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Abstract The paper describes key insights in order to grasp the nature of K-partite rank-
ing. From the theoretical side, the various characterizations of optimal elements are fully
described, as well as the likelihood ratio monotonicity condition on the underlying distribu-
tion which guarantees that such elements do exist. Then, a pairwise aggregation procedure
based on Kendall tau is introduced to relate learning rules dedicated to bipartite ranking and
solutions of the K-partite ranking problem. Criteria reflecting ranking performance under
these conditions such as the ROC surface and its natural summary, the volume under the
ROC surface (VUS), are then considered as targets for empirical optimization. The con-
sistency of pairwise aggregation strategies are studied under these criteria and shown to be
efficient under reasonable assumptions. Eventually, numerical results illustrate the relevance
of the methodology proposed.

Keywords K-partite ranking · Ordinal data · ROC surface · Volume under the ROC
surface · Empirical risk minimization · Median ranking

1 Introduction

In many situations, a natural ordering can be considered over a set of observations. When
observations are documents in information retrieval applications, the ordering reflects de-
gree of relevance for a specific query. In order to predict future ordering on new data,
the learning process uses past data for which some relevance feedback is some provided,
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such as ratings, say from 0 to 4, from the poorly relevant to the extremely relevant.
For an example of such data, we refer to the LETOR benchmark data repository, see
http://research.microsoft.com/en-us/um/people/letor/. A similar situation occurs in medical
applications where decision-making support tools provide a scoring of the population of
patients based on diagnostic test statistics in order to rank the individuals according to the
advance state of a disease which are described as discrete grades, see Pepe (2003), Dreiseitl
et al. (2000), Edwards et al. (2005), Mossman (1999) or Nakas and Yiannoutsos (2004) for
instance.

A particular case which has received increasing attention both in machine learning the
statistics literature is when only binary feedback is available (relevant vs. not relevant, ill
vs. healthy) and this is known as the bipartite ranking problem (see Clémençon and Vayatis
2009b, 2010; Freund et al. 2003; Agarwal et al. 2005; Clémençon et al. 2008, etc.). In the
presence of ordinal feedback (i.e. ordinal label taking a finite number of values, K ≥ 3 say),
the task consists in learning how to order temporarily unlabeled observations so as to re-
produce as accurately as possible the ordering induced by the labels not observed yet. This
problem is referred to as K-partite ranking and various approaches have been proposed in
order to develop efficient algorithms in that case (see Rudin et al. 2005; Pahikkala et al.
2007). A closely related approach which points at both parametric and nonparametric statis-
tical estimation is represented by ordinal regression modeling (see Waegeman et al. 2008b;
Herbrich et al. 2000). To compare and assess the quality of these methods, a first concern
is how to extend the typical performance measures such as the ROC curve and the AUC in
this setup and this issue has been tackled in Scurfield (1996), Flach (2004). However, many
interesting issues are still unexplored such as the theoretical optimality of learning rules, the
statistical consistency of empirical performance maximization procedures, error bounds for
K-partite ranking algorithms, . . . .

In the present paper, we tackle some of these open problems. In particular, we explore
the connection between bipartite and K-partite ranking. Indeed, a natural approach is to
transfer virtuous bipartite ranking methods to derive optimal and consistent rules for K-
partite ranking. This idea is quite successful in the multiclass classification setup (see Hastie
and Tibshirani 1998 or Fürnkranz 2002 for instance). We propose to build on the original
proposition in Fürnkranz et al. (2009) to combine of bipartite ranking tasks in order to solve
the K-partite case. A first intuition suggests that rules which are optimal for all bipartite
ranking subproblems simultaneously should be optimal for the global problem. We offer
examples in which this is not always the case and we state sufficient conditions for opti-
mality which are called monotonicity likelihood ratio conditions. Based on this finding, we
examine strategies which allow to combine rules dedicated for the pairwise subproblems for
consecutive labels in order to derive interesting rules for the initial problem. We describe an
efficient procedure for the pairwise aggregation of scoring rules which establishes a ranking
consensus, called a median scoring rule, through an extension of the Kendall tau metric. It
is also shown that such a median scoring rule always exists in the important situation where
the scoring functions one seeks to summarize/aggregate are piecewise constant, and compu-
tation of this median rule is feasible. Next, we consider concepts such as the ROC surface
and the Volume Under the ROC Surface (or VUS) which can be used to assess performance
for scoring rules in K-partite ranking. Consistency can then be considered as convergence to
optimal elements in terms of ROC surface or VUS. We then study conditions under which
consistency of pairwise aggregation can be achieved. Indeed, it can be shown that under
the monotone likelihood ratio condition together with a margin condition over the posterior
distributions, the median scoring rule built out of pairwise AUC-consistent rules is VUS-
consistent. We also consider specific strategies to derive scoring rules for this problem such

http://research.microsoft.com/en-us/um/people/letor/
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as the empirical maximization of the VUS or the plug-in scoring rule. We also provide an
analysis of the empirical performance of the Kendall-type pairwise aggregation method us-
ing the TREERANK algorithm developed by the authors (Clémençon and Vayatis 2009b).
An extensive comparison with state-of-the-art ranking methods is presented both on artifi-
cial and real data sets and we exhibit performance in terms of VUS, as well as the form of
the level sets of the estimated scoring rules. The latter visualization show interesting insights
about the geometry of risk segments in the input space.

The rest of the paper is structured as follows. In Sect. 2, the probabilistic setting is in-
troduced and optimal scoring rules for K-partite ranking are successively defined and char-
acterized. A specific monotonicity likelihood ratio condition is stated, which is shown to
guarantee the existence of a natural optimal ordering over the input space. A novel Kendall-
type aggregation procedure is presented in Sect. 3 and performance metrics, such as the
VUS, are the subject matter of Sect. 4. Consistency results and insights on the passage from
bipartite subproblems to the full K-partite case are discussed in Sect. 5. Finally, Sect. 6 dis-
plays a series of numerical results and illustrations for the aggregation principle considered
in this paper. Mathematical proofs are postponed to the Appendix A.

2 Optimal elements in ranking data with ordinal labels

2.1 Probabilistic setup and notations

We consider a black-box system with random input/output pair (X,Y ). We assume that the
input random vector X takes values over R

d and the output Y over the ordered discrete set
Y = {1, . . . ,K}. Here it is assumed that the ordered values of the output Y can be reflected
by an ordering over R

d . The case where K = 2 is known as the bipartite ranking setup. In
this paper, we focus on the case where K > 2. Though the objective pursued here is different,
the probabilistic setup is exactly the same as that of ordinal regression, see Sect. 5.4 for a
discussion of the connections between these two problems. We denote by fk the density
function of the class-conditional distributions of X given Y = k and by Xk ⊆ R

d the support
of fk . We also set pk = P{Y = k}, k ∈ {1, . . . ,K}, the mixture parameter for class Y = k,
and ηk(x) = P{Y = k | X = x} the posterior probability. Set f = p1f1 + · · · + pKfK and
recall that:

∀k ∈ {1, . . . ,K}, ∀x ∈
K⋃

l=1

Xl , ηk(x) = pk · fk

f
(x).

The regression function η(x) = E[Y | X = x] can be expressed in the following way:

∀x ∈
K⋃

l=1

Xl , η(x) =
K∑

k=1

k · ηk(x),

as the expectation of a discrete random variable. We shall make use of the following notation
for the likelihood ratio of the class-conditional distribution:

∀k, l ∈ {1, . . . ,K}, l < k, ∀x ∈ Xl , Φk,l(x) = fk

fl

(x) = pk

pl

· ηk

ηl

(x).

Along the paper, we shall use the convention that u/0 = ∞ for any u ∈]0,∞[ and 0/0 = 0.
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2.2 Optimal scoring rules

The problem considered in this paper is to infer an order relationship over R
d after observing

vector data with ordinal labels. For this purpose, we consider real-valued decision rules of
the form s : R

d → R called scoring rules. In the case of ordinal labels, the main idea is
that good scoring rules s are those which assign a high score s(X) to the observations X

with large values of the label Y . We now introduce the concept of optimal scoring rule for
ranking data with ordinal labels.

Definition 1 (OPTIMAL SCORING RULE) An optimal scoring rule s∗ is a real-valued func-
tion such that:

∀k, l ∈ {1, . . . ,K}, l < k, ∀x, x ′ ∈ Xl , Φk,l(x) < Φk,l

(
x ′) ⇒ s∗(x) < s∗(x ′).

The rationale behind this definition can be understood by considering the case K = 2.
The class Y = 2 should receive higher scores than the class Y = 1. In this case, an optimal
scoring rule s∗ should score observations x in the same order as the posterior probability η2

of the class Y = 2 (or equivalently as the ratio η2/(1 − η2)). Since η1(x)+ η2(x) = 1, for all
x, it is easy to see that this is equivalent to the condition described in the previous definition
(see Clémençon and Vayatis 2009b for details). In the general case (K > 2), optimality of a
scoring rule s∗ means that s∗ is optimal for all bipartite subproblems with classes Y = k and
Y = l, with l < k.

An important remark is that, in the probabilistic setup introduced above, an optimal scor-
ing rule may not exist as shown in the next example.

Example 1 Consider a discrete input space X = {x1, x2, x3} and K = 3. We assume the
following joint probability distribution P(X = xi, Y = j) = ωi,j for the random pair (X,Y ):

ω1,1 = ω2,2 = ω3,3 = 1/2,

ω1,2 = ω2,3 = ω3,1 = 1/3,

ω1,3 = ω2,1 = ω3,2 = 1/6.

Note that in the case of a discrete distribution for X, the density function coincides with
mass function and we have f (x) = P(X = x). It is then easy to check that, in this case,
there is no optimal scoring rule for this distribution in the sense of Definition 1.

2.3 Existence and characterization of optimal scoring rules

The previous example shows that the existence of optimal scoring rules cannot be guaran-
teed under any joint distribution. Our first important result is the characterization of those
distributions for which the family of optimal scoring rules is not an empty set. The next
proposition offers a necessary and sufficient condition on the distribution which ensures the
existence of optimal scoring rules.

Assumption 1 For any k, l ∈ {1, . . . ,K} such that l < k, for all x, x ′ ∈ X , we have:

Φk+1,k(x) < Φk+1,k

(
x ′) ⇒ Φl+1,l(x) ≤ Φl+1,l

(
x ′).
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Proposition 1 The following statements are equivalent:

(1) Assumption 1 holds.
(2) There exists an optimal scoring rule s∗.
(3) The regression function η(x) = E(Y | X = x) is an optimal scoring rule.
(4) For any k ∈ {1, . . . ,K − 1}, for all x, x ′ ∈ Xk , we have:

Φk+1,k(x) < Φk+1,k

(
x ′) ⇒ s∗(x) < s∗(x ′).

(5) For any k, l ∈ {1, . . . ,K} such that l < k, the ratio Φk,l(x) is a nondecreasing function
of s∗(x).

Assumption 1 characterizes the class distributions for the random pair (X,Y ) for which
the very concept of an optimal scoring rules makes sense. The proposition says that if
this condition is not satisfied then the ordinal nature of the labels, when seen through
the observation X, is violated. We point out that a related condition, called ERA ranking
representability, has been introduced in Waegeman and Baets (2011), see Definition 2.1
therein. Precisely, it can be easily checked that the condition in the previous proposition
means that the collection of (bipartite) ranking functions {Φk+1,k : 1 ≤ k < K} is an ERA
ranking representable set of ranking functions. Statement (3) suggests that plug-in rules
based on the statistical estimation of the regression function η and multiple thresholding
of the estimate will offer candidates for practical resolution of K-partite ranking. Such
strategies are indeed reminiscent of ordinal logistic regression methods and will be dis-
cussed in Sect. 5.3.2. Statement (4) offers an alternative characterization to Definition 1
for optimal scoring rules. Statement (5) means that the family of densities of the class-
conditional distributions fk has a monotone likelihood ratio (we refer to standard text-
books of mathematical statistics which use this terminology, e.g. Lehmann and Romano
2005).

Proposition 2 Under Assumption 1 we necessarily have:

Xk′ ∩ Xl′ ⊆ Xk ∩ Xl for any k, k′, l, l′ such that 1 ≤ k′ ≤ k < l ≤ l′ ≤ K.

2.4 Examples and counterexamples of monotone likelihood ratio families

It is easy to see that, in absence of Assumption 1, the notion of K-partite ranking hardly
makes sense. However, it is a challenging statistical task to assess whether data arise from a
mixture of distributions Fk with monotone likelihood ratio. We now provide examples and
counterexamples of such cases.

Disjoint supports Consider the separable case where: ∀k, l, Xk ∩ Xl = ∅. Then Assump-
tion 1 is clearly fulfilled as for k �= l, we have either Φk,l = 0 or ∞. It is worth mentioning
that in this case, the nature of the K-partite ranking problem does not differ from the multi-
class classification setup where there is no order relation between classes.

Exponential families We recall that f = ∑K

k=1 pkfk is the marginal distribution function
of X. We introduce the following choice for the class-conditional distributions fk :

fk(x) = exp
{
κ(k)T (x) − ψ(k)

}
f (x), ∀x ∈ R

d ,
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Fig. 1 Two examples of 1-D conditional Gaussian distributions in the case K = 3—class 1 in green, class 2
in blue and class 3 in red

where:

• κ : {1, . . . ,K} → R is strictly increasing,
• T : R

d → R such that ψ(k) = ∫
x∈Rd exp{κ(k)T (x)}f (x)dx < +∞, for 1 ≤ k ≤ K .

It is easy to check that he family of density functions fk has the property of monotone
likelihood ratio.

1-D Gaussian distributions We consider here a toy example with K = 3 and the fk are
Gaussian distributions N (mk, σ

2
k ) over R, where mk is the expectation and σ 2

k is the vari-
ance. Depending on the values of the parameters mk,σ

2
k , the collection {f1, f2, f3} may or

may not satisfy the property of having a monotone likelihood ratio. Assume first that the
variances are equal, then the property of monotone likelihood ratio is satisfied if and only if
either m1 ≤ m2 ≤ m3 or m3 ≤ m2 ≤ m1 (see Fig. 1(a)). Figure 1(b) depicts a situation where
m1 < m2 < m3 and σ 2

3 > σ 2
2 = σ 2

1 for which the random observation X does not permit to
recover the preorder induced by the output variable. The monotonicity condition is violated
for instance at (x, x ′) = (−2,1) and there is no optimal scoring rule in this case.

Uniform noise Let t0 = −∞ < t1 < · · · < tK−1 < +∞ and g : R
d → R a measurable func-

tion. We define the output random variable through:

Y =
K∑

k=1

I
{
g(X) + U > tk−1

}
,

where U is a uniform random variable on some interval of the real line, independent from X.
Then it can be easily seen that the class-conditional distributions form a collection with
monotone likelihood ratio, provided that t1 and tK−1 both lie inside the interval defined by
the essential infimum and supremum of the random variable g(X) + U . In this case, any
strictly increasing transform of g is an optimal scoring rule.
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3 Pairwise aggregation: from bipartite to K-partite ranking

In the present section, we propose a practical strategy for building scoring rules which ap-
proximate optimal scoring rules for K-partite ranking based on data. The principle of this
strategy is the aggregation of scoring rules obtained for the pairwise subproblems. We em-
phasize the fact that the situation is very different from multiclass classification where ag-
gregation boils down to linear combination, or majority voting, over binary classifiers (for
“one against one” and “one versus all”, we refer to Allwein et al. 2001; Hastie and Tib-
shirani 1998; Venkatesan and Amit 1999; Debnath et al. 2004; Dietterich and Bakiri 1995;
Beygelzimer et al. 2005a, 2005b and the references therein for instance). We propose here,
in the K-partite ranking setup, a metric-based barycentric approach to build the aggregate
scoring rule from the collection of scoring rules estimated for the bipartite subproblems. In
order to avoid technical discussions dealing with special cases, we assume in the sequel that
all class-conditional distributions have a continuous density fk and share the same support
X ⊂ R

d .

3.1 Median scoring rules and optimal aggregation

Every scoring rule induces an order relation over the input space R
d and, for the ranking

problem considered here, a measure of similarity between two scoring functions should only
take into consideration the similarity in the ranking induced by each one of them. We pro-
pose here a measure of agreement between scoring rules which is based on the probabilistic
Kendall τ for a pair of random variables.

Definition 2 (PROBABILISTIC KENDALL τ ) Consider X,X′ i.i.d. random vectors with den-
sity function f over R

d . The measure of agreement between two real-valued scoring rules
s1 and s2 is defined as the quantity:

τ(s1, s2) = P
{(

s1(X) − s1

(
X′)) · (s2(X) − s2

(
X′)) > 0

}

+ 1

2
P
{
s1(X) �= s1

(
X′), s2(X) = s2

(
X′)}

+ 1

2
P
{
s1(X) = s1

(
X′), s2(X) �= s2

(
X′)}.

This definition of agreement between scoring rules s1 and s2 coincides indeed with the
Kendall τ between real-valued random variables s1(X) and s2(X). Note that the contribution
of the two last terms in the definition of τ(s1, s2) vanishes when the distributions of the
si(X)’s are continuous.

From there one can define the notion of median scoring rule which accounts for the
consensus of many real-valued scoring rules over a given class of candidates.

Definition 3 (MEDIAN SCORING RULE) Consider a given class S1 of real-valued scoring
rules and ΣK = {s1, . . . , sK−1} a finite set of real-valued scoring rules. A median scoring
rule s for (S1,ΣK) satisfies:

K−1∑

k=1

τ(s, sk) = sup
s∈S1

K−1∑

k=1

τ(s, sk). (1)
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In general, the supremum appearing on the right hand side of Eq. (1) is not attained. How-
ever, when the supremum over S1 can be replaced by a maximum over a finite set S ′

1 ⊂ S1,
a median scoring rule always exists (but it is not necessarily unique). In particular, this is the
case when considering piecewise constant scoring functions such as those produced by the
bipartite ranking algorithms proposed in Clémençon et al. (2011a), Clémençon and Vayatis
(2009a, 2010) (we also refer to Clémençon and Vayatis 2009c for a discussion of consen-
sus computation/approximation in this case). The idea underlying the measure of consensus
through Kendall metric in order to aggregate scoring functions that are nearly optimal for
bipartite ranking subproblems is clarified by the following result.

Definition 4 (PAIRWISE OPTIMAL SCORING RULE) A pairwise optimal scoring rule s∗
l,k

is an optimal scoring rule for the bipartite ranking problem with classes Y = k and Y = l,
where k > l in the sense that:

∀x, x ′ ∈ X , Φk,l(x) < Φk,l

(
x ′) ⇒ s∗

l,k(x) < s∗
l,k

(
x ′).

We denote by S ∗
l,k the set of such optimal rules and, in particular, S ∗

k = S ∗
k,k+1.

Proposition 3 Denote by S the set of all possible real-valued scoring rules and consider
pairwise optimal scoring rules s∗

k ∈ S ∗
k for k = 1, . . . ,K − 1, which form the set Σ∗

K =
{s∗

1 , . . . , s∗
K−1}. Under Assumption 1, we have:

1. A median scoring rule s∗ for (S,Σ∗
K) is an optimal scoring rule for the K-partite ranking

problem.
2. Any optimal scoring rule s∗ for the K-partite ranking problem satisfies:

K−1∑

k=1

τ
(
s∗, s∗

k

) = K − 1.

The proposition above reveals that “consensus scoring rules”, in the sense of Definition 3,
based on K − 1 optimal scoring rules are still optimal solutions for the global K-partite
ranking problem and that, conversely, optimal elements necessarily achieve the equality in
Statement (2) of the previous proposition. This naturally suggests to implement the follow-
ing two-stage procedure, that consists in (1) solving the bipartite ranking subproblem related
to the pairwise case (k, k + 1) of consecutive class labels, yielding a scoring function sk , for
1 ≤ k < K , and (2) computing a median according to Definition 3, when feasible, based
on the latter over a set S1 of scoring functions. Beyond the difficulty to solve each ranking
subproblem separately (for instance refer to Clémençon and Vayatis 2009b for a discus-
sion of the nature of the bipartite ranking issue), the performance/complexity of the method
sketched above is ruled by the richness of the class S1 of scoring function candidates: too
complex classes clearly make median computation unfeasible, while poor classes may not
contain sufficiently accurate scoring rules.

3.2 A practical aggregation procedure

We now propose to convert the previous theoretical results which relate pairwise optimal-
ity to K-partite optimality in ranking into a practical aggregation procedure. Consider two
independent samples:
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• a sample D = {(Xi, Yi): 1 ≤ i ≤ n} with i.i.d. labeled observations,
• a sample D′ = {X′

i , : 1 ≤ i ≤ n′} a sample with unlabeled observations.

The first sample D is used for training bipartite ranking rules ŝk , while the second sample D′
will be used for the computation of the median. In practice a proxy for the median is com-
puted based on the empirical version of the Kendall τ , the following U -statistic of degree
two, see Clémençon et al. (2008).

Definition 5 (EMPIRICAL KENDALL τ ) Given a sample X1, . . . ,Xn, the empirical Kendall
τ is given by:

τ̂n(s1, s2) = 2

n(n − 1)

∑

1≤i<j≤n

h
((

s1(Xi), s1(Xj )
)
,
(
s2(Xi), s2(Xj )

))
,

where

h
(
(v,w),

(
v′,w′)) = I

{(
v − v′) · (w − w′) > 0

}

+ 1

2
I
{
v = v′,w �= w′} + 1

2
I
{
v �= v′,w = w′},

for (v,w) and (v′,w′) in R
2.

Denote by Dk = {(Xi, Yi) ∈ D: Yi = k}. The following aggregation method describes a
two-steps procedure which takes as input the two data sets, a class S1 of candidate scoring
rules, and a generic bipartite ranking algorithm A.

KENDALL AGGREGATION FOR K -PARTITE RANKING

Input. Data samples D and D′, a bipartite ranking algorithm A, a class S1 of scoring
rules.

1. Build pairwise scoring rules for bipartite ranking. For k = 1, . . . ,K − 1, run al-
gorithm A in order to train a scoring function ŝk(x) based on the restricted samples
Dk ∪ Dk+1.

2. Aggregate pairwise scoring rules for K-partite ranking. Compute

ŝ = arg max
s∈S1

K−1∑

k=1

τ̂ ′(s, ŝk),

where τ̂ ′ is the empirical Kendall τ computed over the sample D′.

Output. Empirical median scoring rule ŝ in S1 for K-partite ranking

Practical implementation issues Motivated by practical problems such as the design of
meta-search engines, collaborative filtering or combining results from multiple databases,
consensus ranking, which the second stage of the procedure described above is a spe-
cial case of, has recently enjoyed renewed popularity and received much attention in the



76 Mach Learn (2013) 91:67–104

machine-learning literature, see Meila et al. (2007), Fagin et al. (2004) or Lebanon and Laf-
ferty (2002) for instance. As shown in Hudry (2008) or Wakabayashi (1998) in particular,
median computations are NP -hard problems in general. Except in the case where S1 is of
very low cardinality, the (approximate) computation of a supremum involves in practice the
use of meta-heuristics such as simulated annealing, tabu search or genetic algorithms. The
description of these computational approaches to consensus ranking is beyond the scope
of this paper and we refer to Barthélemy et al. (1989), Charon and Hudry (1998), Laguna
et al. (1999) or Mandhani and Meila (2009) and the references therein for further details on
their implementation. We also underline that the implementation of the Kendall aggregation
approach could be naturally based on K(K − 1)/2 scoring functions, corresponding to so-
lutions of the bipartite subproblems defined by all possible pairs of labels (the theoretical
analysis carried out below can be straightforwardly extended so as to establish the validity
of this variant), at the price of an additional computational cost for the median computation
stage however.

Rank prediction vs. scoring rule learning When the goal is to rank accurately new unla-
beled datasets, rather than to learn a nearly optimal scoring rule explicitly, the following
variant of the procedure described above can be considered. Given an unlabeled sample of
i.i.d. copies of the input r.v. X DX = {X1, . . . ,Xm}, instead of aggregating scoring functions
sk defined on the feature space X and use a consensus rule for ranking the elements of DX ,
one may aggregate their restrictions to the finite set DX ⊂ X , or simply the ranks of the
unlabeled data as defined by the sk’s.

4 Performance measures for K-partite ranking

We now turn to the main concepts for assessing performance in the K-partite ranking prob-
lem. We focus on the notion of ROC surface and Volume Under the ROC Surface (VUS) in
the case where K = 3 in order to keep the presentation simple. These concepts are gener-
alizations of the well-known ROC curve and AUC criterion which are popular performance
measures for bipartite ranking.

4.1 ROC surface

Given a scoring rule s : R
d → R, the ROC surface offers a visual display which reflects

how the conditional distributions of s(X) given the class label Y = k are separated between
each other as k = 1, . . . ,K . We introduce the notation Fs,k for the cumulative distribution
function (cdf) over the real line R of the random variable s(X) given the class label Y = k:

∀t ∈ R, Fs,k(t) = P
{
s(x) ≤ t | Y = k

}
.

Definition 6 (ROC SURFACE) Let K ≥ 2. The ROC surface of a real-valued scoring rule s

is defined as the plot of the continuous extension of the parametric surface in the unit cube
[0,1]K :

Δ → [0,1]K

(t1, . . . , tK−1) �→ (
Fs,1(t1),Fs,2(t2) − Fs,2(t1), . . . ,1 − Fs,K(tK−1)

)
,

where Δ = {(t1, . . . , tK−1) ∈ R
K−1 : t1 < · · · < tK−1}.
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By “continuous extension”, it is meant that discontinuity points, due to jumps or flat
parts in the cdfs Fs,k , are connected by linear segments (parts of hyperplanes). The same
convention is considered in the definition of the ROC curve in the bipartite case given in
Clémençon and Vayatis (2009b). In the case K = 3, on which we restrict our attention
from now for simplicity (all results stated in the sequel can be straightforwardly extended
to the general situation), the ROC surface thus corresponds to a continuous manifold of
dimension 2 in the unit cube of R

3. We also point out that the ROC surface contains the
ROC curves of the pairwise problems (f1, f2), (f2, f3) and (f1, f3) which can be obtained
as the intersections of the ROC surface with planes orthogonal to each of the axis of the unit
cube.

In order to keep track of the relationship between the ROC surface and its sections, we
introduce the following notation:

∀α ∈ [0,1], ROCfk,fk+1(s,α) = 1 − Fs,k+1 ◦ F−1
s,k (1 − α),

where we have used the following definition of the generalized inverse of a cdf F : F−1(u) =
inf{t ∈]−∞,+∞]: F(t) ≥ u}, u ∈ [0,1].

Proposition 4 (CHANGE OF PARAMETERIZATION) The ROC surface of the scoring rule s

can be obtained as the plot of the continuous extension of the parametric surface:

[0,1]2 → R
3

(α, γ ) �→ (
α,ROC(s,α, γ ), γ

)

where

ROC(s,α, γ ) = (
Fs,2 ◦ F−1

s,3 (1 − γ ) − Fs,2 ◦ F−1
s,1 (α)

)
+ (2)

= (
ROCf1,f2(s,1 − α) − ROCf3,f2(s, γ )

)
+, (3)

with the notation u+ = max(0, u), for any real number u.

We point out that, in the case where s has no capacity to discriminate between the three
distributions, i.e. when Fs,1 = Fs,2 = Fs,3, the ROC surface boils down to the surface de-
limited by the triangle that connects the points (1,0,0), (0,1,0) and (0,0,1), we then have
ROC(s,α, γ ) = 1−α −γ . By contrast, in the separable situation (see Sect. 2.4), the optimal
ROC surface coincides with the surface of the unit cube [0,1]3.

The next lemma characterizes the support of the function whose plot corresponds to the
ROC surface (see Fig. 2).

Lemma 1 For any (α, γ ) ∈ [0,1]2, the following statements are equivalent:

1. ROC(s,α, γ ) > 0
2. ROCf1,f3(s,1 − α) > γ .

Other notions of ROC surface have been considered in the literature, depending on the
learning problem considered and the goal pursued. In the context of multi-class pattern
recognition, they provide a visual display of classification accuracy, as in Ferri et al. (2003)
(see also Fieldsend and Everson 2005, 2006 and Hand and Till 2001) from a one-versus-one
angle or in Flach (2004) when adopting the one-versus-all approach. The concept of ROC
analysis described above is more adapted to the situation where a natural order on the set of
labels exists, just like in ordinal regression, see Waegeman et al. (2008b).
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Fig. 2 Plot of the ROC surface
of a scoring function

4.2 ROC-optimality and optimal scoring rules

The ROC surface provides a visual tool for assessing ranking performance of a scoring rule.
The next theorem provides a formal statement to justify this practice.

Theorem 1 The following statements are equivalent:

1. Assumption 1 is fulfilled and s∗ is an optimal scoring rule in the sense of Definition 1.
2. We have, for any scoring rule s and for all (α, γ ) ∈ [0,1]2,

ROC(s,α, γ ) ≤ ROC
(
s∗, α, γ

)
.

A nontrivial byproduct of the proof of the previous theorem is that optimizing the ROC
surface amounts to simultaneously optimizing the ROC curves related to the two pairs of
distributions (f1, f2) and (f2, f3).

The theorem indicates that optimality for scoring rules in the sense of Definition 1
is equivalent to optimality in the sense of the ROC surface. Therefore, the ROC surface
provides a complete characterization of the ranking performance of a scoring rule in the
K-partite problem.

We now introduce the following notations: for any α ∈ [0,1] and any scoring rule s,

• the quantile of order (1 − α) of the conditional distribution of the random variable s(X)

given Y = k:

Q(k)(s, α) = F−1
s,k (1 − α),

• the level set of the scoring rule s with the top elements of class Y = k:

R(k)
s,α = {

x ∈ X |s(x) > Q(k)(s, α)
}
.

Proposition 5 Suppose that Assumption 1 is fulfilled and consider s∗ an optimal scoring
rule in the sense of Definition 1. Also assume that η(X) is a continuous random variable,
then we have: ∀(α, γ ) ∈ [0,1]2:

ROC∗(s∗, α, γ
) − ROC(s,α, γ ) ≤ I

{
γ ≤ ROCF1,F3

(
s∗,1 − α

)} · (Θ1(s,α) + Θ2(s, γ )
)
,
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where

Θ1(s,α) = I{α �= 0}
p2Q(1)(η1, α)

E
[∣∣η1(x) − Q(1)(η1, α)

∣∣ · I
{
R

(1)

s∗,αΔR(1)
s,α

}]
,

Θ2(s, γ ) = I{γ �= 1}
p2Q(3)(η3,1 − γ )

E
[∣∣η3(X) − Q(3)(η3,1 − γ )

∣∣ · I
{
R

(3)

s∗,1−γ ΔR
(3)

s,1−γ

}]
.

We have used the notation AΔB = (A \ B) ∪ (B \ A) for the symmetric difference between
sets A and B .

The previous proposition provides a key inequality for the statistical results developed in
the sequel.

4.3 Volume Under the ROC Surface (VUS)

In the bipartite case, a standard summary of ranking performance is the Area Under an ROC
Curve (or AUC). In a similar manner, one may consider the volume under the ROC surface
(VUS in abbreviated form) in the three-class framework. We follow here Scurfield (1996)
but we mention that other notions of ROC surface can be found in the literature, leading to
other summary quantities, also referred to as VUS, such as those introduced in Hand and
Till (2001).

Definition 7 (VOLUME UNDER THE ROC SURFACE) We define the VUS of a real-valued
scoring rule s as:

VUS(s) =
∫ 1

0

∫ 1

0
ROC(s,α, γ )dα dγ.

An alternative expression of VUS can be derived with a change of parameters:

VUS(s) =
∫ 1

0
ROCf1,f2(s,1 − α)ROCf1,f3(s,1 − α)dα

−
∫ 1

0
ROCf3,f2(s, γ )

(
1 − ROCf3,f1(s, γ )

)
dγ.

The next proposition describes two extreme cases.

Proposition 6 Consider a real-valued scoring rule s.

1. If Fs,1 = Fs,2 = Fs,3, then VUS(s) = 1/6.
2. If the density functions of Fs,1, Fs,2, Fs,3 have disjoint supports, then VUS(s) = 1.

Like the AUC criterion, the VUS can be interpreted in a probabilistic manner. For com-
pleteness, we recall the following result.

Proposition 7 (Scurfield 1996) For any scoring function s ∈ S , we have:

VUS(s) = P
{
s(X1) < s(X2) < s(X3)|Y1 = 1, Y2 = 2, Y3 = 3

}

+ 1

2
P
{
s(X1) = s(X2) < s(X3)|Y1 = 1, Y2 = 2, Y3 = 3

}
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+ 1

2
P
{
s(X1) < s(X2) = s(X3)|Y1 = 1, Y2 = 2, Y3 = 3

}

+ 1

6
P
{
s(X1) = s(X2) = s(X3)|Y1 = 1, Y2 = 2, Y3 = 3

}
,

where (X1, Y1), (X2, Y2) and (X3, Y3) denote independent copies of the random pair (X,Y ).

In the case where the distribution of s is continuous, the last three terms in the term on the
right hand side vanish and the VUS boils down to the probability that, given three random
instances X1, X2 and X3 with respective labels Y1 = 1, Y2 = 2 and Y3 = 3, the scoring rule
s ranks them in the right order.

4.4 VUS-optimality

We now consider the notion of optimality with respect to the VUS criterion and provide
expressions of the deficit of VUS for any scoring rule which highlight the connection with
AUC maximizers for the bipartite subproblems.

Proposition 8 (VUS OPTIMALITY) Under Assumption 1, we have, for any real-valued
scoring rule s and any optimal scoring rule s∗:

VUS(s) ≤ VUS
(
s∗).

We denote the maximal value of the VUS by VUS∗ = VUS(s∗)

This result shows that optimal scoring rules in the sense of Definition 1 coincide with
optimal elements in the sense of VUS. This simple statement grounds the use of empirical
VUC maximization strategies for the K-partite ranking problem.

When the Assumption 1 is not fulfilled, the VUS can still be used as a perfor-
mance criterion, both in the multiclass classification context (Landgrebe and Duin 2006;
Ferri et al. 2003) and in the ordinal regression setup (Waegeman et al. 2008b). However,
the interpretation of maximizers of VUS as optimal orderings is highly questionable. For
instance, in the situation described in Example 1, one may easily check that, when ω1,1 =
4/11, ω1,2 = 6/11, ω1,3 = ω3,1 = 1/11, ω2,1 = ω2,2 = 3/11 and ω2,3 = ω3,2 = ω3,3 = 5/11,
the maximum VUS (equal to 0.2543) is reached by the scoring rule corresponding to strict
orders ≺ and ≺′, such that x3 ≺ x2 ≺ x1 and x2 ≺′ x3 ≺′ x1 respectively, both at the same
time.

We introduce the definition for the AUC of the bipartite ranking problem with the pair of
distributions (fk, fk+1):

Definition 8 (AUC) Let X1 and X2 independent random variables with distribution fk and
fk+1 respectively. We set:

AUCfk,fk+1(s) = P
{
s(X1) < s(X2)

} + 1

2
P
{
s(X1) = s(X2)

}
.

We now state the result which establishes the relevance of AUC as an optimality criterion
for the bipartite ranking problem.
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Proposition 9 Fix k ∈ {1, . . . ,K − 1} and consider s∗
k a pairwise optimal scoring rule ac-

cording to Definition 4. Then we have, for any scoring rule:

AUCfk,fk+1(s) ≤ AUCfk,fk+1

(
s∗
k

)
.

Moreover, we denote the maximal value of the AUC for the bipartite (fk, fk+1) ranking
problem by: AUC∗

fk,fk+1
= AUCfk,fk+1(s

∗
k ).

The next result makes clear that if a scoring rule s solves simultaneously all the bipartite
ranking subproblems then it also solves the global K-partite ranking problem. For simplicity,
we present the result in the case K = 3.

Theorem 2 (DEFICIT OF VUS) Suppose that Assumption 1 is fulfilled. Then, for any scor-
ing rule s and any optimal scoring rule s∗, we have

VUS
(
s∗) − VUS(s) ≤ (

AUC∗
f1,f2

− AUCf1,f2(s)
) + (

AUC∗
f2,f3

− AUCf2,f3(s)
)

≤ 2

3

((
AUC∗

f1,f2
− AUCf1,f2(s)

)

+ (
AUC∗

f2,f 3 − AUCf2,f3(s)
) + (

AUC∗
f1,f3

− AUCf1,f3(s)
))

.

5 Consistency of pairwise aggregation and other strategies for K-partite ranking

5.1 Definition of VUS-consistency and main result

In this section, we assume a data sample Dn = {(X1, Y1), . . . , (Xn,Yn)} is available and
composed by n i.i.d. copies of the random pair (X,Y ). Our goal here is to learn from the
sample Dn how to build a real-valued scoring rule ŝn such that its ROC surface is as close as
possible to the optimal ROC surface. We propose to consider a weak concept of consistency
which relies on the VUS.

Definition 9 (VUS-CONSISTENCY) Suppose that Assumption 1 is fulfilled. Let (sn)n≥1 be
a sequence of random scoring rules on R

d , then:

– the sequence {sn} is called VUS-consistent if

VUS∗ − VUS(sn) → 0 in probability,

– the sequence {sn} is called strongly VUS-consistent if

VUS∗ − VUS(sn) → 0 with probability one.

Remark 1 We note that the deficit of VUS can be interpreted as an L1 distance between
ROC surfaces of sn and s∗:

VUS∗ − VUS(sn) =
∫ ∫

(α,γ )∈[0,1]2
∣∣ROC

(
s∗, α, γ

) − ROC(sn, α, γ )
∣∣dα dγ,
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and in this sense the notion of consistency is weak. Indeed, a stronger sense of consistency
could be given by considering the supremum norm between surfaces:

d∞
(
s∗, sn

) = sup
(α,γ )∈[0,1]2

∣∣ROC
(
s∗, α, γ

) − ROC(sn, α, γ )
∣∣.

The study of accuracy of K-partite ranking methods in this sense is beyond the scope of the
present paper (in contrast to the L1 norm, the quantity d∞(s∗, s) cannot be decomposed in
an additive manner). Extensions of bipartite ranking procedures such as the TREERANK and
the RANKOVER algorithms (see Clémençon and Vayatis 2009b and 2010), for which consis-
tency in supremum norm is guaranteed under some specific assumptions, will be considered
in future work.

In order to state the main result, we need an additional assumption on the distribution of
the random pair (X,Y ). The reason why this assumption is needed will be explained in the
next section.

Assumption 2 For all k ∈ {1, . . . ,K − 1}, the (pairwise) posterior probability given by
ηk+1(X)/(ηk(X) + ηk+1(X)) is a continuous random variable and there exist c < ∞ and
a ∈ (0,1) such that

∀x ∈ X , E

[∣∣∣∣
ηk+1(X)

ηk+1(X) + ηk(X)
− ηk+1(x)

ηk+1(x) + ηk(x)

∣∣∣∣
−a]

≤ c. (4)

In the statistical learning literature, Assumption 2 is referred to as the noise condition and
goes back to the work of Tsybakov (2004). It has been adapted to the framework of bipartite
ranking in Clémençon et al. (2008). For completeness, we state a result from this latter paper
(see Corollary 8 within) which offers a simple sufficient condition for the Assumption 2 to
be fulfilled.

Proposition 10 If the distribution of the r.v. ηk+1(X)/(ηk(X) + ηk+1(X)) has a bounded
density, then Assumption 2 is satisfied.

We will also need to use the notion of AUC consistency for the bipartite ranking sub-
problems.

Definition 10 (AUC CONSISTENCY) For k fixed in {1, . . . ,K − 1}, a sequence (sn)n≥1 of
scoring rules is said to be AUC-consistent (respectively, strongly AUC-consistent) for the
bipartite problem (fk, fk+1) if it satisfies:

AUCfk,fk+1(sn) → AUC∗
fk,fk+1

in probability (resp., with probability one).

We can now state the main consistency result of the paper which concerns the Kendall
aggregation procedure described in Sect. 3.2. Indeed, the following theorem reveals that
the notion of median scoring rule introduced in Definition 3 preserves AUC consistency
for bipartite subproblems and thus yields a VUS consistent scoring rule for the K-partite
problem. It is assumed that the solutions to the bipartite subproblems are AUC-consistent for
each specific pair of class distributions (fk, fk+1), 1 ≤ k < K . For simplicity, we formulate
the result in the case K = 3.
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Theorem 3 We consider a class of candidate scoring rules S1, (s(1)
n )n≥1, (s(2)

n )n≥1 two se-
quences of scoring rules in S1. We use the notation Σ2,n = {s(1)

n , s(2)
n }. Assume the following:

1. Assumptions 1 and 2 hold true.
2. The class S1 contains an optimal scoring rule.
3. The sequences (s(1)

n )n≥1 and (s(2)
n )n≥1 are (strongly) AUC-consistent for the bipartite

ranking subproblems related to the pairs of distributions (f1, f2) and (f2, f3) respec-
tively.

4. Assume that, for all n, there exists a median scoring rule sn in the sense of Definition 3
with respect to (S1,Σ2,n).

Then the median scoring rule sn is (strongly) VUS-consistent.

Discussion The first assumption of Theorem 3 puts a restriction on the class of distri-
butions for which such a consistency result holds. Assumption 1 actually guarantees that
the very problem of K-partite makes sense and the existence of an optimal scoring rule.
Assumption 2 can be seen as a “light” restriction since it still covers a large class of dis-
tributions commonly used in probabilistic modeling. The third and fourth assumptions are
natural as we expect first to have efficient solutions to the bipartite subproblems before con-
sidering reasonable solutions to the K-partite problem. The most restrictive assumption is
definitely the second one about the fact that the class of candidates contains an optimal ele-
ment. Indeed, it is easy to weaken this assumption at the price of an additional bias term by
assuming that the scoring rules s(1)

n , s(2)
n and sn belong to a set S (n)

1 , such that there exists a
sequence (s∗

n)n≥1 with s∗
n ∈ S (n)

1 and VUS(s∗
n) → VUS∗ as n → ∞. We decided not to in-

clude this refinement as this is merely a technical argument which does not offer additional
insights on the nature of the problem.

5.2 From AUC consistency to VUS consistency

In this section, we introduce auxiliary results which contribute to the proof of the main theo-
rem (details are provided in the Appendix). Key arguments rely on the relationship between
the solutions of the bipartite ranking subproblems and those of the K-partite problem. In
particular, a sequence of scoring rules that is simultaneously AUC-consistent for the bi-
partite ranking problems related to the two pairs of distributions (f1, f2) and (f2, f3) is
VUS-consistent. Indeed, we have the following corollary.

Corollary 1 Suppose that Assumption 1 is satisfied. Let (sn)n≥1 be a sequence of scoring
rules. The following assertions are equivalent.

(i) The sequence (sn)n of scoring rules is (strongly) VUS-optimal.
(ii) We have simultaneously when n → ∞:

AUCf1,f2(sn) → AUC∗
f1,f2

AUCf2,f3(sn) → AUC∗
f2,f3

(with probability one) in probability.

It follows from this result that the 3-partite ranking problem can be cast in terms of a
double-criterion optimization task, consisting in finding a scoring rule s that simultaneously
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maximizes AUCf1,f2(s) and AUCf2,f3(s). This result provides a theoretical basis for the jus-
tification of our pairwise aggregation procedure. We mention that the idea of decomposing
the K-partite ranking into several bipartite ranking subproblems has also been considered in
Fürnkranz et al. (2009) but the aggregation stage is performed with a different strategy.

The other type of result which is needed concerns the connection between the aggregation
principle based on a consensus approach (Kendall τ ) and the performance metrics involved
in the K-partite ranking problem. The next results establish inequalities which relate the
AUC and the Kendall τ in a quantitative manner.

Proposition 11 Let p be a real number in (0,1). Consider two probability distributions fk

and fk + 1 on the set X . We assume that the distribution of X comes from the mixture with
density function given by (1 − p)fk + pfk+1. For any real-valued scoring rules s1 and s2

on R
d , we have:

∣∣AUCfk,fk+1(s1) − AUCfk,fk+1(s2)
∣∣ ≤ 1 − τ(s1, s2)

4p(1 − p)
.

We point out that it is generally vain to look for a reverse control: indeed, scoring func-
tions yielding different rankings may have exactly the same AUC. However, the following
result guarantees that a scoring function with a nearly optimal AUC is close to optimal scor-
ing functions in a certain sense, under the additional assumption that the noise condition
introduced in Clémençon et al. (2008) is fulfilled.

Proposition 12 Under Assumption 2, we have, for any k ∈ {1, . . . ,K − 1}, for any scoring
rule s and any pairwise optimal scoring rule s∗

k :

1 − τ
(
s∗
k , s

) ≤ C · (AUC∗
fk,fk+1

− AUCfk,fk+1(s)
)a/(1+a)

,

with C = 3c1/(1+a) · (2pkpk+1)
a/(1+a).

5.3 Alternative approaches to K-partite ranking

In this section, we also mention, for completeness, two other approaches to K-partite rank-
ing.

5.3.1 Empirical VUS maximization

The first approach extends the popular principle of empirical risk minimization, see Vapnik
(1999). For K-partite ranking, this programme has been carried out in Rajaram and Agarwal
(2005) with an accuracy measure based on the loss function (Y − Y ′)ξ

+(I{s(X) < s(X′)} +
(1/2) · I{s(X) = s(X′)}), with ξ ≥ 0. In our setup, the idea would be to optimize a statistical
counterpart of the unknown functional VUS(.) over a class S1 of candidate scoring rules.
Based on the training dataset Dn, a natural empirical counterpart of VUS(s) is the three-
sample U -statistic

V̂USn(s) = 1

n1n2n3

∑

1≤i,j,k≤n

hs(Xi,Xj ,Xk) · I{Yi = 1, Yj = 2, Yk = 3}, (5)
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with kernel given by

hs(x1, x2, x3) = I
{
s(x1) < s(x2) < s(x3)

} + 1

2
I
{
s(x1) = s(x2) < s(x3)

}

+ 1

2
I
{
s(x1) < s(x2) = s(x3)

} + 1

6
I
{
s(x1) = s(x2) = s(x3)

}
,

for any (x1, x2, x3) ∈ X 3. The computational complexity of empirical VUS calculation is
investigated in Waegeman et al. (2008a).

The theoretical analysis shall rely on concentration properties of U -processes in order
to control the deviation between the empirical and theoretical versions of the VUS criterion
uniformly over the class S1. Such an analysis was performed in the bipartite case in Clé-
mençon et al. (2008) and we expect that it can be extended in the K-partite case. In contrast,
algorithmic aspects of the issue of maximizing the empirical VUS criterion (or a concave
surrogate) are much less straightforward and the question of extending optimization strate-
gies such as those introduced in Clémençon and Vayatis (2009b) or Clémençon and Vayatis
(2010) requires, for instance, significant methodological progress.

5.3.2 Plug-in scoring rule

As shown by Proposition 1, when Assumption 1 is fulfilled, the regression function η is an
optimal scoring function. The plug-in approach consists of estimating the latter and use the
resulting estimate as a scoring rule. For instance, one may estimate the posterior probabili-
ties (η1(x), . . . , ηK(x)) by an empirical counterpart (̂η1(x), . . . , η̂K(x)) based on the training
data and consider the ordering on R

d induced by the estimator η̂(x) = ∑K

k=1 kη̂k(x). We re-
fer to Clémençon and Vayatis (2009a) and Clémençon and Robbiano (2011) for preliminary
theoretical results based on this strategy in the bipartite context and Audibert and Tsybakov
(2007) for an account of the plug-in approach in binary classification. It is expected that an
accurate estimate of η(x) will define a ranking rule similar to the optimal one, with nearly
maximal VUS. As an illustration of this approach, the next result relates the deficit of VUS
of a scoring function η̂ to its L1(μ)-error as an estimate of η. We assume for simplicity that
all class-conditional distributions have the same support.

Proposition 13 Suppose that Assumption 1 is fulfilled. Let η̂ be an approximant of η. As-
sume that both the random variables η(X) and η̂(X) are continuous. We have:

VUS∗ − VUS(̂η) ≤ p1 + p3

p1p2p3
· E

[∣∣η(X) − η̂(X)
∣∣].

This result reveals that a L1(μ)-consistent estimator, i.e. an estimator η̂n such that
E[|η(X) − η̂n(X)|] converges to zero in probability as n → ∞, yields a VUS-consistent
ranking procedure. However, from a practical perspective, such procedures should be
avoided when dealing with high-dimensional data, since they are obviously confronted to
the curse of dimensionality.

5.4 Connections with regression estimation and ordinal regression

Whereas standard multi-class classification ignores the possible ordinal structure of the out-
put space, ordinal regression takes the latter into account by penalizing more and more
the error of a classifier candidate C on an example (X,Y ) as |C(X) − Y | increases. In
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general, the loss function chosen is of the form ψ(c, y) = Ψ (|c − y|), (c, y) ∈ {1, . . . ,K}2,
where Ψ : {0, . . . ,K −1} → R+ is some nondecreasing mapping. The most commonly used
choice is Ψ (u) = u, corresponding to the risk L(C) = E[|C(X) − Y |], referred to as the ex-
pected ordinal regression error sometimes, cf. Agarwal (2008). In this case, it is shown that
the optimal classifier can be built by thresholding the regression function at specific levels
t0 = 0 < t∗1 < · · · < t∗K−1 < 1 = tK , that it so say it is of the form C∗(x) = ∑K

k=1 k · I{t∗k−1 ≤
η(x) < t∗k } when assuming that η(X) = E[Y | X] is a continuous r.v. for simplicity. Based
on this observation, a popular approach to ordinal regression lies in estimating first the re-
gression function η by an empirical counterpart η̂ (through minimization of an estimate of
R(f ) = E[(Y − f (X))2] over a specific class F of function candidates f , in general) and
choosing next a collection t of thresholds t0 = 0 < t1 < · · · < tK−1 < 1 = tK in order to
minimize a statistical version of L(Ct) where Ct(x) = ∑K

k=1 k · I{tk−1 ≤ η̂(x) < tk}. Such
procedures are sometimes termed regression-based algorithms, see Agarwal (2008). One
may refer to Kramer et al. (2001) in the case of regression trees for instance.

6 Illustrative numerical experiments

It is the purpose of this section to illustrate the approach described above by numerical re-
sults and provide some empirical evidence for its efficacy. Since our goal is here to show
that, beyond its theoretical validity, the Kendall aggregation approach to multi-class ranking
actually works in practice, rather than to provide a detailed empirical study of its perfor-
mance on benchmark artificial/real datasets compared to that of possible competitors (this
will be the subject of a forthcoming paper), in the subsequent experimental analysis we
have considered two simple data generative models, for which one may easily check As-
sumption 1 and compute the optimal ROC surface (as well as the optimum value VUS∗),
which the results obtained must be compared to. The first example involves mixtures of
Gaussian distributions, while the second one is based on mixtures of uniform distributions,
the target ROC surface being piecewise linear in the latter case (cf. assertion 4 in Proposi-
tion 14). Here, the artificial data simulated are split into a training sample and a test sample,
used for plotting the “test ROC surfaces”.

The learning algorithm used for solving the bipartite ranking subproblems at the first
stage of the procedure is the TREERANK procedure based on locally weighted versions
of the CART method (with axis parallel splits), see Clémençon et al. (2011a) for a de-
tailed description of the algorithm (as well as Clémençon and Vayatis 2009b for rigorous
statistical foundations of this method). Precisely, we used a package for R statistical soft-
ware (see http://www.r-project.org) implementing TREERANK (with the “default” param-
eters: minsplit = (size of training sample)/20, maxdepth = 10, mincrit = 0), available at
http://treerank.sourceforge.net, see Baskiotis et al. (2010). The scoring rules produced at
stage 1 are thus (tree-structured and) piecewise constant, making the aggregating procedure
described in Sect. 3.2 quite feasible. Indeed, if s1, . . . , sM are scoring functions that are all
constant on the cells of a finite partition P of the input space X , one easily see that the
infimum infs∈S0

∑M

m=1 dτμ(s, sm) reduces to a minimum over a finite collection of scoring
functions that are also constant on P ’s cells and is thus attained. As underlined in Sect. 3.2,
when the number of cells is large, median computation may become practically unfeasible
and the use of a meta-heuristic can be then considered for approximation purpose (simulated
annealing, tabu search, etc.), here the ranking obtained by taking the mean ranks over the
K − 1 rankings of the test data has been improved in the Kendall consensus sense by means
of a standard simulated annealing technique.

http://www.r-project.org
http://treerank.sourceforge.net
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Fig. 3 First example—mixture of Gaussian distributions

For comparison purpose, we have also implemented two ranking algorithms, RankBoost
(when aggregating 30 stumps, see Rudin et al. 2005) and SVMRank (with linear and Gaus-
sian kernels with respective parameters C = 20 and (C,γ ) = (0.01), see Herbrich et al.
2000), using the SVM-light implementation available at http://svmlight.joachims.org/. We
have also used the RankRLS method (http://www.tucs.fi/RLScore, see Pahikkala et al. 2007)
that implements a regularized least square algorithm with linear kernel (“bias = 1”) and with
Gaussian kernel (γ = 0.01), selection of the intercept on a grid being performed through a
leave-one-out procedure. For completeness, the Kendall aggregation procedure has also been
implemented with RankBoost for solving the bipartite subproblems.

First example (mixtures of Gaussian distributions) Consider a q-dimensional Gaussian
random vector Z, drawn as N (μ,Γ ), and a Borelian set C ⊂ R

q weighted by N (μ,Γ ).
We denote by NC(μ,Γ ) the conditional distribution of Z given Z ∈ C. Equipped with this
notation, we can write the class distributions used in this example as:

f1(x) = N[0,1]2
((

0
0

)
,

(
1/4 0
0 1/4

))

f2(x) = N[0,1]2
((

1/2
1/2

)
,

(
1/4 0
0 1/4

))

f3(x) = N[0,1]2
((

1
1

)
,

(
1/4 0
0 1/4

))
.

When p1 = p2 = p3 = 1/3, the regression function is then an increasing transform of
(x1, x2) ∈ [0,1]2 �→ x1 + x2, it is given by:

η(x) = 2.79 · e−(x1+x2)2 + 2 · 1.37 · e−(x1+x2−1)2 + 3 · 2.79 · e−(x1+x2−2)2

2.79 · e−(x1+x2)2 + 1.37 · exp−(x1+x2−1)2 +2.79 · e−(x1+x2−2)2 .

The simulated dataset is plotted in Fig. 3a, while some level sets of the regression func-
tion are represented in Fig. 3b. We have drawn 50 training samples of size n = 3000 and
a test sample of size 3000. Using TREERANK, we learn 3 bipartite ranking rules: s(1)(x)

based on data with labels “1” and “2”, s(2)(x) based on data with labels “2” and “3” and

http://svmlight.joachims.org/
http://www.tucs.fi/RLScore
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Table 1 Comparison of the
VUS: “Gaussian”
experiment—VUS∗ = 0.4369

Method VUS(̂σ )

TreeRank 1v2 0.3703 (±0.0102)

TreeRank 2v3 0.3728 (±0.0104)

TreeRank 1v3 0.3972 (±0.0053)

TreeRank Agg 0.4118 (±0.0054)

RankBoostVUS 0.4281 (±0.0024)

RankBoost Agg 0.4305 (±0.0019)

SVMrank lin 0.4367 (±0.0003)

SVMrank gauss 0.4363 (±0.0009)

RLScore lin 0.4368 (±0.0003)

RLScore gauss 0.4366 (±0.0006)

Fig. 4 Levels sets of the scoring
functions “TreeRank 1v2”,
“TreeRank 2v3”, “TreeRank
1v3” and “TreeRank Agg” in a
top-down left-right manner

s(3)(x) based on data with labels “1” and “3”. Finally, s(1) and s(2) are aggregated through
the procedure described in Sect. 3.2, yielding the score called “TreeRank Agg” in Table 1.
We also used each scoring function separately to rank the test data and compute a test
estimate of the VUS (“TreeRank 1v2”, “2v3”, “1v3”). The scoring function produced by
RankBoost is referred to as “RankBoostVUS”, while that obtained by Kendall aggregation
based on (a bipartite implementation of) RankBoost is called “RankBoost Agg”. The scor-
ing rule computed through SVMrank (respectively, through RankRLS) based on a linear and
a Gaussian kernels are respectively called “SVMrank lin” and “SVMrank gauss” (respec-
tively, “RLScore lin” and “RLScore gauss”). Averages (VUS) over the 50 training samples
have been next computed, as well as standard deviations σ̂ , they are given in Table 1 with
the results of the earlier described algorithms. For comparison purpose, some level sets of
the TreeRank scoring functions learnt from the first training sample are displayed in Fig. 4.

Second example (mixtures of uniform distributions) The artificial data sample used in this
second example is represented in Fig. 5a and has been generated as follows. The unit square
X = [0,1]2 is split into 9 squares of equal size and we defined next the scoring function s∗
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Table 2 Values of the ηk ’s on each of the nine subsquare of [0,1]2, cf. Fig. 5b

s∗ s∗
1,2 s∗

2,3 η1 η2 η3

0.2 0.2 0.2 0.7692 0.2000 0.0308

0.4 0.4 0.2 0.6250 0.3250 0.0500

0.6 0.8 0.6 0.3968 0.4127 0.1905

0.8 0.8 0.8 0.3731 0.3881 0.2388

1 1 1 0.3030 0.3939 0.3030

1.25 1.25 1 0.2581 0.4194 0.3226

1.66 1.66 1.66 0.1682 0.3645 0.4673

2.5 2.5 2.5 0.0952 0.3095 0.5952

5 2.5 5 0.0597 0.1940 0.7463

Fig. 5 Second example—mixtures of uniform distributions

as the function constant on each of these squares depicted by Fig. 5b). We then chose the
uniform distribution over the unit square as marginal distribution of X and took φ1,2(x) =
s∗

1,2(x)/1.3 and φ2,3 = 1.3 × s∗
2,3(x). As s∗

1,2 and s∗
2,3 are non-decreasing functions of s∗ (see

Table 2): φ2,1 and φ3,2 are thus non-decreasing functions of s∗, by virtue of Theorem 1, the
class distributions check the monotonicity assumption 1. Computation of the ηi ’s on each
part of X is then straightforward, see Table 2.

Here 50 training samples of size n = 9000 plus a test sample of size 9000 have been
generated. The performance results are reported in Table 3. For comparison purpose, some
level sets of the scoring functions learned on the first training sample for each method are
represented in Fig. 6.

Cardiotocography data We also illustrate the methodology promoted in this paper by
implementing it on a real data set, the Cardiotocography Data Set considered in Frank
and Asuncion (2010) namely. The data have been collected as follows: 2126 fetal car-
diotocograms (CTG’s in abbreviated form) have been automatically processed and the re-
spective diagnostic features measured. The CTG’s have been next analyzed by three ex-
pert obstetricians and a consensus ordinal label has been then assigned to each of them,
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Table 3 Comparison of the
VUS: “uniform”
experiment—VUS∗ = 0.3855

Method VUS(̂σ )

TreeRank 1v2 0.3681 (±0.0060)

TreeRank 2v3 0.3611 (±0.0056)

TreeRank 1v3 0.3774 (±0.0037)

TreeRank Agg 0.3818 (±0.0027)

RankBoostVUS 0.3681 (±0.0013)

RankBoost Agg 0.3687 (±0.0013)

SVMrank lin 0.3557 (±0.0008)

SVMrank gauss 0.3734 (±0.0008)

RLScore lin 0.3554 (±0.0005)

RLScore gauss 0.3742 (±0.0007)

Fig. 6 Levels sets of the scoring functions “TreeRank Agg”, “SVMrank lin”, “RLScore lin”, “RLScore
gauss”, “SVMrank gauss”, “RankBoostVUS”, “RankBoost Agg”
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Table 4 Comparison of the
VUS test—“Cardiotocography”
experiment

Method VUS test

TreeRank 1v2 0.2357

TreeRank 2v3 0.3314

TreeRank 1v3 0.6932

TreeRank Agg 0.8141

RankBoostVUS 0.8346

RankBoost Agg 0.8959

SVMrank lin 0.7202

SVMrank gauss 0.7856

RLScore lin 0.7652

RLScore gauss 0.7829

depending on the degree of anomaly observed: 1 for “normal”, 2 for “suspect” and 3 for
“pathologic”.

We have split the data set into a training sample De and a test sample Dt of same sizes:
scoring functions have been built based on the sample De and next tested on the sample Dt

(i.e. we have computed the empirical versions of the ROC and VUS criteria based on Dt ). In
this experiment, parameters have been selected by cross-validation: the scoring rule Rank-
BoostVUS is based on 300 stumps and the bipartite rules produced by RankBoost are based
on 100 stumps, the intercept involved in SVM ranklin is C = (0.001), while SVMrank
gauss, RLScore lin and RLScore gauss have been obtained with the respective parameters
(C,γ ) = (0.001,0.0001), bias = 1 and (bias, γ ) = (1,0.001). Performance results are re-
ported in Table 4 and the ROC surfaces test are plotted in Fig. 7.

Discussion We observe that, in each of these experiments, Kendall aggregation clearly im-
proves ranking accuracy, when measured in terms of VUS. In addition, looking at the stan-
dard deviation, we see that the aggregated scoring function is more stable. In terms of level
sets, Kendall aggregation yielded more complex subsets and thus sharper results. Notice ad-
ditionally that, as in the “Gaussian” experiment the level sets are linear, it is not surprising
that the kernel methods outperform the tree-based ones in this situation. In contrast, for the
“uniform” experiment, the tree-based methods performed much better than the others, the
performance of TreeRank Agg is nearly optimal. Looking at the level sets (see Fig. 6), they
seem to recover well their geometric structure. Observe also that Kendall aggregation of (bi-
partite) scoring functions produced by RankBoost has always lead to (slightly) better results
than those obtained by a direct use of RankBoost on the 3-class population, with a com-
putation time smaller by a factor 10 however. Finally, notice that, on the Cardiotocography
data set, the Kendall aggregation approach based on RankBoost is the method that produced
the scoring function with largest VUS test among the algorithms candidates. In particular, it
provides the best discrimination for the bipartite subproblem “1 vs 2”, the most difficult to
solve apparently, in view of the ROC surfaces plotted in Fig. 7.

Psychometric data For completeness, we also carried out experiments based on four
datasets with ordinal labels (ERA, ESL, LEV and SWD namely), considered in David
(2008) (due to the rarity of such data, regression datasets are sometimes transformed into
ordinal datasets to serve as benchmarkk, see Fürnkranz et al. 2009 and Huhn and Hüller-
meier 2008). Because of the wide disparity between certain class sizes, data with certain
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Fig. 7 ROC surfaces “test” of the scoring functions bipartite “TreeRank”, “TreeRank Agg”, “SVMrank lin”,
“RLScore lin”, “RLScore gauss”, “SVMrank gauss”, “RankBoostVUS”, “RankBoost Agg”

labels are ignored (in the ESL dataset for instance, the class “1” counts only two obser-
vations). On top of the ranking bipartite algorithms used previously, we also implemented
the aggregation method based on the algorithm RANKING FOREST with 50 trees and a
linear SVM with constant C = 50 as LEAFRANK procedure (see Clémençon et al. 2011b
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Table 5 Comparison of the VUS test—“ERA” experiment

Method class 1–7 class 1–9

VUS test C-index JPstat VUS test C-index JPstat

TreeRank Agg 0.0068 0.7099 0.7292 0.0027 0.7330 0.8023

TreeRankF Agg 0.0074 0.7125 0.7326 0.0028 0.7359 0.8050

RankBoostVUS 0.0082 0.7141 0.7347 0.0029 0.7344 0.8065

RankBoost Agg 0.0077 0.7130 0.7331 0.0028 0.7329 0.8042

SVMrank lin 0.0088 0.7158 0.7359 0.0034 0.7380 0.8103

SVMrank gauss 0.0054 0.7033 0.7215 0.0020 0.7284 0.7969

RLScore lin 0.0090 0.7151 0.7354 0.0034 0.7386 0.8102

RLScore gauss 0.0080 0.7130 0.7331 0.0029 0.7339 0.8052

Table 6 Comparison of the VUS test—“ESL” experiment (class 3–7)

Method VUS test C-index JPstat

TreeRank Agg 0.6209 0.9536 0.9551

TreeRankF Agg 0.6415 0.9588 0.9591

RankBoostVUS 0.5745 0.9496 0.9493

RankBoost Agg 0.5887 0.9513 0.9514

SVMrank lin 0.6337 0.9579 0.9583

SVMrank gauss 0.6074 0.9560 0.9544

RLScore lin 0.6387 0.9579 0.9590

RLScore gauss 0.6342 0.9568 0.9577

for more details), this is referred to as “TreeRankF Agg” in the tables. For each experi-
ment, in addition to the VUS, we computed alternative ranking performance statistics over
five replications of a five-fold cross validation: the C-INDEX (see Fürnkranz et al. 2009;
Herbrich et al. 2000) and the JONCKHEERE-TERPSTRA STATISTIC (JPstat in abbreviated
form, see Hand and Till 2001 and Higgins 2004). The results are reported in the Tables 5, 6,
7 and 8 (standard deviations are not indicated, their order of magnitude, 10−3 namely, being
negligible).

We highlight the fact that the results we obtained with the approach promoted in this
paper are quite comparable to those in Fürnkranz et al. (2009), they find a C-index of 0.7418
and a JPstat of 0.7265 in the case of ERA with nine classes as well as a C-index of 0.8660
and a JPstat of 0.8757 in the case of LEV with five classes. Contrary to the C-index and the
JPstat for which all the values obtained are very close to each other, the VUS seems to reveal
more contrast in the ranking performance. For instance, the aggregation procedure based
on the TREERANK algorithm clearly outperforms the other competitors when considering
the SWD dataset with classes 2–5, assessing the relevance of this approach in a situation
where the dimension of the input space is not small (10 namely) and the population very
skewed (the size of class “2” is very small compared to that of the others). Observe also
that, in the other cases, the aggregation technique implemented using RANKING FOREST

has performance very similar to the state-of-the-art: sometimes not considerably below (cf.
ERA with 7 classes, ERA and LEV) sometimes slightly better (cf. ESL and SWD with 3
classes).
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Table 7 Comparison of the VUS test—“LEV” experiment

Method class 0–3 class 0–4

VUS test C-index JPstat VUS test C-index JPstat

TreeRank Agg 0.4226 0.8347 0.8586 0.2932 0.8547 0.8758

TreeRankF Agg 0.4893 0.8617 0.8787 0.2995 0.8620 0.8761

RankBoostVUS 0.4842 0.8631 0.8773 0.2884 0.8637 0.8680

RankBoost Agg 0.4700 0.8570 0.8743 0.2761 0.8576 0.8703

SVMrank lin 0.4968 0.8668 0.8828 0.3124 0.8668 0.8753

SVMrank gauss 0.4870 0.8637 0.8783 0.2847 0.8638 0.8705

RLScore lin 0.4983 0.8668 0.8827 0.3122 0.8670 0.8751

RLScore gauss 0.4954 0.8639 0.8799 0.3215 0.8663 0.8797

Table 8 Comparison of the VUS test—“SWD” experiment

Method class 2–5 class 3–5

VUS test C-index JPstat VUS test C-index JPstat

TreeRank Agg 0.4221 0.8154 0.8674 0.5537 0.8072 0.8223

TreeRankF Agg 0.4169 0.8189 0.8659 0.5706 0.8150 0.8295

RankBoostVUS 0.3304 0.8141 0.8404 0.5619 0.8125 0.8280

RankBoost Agg 0.3562 0.8020 0.8498 0.5611 0.8127 0.8280

SVMrank lin 0.3278 0.8071 0.8369 0.5493 0.8083 0.8219

SVMrank gauss 0.3612 0.8140 0.8495 0.5599 0.8098 0.8238

RLScore lin 0.3316 0.8076 0.8386 0.5483 0.8078 0.8214

RLScore gauss 0.3680 0.8135 0.8518 0.5616 0.8123 0.8260

These empirical results only aim at illustrating the Kendall aggregation approach for
K-partite ranking, the limited goal pursued here being to show how aggregation helps to im-
prove results. Beyond the theoretical validity framework sketched in Sect. 3, since a variety
of bipartite ranking algorithms have been proposed in the literature and dedicated libraries
are readily available, one of the main advantages of the Kendall aggregation approach lies
in the fact that it is very easy to implement, when applied to bipartite rules that are not too
complex, so that the (approximate) median computation is feasible, see Sect. 3.2. A more
complete and detailed empirical analysis of the merits and limitations of this procedure is
currently the subject of ongoing work, where comparisons with competitors are carried out
and computational issues are investigated at length, provided that more real datasets with
ordinal labels can be obtained.

7 Conclusion

In this article, we have presented theoretical work on ranking data with ordinal labels. In the
first part of the paper, the issue of optimality has been tackled. We have proposed a mono-
tonicity likelihood ratio condition that guarantees the existence and unicity of an “optimal”
preorder on the input space, in the sense that it is optimal for any bipartite ranking subprob-
lem, considering all possible pairs of labels. In particular, the regression function is proved to
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define an optimal ranking rule in this setting, highlighting the connection between K-partite
ranking and ordinal regression. The second part is dedicated to describe a specific method
for decomposing the multi-class ranking problem into a series of bipartite ranking tasks, as
proposed in Fürnkranz et al. (2009). We have introduced a specific notion of median scoring
function based on the (probabilistic) Kendall τ distance. We have next shown that the no-
tion of ROC manifold/surface and its summary, the volume under the ROC surface (VUS),
then provide quantitative criteria for evaluating ranking accuracy in the ordinal setup: under
the afore mentioned monotonicity likelihood ratio condition, scoring functions whose ROC
surface is as high as possible everywhere exactly coincide with those forming the optimal
set (i.e. the set of scoring functions that are optimal for all bipartite subproblems, defined
with no reference to the notions of ROC surface and VUS). Conversely, we have proved
that the existence of a scoring function with such a dominating ROC surface implies that
the monotonicity likelihood ratio condition is fulfilled. It is shown that the aggregation pro-
cedure leads to a consistent ranking rule, when applied to scoring functions that are, each,
consistent for the bipartite ranking subproblem related to a specific pair of consecutive class
distributions. This approach allows for extending the use of ranking algorithms originally
designed for the bipartite situation to the ordinal multi-class context. It is illustrated by three
numerical examples. Further experiments, based on more real datasets in particular, will be
carried out in the future in order to determine precisely the situations in which this method
is competitive, compared to alternative ranking techniques in the ordinal multi-class setup.
In this respect, we underline that, so far, very few practical algorithms tailored for ROC
graph optimization have been proposed in the literature. Whereas, as shown at length in
Clémençon and Vayatis (2009b) and Clémençon et al. (2011a), partitioning techniques for
AUC maximization, in the spirit of the CART method for classification, can be implemented
in a very simple manner, by solving recursively cost-sensitive classification problems (with
a local cost, depending on the data lying in the cell to be split), recursive VUS maximiza-
tion remains a challenging issue, for which no simple interpretation is currently available.
Hence, the number of possible strategies for direct optimization of the ranking criterion in
the K-partite situation contrasts with that in the bipartite context and strongly advocates, for
the moment, for considering techniques that transform multi-class ranking into a series of
bipartite tasks, such as the method analyzed in this article.

Appendix A: Properties of the ROC surface

The next result summarizes several crucial properties of ROC surfaces. To the best of our
knowledge, though expected, these properties have not been formulated in the literature.
The technical proof straightforwardly relies on Proposition 17 in Clémençon and Vayatis
(2009b) and the definition of the ROC surface given in Eq. (2), it is thus left to the reader.

Proposition 14 (PROPERTIES OF THE ROC SURFACE) For any distributions f1(x), f2(x)

and f3(x) on X and any scoring function s ∈ S , the following properties hold.

1. Intersections with the facets of the ROC space. The intersection of the ROC sur-
face {(α,ROC(s,α), γ )} with the plane of Eq. “α = 0” coincides with the curve
{(β,ROCf2,f3(s, β))} up to the transform (β, γ ) ∈ [0,1]2 �→ ψ(β,γ ) = (1 − β,γ ), that
with the plane of Eq. “β = 0” corresponds to the image of the curve {(α,ROCf1,f3(s,α))}
by the mapping ψ(α,γ ) and that with the plane of Eq. “γ = 0” to the image of
{(α,ROCf1,f2(s,α))} by the transform ψ(α,β).
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2. Invariance. For any strictly increasing function T : R ∪ {+∞} → R ∪ {+∞}, we have,
for all (α, γ ) ∈ [0,1]2:

ROC(T ◦ s,α, γ ) = ROC(s,α, γ ).

3. Concavity. If the likelihood ratios dFs,2/dFs,1(u) and dFs,3/dFs,2(u) are both (strictly)
increasing transforms of a certain function T (u), then the ROC surface is (strictly) con-

cave. In particular, if Assumption 1 is fulfilled, the surface ROC∗ def= ROC(s∗, ., .), with
s∗ ∈ S ∗, is concave.

4. Flat parts. If the likelihood ratios dFs,2/dFs,1(u) and dFs,3/dFs,2(u) are simultaneously
constant on some interval in the range of the scoring function s(x), then the ROC surface
will present a flat part (i.e. will be a part of a plane) on the corresponding domain. In
addition, under the Assumption 1, (α, γ ) �→ ROC∗(α, γ ) is a linear function of (α, γ ) on
[α1, α2] × [γ1, γ2] ⊂ Is iff f2/f1(x) and f3/f2(x) are constant on the subsets

{
x ∈ X | Q(

f2/f1(X),α2

) ≤ f2/f1(x) ≤ Q
(
f2/f1(X),α1

)}

and
{
x ∈ X | Q(

f3/f2(X), γ2
) ≤ f3/f2(x) ≤ Q

(
f3/f2(X), γ1

)}

respectively, denoting by Q(Z,α) the quantile of order 1 − α of any random variable Z.
5. Differentiability. Assume that the distributions f1(x), f2(x) and f3(x) are continu-

ous. Then, the ROC surface of a scoring function s is differentiable if and only if
the conditional distributions Fs,1(du), Fs,2(du) and Fs,3(du) are continuous. In such
a case, denoting by fs,1, fs,2 and fs,3 the corresponding densities, we have in particular:
∀(α, γ ) ∈ Is ,

∂

∂α
ROC(s,α, γ ) = −fs,2

fs,1

(
F−1

s,1 (α)
)

when fs,1

(
F−1

s,1 (α)
)
> 0,

∂

∂γ
ROC(s,α, γ ) = −fs,2

fs,3

(
F−1

s,3 (1 − γ )
)

when fs,3

(
F−1

s,3 (1 − γ )
)
> 0.

Preliminary results related to statistical estimation of the ROC surface of a fixed scoring
function s(x) can be found in Li and Zhou (2009), additional results related to the building
of confidence regions in the ROC space [0,1]3 are established in Robbiano (2010).

Alternative ROC graph Another way of quantifying the ranking accuracy of a scoring
function in the multi-class setting is to evaluate its ability to discriminate between X’s con-
ditional distributions given Y ≤ k and Y > k respectively, which we denote hk(x) and gk(x),
for k ∈ {1, . . . ,K − 1}. This boils down to plot the graph of the mapping α ∈ [0,1] �→
(ROCh1,g1(s, α), . . . ,ROChK−1,gK−1(s,α)). It straightforwardly follows from the stipulated
monotonicity hypothesis (cf. Assumption 1) that the curve related to s∗ ∈ S ∗ dominates
the curve of any other scoring function s in the coordinatewise sense: ROChk,gk

(s, α) ≤
ROChk,gk

(s∗, α) for all α ∈ [0,1], 1 ≤ k < K . The likelihood ratio gk/hk(X) is indeed a non
decreasing function of s∗(X), see Theorem 3.4.1 in Lehmann and Romano (2005) for in-
stance. However, with such a functional representation of ranking performance, one loses an
attractive advantage, the insensitivity to the class probabilities pk . Indeed, the distributions
hk(x) and gk(x) depend on the latter, they can be expressed as

∑
l≤k plfl(x)/(

∑
l≤k pl) and∑

l>k plfl(x)/(
∑

l>k pl) respectively.
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On the ROC surface of a classification rule We point out that, with the convention pre-
viously introduced, the ROC surface of a classifier C : X → {1,2,3} is the polyhedron
with vertices (0,0,1), (0, α2,1,1 − α3,1), (0,1 − α2,3, α3,3), (0,1,0), (α1,1,0,1 − α3,1),
(α1,1, α2,2, α3,3), (α1,1,1 − α2,1,0), (1 − α1,3,0, α3,3), (1 − α1,3, α2,3,0) and (1,0,0), where
αk,l = P{C(X) = l | Y = k}. We underline that the confusion matrix M(C) = {αk,l} can be
fully recovered from this geometric solid, which is actually a decahedron when the matrix
M(C) has no null entry. Observe finally that this graphic representation of M(C) differs
from that which derives from the multi-class notion of ROC analysis proposed in Ferri et al.
(2003). In the latter case, the ROC space is defined as [0,1]6 and M(C) is represented by
the point with coordinates (α1,2, α1,3, α2,1, α2,3, α3,1, α3,2). Notice incidentally that the lat-
ter concept of ROC analysis is more general in the sense that it permits to visualize the
performance of K(K − 1)/2 classifiers involved in a one-versus-one classification method.

Appendix B: Technical proofs

B.1 Proof of Proposition 1

The assertions (3) ⇒ (2), (2) ⇒ (4) and (2) ⇒ (5) are straightforward.
(1) ⇒ (3) Recall that η(x) = ∑K

k=1 k · ηk(x). Our goal is to establish that: ∀(x, x ′) ∈ X 2,

Φk,l(x) < Φk,l

(
x ′) ⇒ η(x) < η

(
x ′).

The proof is based on the next lemma.

Lemma 2 Suppose Assumption 1 is satisfied. Let (x, x ′) ∈ X 2. If there exists 1 ≤ l < k ≤ K

such that 0 < Φk,l(x) < Φk,l(x
′), then for all j ∈ {1, . . . ,K}, we have

K∑

i=j

ηi(x) ≤
K∑

i=j

ηi

(
x ′). (6)

Additionally, a strict version of inequality (6) holds true when j = l + 1.

Proof Let (x, x ′) ∈ X 2 and 1 ≤ l < k ≤ K be such that Φk,l(x) < Φk,l(x
′)

Combining Φk,l(x) = plηk(x)

pkηl (x)
and ηl(x) = 1 − ∑

i �=l ηi(x), we clearly have

ηk(x) − ηk(x)
∑

i �=l

ηi

(
x ′) < ηk

(
x ′) − ηk

(
x ′)∑

i �=l

ηi(x),

and, by virtue of Assumption 1, for 1 ≤ j ≤ m ≤ K :

ηm(x) ≤ ηm

(
x ′) +

∑

i<j−1

{
ηm(x)ηi

(
x ′) − ηm

(
x ′)ηi(x)

}
(7)

+
∑

i>j−1

{
ηm(x)ηi

(
x ′) − ηm

(
x ′)ηi(x)

}
,

≤ ηm

(
x ′) +

∑

i>j−1

{
ηm(x)ηi

(
x ′) − ηm

(
x ′)ηi(x)

}
. (8)
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Summing up, term-by-term, inequalities (7) for m = j, . . . ,K , one gets that

K∑

m=j

ηm(x) ≤
K∑

m=j

ηm

(
x ′) +

K∑

m=j

K∑

i=j

{
ηm(x)ηi

(
x ′) − ηm

(
x ′)ηi(x)

}
.

The proof is finished by noticing that the sum on the right hand side of the inequality above
is equal to 0. �

The desired result is established by summing up the inequalities (6) stated in Lemma 2
for j = 1, . . . ,K .

(4) ⇒ (2) Using the fact that Φk,l(x) = ∏k−1
j=l Φj+1,j (x), immediatly gives the result.

(5) ⇒ (1) We call Ψk,l the nondecreasing function such that Φk,l(x) = Ψk,l(s
∗(x)). Let

(k, l) ∈ {1, . . . ,K}2 s.t. l < k and x, x ′ in Xk ∩ Xl . Suppose that Φk+1,k(x) < Φk+1,k(x
′).

The functions Ψ −1
k,l are nondecreasing, just like the Ψk,l’s. The equality Φl+1,l(x) =

Ψl+1,l(Ψ
−1
k+1,k ◦ Φk+1,k(x)) on Xk ∩ Xl leads to the result.

B.2 Proof of Proposition 2

Notice first that it is actually sufficient to prove that Xk−1 ∩ Xk+1 ⊂ Xk for all k ∈ {2, . . . ,K −
1}. Let 1 < k < K and suppose that Xk−1 ∩ Xk �= ∅ (the inclusion is immediate other-
wise). Consider x ∈ Xk−1 ∩ X̄k ∩ Xk+1, where X̄k = X \ Xk . We thus have: Φk,k−1(x) = 0
and Φk+1,k(x) = +∞. Hence, for any x ′ ∈ Xk , we have: 0 = Φk,k−1(x) ≤ Φk,k−1(x

′) and
Φk+1,k(x

′) ≤ Φk+1,k(x) = +∞. Assumption 1 implies that both inequalities are actually
equalities, which is in contradiction with the fact that x ′ ∈ Xk .

B.3 Proof of Proposition 3

Under Assumption 1, the regression function η is an optimal scoring function (see The-
orem 1(3)). Using the fact that φk+1,k ∈ S ∗

k+1,k combined with Theorem 1(4), we ob-
tain τ(s∗

k , η) = 1 for k = 1, . . . ,K − 1. As η ∈ S1, it achieves the maximum over the
class S1, yielding (2). Hence, for any median scoring rule s̄, we have τ(s∗

k , s̄) = 1 for
k ∈ {1, . . . ,K − 1}, i.e. s̄ ∈ S ∗

k+1,k for k ∈ {1, . . . ,K − 1}, and thus s̄ ∈ S ∗.

B.4 Proof of Proposition 4

This results from the change of parameters: α = Fs,1(t1) and γ = 1 − Fs,3(t2).

B.5 Proof of Lemma 1

(1) ⇒ (2) If ROC(s,α, γ ) > 0 using Proposition 4, we get t1 < t2, α = Fs,1(t1) and γ =
1−Fs,3(t2). Using the definition of the ROC curve and t1 < t2, we have ROCf1,f3(s,1−γ ) =
1 − Fs,3(t1) > 1 − Fs,3(t2) = γ . (2) ⇒ (1) If ROCf1,f3(s,1 − γ ) > γ then 1 − Fs,3(t1) >

1 − Fs,3(t2) so t1 < t2, and Fs,2(t2) − Fs,2(t1) > 0. This yields the desired result.

B.6 Proof of Theorem 1

Let (s, s∗) ∈ S × S ∗. Since, in particular, the scoring function s∗ belongs to the set
S ∗

1,3, we have ROCF1,F3(s
∗,1 − α) ≥ ROCF1,F3(s,1 − α) for all α ∈ [0,1]. Hence, as

the desired bound obviously holds true on the set {(α, γ ): γ > ROCF1,F3(s
∗,1 − α)} ⊂
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{(α, γ ): γ > ROCF1,F3(s,1−α)}, we place ourselves on the complementary set {(α, γ ): γ ≤
ROCF1,F3(s

∗,1 − α)}, on which we have

ROC
(
s∗, α, γ

) − ROC(s,α, γ ) ≤ (
ROCf1,f2

(
s∗,1 − α

) − ROCf1,f2(s,1 − α)
)

+ (
ROCf3,f2(s, γ ) − ROCf3,f2

(
s∗, γ

))
.

The terms on the right hand side of the equation are both nonnegative, since s∗ lies in S ∗
1,2

and S ∗
3,2 respectively (observing that, whatever the two distributions H and G on R and for

any s ∈ S and (α,β) ∈ [0,1]2, we have: ROCH,G(s,α) ≤ β ⇔ α ≤ ROCG,H (s,β)). The first
part of the result is thus established.

Suppose that there exists s∗ ∈ S such that, for any s ∈ S , we have: ∀(α, γ ) ∈ [0,1]2,

ROC
(
s∗, α, γ

) ≥ ROC(s,α, γ ). (9)

Observe that, if γ > ROCf1,f3(s
∗,1−α), this implies that γ > ROCf1,f3(s,1−α), whatever

(α, γ ). It then follows that s∗ ∈ S ∗
1,3. Now the fact that s∗ belongs to S ∗

1,2 (respectively, to
S ∗

1,3) straightforwardly result from Eq. (9) with β = 0 (respectively, with α = 1).

B.7 Proof of Proposition 5

We denote by Ē = X \ E the complementary set of any subset E ⊂ X and set m1(x) =
I{x ∈ R̄∗(1)

α } − I{x ∈ R̄(1)
s,α} and m3(x) = I{x ∈ R

∗(3)

1−γ } − I{x ∈ R
(3)

s,1−γ } for α ∈ [0,1]. On the
set {(α, γ ): γ ≤ ROCf1,f3(s

∗,1 − α)}, we may then write:

ROC
(
s∗, α, γ

) − ROC(s,α, γ ) ≤ −E
[
m1(X)|Y = 2

] − E
[
m3(X)|Y = 2

]
.

Considering the first ROC curve deficit, we have:

−E
[
m1(X)|Y = 2

] = −p1

p2
E

[
m1(X)

η2(X)

η1(X)

∣∣∣∣ Y = 1

]
.

Then we add and subtract η3(x)

η1(x)
− 1−Q(1)(η1,α)

Q(1)(η1,α)
, this leads to:

−E
[
m1(X)|Y = 2

] = −p1

p2
E

[
m1(X)

(
η2(X) + η3(X)

η1(X)
+ 1 − Q(1)(η1, α)

Q(1)(η1, α)

)∣∣∣∣Y = 1

]

+ p1

p2
E

[
m1(x)

η3(X)

η1(X)

∣∣∣∣Y = 1

]
.

By definition of s∗, the second term on the right hand side of the equation above is equal to

p3

p2
E

[
m1(X)|Y = 3

] = ROCf1,f3(s,1 − α) − ROCf1,f3

(
s∗,1 − α

)
,

while, for the first term, by removing the conditioning with respect to Y = 1 and using then
the definition of Q(1)(η1, α), we get:

1

p2Q(1)(η1, α)
E

[
m1(X)

(
η1(X) − Q(1)(η1, α)

)] = 1

p2
E

[∣∣η1(X) − Q(1)(η1, α)
∣∣m1(X)

]
.

The first part of the desired bound follows from AΔB = ĀΔB̄ . The other ROC curve dif-
ference can be handled the same way. This leads to the desired result.
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B.8 Proof of Proposition 6

We have:

VUS(s) =
∫ 1

0

∫ 1

0
ROC(s,α, γ )dα dγ =

∫ 1

0

∫ 1−γ

0
(1 − α − γ )dα dγ

= 1

2

∫ 1

0
(1 − γ )2 dα dγ = 1/6,

which establishes the first assertion, while the second one results from:

VUS(s) =
∫ 1

0

∫ 1

0
dα dγ = 1.

B.9 Proof of Proposition 8

The result simply follows from integration over (α, γ ) ∈ [0,1]2 of the inequality stated in
Theorem 1.

B.10 Proof of Proposition 9 (sketch of)

This result simply derives from Proposition 4 in Clémençon and Vayatis (2009b), applied to
the bipartite ranking subproblems related to the pairs (k, k + 1), with 1 ≤ k < K .

B.11 Proof of Theorem 2

Let (s, s∗) ∈ S × S ∗. Notice that, as s∗ ∈ S ∗
1,3, we have {(α, γ ): γ ≤ ROCf1,f3(s,1 − α)} ⊂

{(α, γ ): γ ≤ ROCf1,f3(s
∗,1 − α)}, so that

ROC∗(α, γ ) − ROC(s,α, γ ) ≤ {
ROCf1,f2

(
s∗,1 − α

) − ROCf3,f2

(
s∗, γ

)

− (
ROCf1,f2(s,1 − α) − ROCf3,f2(s, γ )

)
+
}

× I
{
γ ≤ ROC∗

f1,f3
(1 − α)

}

≤ {
ROCf1,f2

(
s∗,1 − α

) − ROCf3,f2

(
s∗, γ

)

− ROCf1,f2(s,1 − α) − ROCf3,f2(s, γ )
}

× I
{
γ ≤ ROC∗

f1,f3
(1 − α)

}

≤ (
ROCf1,f2

(
s∗,1 − α

) − ROCf1,f2(s,1 − α)
)

− (
ROCf3,f2

(
s∗, γ

) − ROCf3,f2(s, γ )
)
.

Integrating over (α, γ ) ∈ [0,1]2 then yields the desired bound, using the fact that, for any
s ∈ S0,

∫ 1
γ=0 ROCf3,f2(s, γ )dγ = 1 − AUCf2,f3(s).

B.12 Proof of Proposition 10 (sketch of)

Observe that this result corresponds to Corollary 8 in Clémençon et al. (2008), applied to the
regression function obtained when conditioning upon the event Y ∈ {k, k + 1}, 1 ≤ k < K .
We refer to the argument of the latter.
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B.13 Proof of Proposition 11

Recall that τ(s1, s2) = 1 − 2dτ (s1, s2), where dτ (s1, s2) is given by:

P
{(

s1(X) − s1

(
X′)) · (s2(X) − s2

(
X′)) < 0

} + 1

2
P
{
s1(X) = s1

(
X′), s2(X) �= s2

(
X′)}

+ 1

2
P
{
s1(X) �= s1

(
X′), s2(X) = s2

(
X′)}.

Observe first that, for all s ∈ S0, AUCf1,f2(s) may be written as:

P
{(

s(X) − s
(
X′)) · (Y − Y ′) > 0

}
/
(
2p(1 − p)

) + P
{
s(X) = s

(
X′), Y �= Y ′}/

(
4p(1 − p)

)
.

Notice also that, using Jensen’s inequality, one easily obtain that the quantity 2p(1 −
p)|AUCf1,f2(s1) − AUCf1,f2(s2)| is bounded by the expectation of the random variable

I
{(

s1(X) − s1
(
X′)) · (s2(X) − s2

(
X′)) < 0

} + 1

2
I
{
s1(X) = s1

(
X′)} · I

{
s2(X) �= s2

(
X′)}

+ 1

2
I
{
s1(X) �= s1

(
X′)} · I

{
s2(X) = s2

(
X′)},

which is equal to dτ (s1, s2) = (1 − τ(s1, s2))/2. This proves the assertion.

B.14 Proof of Proposition 12

Set Γs = {(x, x ′) ∈ X 2: (ζ(x) − ζ(x ′))(s(x) − s(x ′)) < 0}. We have, for all real valued scor-
ing functions (s, s∗) ∈ S × S ∗

1,2:

dτ

(
s, s∗) ≤ P

{(
X,X′) ∈ Γs

} + 1

2
P
{
s(X) = s

(
X′)}.

Recall also that

2p(1 − p)
(
AUC∗

f1,f2
− AUCf1,f2(s)

) = E
[∣∣ζ(X) − ζ

(
X′)∣∣I

{(
X,X′) ∈ Γs

}]

+ P
{
s(X) = s

(
X′),

(
Y,Y ′) = (−1,+1)

}
,

see Example 1 in Clémençon et al. (2008) for instance.
Observe that Hölder inequality combined with the noise condition shows that the quantity

E [I{(X,X′) ∈ Γs}] is bounded by

E
[∣∣ζ(X) − ζ

(
X′)∣∣ · I

{(
X,X′) ∈ Γs

}]a/(1+a)
c

1/(1+a)

.

In addition, we have

P
{
s(X) = s

(
X′),

(
Y,Y ′) = (−1,+1)

}

= 1

2
E

[
I
{
s(X) = s

(
X′)} · (ζ(X) + ζ

(
X′) − 2ζ(X)ζ

(
X′))],

and the upper bound can be easily seen as larger than E[I{s(X) = s(X′)} · |ζ(X)− ζ(X′)]/2.
Therefore, using the same Hölder argument as above, we obtain that

P
{
s(X) = s

(
X′)} ≤ (

E
[∣∣ζ(X) − ζ

(
X′)∣∣ · I

{
s(X) = s

(
X′)}])a/(1+a) × c1/(1+a).

Combining the bounds above, the concavity of t �→ ta/(1+a) permits to finish the proof.
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B.15 Proof of Theorem 3

Let (s(1)
n , s(2)

n ) be a sequence of real-valued scoring functions in S1 such that, as n → ∞,
AUCf1,f2(s

(1)
n ) → AUC∗

f1,f2
and AUCf2,f3(s

(2)
n ) → AUC∗

f2,f3
. Here we consider the follow-

ing consensus measure: ∀s ∈ S1,

Δn(s) = dτ

(
s, s(1)

n

) + dτ

(
s, s(2)

n

)
.

Let s∗ ∈ S1 ∩ S ∗. Denote by dτ1,2 the Kendall tau distance when X ∼ (p1/(1 − p3))F1 +
(p2/(1 − p3))F2. Proposition 11, combined with the triangular inequality applied to the
pseudo-distance dτ1,2 , implies that

AUC∗
f1,f2

− AUCf1,f2(s̄n) ≤ dτ1,2(s
∗, s̄n)

p1p2/(1 − p3)2

≤ dτ1,2(s̄
(1)
n , s̄n) + dτ1,2(s

∗, s̄(1)
n )

p1p2/(1 − p3)2

≤ dτ1,2(s
∗, s̄(1)

n )

p1p2/(1 − p3)2
+ dτ (s̄

(1)
n , s̄n)

p1p2
.

The desired result follows from Proposition 12 combined with the AUC-consistency as-
sumptions.

B.16 Proof of Proposition 13

By virtue of Theorem 2, we have:

VUS∗ − VUS(̂η) ≤ (
AUC∗

f1,f2
− AUCf1,f2 (̂η)

) + (
AUC∗

f2,f3
− AUCf2,f3 (̂η)

)
.

Considering the first term on the right hand side of the equation above, we have:

AUC∗
f1,f2

− AUCf1,f2 (̂η) = 1

2p1p2
E

[∣∣η1(X)η2

(
X′) − η1

(
X′)η2(X)

∣∣ · I
{(

X,X′) ∈ Γ
}]

,

where

Γ = {(
x, x ′) ∈ X 2: (η(x) − η

(
x ′))(η̂(x) − η̂

(
x ′)) < 0

}
.

By using the triangular inequality and Lemma 2, one may establish that: ∀(x, x ′) ∈ X 2,
∀i ∈ {1,2,3},

∣∣ηi(x) − ηi

(
x ′)∣∣ <

∣∣η(x) − η
(
x ′)∣∣.

Then, we get:

AUC∗
f1,f2

− AUCf1,f2 (̂η) ≤ 1

2p1p2
E

[∣∣η(X) − η
(
X′)∣∣I

{(
X,X′) ∈ Γ

}]
.

But, one may easily check that, if (x, x ′) ∈ Γ , then
∣∣η(x) − η

(
x ′)∣∣ ≤ ∣∣η(x) − η̂(x)

∣∣ + ∣∣η
(
x ′) − η̂

(
x ′)∣∣.

As the same argument can be applied to the second AUC difference, this gives the desired
result.
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