xj + yj x,y ∈ R
K+

of a vector x is written as ‖x‖p and we implicitly assume a �2 (or Euclidean) norm, where
p is omitted. We denote by en a n-dimensional column vector of all 1’s and by e(j)

n the
j th column of the n-dimensional identity matrix. The trace of matrix M ∈ R

n×n is given
by Tr(M) = ∑n

i=1 mii . The domain of a function f is denoted by dom(f) and 1P is the
indicator function giving 1 if P is true, 0 otherwise.

A probability distribution over a finite set {1, . . . ,K} is an element of the standard sim-
plex ΔK , which is defined as

ΔK = {
x ∈ R

K
+ : ‖x‖1 = 1

}
.

The support σ(x) of a probability distribution x ∈ ΔK is the set of indices corresponding to
positive components of x, i.e.,

σ(x) = {
i ∈ {1, . . . ,K} : xi > 0

}
.

The entropy of a probability distribution x ∈ ΔK is given by

H(x) = −
K∑

j=1

xj log(xj)

and the Kullback-Leibler divergence between two distributions x,y ∈ ΔK is given by

DKL(x‖y) =
K∑

j=1

xj log

(
xj

yj

)

,

where we assume log 0 ≡ −∞ and 0 log 0 ≡ 0.
Given a continuously-differentiable, real-valued and strictly convex function φ : ΔK →R,

we denote by

Bφ(x‖y) = φ(x) − φ(y) − (x − y)�∇φ(y)

the Bregman divergence associated with φ for points x,y ∈ ΔK , where ∇ is the gradient op-
erator. By construction, the Bregman divergence is convex in its first argument. If convexity
holds also for the second one, then we say that the Bregman divergence is double-convex.

The Kullback-Leibler divergence is a special case of double-convex Bregman divergence,
which is obtained by considering φ(x) = −H(x). In Table 1 we report other examples of
double-convex Bregman divergences.

Mach Learn (2015) 98:331–357 335

3 A probabilistic model for consensus clustering

Consensus clustering is an unsupervised learning approach that summarizes an ensemble of
partitions obtained from a set of base clustering algorithms into a single consensus partition.
In this section, we introduce a novel model for consensus clustering, which collapses the
information gathered from the clustering ensemble into a single partition, in which data
points are assigned to clusters in a probabilistic sense.

Let O = {1, . . . , n} be the indices of a set of data points to be clustered and let E =
{pu}N

u=1 be a clustering ensemble, i.e., a set of N clusterings obtained by different algorithms
with possibly different parametrizations and/or initializations and/or sub-sampled versions
of the data set. Each clustering pu ∈ E is a function pu : Ou → {1, . . . ,Ku} assigning a
cluster out of Ku available ones to data points in Ou ⊆ O, where Ou and Ku can be different
across the clusterings indexed by u. We put forward data sub-sampling as a most general
framework for the following reasons: it favours the diversity of the clustering ensemble and
it models situations of distributed clustering where local clusters have only partial access to
the data.

Since each clustering in the ensemble may stem from a sub-sampled version of the origi-
nal dataset, some pairs of data points may not appear in all clusterings. Let Ωij ⊆ {1, . . . ,N}
denote the set of indices of clusterings in the ensemble where both data points i and j ap-
pear, i.e., (u ∈ Ωij) ⇔ ({i, j} ⊆ Ou), and let Nij = |Ωij | denote its cardinality. Clearly,
Ωij = Ωji and consequently Nij = Nji for all pairs (i, j) of data points. The ensemble of
clusterings is summarized in the co-association matrix C = [cij] ∈ {0, . . . ,N}n×n, where

cij =
∑

u∈Ωij

1pu(i)=pu(j)

is the number of times i and j are co-clustered in the ensemble E ; of course, 0 ≤ cij ≤
Nij ≤ N and cij = cji .

In standard EAC literature the co-association matrix holds the fraction of times two data
points are co-clustered, while in our definition it holds the number of times this event occurs.
The reason of this choice stems from the fact that we allow subsampling in the ensemble
construction. Consequently, the number of times two data points appear in a clustering of the
ensemble is not constant over all possible pairs. This renders the observation of the fraction
of times co-clustering occurs statistically more significant for some pairs of data points and
less for other ones. By considering C in absolute terms and by keeping track of the quantities
Nij ’s we can capture this information. As an example, consider that the ensemble consists
on 100 partitions, and due to subsampling, let a pair of samples (i, j), co-appear in partitions
Nij = 80, and be co-clustered 70 times. Then, N = 100, Nij = 80 and cij = 70.

Our model assumes that each data point has an unknown probability of being assigned
to each cluster. We denote by yi = (y1i , . . . , yKi)

� ∈ ΔK the probability distribution over
the set of K clusters {1, . . . ,K} which characterizes data point i ∈ O, i.e., yki = P[i ∈ Ck],
where Ck denotes the subset of O that constitutes the k-th cluster. The model parameter K

should not be understood as the desired number of clusters but rather as a maximum number
of clusters. Without prior knowledge, K might coincide with the number of data points,
i.e., K = n. Finally, we store all the yi ’s in a K × n matrix Y = [y1, . . . ,yn] ∈ Δn

K . The
probability that data points i and j are co-clustered is thus

K∑

k=1

P[i ∈ Ck, j ∈ Ck] =
K∑

k=1

P[i ∈ Ck]P[j ∈ Ck] =
K∑

k=1

ykiykj = y�
i yj .

336 Mach Learn (2015) 98:331–357

Table 2 Summary of notation

Symbol Description

Nij Number of times data points i and j are on the same partition

cij Number of times data points i and j are co-clustered

C C = [cij], co-association matrix

yi Probability distribution of data point i over the set of K clusters

Y Y = [y1, . . . ,yn] ∈ Δn
K

Cij Cij ∼ Binomial(Nij ,y�
i

yj)

Let Cij , i < j , be a binomial random variable representing the number of times that
data points i and j are co-clustered; from the assumptions above we have that Cij ∼
Binomial(Nij ,y�

i yj), that is

P[Cij = c|yi ,yj] =
(

Nij

c

)
(
y�

i yj

)c(
1 − y�

i yj

)Nij −c
.

Each element cij , i < j , of the co-associaton matrix C, is interpreted as a sample of the
random variable Cij and due to the symmetry of C, entries cij and cji are considered as the
same sample. The model considers the different Cij ’s independent. This simplification is es-
sential, in practice, because by decoupling the pairwise, or higher order, correlations present
in the consensus the likelihood becomes more tractable. Consequently, the probability of
observing C, given the cluster probabilities Y, is given by

P[C | Y] =
∏

{i,j }∈P

(
Nij

cij

)
(
y�

i yj

)cij
(
1 − y�

i yj

)Nij −cij

where P = {{i, j} ⊆ O : i
= j} is the set of all distinct pairs of data points. Since we consider
the observations cij and cji as being identical due to the symmetry of C, the product is taken
over the set of distinct unordered pairs of data points.

We can now estimate the unknown cluster assignments by maximizing the log-likelihood
log P[C|Y] with respect to Y, which is given by

log P[C|Y] =
∑

{i,j }∈P

log

(
Nij

cij

)

+ cij log
(
y�

i yj

) + (Nij − cij) log
(
1 − y�

i yj

)
.

This yields the following maximization problem, where terms not depending on Y have
been dropped:

Y∗ ∈ arg max
Y∈Δn

K

{ ∑

{i,j }∈P

cij log
(
y�

i yj

) + (Nij − cij) log
(
1 − y�

i yj

)
}

. (1)

Matrix Y∗, the solution of problem (1), provides probabilistic cluster assignments for the
data points, which constitute the solution to the consensus clustering problem according to
our model.

In Table 2 we summarize the notation introduced in this section.

Mach Learn (2015) 98:331–357 337

4 A class of alternative formulations

The formulation introduced in the previous section for consensus clustering can be seen as
a special instance of a more general setting, which will be described in this section.

Let ψ : R → R
2 be a function mapping a scalar to a 2-dimensional vector defined as

ψ(x) = (x,1 − x)� and let dφ : R × R → R be given as follows:

dφ(x1, x2) = Bφ

(
ψ(x1)‖ψ(x2)

)
.

Consider now the following class of formulations for consensus clustering, which is
parametrized by a continuously-differentiable and strictly convex function φ : Δ2 → R:

Y∗ ∈ arg min
Y∈Δn

K

f (Y), (2)

where

f (Y) =
∑

{i,j }∈P

Nij dφ

(
cij

Nij

,y�
i yj

)

. (3)

Intuitively, the solution Y∗ to (2) is a probabilistic cluster assignment yielding a min-
imum Bregman divergence between the observed co-occurrence statistics of each pair of
data points and the estimated ones. Moreover, each term of f (Y) is weighted by Nij in
order to account of the statistical significance of the observations.

The formulation in (2) encompasses the one introduced in the previous section as a
special case. Indeed, by considering the parametrization φ(x) = −H(x), we have that
Bφ ≡ DKL, i.e., the Bregman divergence coincides with the KL-divergence, and by sim-
ple algebra the equivalence between (2) and (1) can be derived. For a formal proof we refer
to Proposition 1 in Appendix.

Different algorithms for consensus clustering can be derived by adopting different Breg-
man divergences in (2), i.e., by changing the way errors between observed frequencies and
estimated probabilities of co-occurrence are penalized. This is close in spirit to the work
(Banerjee et al. 2005b), where a similar approach has been adopted in the context of par-
titional data clustering. In addition to the formulation corresponding to the KL-divergence,
in this paper, we study also the case where a squared �2 penalization is considered in (3),
i.e., when φ(x) = ‖x‖2 and dφ becomes the squared Euclidean distance. This yields the
following optimization problem:

Y∗ ∈ arg min
Y∈Δn

K

{ ∑

{i,j }∈P

Nij

(
cij

Nij

− y�
i yj

)2}

. (4)

In the next section we will cover the algorithmic aspects of the computation of proba-
bilistic assignments, which represent our solution to the consensus clustering problem.

5 Optimization algorithm

In this section, we describe an efficient optimization procedure which allows to find a lo-
cal solution to (2), which works for any double-convex Bregman divergence. This proce-
dure falls in the class of primal line-search methods because it iteratively finds a feasible

338 Mach Learn (2015) 98:331–357

descent direction, i.e., satisfying the constraints and guaranteeing a local decrease of the
objective.

This section is organized into four parts. The first part is devoted to the problem of finding
a feasible, descent direction, while the second part addresses the problem of searching a bet-
ter solution along that direction. In the third part, we summarize the optimization algorithm
and provide some additional techniques to reduce its computational complexity. Finally, in
the last part we show how our algorithm can be adapted to efficiently cluster large-scale
datasets.

5.1 Computation of a search direction

Given a non-optimal feasible solution Y ∈ Δn
K of (2), we can look for a better solution

along a direction D ∈ R
K×n by finding a value of ε such that f (Zε) < f (Y), where Zε =

Y+εD. The search direction D is said to be feasible and descending at Y if the two following
conditions hold for all sufficiently small positive values of ε: Zε ∈ Δn

K and f (Zε) < f (Y).
Our algorithm considers search directions at Y that are everywhere zero except for two

entries lying on the same column. Specifically, it selects directions belonging to the follow-
ing set:

D(Y) = {(
eu
K − ev

K

)(
ej
n

)� : j ∈ O, u ∈ {1, . . . ,K}, v ∈ σ(yj), u
= v
}
.

Here, the condition imposing v ∈ σ(yj) guarantees that every direction in D(Y) is feasible
at Y (see Proposition 2 in Appendix). Among this set, by taking a greedy decision, we select
the direction leading to the steepest descent, i.e., we look for a solution to the following
optimization problem:

D∗ ∈ arg min
D∈D(Y)

{

lim
ε→0

d

dε
f (Y + εD)

}

. (5)

By exploiting the definition of D(Y) the solution to (5) can be written as D∗ = (eU
K −

eV
K)(eJ

n)�, where the indices U,V and J are determined as follows. Let Uj , Vj be given
by

Uj ∈ arg min
k∈{1...K}

[
gj (Y)

]
k

and Vj ∈ arg max
k∈σ(yj)

[
gj (Y)

]
k
, (6)

for all j ∈ O, where gj (Y) is the partial derivative of f with respect to yj , which is given
by

gj (Y) = ∂

∂yj

f (Y) =
∑

i∈Pj

Njiyi

∂dφ

∂x2

(
cji

Nji

,y�
j yi

)

. (7)

Here Pj = {i ∈ O : {i, j} ∈ P}. Then, by Proposition 3 in Appendix, J can be computed as

J ∈ arg min
j∈O

{[
gj (Y)

]
Uj

− [
gj (Y)

]
Vj

}
, (8)

while U = UJ and V = VJ .
The search direction D∗ at Y obtained from (5) is clearly feasible since it belongs to

D(Y) but it is also always descending, unless Y satisfies the Karush-Kuhn-Tucker (KKT)
conditions, i.e., the first-order necessary conditions for local optimality, for the minimization
problem in (2). This result is formally proven in Proposition 4 in Appendix.

Mach Learn (2015) 98:331–357 339

5.2 Computation of an optimal step size

Once a feasible descending direction D∗ = (eU
K − eV

K)(eJ
n)� is computed from (5), we have

to find an optimal step size ε∗ that allows us to achieve a decrease in the objective value. The
optimal step is given as a solution to the following one dimensional optimization problem,

ε∗ ∈ arg min
0≤ε≤yVJ

f (Zε), (9)

where Zε = Y+εD∗ and the feasible interval for ε follows from the constraint that Zε ∈ Δn
K .

This problem is convex thanks to the assumption of double-convexity imposed on the Breg-
man divergence (see Proposition 5 in Appendix).

Let ρ(ε ′) denote the first order derivative of f with respect to ε evaluated at ε′, i.e.,

ρ
(
ε ′) = lim

ε→ε′
d

dε
f (Zε) = [

gJ (Zε′)
]
U

− [
gJ (Zε′)

]
V
.

By the convexity of (9) and Kachurovskii’s theorem (Kachurovskii 1960) we have that ρ

is non-decreasing in the interval 0 ≤ ε ≤ yVJ . Moreover, ρ(0) < 0 since D∗ is a descending
direction as stated by Proposition 4. Otherwise, we would have that Y satisfies the KKT
conditions for local optimality.

In order to compute the optimal step size ε∗ in (9) we distinguish two cases:

– if ρ(yVJ) ≤ 0 then ε∗ = yVJ for f (Zε) would be non-increasing in the feasible set of (9);
– if ρ(yVJ) > 0 then ε∗ is a zero of ρ that can be found in general using a dichotomic search

which preserves the discording signs of ρ at the endpoints of the search interval.

In the specific, if the second case holds the optimal step size ε∗ can be found by iteratively
updating the search interval as follows:

(
�(0), r(0)

) = (0, yVJ)

(
�(t+1), r(t+1)

) =

⎧
⎪⎪⎨

⎪⎪⎩

(�(t),m(t)) if ρ(m(t)) > 0,

(m(t), r(t)) if ρ(m(t)) < 0

(m(t),m(t)) if ρ(m(t)) = 0,

(10)

for all t > 0, where m(t) denotes the center of segment [�(t), r(t)], i.e., m(t) = (�(t) + r(t))/2.
Since an approximation of ε∗ is sufficient, the dichotomic search is carried out until the in-
terval size is below a given threshold. If δ is this threshold, the number of iterations required
is log2(yVJ/δ) at worst.

In some cases (9) has a closed form solution. This of course depends on the nature of
the Bregman divergence adopted. For instance, if we consider the squared �2 distance as a
divergence (i.e., φ(x) = ‖x‖2), then f (Zε) becomes a quadratic polynomial in the variable
ε which can be trivially minimized in closed-form.

5.3 Algorithm

The proposed consensus clustering method is summarized in Algorithm 1. The input argu-
ments consist of the ensemble of clusterings E , the parameter φ for the Bregman divergence,
and an initial guess Y(0) for the cluster assignments (cluster assignments are uniformly dis-
tributed in the absence of prior knowledge).

340 Mach Learn (2015) 98:331–357

At an abstract level, the algorithm iteratively finds a feasible, descending direction D∗
at the current solution Y(t), computes the optimal step ε∗ and performs an update of the
solution as Y(t+1) = Y(t) + ε∗D∗. This procedure is iterated until a stopping criterion is
met.

In order to obtain a time complexity per-iteration that is linear in the number of vari-
ables, we exploit the extreme sparseness of the search direction D∗ for the update of matrix
Y(t)�Y(t) (denoted by A(t) in the pseudocode) and for the update of the gradient vectors g

(t)
i .

Each iteration, indeed, depends on these two fundamental quantities. In the specific, the
computation of A(t+1) can be obtained in O(n) by simply changing the J th row and the J th
column of A(t) (it follows from the update formula at line 10). By exploiting A(t+1), the gra-
dient vectors can be computed in O(Kn). In fact, we obtain g

(t+1)
i for all i ∈ O \ {J } by per-

forming a constant time operation on each entry of g
(t)
i (lines 12–14) and we compute g

(t+1)
J

(line 15) in O(Kn) as well. Having A(t) and the gradient vectors computed allows us to find
the search direction D∗ at line 8 in O(nK), since it suffices to access each element of the gra-
dient vectors only once to determine J,U and V . Moreover, the computation of the optimal
step size at line 9 can be carried out in O(n log2(1/δ)), if a dichotomic search is employed,
and in constant time in cases where a closed-form solution exists (e.g., if φ(x) = ‖x‖2). Fi-
nally, the update of the solution at line 11 can be carried out in constant time by the sparsity
of D∗. The time complexity of each iteration is thus given by O(nmax(K, log2(1/δ))).

The most costly part of the algorithm is the initialization (2–5) which has O(n2K)

time complexity. Hence, the overall complexity of the algorithm is O(n2K + mn ×
max(K, log2(1/δ))) where m is the number of required iterations, which is difficult to know
in advance. As a rule of thumb, we need m ∈ Ω(nK) iterations to converge, because every
entry of Y should be modified at least once. In that case the complexity is decided by the
iterations only.

Finally, the stopping criterion ideally should test whether D∗ is a descending direction.
Indeed, if this does not hold then we know that Y(t) is satisfying the KKT conditions (it
follows from Proposition 4 in Appendix) and we can stop. In practice, we simply check if
the quantity gJ (Y(t))V − gJ (Y(t))U is below a given threshold τ and we stop if this happens.
Indeed, if that quantity is precisely zero, then Y(t) satisfies the KKT conditions. Additionally,
we put an upper bound to the number of iterations.

5.4 A note on scalability

In applications where the number of data points to cluster is very large, the computation of
the whole co-association matrix becomes impossible. In this cases one resorts to sparsifying
the co-association matrix by keeping a number of entries that scales linearly with the number
of data points.

Our algorithm can be easily adapted to deal with sparse co-association matrices. Assume
that P contains only a sparse set of observable data point pairs. Let � be the expected average
number of entries of Pi , i.e., � = ∑

i∈O |Pi |/n and assume that the input quantities cij ’s and
Nij ’s are given only for the pairs {i, j} ∈ P . Since we need to know the value of y�

i yj again
only for pairs of data points in P , the computation of A(0) is not fully required and only
the entries indexed by P should be computed. This reduces to O(K�n) the complexity of
line 2 of Algorithm 1, where � � n. The same complexity characterizes the initialization
of the gradient at lines 3–5. The subsequent updates of matrix A(t) at line 10 and of the
gradient at lines 12–15 require only O(�) and O(K �) operations, respectively. By adopting
a priority queue (e.g., heap based), the computation of the optimal direction in terms of U ,
V and J at line 8 requires only an overall complexity of O(K log2(n)) per iteration. This

Mach Learn (2015) 98:331–357 341

Algorithm 1 Probabilistic Consensus Clustering (PCC)
Require: E : ensemble of clusterings
Require: φ : Δ2 → R parameter of the Bregman divergence
Require: Y(0) ∈ Δn

K : starting point
1: Compute C and {Nij } from E as described in Sect. 3

2: Initialize A(0) ← Y(0)�Y(0)

3: for all i ∈ O do
4: g

(0)
i ← ∑

j∈Pi
Nij y(0)

j

∂dφ

∂x2
(

cij

Nij
, a

(0)
ij)

5: end for
6: t ← 0
7: repeat
8: Compute D∗ at Y(t) as described in Sect. 5.1
9: Compute ε∗ as described in Sect. 5.2

10: Update A(t+1) = Y(t+1)�Y(t+1) = A(t) + ε∗(D∗�Y(t) + Y(t)�D∗ + ε∗D∗�D∗).
11: Update Y(t+1) = Y(t) + ε∗D∗
12: for all i ∈ O : J ∈ Pi do
13: g

(t+1)
i = g

(t)
i + NiJ [y(t+1)

J

∂dφ

∂x2
(

ciJ

NiJ
, a

(t+1)
iJ) − y(t)

J

∂dφ

∂x2
(

ciJ

NiJ
, a

(t)
iJ)]

14: end for
15: g

(t+1)
J ← ∑

i∈PJ
NJiy

(t+1)
i

∂dφ

∂x2
(

cJ i

NJ i
, a

(t+1)
J i)

16: t ← t + 1
17: until stopping criterion met
18: return Y(t)

can be achieved by initially storing in the priority queue the best values of U and V for all
i ∈ O and by updating the priorities based on the sparse changes in the gradient values. The
optimal step at line 9 can be computed in O(� log2(1/δ)), where δ is the tolerance for the
dichotomic search. Finally, the update of Y remains with a constant complexity. The overall
per-iteration complexity becomes O(max(� log2(1/δ),K log2(n))). As for the number of
iterations the considerations made in Sect. 5.3 still hold.

6 Related work

Several consensus methods have been proposed in the literature (Fred 2001; Strehl and
Ghosh 2003; Fred and Jain 2005; Topchy et al. 2004; Dimitriadou et al. 2002; Ayad and
Kamel 2008; Fern and Brodley 2004). Some of these methods are based on the similarity
between data points, which is induced by the clustering ensemble, others are based on esti-
mates of similarity between partitions and others cast the problem as a categorical clustering
problem. All these methods tend to reveal a more robust and stable clustering solution than
the individual clusterings used as input for the problem. A very recent survey can be found
in Ghosh et al. (2011).

Strehl and Ghosh (2003) formulated the clustering ensemble problem as an optimization
problem based on the maximal average mutual information between the optimal combined
clustering and the clustering ensemble, presenting three algorithms to solve it, exploring
graph theoretical concepts. The first one, entitled Cluster-based Similarity Partitioning Al-
gorithm (CSPA), uses a graph partitioning algorithm, METIS (Karypis and Kumar 1998),
for extracting a consensus partition from the co-association matrix. The second and third
algorithms, Hyper Graph Partitioning Algorithm (HGPA) and Meta CLustering Algorithm

342 Mach Learn (2015) 98:331–357

(MCLA), respectively, are based on hyper-graphs, where vertices correspond to data points,
and the hyper-edges, which allow the connection of several vertices, correspond to clusters
of the Clustering ensemble. HGPA obtains the consensus solution using an hyper-graph par-
titioning algorithm, HMETIS (Karypis et al. 1997); MCLA, uses another heuristic which
allows clustering clusters.

Fern and Brodley (2004) reduce the problem to graph partitioning. The proposed model,
entitled Hybrid Bipartite Graph Formulation (HBGF), uses as vertices both instances and
clusters of the ensemble, retaining all of the information provided by the clustering en-
semble, and allowing to consider the similarity among instances and among clusters. The
partitioning of this bipartite graph is produced using the multi-way spectral graph partition-
ing algorithm proposed by Ng et al. (2001), which optimizes the normalized cut criterion
(Shi and Malik 2000), or, as alternative, the graph partitioning algorithm METIS (Karypis
and Kumar 1998).

These approaches were later extended by Punera and Ghosh (2007, 2008), to allow soft
base clusterings on the clustering ensemble, showing that the addition of information on
the ensemble is useful; the proposed models were the soft version of CSPA, of MCLA,
and HBGF. Additionally they proposed to use information theoretic K-means (Dhillon et al.
2003), an algorithm very similar to K-means, differing only in the distance measure, us-
ing KL-divergence, for clustering in the feature space obtained from concatenating all the
posteriors from the ensemble.

Topchy et al. (2003, 2004, 2005) proposed two different formulations, both derived from
similarities between the partitions in the ensemble, rather than similarities between data
points, differently from the case of co-association based approaches. The first one is a multi-
nomial mixture model (MM) over the labels of the clustering ensemble, thus each partition
is considered as a feature with categorical attributes. The second one is based on the no-
tion of median partition and is entitled Quadratic Mutual Information Algorithm (QMI).
The median partition is defined as the partition that best summarizes the partitions of the
ensemble.

Wang et al. (2009, 2011) extended this idea, introducing a Bayesian version of the multi-
nomial mixture model, the Bayesian cluster ensembles (BCE). Although the posterior dis-
tribution cannot be calculated in closed form, it is approximated using variational inference
and Gibbs sampling, in a very similar procedure as in latent Dirichlet allocation (LDA)
models (Griffiths and Steyvers 2004; Steyvers and Griffiths 2007), but applied to a different
input feature space, the feature space of the labels of the ensembles. In Wang et al. (2010),
a nonparametric version of BCE was proposed.

Ayad and Kamel (2008), followed Dimitriadou et al. (2002), proposed the idea of cumu-
lative voting as a solution for the problem of aligning the cluster labels. Each clustering of
the ensemble is transformed into a probabilistic representation with respect to a common
reference clustering. Three voting schemes are presented: Un-normalized fixed-Reference
Cumulative Voting (URCV), fixed-Reference Cumulative Voting (RCV), and Adaptive Cu-
mulative Voting (ACV).

Lourenço et al. (2011), modelled the problem of consensus extraction taking as input
space pairwise information, and using a generative aspect model for dyadic data. The extrac-
tion of a consensus solutions is found by solving a maximum likelihood estimation problem,
using the Expectation-Maximization (EM) algorithm.

Our framework is also related to Non-negative Matrix Factorization (Paatero and Tapper
1994; Lee and Seung 2000), which is the problem of approximatively factorizing a given
matrix M, with two entrywise non-negative matrices F and G, so that M ≈ F G. Indeed our
formulation can be regarded as a kind of matrix factorization of the co-association matrix in

Mach Learn (2015) 98:331–357 343

terms of matrix Y�Y under the constraint that Y is column stochastic. This particular setting
has been considered, for the �2 norm, in Arora et al. (2011) and in Nepusz et al. (2008).

7 Experimental results

In this section we evaluate our formulation using synthetic datasets and real-world datasets
from the UCI Irvine and UCI KDD Machine Learning Repository. We performed four dif-
ferent series of experiments: (i) we study the convergence properties of our algorithm on
synthetically generated co-association matrices, (ii) we compare the consensus clustering
obtained on different datasets with the known, crisp, ground truth partitions using standard
evaluation criteria and we compare against other consensus clustering approaches, (iii) we
perform an experiment on a large-scale dataset with incomplete partitions in the ensemble,
(iv) we perform a qualitative analysis of a real-world dataset by deriving additional infor-
mation from the probabilistic output of our algorithm.

We evaluate the performance of our Probabilistic Consensus Clustering (PCC) algorithm
with KL-divergence (PCC-KL) and with squared �2 divergence (PCC-�2). From the quan-
titative perspective, we compare the performance of PCC-�2 and PCC-KL against other
state-of-the-art consensus algorithms: the classical EAC algorithm using as extraction crite-
ria the hierarchical agglomerative single-link (EAC-SL) and average-link (EAC-AL) algo-
rithms; Cluster-based Similarity Partitioning Algorithm (CSPA) (Strehl and Ghosh 2003);
Hybrid Bipartite Graph Formulation (HBGF) (Fern and Brodley 2004); Mixture Model
(MM) (Topchy et al. 2004, 2005); Quadratic Mutual Information Algorithm (QMI) (Topchy
et al. 2003, 2005).

In order to evaluate the quality of a consensus clustering result against a hard, ground
truth partition we convert our probabilistic assignments in hard assignments according to a
maximum likelihood criterion. We compare then two hard clusterings P = {P1, . . . , Pk} and
Q = {Q1, . . . , Qk} using the H criterion based on cluster matching (Meila 2003) and the
Adjusted-Rand index (Jain and Dubes 1988), which is based on counting pairs. Note that
we assume without loss of generality that P and Q have the same number of elements, since
we can add empty clusters where needed. The H criterion (Meila 2003) gives the accuracy
of the partitions and is obtained by finding the optimal one-to-one matching between the
clusters in P with the ground truth labels in Q:

H(P, Q) = 1

n
max

v

k∑

j=1

|Pj ∩ Qvj
|, (11)

where the vector v of the maximization runs over all possible permutations of the vector
(1, . . . , k).

When we have a soft, ground truth partition given in terms of a probabilistic assignment
Z ∈ Δn

k , we evaluate the divergence between a soft consensus partition Y ∈ Δn
k and Z in

terms of the Jensen-Shannon (JS) divergence. In more details, let DJS(·‖·) denote the JS-
divergence between two distributions given as points of Δk . Then the divergence between Z
and Y is given by

J (Y,Z) = 1

n
min

P

n∑

i=1

DJS(zi‖Pyi),

where the matrix P in the minimization runs over all possible k × k permutation matrices.
Similarly to the case of hard partitions, we assume without loss of generality that Z and Y

344 Mach Learn (2015) 98:331–357

have the same number of rows, since we can eventually add zero rows to fill the gap. Note
that 0 ≤ J (Y,Z) ≤ 1 holds for any Y,Z ∈ Δn

K .
For the qualitative experiments, we analyse the probabilistic assignments Y in order to

exploit the information about the cluster uncertainty. For this analysis, we remove proba-
bility values, lower than a predefined threshold δ, and then we normalize each column to
sum again to one. We measure the normalized similarity between two clusters i, j as the
expected value of common elements over the expected cardinality of the ith clusters:

mij = EY[|Pi ∩ Qj |]
EY[|Pi |] .

Given a set of data points {xi}n
i=1, we define the centroid of class k according to Y as

μk =
∑

j ykj �xj

EY[|Pk|] .

Given the weighted matrix M = [mij], which is usually sparse, and the centroids, we can
visualize the obtained clusters and their relationships simply by drawing them in the plane
with a weighted graph. The structures found in these graphs, like paths or cliques, highly
depend on the type of data and the geometry of the consensus set, leading to a different and
interesting way of interpreting the consensus results.

7.1 Simulated data

We first study the proposed formulation using a synthetic experiment with soft partitions as
ground truth. A soft partition Y∗ is determined by generating 4 isotropic, bivariate, planar
Gaussian distributions, each consisting of 200 data points, with mean vectors randomly se-
lected in the four orthants, and by computing for each point the normalized probability of
having been generated by one of the 4 Gaussians. Given a soft partition Y∗ we artificially
generated an ensemble by randomly sampling N = 1000 hard partitions with cluster as-
signments determined by Y∗ and we constructed the corresponding co-association matrices.
Figure 1(a) illustrates one example of such a dataset, where there is some overlap between

Fig. 1 Experiment with a 4-component bivariate Gaussian mixture: (a) an example of a dataset and (b) the
corresponding synthetically generated co-association matrix

Mach Learn (2015) 98:331–357 345

Fig. 2 4-component bivariate Gaussian mixture: Y, estimated cluster assignments and Y∗, the ground truth
cluster assignments

the components, and Fig. 1(b) shows the corresponding co-association matrix. We generated
10 different datasets according to the aforementioned procedure.

For each dataset we run our PCC-KL and PCC-�2 algorithms with the purpose of recov-
ering the ground truth soft partition Y∗. Although the optimal number of clusters is K = 4,
we run our algorithms with a larger value of K = 8. This is not a problem as our formulation
can automatically tune itself to select a smaller number of clusters. Indeed, we can see from
Fig. 2(a) the estimated cluster assignments Y corresponding to the dataset in Fig. 1, where
only 4 components have significant probabilities thus confirming our previous claim. We
evaluated the divergence between the ground truth soft partition and the recovered one by
our algorithms on each of the 10 datasets using the J -criterion introduced at the beginning
of Sect. 7. Both our algorithms obtained an average divergence of 0.0012 and a standard
deviation of ±0.00005, which indicate a good recovery of the ground truth probabilistic
cluster assignments.

7.2 UCI and synthetic data

We followed the usual strategy of producing clustering ensembles and combining them using
the co-association matrix. Two different types of ensembles were created: (1) using k-means
with random initialization and random number of clusters (Lourenço et al. 2010), splitting
natural clusters intro micro-blocks; (2) combining multiple algorithms (agglomerative hi-
erarchical algorithms: single, average, ward, centroid link; k-means Jain and Dubes 1988;
spectral clustering Ng et al. 2001) with different number of clusters, inducing block-wise
co-association matrices.

Table 3 summarizes the main characteristics of the UCI and synthetic datasets used in
the evaluation, and the parameters used for generating ensemble (2). Figure 3 illustrates the
synthetic datasets used in the evaluation: (a) rings; (b) image-1.

We summarized the performance of both algorithms after several runs, accounting for
possible different solutions due to initialization, in terms of H and Adjusted Rand criteria,
in Tables 4, 5 and 6, 7, respectively. We present for both validation indices, the average
performance (avg), the standard deviation (std), maximum value (max), and minimum value
(min), highlighting in bold the best results for each data-set.

The performance of PCC-KL and PCC-�2 depends on the type of ensemble. On Ensem-
ble (1), PCC-KL and PCC-�2, have generally lower performance when compared with EAC

346 Mach Learn (2015) 98:331–357

Table 3 Benchmark datasets

Data-Sets K n Ensemble

Ki

(s–1) rings 3 450 2–8

(s–2) image-1 8 1000 8–15, 20, 30

(r–1) iris 3 150 3–10, 15, 20

(r–2) wine 3 178 4–10, 15, 20

(r–3) house-votes 2 232 4–10, 15, 20

(r–4) ionsphere 2 351 4–10, 15, 20

(r–5) std-yeast-cell 5 384 5–10, 15, 20

(r–6) breast-cancer 2 683 3–10, 15, 20

(r–7) optdigits 10 1000 10, 12, 15, 20, 35, 50

Fig. 3 Sketch of the Synthetic Data Sets

and CSPA (both on Adjusted-Rand Index and CI), that seem very suitable for this kind of
ensembles. Nevertheless, on the UCI datasets, both obtain promising results: PCC-�2 is the
best in 1 (over 9) dataset, and PCC-KL the best in 1 (over 9) and is very close to the best
consensus in several situations. On ensemble (2), PCC-KL obtains the best results almost
on all data-sets, 7 (over 9).

Its also very important to notice that the standard deviation of the proposed methods is
very low, being in almost every datasets very close to zero.

Figure 4 shows examples of obtained co-association matrices, where the matrices have
been reordered according to VAT algorithm (Bezdek and Hathaway 2002), to highlight the
clustering structure. Its color scheme ranges from black (cij =0) to white (cij = Nij), corre-
sponding to the magnitude of similarity. As is possible to see, the co-association of ensem-
ble (1), has not a so evident blockwise structure, since it was produced splitting of natural
clusters into smaller clusters inducing micro-blocks in the co-association matrix; on Ensem-
bles (2), the co-association matrices has a much more blockwise form, as it was generated

Mach Learn (2015) 98:331–357 347

Table 4 Results from experiments conducted with an ensemble of type 1 evaluated with criterion H. See
Sect. 7.2 for details

Alg s–1 s–2 r–1 r–2 r–3 r–4 r–5 r–6 r–7

PCC-KL avg 0.53 0.57 0.86 0.96 0.89 0.54 0.92 0.63 0.87

std 0.02 0.03 0.10 0.00 0.01 0.00 0.11 0.00 0.04

max 0.55 0.61 0.91 0.96 0.90 0.54 0.97 0.63 0.90

min 0.51 0.55 0.69 0.96 0.88 0.54 0.73 0.63 0.80

PCC-�2 avg 0.57 0.46 0.71 0.97 0.88 0.54 0.74 0.60 0.87

std 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.03

max 0.57 0.48 0.71 0.97 0.88 0.54 0.74 0.62 0.89

min 0.57 0.43 0.71 0.97 0.88 0.54 0.74 0.57 0.82

QMI avg 0.52 0.39 0.55 0.67 0.77 0.43 0.73 0.64 0.36

std 0.13 0.03 0.10 0.18 0.16 0.11 0.24 0.07 0.10

max 0.75 0.43 0.72 0.96 0.93 0.57 0.97 0.75 0.49

min 0.44 0.36 0.46 0.53 0.53 0.30 0.41 0.57 0.24

MM avg 0.54 0.34 0.61 0.65 0.70 0.38 0.78 0.62 0.57

std 0.02 0.03 0.08 0.13 0.11 0.07 0.18 0.12 0.05

max 0.57 0.39 0.73 0.85 0.85 0.48 0.95 0.75 0.63

min 0.51 0.30 0.52 0.52 0.54 0.32 0.54 0.48 0.49

HBGF avg 0.50 0.37 0.66 0.71 0.58 0.44 0.68 0.65 0.49

std 0.11 0.07 0.12 0.18 0.06 0.07 0.13 0.07 0.05

max 0.64 0.47 0.84 0.96 0.66 0.50 0.86 0.71 0.56

min 0.35 0.29 0.55 0.49 0.53 0.34 0.54 0.53 0.43

EAC SL 1.00 0.67 0.75 0.67 0.67 0.53 0.66 0.67 0.62

AL 1.00 0.59 0.89 0.93 0.87 0.69 0.97 0.54 0.80

WL 0.73 0.47 0.89 0.96 0.85 0.54 0.73 0.61 0.90

CSPA 0.78 0.49 0.97 0.92 0.93 0.52 0.85 0.68 0.87

with a combination of several algorithms with numbers of clusters ranging from small to
large. The results show that blockwise matrices are very adequate for the proposed model,
even in cases where there is much overlap.

7.3 A large-scale experiment

In order to show that our algorithm can be used also on large-scale datasets we propose
here an experiment on a KKD Cup 1999 dataset1. From the available datasets we analysed
a subset of “kddcup.data10percent”, consisting of 120.000 data points characterized by 41
attributes distributed in 3 classes. The preprocessing consisted in standardizing numerical
features, and discretizing categorical features, arriving to a 39-dimensional feature space.
We produced an ensemble consisting of 100 K-means partitions obtained on random sub-
sets of the dataset (sampling rate 50 %) with random initializations and random number

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

348 Mach Learn (2015) 98:331–357

Table 5 Results from experiments conducted with an ensemble of type 2 evaluated with criterion H. See
Sect. 7.2 for details

Alg s–1 s–2 r–1 r–2 r–3 r–4 r–5 r–6 r–7

PCC-KL avg 0.71 0.71 0.97 0.97 0.91 0.69 0.97 0.73 0.61

std 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02

max 0.75 0.73 0.97 0.97 0.91 0.69 0.97 0.73 0.64

min 0.69 0.68 0.97 0.97 0.91 0.69 0.97 0.73 0.58

PCC-�2 avg 0.68 0.63 0.95 0.97 0.91 0.68 0.96 0.73 0.60

std 0.00 0.04 0.02 0.00 0.00 0.00 0.03 0.00 0.01

max 0.68 0.67 0.97 0.97 0.91 0.68 0.97 0.73 0.62

min 0.68 0.57 0.93 0.97 0.91 0.68 0.91 0.72 0.59

QMI avg 0.49 0.30 0.44 0.59 0.75 0.52 0.84 0.69 0.24

std 0.11 0.11 0.11 0.11 0.20 0.12 0.17 0.05 0.15

max 0.62 0.48 0.62 0.65 0.91 0.67 0.97 0.73 0.50

min 0.38 0.23 0.33 0.40 0.53 0.35 0.65 0.64 0.15

MM avg 0.53 0.38 0.61 0.57 0.63 0.48 0.85 0.67 0.51

std 0.06 0.06 0.16 0.07 0.12 0.05 0.09 0.03 0.04

max 0.64 0.46 0.87 0.64 0.80 0.55 0.96 0.70 0.54

min 0.50 0.30 0.46 0.48 0.53 0.43 0.76 0.63 0.44

HBGF avg 0.43 0.27 0.48 0.55 0.62 0.38 0.74 0.62 0.50

std 0.04 0.02 0.07 0.11 0.03 0.05 0.15 0.10 0.06

max 0.46 0.30 0.56 0.70 0.68 0.46 0.88 0.77 0.57

min 0.37 0.25 0.39 0.39 0.58 0.34 0.54 0.54 0.41

EAC SL 0.63 0.71 0.69 0.39 0.52 0.36 0.65 0.64 0.32

AL 0.38 0.71 0.97 0.39 0.91 0.36 0.66 0.65 0.42

WL 0.39 0.59 0.93 0.93 0.88 0.70 0.96 0.65 0.76

CSPA 0.68 0.56 0.96 0.93 0.92 0.53 0.85 0.66 0.78

of clusters (2 ≤ K ≤ 10). Since the ensemble is composed by incomplete partitions, the
consensus clustering phase becomes more challenging.

In order to cope with the large amount of data points, which renders the construction of
the co-association matrix impossible both from a space and computational time perspective,
we run a sparsified version of our algorithm as described in Sect. 5.4. In the specific, we
created P by sampling a share of 0.25 ‰ data points pairs from the available (around 8
billions) ones. Our algorithms (PCC-�2 and PCC-KL) were run with a maximum number
of nK iterations. Our non-parallelized C implementations of PCC-�2 and PCC-KL took on
average 13.8 s and 16.7 s, respectively, to deliver a solution on a dual-core 64-bits Pentium
2.8 GHz with 4 Gb RAM (only one core was effectively used). We were able to compare
our algorithm only against CSPA, which nevertheless obtained competitive results in the
previous set of experiments. All other approaches could not be run due to the large size
of the dataset, or because of their inability of handling incomplete partitions in the ensem-
ble.

Mach Learn (2015) 98:331–357 349

Table 6 Results from experiments conducted with an ensemble of type 1 evaluated with the Adjusted-Rand
index. See Sect. 7.2 for details

Alg s–1 s–2 r–1 r–2 r–3 r–4 r–5 r–6 r–7

PCC-KL avg 0.59 0.86 0.87 0.95 0.81 0.79 0.88 0.53 0.96

std 0.01 0.01 0.05 0.00 0.02 0.00 0.15 0.00 0.01

max 0.60 0.88 0.89 0.95 0.82 0.79 0.94 0.53 0.96

min 0.58 0.85 0.78 0.95 0.79 0.78 0.61 0.53 0.95

PCC-�2 avg 0.60 0.83 0.78 0.96 0.78 0.78 0.61 0.52 0.96

std 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.01

max 0.60 0.84 0.78 0.96 0.78 0.78 0.61 0.53 0.96

min 0.60 0.80 0.78 0.96 0.78 0.78 0.61 0.51 0.95

QMI avg 0.52 0.61 0.65 0.75 0.69 0.61 0.70 0.54 0.68

std 0.12 0.08 0.10 0.11 0.15 0.22 0.22 0.05 0.13

max 0.66 0.68 0.78 0.95 0.86 0.75 0.94 0.63 0.84

min 0.41 0.48 0.56 0.68 0.50 0.23 0.51 0.51 0.55

MM avg 0.57 0.74 0.65 0.70 0.60 0.65 0.71 0.55 0.89

std 0.05 0.01 0.07 0.10 0.09 0.08 0.18 0.06 0.01

max 0.60 0.75 0.71 0.83 0.75 0.75 0.91 0.62 0.90

min 0.49 0.72 0.55 0.54 0.50 0.53 0.50 0.50 0.88

HBGF avg 0.57 0.75 0.71 0.76 0.52 0.71 0.60 0.55 0.87

std 0.04 0.04 0.08 0.11 0.02 0.01 0.11 0.03 0.03

max 0.63 0.78 0.83 0.95 0.55 0.72 0.75 0.59 0.90

min 0.52 0.69 0.61 0.67 0.50 0.70 0.50 0.50 0.83

EAC SL 1.00 0.86 0.79 0.73 0.55 0.70 0.55 0.55 0.89

AL 1.00 0.86 0.88 0.90 0.77 0.81 0.94 0.50 0.95

WL 0.66 0.84 0.88 0.95 0.75 0.79 0.61 0.52 0.96

CSPA 0.78 0.83 0.97 0.90 0.86 0.78 0.75 0.56 0.96

We report in Fig. 5 the results obtained in terms of accuracy (H-criterion) by the algo-
rithms at varying values of the parameter K . At the optimal number of clusters, K = 3, all
approaches achieve their best score, but our approach outperforms CSPA both when the KL-
divergence and the squared �2-divergence are used, the former being slightly better than the
latter. Moreover, it turns out that our approach can automatically tune the optimal number of
clusters thus being more robust to overestimations of the parameter K . Indeed, we remark
that the parameter K for our approach is intended as a maximum number of clusters rather
than the desired number of clusters that the algorithm must deliver. The partitions in the en-
semble achieved on average an accuracy of 79 %. Clearly, due to the presence of incomplete
partitions, this score has been computed by considering the data points that have effectively
been used in each partition.

Our consensus solution provides a considerable improvement of this score, confirming
the effectiveness of our algorithm also in the presence of incomplete partitions in the ensem-
ble.

350 Mach Learn (2015) 98:331–357

Table 7 Results from experiments conducted with an ensemble of type 2 evaluated with the Adjusted-Rand
index. See Sect. 7.2 for details

Alg s–1 s–2 r–1 r–2 r–3 r–4 r–5 r–6 r–7

PCC-KL avg 0.72 0.89 0.97 0.96 0.83 0.81 0.94 0.60 0.85

std 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

max 0.77 0.89 0.97 0.96 0.83 0.81 0.94 0.60 0.87

min 0.70 0.88 0.97 0.96 0.83 0.81 0.94 0.60 0.83

PCC-�2 avg 0.69 0.88 0.94 0.96 0.83 0.81 0.92 0.60 0.83

std 0.00 0.01 0.03 0.00 0.00 0.00 0.05 0.00 0.01

max 0.69 0.88 0.97 0.96 0.83 0.81 0.94 0.60 0.84

min 0.69 0.87 0.92 0.96 0.83 0.81 0.84 0.60 0.82

QMI avg 0.56 0.30 0.42 0.63 0.69 0.62 0.78 0.58 0.41

std 0.06 0.22 0.09 0.16 0.17 0.23 0.21 0.03 0.30

max 0.61 0.68 0.56 0.74 0.83 0.80 0.93 0.60 0.84

min 0.49 0.17 0.33 0.34 0.50 0.23 0.54 0.54 0.19

MM avg 0.58 0.76 0.65 0.63 0.55 0.71 0.75 0.56 0.86

std 0.05 0.03 0.11 0.09 0.08 0.03 0.12 0.02 0.02

max 0.63 0.81 0.84 0.72 0.68 0.75 0.92 0.58 0.88

min 0.50 0.73 0.58 0.54 0.50 0.67 0.63 0.53 0.83

HBGF avg 0.55 0.72 0.60 0.64 0.53 0.67 0.65 0.54 0.87

std 0.02 0.01 0.05 0.05 0.02 0.03 0.13 0.06 0.01

max 0.57 0.74 0.66 0.71 0.56 0.71 0.79 0.64 0.88

min 0.52 0.70 0.52 0.58 0.51 0.63 0.50 0.50 0.85

EAC SL 0.61 0.89 0.78 0.36 0.50 0.25 0.55 0.54 0.46

AL 0.53 0.89 0.96 0.36 0.84 0.28 0.55 0.54 0.60

WL 0.54 0.88 0.92 0.92 0.79 0.81 0.93 0.54 0.93

CSPA 0.72 0.84 0.95 0.91 0.86 0.78 0.74 0.55 0.94

In Fig. 6 we report the results in terms of accuracy, when varying the percentage of
observed entries in the co-association matrix. The trend on the performance is constant with
percentages larger than 0.08 ‰. By further reducing the number of observed entries, we
experience a performance drop as one would expect.

7.4 Visualizing probabilistic relations

It was observed in Färber et al. (2010), Cui et al. (2010) that we can discover new struc-
tures in data using previous known information. A case study we consider here is that of the
PenDigits (Frank and Asuncion 2012). The PenDigits dataset contains handwritten digits
produced by different persons. Each digit is stored as a sequence of 8 (x, y) positions, col-
lected at different time intervals during the execution of each single digit. A manual analysis
of Cui et al. (2010) highlights that the same digit can be written in different ways, but this
information is not contained in the ground truth which just collects each type of digit in the
same class. These observations become apparent if we build a consensus matrix for each

Mach Learn (2015) 98:331–357 351

Fig. 4 Example of co-association matrices obtained with ensemble (1) and (2)—reordered using VAT
(Bezdek and Hathaway 2002)

Fig. 5 Results obtained on a
large-scale dataset. We report the
accuracy obtained by the
proposed algorithms (PCC-�2
and PCC-KL) and by a
competing algorithm (CSPA) at
varying values of the
parameter K , the optimal one
being K = 3

Fig. 6 Results obtained on a
large-scale dataset. We report the
accuracy obtained by the
proposed algorithms (PCC-�2
and PCC-KL) varying the
percentage of observed entries

352 Mach Learn (2015) 98:331–357

Fig. 7 On the left, a co-association matrix is built on a subsample of the digit ‘2’ for the PenDigit dataset.
Five blocks are present but they are not all clearly separated. On the right, resulting matrix Y obtained by
running PCC-KL on the co-association matrix. The overlap of the second and third blocks is captured by the
uncertainties in the second and third lines

Fig. 8 Graph of the directed,
weighted, relations among the
centroids found in class ‘2’ of the
PenDigit dataset. The first class is
the upper image, other classes are
ordered clockwise. Each centroid
is made of 8 ordered points. The
five centroids correspond to the
five blocks of Fig. 7(a) and the
five rows of Fig. 7(b). Each edge
i ∼ j is weighted with mij (see
introduction of Sect. 7). A strong
dependence, 0.48, is present in
the third class with the second
and the first ones. This reflects
the visual similarity of the
respective centroids

digit taken in isolation and then visualize the obtained classes. Each digit has different ways
to be written, but some of them are not completely different, so when building the consen-
sus matrix we can see that these classes overlap. As an example we consider the digit ‘2’.
In Fig. 7(a) we can see that the co-association matrix contains 5 blocks, two of which, the
second and the third, are highly overlapped. The resulting matrix Y Fig. 7(b) reflects the
overlap by assigning uncertainty to the two overlapping classes. The uncertainty is not sym-
metric, but the third class seems actually a subclass of the second. In Fig. 8 we can see
the five centroids of the classes and their pairwise similarities. The centroids are ordered so
that the upper image is the first class centroid and the others are in clockwise order. Each
centroid visualizes eight points and the order in which they appear. The visualization of the
centroids gives an explanation of the similarities/diversities that are numerically encoded on

Mach Learn (2015) 98:331–357 353

the edges, and in particular it is clear the dependence of class three with respect to class one
and two.

8 Conclusions

In this paper, we introduced a new probabilistic consensus clustering formulation based on
the EAC paradigm. Each entry of the co-association matrix, derived from the ensemble, is
regarded as a Binomial random variable, parametrized by the unknown class assignments.
We showed that the log-likelihood function corresponding to this model coincides with the
KL divergence between the co-association relative frequencies and the co-occurrence prob-
abilities parametrized by the Binomial random variables. This formulation can be seen as
a special case of a more general setting, replacing the KL divergence with any Bregman
divergence. We proposed an algorithm to find a consensus clustering solution according to
our model, which works with any double-convex Bregman divergence. We also showed how
the algorithm can be adapted to deal with large-scale datasets. Experiments on synthetic and
real world datasets have demonstrated the effectiveness of our approach with ensembles
composed by heterogeneous partitions obtained from multiple algorithms (agglomerative
hierarchical algorithms, k-means, spectral clustering) with varying number of clusters. Ad-
ditionally, we have shown that our algorithm is able to deal with large-scale datasets and
can successfully be applied also in case of ensembles having incomplete partitions. On dif-
ferent datasets and ensembles, we outperformed the competing state-of-the-art algorithms
and showed particularly outstanding results on the large-scale experiment. The qualitative
analysis of the probabilistic consensus solutions provided some evidences that the proposed
formulation can discover new structures in data. For the PenDigits dataset, we showed visual
relationships between overlapping clusters representing the same digit, using the centroids
of each cluster and similarities between clusters obtained from the probabilities of the con-
sensus solution.

Acknowledgements This work was partially financed by an ERCIM “Alain Bensoussan” Fellowship
Programme under the European Union Seventh Framework Programme (FP7/2007-2013), grant agree-
ment n. 246016, by Fundação para a Ciência e Tecnologia, under grants PTDC/EIACCO/103230/2008,
SFRH/PROTEC/ 49512/2009 and PEst-OE/EEI/LA0008/2011, and by the Área Departamental de Engen-
haria Electronica e Telecomunicações e de Computadores of Instituto Superior de Engenharia de Lisboa,
whose support the authors gratefully acknowledge.

Appendix: Proof of results

Proposition 1 Let φ(x) = −H(x). Maximizers of (1) are minimizers of (2) and vice versa.

Proof We have that for all i, j ∈ O, i
= j ,

cij log
(
y�

i yj

) + (Nij − cij) log
(
1 − y�

i yj

)

= −Nij

[
cij

Nij

log

(cij

Nij

y�
i yj

)

+
(

1 − cij

Nij

)

log

(1 − cij

Nij

1 − y�
i yj

)]

+ Nij

[
cij

Nij

log

(
cij

Nij

)

+
(

1 − cij

Nij

)

log

(

1 − cij

Nij

)]

= −NijDKL

(

ψ

(
cij

Nij

)∥
∥
∥
∥ψ

(
y�

i yj

)
)

− NijH

(

ψ

(
cij

Nij

))

354 Mach Learn (2015) 98:331–357

= −NijBφ

(

ψ

(
cij

Nij

)∥
∥
∥
∥ψ

(
y�

i yj

)
)

− NijH

(

ψ

(
cij

Nij

))

= −Nijdφ

(
cij

Nij

,y�
i yj

)

− NijH

(

ψ

(
cij

Nij

))

where ψ(x) = (x,1 − x)�.
The result follows from

arg max
Y∈Δn

K

f (Y) = arg maxY∈Δn
K

{
∑

{i,j }∈P −Nijdφ

(
cij

Nij
,y�

i yj

)

− NijH

(

ψ

(
cij

Nij

))}

= arg minY∈Δn
K

{
∑

{i,j }∈P Nijdφ

(
cij

Nij
,y�

i yj

)}

. �

Proposition 2 Any search direction D ∈ D(Y) is feasible for (2).

Proof Let D = (eu
K − ev

K)(ej
n)

� ∈ D(Y) and Zε = Y + εD. For any ε,

Z�
ε eK = (Y + ε D)�eK = Y�eK + ε D�eK = en + ε ej

n

(
eu
K − ev

K

)�
eK = en.

As ε increases, only the (v, j)th entry of Zε , which is given by yvj −ε, decreases. This entry
is non-negative for all values of ε satisfying ε ≤ yvj . Hence, Zε ∈ Δn

K for all sufficiently
small positive values of ε. �

Proposition 3 A solution to (5) is

D∗ = (
eU
K − eV

K

)(
eJ
n

)�
,

where J is given as (8), U = UJ and V = VJ (Ui and Vi defined as (6)).

Proof Let I(Y) be a set of triplets of indices given by

I(Y) = {
(j, u, v) : j ∈ O, u ∈ {1, . . . ,K}, v ∈ σ(yj), u
= v

}
.

Optimization problem (5) can be rewritten as follows by exploiting the definition of D(Y):

(J,U,V) ∈ arg min
(j,u,v)∈I(Y)

{(
eu
K − ev

K

)�
gj (Y)

}

and D∗ = (eU
K − eV

K)(eJ
n)�. Here, J can be further characterized as the solution to

J ∈ arg min
j∈O

{(
min

u∈{1,....,K}
[
gj (Y)

]
u

)
−

(
max

v∈σ(yj)

[
gj (Y)

]
v

)}
.

The result follows by exploiting the definition of Ui and Vi in (6). �

Proposition 4 If Y ∈ Δn
K does not satisfy the KKT first-order necessary conditions for (2)

then the search direction D∗ at Y, which is solution to (5), is descending.

Mach Learn (2015) 98:331–357 355

Proof To prove the result we have to show that f (Y+εD∗) < f (Y) holds for all sufficiently
small values of ε. This is equivalent to proving that

lim
ε→0

f
(
Y + εD∗) = [

gJ (Y)
]
U

− [
gJ (Y)

]
V

< 0.

The KKT necessary conditions for local optimality for (2) are the following:

⎧
⎪⎪⎨

⎪⎪⎩

gi(Y) − λien − μi = 0, ∀i ∈ O

Y�eK − en = 0

Tr
(
M�Y

) = 0,

(12)

where M = (μ1, . . . ,μn) ∈ R
K×n
+ and λ ∈ R

n are the Lagrangian multipliers. We can express
the Lagrange multipliers λ in terms of Y from the relation

y�
i

[
gi(Y) − λien − μi

] = 0,

which yields λi = y�
i gi(Y) for all i ∈ O. This can then be used to obtain an alterna-

tive characterization of the KKT conditions, where the Lagrange multipliers do not ap-
pear:

⎧
⎪⎪⎨

⎪⎪⎩

[
ri(Y)

]
k
= 0, ∀i ∈ O,∀k ∈ σ(yi),

[
ri(Y)

]
k
≥ 0, ∀i ∈ O,∀k /∈ σ(yi),

Y�eK − en = 0,

(13)

where

ri(Y) = gi(Y) − λieK = gi(Y) − y�
i gi(Y)eK.

The two characterizations (13) and (12) are equivalent. This can be verified by ex-
ploiting the non negativity of both matrices M and Y, and the complementary slack-
ness conditions. Additionally we have that [rj (Y)]Uj

≤ 0 ≤ [rj (Y)]Vj
for all j ∈ O. In

fact,

[
gj (Y)

]
Uj

≤ y�
j gj (Y) =

∑

k∈σ(yj)

ykj

[
gj (Y)

]
k
≤

∑

k∈σ(yj)

ykj

[
gj (Y)

]
Vj

= [
gj (Y)

]
Vj

and by subtracting y�
j gj (Y) we obtain the desired relation

[
rj (Y)

]
Uj

≤ 0 ≤ [
rj (Y)

]
Vj

. (14)

Now, by assuming Y to be feasible but not satisfying the KKT conditions, we derive
from (13) that there exists j ∈ O such that at least one of the two cases hold: [rj (Y)]u < 0
for some u ∈ {1, . . . ,K}, or [rj (Y)]v > 0 for some v ∈ σ(yj). This, by definition of Uj ,Vj

and by (14), implies that [rj (Y)]Uj
< 0 ≤ [rj (Y)]Vj

or [rj (Y)]Uj
≤ 0 < [rj (Y)]Vj

. Hence,
by definition of J ,

[
gJ (Y)

]
U

− [
gJ (Y)

]
V

≤ [
gj (Y)

]
Uj

− [
gj (Y)

]
Vj

= [
rj (Y)

]
Uj

− [
rj (Y)

]
Vj

< 0

from which the result follows. �

356 Mach Learn (2015) 98:331–357

Proposition 5 The optimization problem in (9) is convex, provided that the Bregman diver-
gence is double-convex.

Proof The search direction D∗, solution to (5), is everywhere null excepting two entries of
the J th column. This and the fact that the sum in (3) is taken over all pairs (i, j) such that
i
= j implies that the second argument of every Bφ(·‖·) function is linear in ε. The Bregman
divergence Bφ(·‖·) adopted is by assumption double-convex and in particular convex in
its second argument and trivially the same holds for the function dφ . Since convexity is
preserved by the composition of convex functions with linear ones and by the sum of convex
functions (Boyd and Vandenberghe 2004) it follows that the minimization problem in (2) is
convex as well. �

References

Arora, R., Gupta, M., Kapila, A., & Fazel, M. (2011). Clustering by left-stochastic matrix factorization. In
L. Getoor & T. Scheffer (Eds.), ICML (pp. 761–768). Omnipress.

Ayad, H., & Kamel, M. S. (2008). Cumulative voting consensus method for partitions with variable number
of clusters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(1), 160–173.

Banerjee, A., Krumpelman, C., Basu, S., Mooney, R. J., & Ghosh, J. (2005a). Model-based overlapping
clustering. In Int. conf. on knowledge discovery and data mining (pp. 532–537).

Banerjee, A., Merugu, S., Dhillon, I., & Ghosh, J. (2005b). Clustering with Bregman divergences. Journal of
Machine Learning Research, 6, 1705–1749.

Bezdek, J. (1981). Pattern recognition with fuzzy objective function algorithms. Norwell: Kluwer Academic.
Bezdek, J., & Hathaway, R. (2002). VAT: a tool for visual assessment of (cluster) tendency. In Proceedings of

the 2002 international joint conference on neural networks 2002, IJCNN’02 (Vol. 3, pp. 2225–2230).
Boyd, S., & Vandenberghe, L. (2004). Convex optimization (1st ed.). Cambridge: Cambridge University

Press.
Cui, Y., Fern, X. Z., & Dy, J. G. (2010). Learning multiple nonredundant clusterings. In Transactions on

Knowledge Discovery from Data (TKDD) (Vol. 4, pp. 1–32).
Dhillon, I. S., Mallela, S., & Kumar, R. (2003). A divisive information-theoretic feature clustering algorithm

for text classification. Journal of Machine Learning Research, 3, 1265–1287.
Dimitriadou, E., Weingessel, A., & Hornik, K. (2002). A combination scheme for fuzzy clustering. In

AFSS’02 (pp. 332–338).
Färber, I., Günnemann, S., Kriegel, H., Kröger, P., Müller, E., Schubert, E., Seidl, T., & Zimek, A. (2010). On

using class-labels in evaluation of clusterings. In MultiClust: 1st international workshop on discovering,
summarizing and using multiple clusterings.

Fern, X. Z., & Brodley, C. E. (2004). Solving cluster ensemble problems by bipartite graph partitioning. In
Proc. ICML ’04.

Frank, A., & Asuncion, A. (2012). In UCI machine learning repository. http://archive.ics.uci.edu/ml.
Fred, A. (2001). Finding consistent clusters in data partitions. In J. Kittler & F. Roli (Eds.), Multiple classifier

systems (Vol. 2096, pp. 309–318). Berlin: Springer.
Fred, A., & Jain, A. (2002). Data clustering using evidence accumulation. In Proc. of the 16th int’l conference

on pattern recognition (pp. 276–280).
Fred, A., & Jain, A. (2005). Combining multiple clustering using evidence accumulation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 27(6), 835–850.
Fred, A., & Jain, A. (2006). Learning pairwise similarity for data clustering. In Proc. of the 18th int’l confer-

ence on pattern recognition (ICPR), Hong Kong (Vol. 1, pp. 925–928).
Ghosh, J., & Acharya, A. (2011). Cluster ensembles Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 1(4), 305–315.
Karypis, G., Aggarwal, R., Kumar, V., & Shekhar, S. (1997). Multilevel hypergraph partitioning: applications

in VLSI domain. In Proc. design automation conf.
Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of

Sciences of the United States of America, 101(Suppl 1), 5228–5235.
Heller, K., & Ghahramani, Z. (2007). A nonparametric Bayesian approach to modeling overlapping clusters.

In Int. conf. AI and statistics.
Jain, A. K., & Dubes, R. (1988). Algorithms for clustering data. New York: Prentice Hall.

http://archive.ics.uci.edu/ml

Mach Learn (2015) 98:331–357 357

Jardine, N., & Sibson, R. (1968). The construction of hierarchic and non-hierarchic classifications. Computer
Journal, 11, 177–184.

Kachurovskii, I. R. (1960). On monotone operators and convex functionals. Uspehi Matematičeskih Nauk,
15(4), 213–215.

Karypis, G., & Kumar, V. (1998). Multilevel algorithms for multi-constraint graph partitioning. In Proceed-
ings of the 10th supercomputing conference.

Lee, D. D., & Seung, H. S. (2000). Algorithms for non-negative matrix factorization. In T. K. Leen,
T. G. Dietterich, & V. Tresp (Eds.), NIPS (pp. 556–562). Cambridge: MIT Press.

Lourenço, A., Fred, A., & Figueiredo, M. (2011). A generative dyadic aspect model for Evidence Accumula-
tion Clustering. In Proc. 1st int. conf. similarity-based pattern recognition, SIMBAD’11 (pp. 104–116).
Berlin/Heidelberg: Springer.

Lourenço, A., Fred, A., & Jain, A. K. (2010). On the scalability of evidence accumulation clustering. In Proc.
20th international conference on pattern recognition (ICPR), Istanbul, Turkey.

Mei, J. P., & Chen, L. (2010). Fuzzy clustering with weighted medoids for relational data. Pattern Recogni-
tion, 43(5), 1964–1974.

Meila, M. (2003). Comparing clusterings by the variation of information. In Springer (Ed.), Proc. of the
sixteenth annual conf. of computational learning theory, COLT.

Nepusz, T., Petróczi, A., Négyessy, L., & Bazsó, F. (2008). Fuzzy communities and the concept of bridgeness
in complex networks. Physical Review A, 77, 016107.

Ng, A. Y., Jordan, M. I., & Weiss, Y. (2001). On spectral clustering: analysis and an algorithm. In NIPS
(pp. 849–856). Cambridge: MIT Press.

Paatero, P., & Tapper, U. (1994). Positive matrix factorization: a non-negative factor model with optimal
utilization of error estimates of data values. Environmetrics, 5(2), 111–126.

Punera, K., & Ghosh, J. (2007). Soft consensus clustering. In Advances in fuzzy clustering and its applica-
tions. New York: Wiley.

Punera, K., & Ghosh, J. (2008). Consensus-based ensembles of soft clusterings. Applied Artificial Intelli-
gence, 22(7&8), 780–810.

Rota Bulò, S., Lourenço, A., Fred, A., & Pelillo, M. (2010). Pairwise probabilistic clustering using evi-
dence accumulation. In Proc. 2010 int. conf. on structural, syntactic, and statistical pattern recognition,
SSPR&SPR’10 (pp. 395–404).

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 22(8), 888–905.

Steyvers, M., & Griffiths, T. (2007). Latent semantic analysis: a road to meaning. In Probabilistic topic
models. Laurence Erlbaum.

Strehl, A., & Ghosh, J. (2003). Cluster ensembles—a knowledge reuse framework for combining multiple
partitions. Journal of Machine Learning Research, 3, 583–617.

Topchy, A., Jain, A., & Punch, W. (2003). Combining multiple weak clusterings. In IEEE intl. conf on data
mining, Melbourne (pp. 331–338).

Topchy, A., Jain, A., & Punch, W. (2004). A mixture model of clustering ensembles. In Proc. of the SIAM
conf. on data mining.

Topchy, A., Jain, A. K., & Punch, W. (2005). Clustering ensembles: models of consensus and weak partitions.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12), 1866–1881.

Wang, H., Shan, H., & Banerjee, A. (2009). Bayesian cluster ensembles. In 9th SIAM int. conf. on data
mining.

Wang, H., Shan, H., & Banerjee, A. (2011). Bayesian cluster ensembles. Statistical Analysis and Data Mining,
4(1), 54–70.

Wang, P., Domeniconi, C., & Laskey, K. B. (2010). Nonparametric Bayesian clustering ensembles. In ECML
PKDD’10 (pp. 435–450).

	Probabilistic consensus clustering using evidence accumulation
	Abstract
	Introduction
	Notation and definitions
	A probabilistic model for consensus clustering
	A class of alternative formulations
	Optimization algorithm
	Computation of a search direction
	Computation of an optimal step size
	Algorithm
	A note on scalability

	Related work
	Experimental results
	Simulated data
	UCI and synthetic data
	A large-scale experiment
	Visualizing probabilistic relations

	Conclusions
	Acknowledgements
	Appendix: Proof of results
	References

