Mach Learn (2013) 90:385-429
DOI 10.1007/s10994-012-5322-7

TEXPLORE: real-time sample-efficient reinforcement
learning for robots

Todd Hester - Peter Stone

Received: 14 September 2011 / Accepted: 12 September 2012 / Published online: 24 October 2012
© The Author(s) 2012

Abstract The use of robots in society could be expanded by using reinforcement learn-
ing (RL) to allow robots to learn and adapt to new situations online. RL is a paradigm for
learning sequential decision making tasks, usually formulated as a Markov Decision Process
(MDP). For an RL algorithm to be practical for robotic control tasks, it must learn in very
few samples, while continually taking actions in real-time. In addition, the algorithm must
learn efficiently in the face of noise, sensor/actuator delays, and continuous state features.
In this article, we present TEXPLORE, the first algorithm to address all of these challenges
together. TEXPLORE is a model-based RL method that learns a random forest model of
the domain which generalizes dynamics to unseen states. The agent explores states that
are promising for the final policy, while ignoring states that do not appear promising. With
sample-based planning and a novel parallel architecture, TEXPLORE can select actions con-
tinually in real-time whenever necessary. We empirically evaluate the importance of each
component of TEXPLORE in isolation and then demonstrate the complete algorithm learning
to control the velocity of an autonomous vehicle in real-time.

Keywords Reinforcement learning - Robotics - MDP - Real-time

1 Introduction

Robots have the potential to solve many problems in society, because of their ability to work
in dangerous places doing necessary jobs that no one wants or is able to do. Robots could
be used for space exploration, mining, underwater tasks, caring for the elderly, construction,
and so on. One barrier to their widespread deployment is that they are mainly limited to tasks
where it is possible to hand-program behaviors for every situation that may be encountered.
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For robots to meet their potential, they need methods that enable them to learn and adapt to
novel situations that they were not programmed for.

Reinforcement learning (RL) (Sutton and Barto 1998) algorithms learn sequential deci-
sion making processes and could solve the problems of learning and adaptation on robots.
An RL agent seeks to maximize long-term rewards through experience in its environment.
The decision making tasks in these environments are usually formulated as Markov Decision
Processes (MDPs).

Learning on robots poses many challenges for RL, because a successful method must
learn quickly while running on the robot. In addition, the method must handle continuous
state as well as noisy and/or delayed sensors and actuators. RL has been applied to a few
carefully chosen robotic tasks that are achievable with limited training and infrequent action
selections (e.g. Kohl and Stone 2004), or allow for an off-line learning phase (e.g. Ng et al.
2003). However, to the best of our knowledge, none of these methods allow for continual
learning on the robot running in its environment. In this article, we identify four properties
of an RL algorithm that would make it generally applicable to a broad range of robot control
tasks:

1. The algorithm must learn from very few samples (which may be expensive or time-
consuming).

2. It must learn tasks with continuous state representations.

3. It must learn good policies even with unknown sensor or actuator delays (i.e. selecting
an action may not affect the environment instantaneously).

4. It must be computationally efficient enough to take actions continually in real-time.

In addition to these four properties, it would be desirable for the algorithm to require mini-
mal user input. Addressing these challenges not only makes RL applicable to more robotic
control tasks, but also many other real-world tasks. We demonstrate the importance of each
of these challenges in learning to control an autonomous vehicle.

While algorithms exist that address various subsets of these challenges, we are not aware
of any that are easily adapted to address all four issues. A full comparison with prior work
appears in Sect. 4, but as an example, PILCO (Deisenroth and Rasmussen 2011) uses a Gaus-
sian Process regression model to achieve very high sample efficiency on continuous tasks.
However, it is computationally intensive and requires 10 minutes of computation for every
2.5 seconds of interaction on a physical Cart-Pole device. It is also not trivial to accommo-
date delays in actuation or state observations into this method. Bayesian RL methods, such
as BOSS (Asmuth et al. 2009) and Bayesian DP (Strens 2000), maintain a distribution over
likely MDP models and can utilize information from this distribution to explore efficiently
and learn optimal policies. However, these methods are also computationally expensive,
cannot easily handle delays, and require the user to provide a model parametrization that
will be useful for generalization.

In contrast to these approaches, we present the TEXPLORE algorithm, the first algorithm
to address all four challenges at once. To address challenge 1, an algorithm needs to limit its
exploration to learn an accurate domain model quickly, such that it can exploit that model
during its short lifetime. TEXPLORE does so by (1) utilizing the generalization properties
of decision trees in building its model of the MDP, and (2) using random forests of those
tree models to explore efficiently to learn a good policy quickly. Unlike methods such as
R-MAX (Brafman and Tennenholtz 2001) that explore more thoroughly to guarantee an op-
timal policy, TEXPLORE explores in a limited way, focusing on promising state-actions to
learn a good policy with fewer exploration steps. This approach enables TEXPLORE to learn
in large domains where methods with strong convergence guarantees such as R-MAX would
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explore indefinitely, but it also means that TEXPLORE may not explore some unexpected but
high-rewarding state-actions.

TEXPLORE addresses challenge 2 by using linear regression trees to model continuous
domains. For delayed domains (challenge 3), TEXPLORE takes the k-Markov approach (Kat-
sikopoulos and Engelbrecht 2003). It gives its models the previous k actions for training and
takes advantage of the ability of decision trees to select the inputs with the correct delay
for each task. In response to challenge 4, TEXPLORE utilizes a unique parallel architecture
and Monte Carlo Tree Search (MCTS) planning, enabling the algorithm to provide actions
continually in real-time at whatever frequency is required. In contrast to Bayesian methods,
TEXPLORE does not need to maintain and update a full distribution over models (saving
computation), and does not need a user-defined model parametrization, instead taking ad-
vantage of the generalization properties of decision trees.

We demonstrate that TEXPLORE’s solution to each of these tasks performs better than
state of the art alternatives empirically on the novel task of controlling the velocity of an
autonomous vehicle. In addition, we show that solving each challenge is essential for robust
and effective robot learning, as a learning agent that addresses all of the challenges accrues
more reward than agents missing any one of the components.

There are four main contributions of this article:

. The use of regression trees to model continuous domains.
. The use of random forests to provide targeted, limited exploration for an agent to quickly
learn good policies.
3. A novel multi-threaded architecture that is the first to parallelize model learning in addi-
tion to planning and acting.
4. The complete implemented TEXPLORE algorithm, which is the first to address all of the
previously listed challenges in a single algorithm.

[N

The TEXPLORE algorithm and architecture presented in this paper has been fully imple-
mented, empirically tested, and released publicly as a ROS package at: http://www.ros.org/
wiki/rl-texplore-ros-pkg. With the code released as a ROS package, TEXPLORE can be easily
downloaded and applied to a learning task on any robot running ROS with minimal effort.
The goal of this algorithm and code release is to encourage more researchers to perform
learning on robots using state-of-the-art algorithms.

This paper includes material from two conference papers: Hester and Stone (2010) and
Hester et al. (2012). Hester and Stone (2010) includes material on learning models using
random forests and has similar Fuel World experiments. Hester et al. (2012) presents the
parallel architecture for real-time actions and some similar real-time car experiments. All the
other contributions are unique to this article, including TEXPLORE’s approach for learning
in continuous and delayed domains, and all the experiments.

The remainder of this article is organized as follows. We present some background on
RL and MDPs in Sect. 2 before describing the TEXPLORE algorithm in Sect. 3. Section 4
presents work related to each aspect of the algorithm. In Sect. 5, we demonstrate the ability
of the algorithm to address each of the above challenges on a task that requires all of the
components: learning to control the velocity of an autonomous vehicle in real-time. Finally,
we present conclusions in Sect. 6.

2 Background

We adopt the standard Markov Decision Process (MDP) formalism for this work (Sutton
and Barto 1998). An MDP is defined by a tuple (S, A, R, T'), which consists of a set of
states S, a set of actions A, a reward function R(s, a), and a transition function 7' (s, a, s') =
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P(s’ | s,a).Ineach state s € S, the agent takes an action a € A. Upon taking this action, the
agent receives a reward R(s, a) and reaches a new state s’, determined from the probability
distribution P(s’ | s, a). Many domains utilize a factored state representation, where the
state s is represented by a vector of n state variables: s = (sy, 52, ..., 5,). A policy 7 specifies
for each state which action the agent will take.

The value Q7 (s, a) of a given state-action pair (s, a) is an estimate of the expected future
reward that can be obtained from (s, @) when following policy 7. The goal of the agent is
to find the policy 7 mapping states to actions that maximizes the expected discounted total
reward over the agent’s lifetime. The optimal value function Q*(s, a) provides maximal
values in all states and is determined by solving the Bellman equation:

Q*(s,a):R(s,a)—i—yZP(s/|s,a)m2/1xQ*(s/,a/), €))

where 0 < y < 1 is the discount factor. The optimal policy 7 is then as follows:

7 (s) = argmax Q(s, a). ?2)

RL methods fall into two general classes: model-based and model-free methods. Model-
based RL methods learn a model of the domain by approximating R(s,a) and P(s’ | s, a)
for each state and action. The agent can then calculate a policy (i.e. plan) using this model
through a method such as value iteration (Sutton and Barto 1998) or ucT (Kocsis and
Szepesvari 2006), effectively updating the Bellman equations for each state using its model.
Model-free methods work without a model, updating the values of actions only when taking
them in the real task. Generally model-based methods are more sample efficient than model-
free methods. Model-free methods must visit each state many times for the value function to
converge; while the sample efficiency of model-based methods is only constrained by how
many samples it takes to learn a good model of the domain.

The agent’s model of the domain can be learned using a number of techniques. A com-
mon approach is to use a maximum-likelihood tabular model where the agent learns a model
for each state-action separately based on the frequencies of the seen outcomes. Alternatively,
the agent could learn the model using a supervised learning technique, such as decision trees
or Gaussian Process regression.

3 TEXPLORE

In this article, we introduce TEXPLORE (Hester and Stone 2010), a sample-efficient model-
based real-time RL algorithm. When learning on robots, the agent has very few samples
to learn since the samples may be expensive, dangerous, or time-consuming. Therefore,
learning algorithms for robots must be greedier than typical methods in order to exploit
their knowledge in the limited time they are given. Since these algorithms must perform
limited exploration, their exploration must be efficient and target state-actions that may be
promising for receiving reward. TEXPLORE achieves high sample efficiency by (1) utilizing
the generalization properties of decision trees in building its model of the MDP, and (2)
using random forests of those tree models to limit exploration to states that are promising
for learning a good (but not necessarily optimal) policy quickly, instead of exploring more
exhaustively to guarantee optimality. These two components constitute the key insights of
the algorithm, and are explained in Sect. 3.2 (Model Learning) and Sect. 3.4 (Exploration).
Modifications to the basic decision tree model enable TEXPLORE to operate in domains with
continuous state spaces as well as domains with action or observation delays.
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Algorithm 1 Sequential Model-Based Architecture
1: Input: S, A > §: state space, A: action space

: Initialize M to empty model

: Initialize policy 7 randomly

: Initialize s to a starting state in the MDP

loop
Choose a < m(s)
Take action a, observe r, s’
M = UPDATE-MODEL((s, a, s’, r)) > Update model M with new experience
7T < PLAN-POLICY(M) > Exact planning on updated model
s <5

: end loop

R A A i
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The other key feature of the algorithm is that it can act in real-time, at the frequencies re-
quired by robots (typically 5-20 Hz). For example, an RL agent controlling an autonomous
vehicle must provide control signals to the gas and brake pedals immediately when a car
in front of it slams on its brakes; it cannot stop to “think” about what to do. An alterna-
tive approach for acting in real-time would be to learn off-line and then follow the learned
policy in real-time after the fact. However, we want the agent to be capable of learning on-
line in-situ for the lifetime of the robot, adapting to new states and situations. TEXPLORE
combines a multi-threaded architecture with Monte Carlo Tree Search (MCTS) to provide
actions in real-time, by performing the model learning and planning in background threads
while actions are returned in real-time. Each aspect of TEXPLORE is presented separately in
Sects. 3.1 to 3.4 before putting together the complete algorithm in Sect. 3.5.

3.1 Real-Time Architecture

In this section, we introduce TEXPLORE’s parallel architecture, enabling it to return actions
in real-time. Most current model-based RL methods use a sequential architecture such as the
one shown in Fig. 1. Pseudo-code for the sequential architecture is shown in Algorithm 1.
In this sequential architecture, the agent receives a new state and reward; updates its model
with the new transition (s, a, s’, r) (i.e. by updating a tabular model or adding a new training
example to a supervised learner); plans exactly on the updated model (i.e. by computing the
optimal policy with a method such as value iteration); and returns an action from its policy.
Since both the model learning and planning can take significant time, this algorithm is not
real-time. Alternatively, the agent may operate in batch mode (updating its model and plan-
ning on batches of experiences at a time), but this requires long pauses for the batch updates
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to be performed. Making the algorithm real-time requires two modifications to the stan-
dard sequential architecture: (1) utilizing sample-based approximate planning (presented in
Sect. 3.1.1) and (2) developing a novel parallel architecture (presented in Sect. 3.1.2). We
later evaluate this planning method and parallel architecture in comparison with other ap-
proaches in Sect. 5.4.

3.1.1 Monte Carlo Tree Search (MCTS) Planning

The first component for providing actions in real-time is to use an anytime algorithm for
approximate planning, rather than performing exact planning using a method such as value
iteration. This section describes TEXPLORE’s use of UCT for approximate planning as well
as the modifications we have made to the algorithm. We have modified UCT to use A-returns,
generalize values across depths in the search tree, maintain value functions between selected
actions, and work in continuous domains. All of these changes are described in detail below.

TEXPLORE follows the approach of Silver et al. (2008) and Walsh et al. (2010) (among
others) in using a sample-based planning algorithm from the MCTS family (such as Sparse
Sampling (Kearns et al. 1999) or UCT (Kocsis and Szepesvari 2006)) to plan approximately.
These sample-based planners use a generative model to sample ahead from the agent’s cur-
rent state, updating the values of the sampled actions. These methods can be more efficient
than dynamic programming approaches such as value iteration or policy iteration in large
domains because they focus their updates on states the agent is likely to visit soon rather
than iterating over the entire state space.

The particular MCTS method that TEXPLORE uses is a variant of UCT (Kocsis and
Szepesvari 2006), with pseudo-code shown in Algorithm 2. Our variation of UCT, called
UCT(X), uses A-returns, similar to the TD-SEARCH Algorithm (Silver et al. 2012). UCT main-
tains visit counts for each state to calculate confidence bounds on the action-values. UCT
differs from other MCTS methods by sampling actions more greedily by using the UCB1 al-
gorithm (Auer et al. 2002), shown on line 29. UCT selects the action with the highest upper
confidence bound (with ties broken uniformly randomly). The upper confidence bound is
calculated using the visit counts, ¢, to the state and each action, as well as the maximum

discounted return in the domain, ”f“}f. Selecting actions this way drives the agent to con-

centrate its sampling on states with the best values, while still exploring enough to find the
optimal policy.

UCT samples a possible trajectory from the agent’s current state. On line 30 of Algo-
rithm 2, the model is queried for a prediction of the next state and reward given the state and
selected action (QUERY-MODEL is described in detail later in Sect. 3.2 and shown in Algo-
rithm 4). UCT continues sampling forward from the given next state. This process continues
until the sampling has reached a terminal state or the maximum search depth, maxDepth.
Then the algorithm updates the values of all the state-actions encountered along the tra-
jectory. In normal UCT the return of a sampled trajectory is the discounted sum of rewards
received on that trajectory. The value of the initial state-action is updated towards this return,
completing one rollout. The algorithm does many rollouts to obtain an accurate estimate of
the values of the actions at the agent’s current state. UCT is proven to converge to an optimal
value function with respect to the model at a polynomial rate as the number of rollouts goes
to infinity (Kocsis and Szepesvari 2006).

We have modified UCT to update the state-actions using A-returns, which average rewards
received on the simulated trajectory with updates towards the estimated values of the states
that the trajectory reached (Sutton and Barto 1998). Informal experiments showed that using
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Algorithm 2 PLAN: UCT(})

1

29:
30:
31:
32:
33:
34:
35:
: end procedure

: procedure UCT-INIT(S, A, maxDepth, resetCount, rmax, nBins, minVals, maxVals)

Initialize Q(s, a) with zeros forall s € S,ae€ A
Initialize c(s, a) with ones foralls € S,a € A > To avoid divide-by-zero
Initialize c(s) with zeros for all s € § > Visit Counts

end procedure

: procedure PLAN-POLICY(M,s) © Approximate planning from state s using model M

UCT-RESET()

while time available do
UCT-SEARCH(M, s, 0)

end while

: end procedure

: procedure UCT-RESET() > Lower confidence in v.f. since model changed
for all sy;5c € Syisc do > For all discretized states
if c(sgisc) > resetCount - |A| then
c(Sqgisc) < resetCount - |A| > resetCount per action
end if

foralla € A do
if ¢(sgise, a) > resetCount then
c(Sgisc, a) < resetCount
end if
end for
end for

: end procedure

: procedure UCT-SEARCH(M, s, d) > Rollout from state s at depth d using model M

if TERMINAL or d = maxDepth then

state s

return 0
end if
Sdisc <— DISCRETIZE(s, nBins, minVals, maxVals) > Get discretized version of
a < argmax, (Q(Sgisc, a’) + 2 - ﬁ"i“;‘ . % > Note: Ties broken randomly
(s’,r) < M = QUERY-MODEL(s, a) > Algorithm 4
sampleReturn < r + y UCT-SEARCH(M, s’,d + 1) > Continue rollout from state s’
c(Sdisc) < ¢(Sgise) + 1 > Update counts

c(Sdisc, @) < c(sdisc, a) + 1
O (sgisc, @) < a - sampleReturn + (1 — ) - Q(Sgisc, a’)
return A - sampleReturn + (1 — L) - maxy Q(Sgisc, @’) > Use A-returns

intermediate values of A (0 < A < 1) provided better results than using the default UCT
without A-returns.

In addition to using A-returns, we have also modified UCT to generalize values across

depths in the tree, since the value of a state-action in an infinite horizon discounted MDP
is the same no matter when in the search it is encountered (due to the Markov property).
One possible concern with this approach is that states at the bottom of the search tree may
have poor value estimates because the search does not continue for many steps after reach-

@ Springer



392 Mach Learn (2013) 90:385-429

Algorithm 3 Real-Time Model-Based Architecture (RTMBA)

1: procedure INIT > Initialize variables
2: Input: S, A, nBins, minVals, maxVals > nBins is the # of discrete values for each
feature

3: Initialize s to a starting state in the MDP

4: agentState < s

5: updateList < ()

6: Initialize M to empty model

7: UCT-INIT() > Initialize Planner
8. end procedure

9: procedure MODELLEARNINGTHREAD > Model Learning Thread
10: loop > Loop, adding experiences to model
11: while updateList = () do
12: Wait for experiences to be added to list
13: end while
14: tmpModel < M = COPY > Make temporary copy of model
15: tmpModel = UPDATE-MODEL (updateList) > Update model tmpModel

(Algorithm 4)

16: updateList < (} > Clear the update list
17: UCT-RESET() > Less confidence in current values
18: M <« tmpModel > Swap model pointers

19: end loop
20: end procedure

21: procedure PLANNINGTHREAD > Planning Thread
22: loop > Loop forever, performing rollouts
23: UCT-SEARCH(M, agent State, Q) > Algorithm 2

24: end loop
25: end procedure

26: procedure ACTIONTHREAD > Action Selection Thread

27: loop

28: Sdisc < DISCRETIZE(s, nBins, minVals, maxVals) > Get discretized version of
state s

29: Choose a <— argmax, O (Sgisc, @)

30: Take action a, Observe r, s’

31: updateList < updateListU (s, a,s’, r) > Add experience to update list

32: s <«

33: agentState < s > Set agent’s state for planning rollouts

34: end loop
35: end procedure

ing them. However, these states are not severely affected, since the A-returns update them
towards the values of the next states.

Most importantly, UCT is an anytime method, and will return better policies when given
more time. By replacing the PLAN-POLICY call on line 9 of Algorithm 1, which performs
exact planning, with PLAN-POLICY from Algorithm 2, which performs approximate plan-
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ning, the sequential architecture could be made faster. TEXPLORE’s real-time architecture,
which is presented later in Algorithm 3, also uses UCT(A) for planning.

UCT(A) maintains visit counts for each state and state-action to determine confidence
bounds on its action-values. When the model that UCT(X) is planning on changes, its value
function is likely to be incorrect for the updated model. Rather than re-planning entirely
from scratch, the value function UCT()) has already learned can be used to speed up the
learning of the value function for the new model. TEXPLORE’s approach to re-using the
previously learned value function is similar to the way (Gelly and Silver 2007) incorporate
off-line knowledge of the value function by providing an estimate of the value function and
a visit count that represents the confidence in this value function. When UCT(X)’s model
is updated, the visit counts for all states are reset to a lower value that encourages UCT(A)
to explore again, but still enables UCT(X) to take advantage of the value function learned
for the previous model. The UCT-RESET procedure does so by resetting the visit counts for
all state-actions to resetCount, which will be a small non-zero value. If the exact effect the
change of the model would have on the value function is known, resetCount could be set
based on this change, with higher values for smaller effects. However, TEXPLORE does not
track the changes in the model, and even a small change in the model can have a drastic
effect on the value function.

Some modifications must be made to use UCT(A) on domains with continuous state
spaces. One advantage of using UCT(A) is that rather than planning ahead of time over a
discretized state space, UCT(X) can perform rollouts through the exact real-valued states the
agent is visiting, and query the model for the real-valued state predictions. However, it can-
not maintain a table of values for an infinite number of states. Instead, it discretizes the state
on line 28 by discretizing each state feature into nBins; possible values. Since the algorithm
is only using the discretization for the value function update, and not for the modeling or
planning rollouts, it works well even on fine discretizations in high-dimensional domains.
Then the algorithm updates the value and visit counts for the discretized state on lines 32
to 34.

3.1.2 Parallel Architecture

In addition to using MCTS for planning, we have developed a multi-threaded architec-
ture, called the Real-Time Model Based Architecture (RTMBA), for the agent to learn
while acting in real-time (Hester et al. 2012). Since UPDATE-MODEL and PLAN-POLICY
can take significant computation (and thus also wall-clock time), they are placed in par-
allel threads in the background, as shown in Fig. 2. A third thread selects actions as
quickly as dictated by the robot control loop, while still being based on the most re-
cent models and plans available. Pseudo-code for all three threads is shown in Algo-
rithm 3. This architecture is general, allowing for any type of model learning method,
and only requiring any method from the MCTS family for planning. In addition to en-
abling real-time actions, this architecture enables the agent to take full advantage of multi-
core processors by running each thread on a separate core. Similar approaches have been
taken to parallelize MCTS planning and acting (Gelly et al. 2008; Chaslot et al. 2008;
M¢éhat and Cazenave 2011) by performing multiple rollouts in parallel, but they have not
incorporated parallel model learning as well.

For the three threads to operate properly, they must share information while avoiding
race conditions and data inconsistencies. The model learning thread must know which new
transitions to add to its model, the planning thread must access the model being learned and
know what state the agent is currently at, and the action thread must access the policy being
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Fig. 2 A diagram of the
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Table 1 This table shows all the variables that are protected under mutex locks in the proposed architecture,
along with their purpose and which threads use them

Variable Threads Use

updateList Action, Model Learning Store experiences to be updated into model
agentState Action, Planning Set current state to plan from

Q(s,a) Action, Planning Update policy used to select actions

M Planning, Model Learning Latest model to plan on

planned. RTMBA uses mutex locks to control access to these variables, as summarized in
Table 1.

The action thread (lines 26 to 35) receives the agent’s new state and reward, and adds
the new transition experience, (s, a, s’, r), to the updateList to be updated into the model.
It then saves the agent’s current state in agentState for use by the planner and returns the
action determined by the agent’s value function, Q. Since updateList, agentState, and Q are
protected by mutex locks, it is possible that the action thread could have to wait for a mutex
lock before it could proceed. However, updateList is only used by the model learning thread
between model updates, agentState is only accessed by the planning thread between each
rollout, and Q is under individual locks for each state. Thus, any given state is freely acces-
sible most of the time. When the planner does happen to be using the same state the action
thread wants, it releases it immediately after updating the values for that state. Therefore,
there is never a long wait for mutex locks, and the action thread can return actions quickly
when required.
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The model learning thread (lines 9 to 20) checks if there are any experiences in updateList
to be added to its model. If there are, it makes a copy of its model to tmpModel, updates
tmpModel with the new experiences, and clears updateList. Then it resets the planning visit
counts to resetCount to lower the planner’s confidence in the out-dated value function, which
was calculated on an old model. Finally, on line 18, it replaces the original model with the
updated copy. The other threads can continue accessing the original model while the copy
is being updated, since only the swapping of the models requires locking the model mutex.
After updating the model, the model learning thread repeats, checking for new experiences
to add to the model.

The model learning thread can call any type of model on line 15, such as a tabular
model (Brafman and Tennenholtz 2001), a Gaussian Process regression model (Deisenroth
and Rasmussen 2011), or the random forest model used by TEXPLORE, which is described
in Sect. 3.2. Depending on how long the model update takes and how fast the agent is acting,
the agent can add tens or hundreds of new experiences to its model at a time, or it can wait
for long periods for a new experience. When adding many experiences at a time, full model
updates are not performed between each individual action. In this case, the algorithm’s sam-
ple efficiency is likely to suffer compared to that of sequential methods, but in exchange, it
continues to act in real time.

Though TEXPLORE uses a variant of UCT, the planning thread can use any MCTS plan-
ning algorithm. The thread retrieves the agent’s current state (agentState) and its planner
performs a rollout from that state. The rollout queries the latest model, M, to update the
agent’s value function. The thread repeats, continually performing rollouts from the agent’s
current state. With more rollouts, the algorithm’s estimates of action-values improve, re-
sulting in more accurate policies. Even if very few rollouts are performed from the current
state before the algorithm returns an action, many of the rollouts performed from the pre-
vious state should have gone through the current state (if the model is accurate), giving the
algorithm a good estimate of the state’s true action-values.

3.2 Model Learning

While the parallel architecture presented above enables TEXPLORE to operate in real-time,
the algorithm must learn an accurate model of the domain quickly to learn the task with high
sample efficiency. Although tabular models are a common approach, they require the agent
to take every action from each state once (or multiple times in stochastic domains), since
they learn a prediction for each state-action separately. Instead, TEXPLORE uses supervised
learning techniques to generalize the effects of actions across states, as has been done by
some previous algorithms (Degris et al. 2006; Jong and Stone 2007). Since the relative tran-
sition effects of actions are similar across states in many domains, TEXPLORE follows the
approach of Leffler et al. (2007) and Jong and Stone (2007) in predicting relative transitions
rather than absolute outcomes. In this way, model learning becomes a supervised learning
problem with (s,a) as the input and s’ — s and r as the outputs to be predicted. Model
learning is sped up by the ability of the supervised learner to make predictions for unseen or
infrequently visited states.

Like Dynamic Bayesian Network (DBN) based RL algorithms (Guestrin et al. 2002;
Strehl et al. 2007; Chakraborty and Stone 2011), the algorithm learns a model of the factored
domain by learning a separate prediction for each of the n state features and the reward, as
shown in Algorithm 4. The MDP model is made up of n models to predict each feature
(featModel, to featModel,) and a model to predict reward (rewardModel). Each model can
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Algorithm 4 MODEL

1: procedure INIT-MODEL(n) > n is the number of state variables
2 fori=1—>ndo

3: JeatModel; = INIT() > Init model to predict feature i
4: end for

5 rewardModel = INIT() > Init model to predict reward
6: end procedure

7. procedure UPDATE-MODEL(/ist) > Update model with /ist of experiences
8: for all (s,a,s’,r) € list do

sl g — s > Calculate relative effect

10: for all 5/ € s do
11: featModel; = UPDATE((s, a), s el) > Train a model for each feature
12: end for
13: rewardModel = UPDATE((s, a), 1) > Train a model to predict reward
14: end for

15: end procedure

16: procedure QUERY-MODEL(s, a) > Get prediction of (s', r) for s, a
17: for i =1 — LENGTH(s) do

18: ST ¢l « featModel, = QUERY((s, a)) > Sample a prediction for feature i
19: end for

20: s s (s L sl > Get absolute next state
21: r < rewardModel = QUERY ({s, a)) > Sample r from distribution
22: return (s’, r) > Return sampled next state and reward

23: end procedure

be queried for a prediction for a particular state-action (featModel = QUERY ({s, a))) or up-
dated with a new training experience (featModel = UPDATE((s, a, out))). In TEXPLORE,
each of these models is a random forest, presented in Sect. 3.4 as Algorithm 7.

Algorithm 4 shows TEXPLORE’s model learning algorithm. It starts by calculating the
relative change in the state (s™") on line 9, then it updates the model for each feature with
the new transition on line 11 and updates the reward model on line 13. Like DBN-based
algorithms, TEXPLORE assumes that each of the state variables transitions independently.
Therefore, the separate feature predictions can be combined to create a prediction of the
complete state vector. The agent samples a prediction of the value of the change in each
feature on line 18 and adds this vector, 5™, to s to get a prediction of s’. The agent then
samples a prediction of reward (line 21) and these sampled predictions are returned for
planning with MCTS.

We tested the applicability of several different supervised learning methods to the task of
learning an MDP model in previous work (Hester and Stone 2009). Decision trees, commit-
tees of trees, random forests, support vector machines, neural networks, nearest neighbor,
and tabular models were compared on their ability to predict the transition and reward mod-
els across three toy domains after being given a random sample of experiences in the domain.
Decision tree based models (single decision trees, committees of trees, and random forests)
consistently provided the best results. Decision trees generalize broadly and can be refined
to make accurate predictions at all states. Another reason decision trees perform well is that
in many domains, the state space can be split into regions with similar dynamics. For ex-
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ample, on a vehicle, the dynamics can be split into different regions corresponding to which
gear the car is in.

Based on these results, TEXPLORE uses decision trees to learn models of the transition
and reward functions. The decision trees are learned using an implementation of Quinlan’s
C4.5 algorithm (Quinlan 1986). The inputs to the decision trees are treated both as numerical
and categorical inputs, meaning both splits of the type if X =3 and if X > 3 are allowed.
The C4.5 algorithm chooses the split at each node of the tree based on information gain.
TEXPLORE’s implementation includes a modification to make the algorithm incremental.
Each tree is updated incrementally by checking at each node whether the new experience
changes the optimal split in the tree. If it does, the tree is re-built from that node down.

The decision trees are the supervised learner that is called on lines 11, 13, 18, and 21
of Algorithm 4 to predict each feature and reward. Each tree makes predictions for the
particular feature or reward it is given based on a vector containing the n features of the
state s along with the action a: (s, s, ..., s,,a). This same vector is used when querying
the trees for the change in each feature on line 18 and for reward on line 21.

Figure 3 shows an example decision tree predicting the relative change in the X variable
of the agent in the given gridworld domain. The decision tree can split on both the actions
and the state of the agent, allowing it to split the state space up into regions where the
transition dynamics are the same. Each leaf of the tree can make probabilistic predictions
based on the ratio of experienced outcomes in that leaf. The grid is shaded to match the
leaves on the left side of the tree, making predictions for when the agent takes the EAST
action. The tree is built on-line while the agent is acting in the MDP. At the start, the tree
will be empty, and then it will generalize broadly, making predictions about large parts of
the state space, such as what the EAST or WEST actions do. For unvisited state-actions, the
tree will predict that the outcome is the same as that of similar state-actions (ones in the
same leaf of the tree). It will continue to refine itself until it has leaves for individual states
where the transition dynamics differ from the global dynamics.

3.2.1 Models of Continuous Domains

While decision trees work well for discrete domains, TEXPLORE needs to be capable of
modeling continuous domains as well. Discretizing the domain is one option, but important
information is lost in the discretization. Not only is noise added by discretizing the continu-
ous state, but the discrete model does not model the function underlying the dynamics and
thus cannot generalize predictions to unseen states very well.

To extend the discrete decision trees to the continuous case, TEXPLORE uses linear re-
gression trees, learned using the M5 algorithm (Quinlan 1992). The M5 algorithm builds
these decision trees in a similar manner to the C4.5 algorithm, greedily choosing each split
to reduce the variance on each side. Once the tree is fully built, it is pruned by replac-
ing some tree splits with linear regression models. Going up the tree from the leaves, a
sub-tree is replaced by a linear regression model if the regression model has less predic-
tion error on the training set than the sub-tree. The result is a smaller tree with regres-
sion models in each leaf, rather than each leaf making a discrete class prediction. The
linear regression trees will fit a piecewise linear model to the dynamics of the domain.
Similar trees have been used to approximate the value function (Munos and Moore 2002;
Ernst et al. 2005), but not for the approximating the transition and reward model of a domain.

Figure 4 shows an example of how the regression trees can result in simpler models that
are faster to build and make more accurate predictions than discrete decision trees. Fig-
ure 4(a) shows the predictions of the discrete tree approximating the underlying function.
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(a) Two room gridworld domain.
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(b) Decision tree model predicting the change in the z feature
(Az) based on the current state and action.

Fig. 3 This figure shows the decision tree model learned to predict the change in the x feature (or Ax). The
two room gridworld is shaded to match the corresponding leaves of the left side of the tree where the agent
has taken the EAST action. Each rectangle represents a split in the tree and each rounded rectangle represents
a leaf of the tree, showing the probabilities of a given value for Ax. For example, if the action is EAST and
x = 14, the agent is hitting the right wall. This input falls into the leaf on the fop left, where the probability
of Ax=0is 1
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Fig.4 An example of a function
estimated by (a): discrete trees
and (b): regression trees. Note
that the regression tree is able to
fit the function better than the
discrete tree

(a) Discrete Trees. (b) Regression Trees.

The model requires examples of the output at each discrete level to make an accurate pre-
diction and cannot generalize beyond these seen examples. In contrast, the regression trees
make a piecewise linear prediction, with each leaf predicting a linear function. This type of
model can fit the data more closely and makes predictions for unseen parts of the space by
extrapolating the linear function from nearby regions.

3.3 Domains with Delays

We are particularly interested in applying TEXPLORE to robots and other physical devices,
but one common problem with these devices is that their sensors and actuators often have
delays. For example, a robot’s motors may be slow to start moving, and thus the robot may
still be executing (or yet to execute) the last action given to it when the algorithm selects the
next action. This is important, as the algorithm must take into account what the state of the
robot will be when the action actually gets executed, rather than the state of the robot when
the algorithm makes the action selection. TEXPLORE should model these delays and handle
them efficiently.

Modeling and planning on domains with delay can be done by taking advantage of the
k-Markov property (Katsikopoulos and Engelbrecht 2003). While the next state and reward
in these domains is not Markov with respect to the current state, it is Markov with respect
to the previous k states. TEXPLORE’s approach to addressing delays is inspired by the U-
TREE algorithm (McCallum 1996), using data from the last k£ experiences. The key insight
of U-TREE is to allow its decision trees to split on previous states and actions in addition to
the current state and action, enabling it to work in partially observable domains where the
state alone is not enough to make an accurate prediction.

TEXPLORE adopts the same approach for delayed domains. The action thread is modified
to keep a history of the last k actions (shown in Algorithm 5), which is sufficient to make
the domain Markov. In addition to the current state and action, the thread appends the past
k actions as inputs for each decision tree to use for its predictions. Any of these inputs can
be used for splits in the decision tree. One of the advantages of decision trees over other
models is that they can choose relevant inputs when making splits in the tree. Thus, even if
the value of k input to the algorithm is higher than the true delay in the domain, the tree will
ignore the extra inputs and still build an accurate model. Model learning approaches based
on prediction suffix trees are similar, but require splits to be made in order on the most recent
observations and actions first (Willems et al. 1995; Veness et al. 2011).

Similarly, TEXPLORE takes advantage of the k-Markov property for planning, by slightly
modifying UCT()). Algorithm 6 shows the modified UCT(X)-SEARCH algorithm. In addition
to the agent’s state, it also takes the history of k actions. While performing the rollout, it up-
dates the history at each step (lines 9 to 12), and uses the augmented state including history
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Algorithm 5 Action Thread with Delays

1: procedure ACTIONTHREAD > Action Selection Thread
2 history < ()

3 loop

4 Sgise <— DISCRETIZE(s, nBins, minVals, maxVals)

5: Choose a < argmax, Q (Sgis history, a) > Values of state-history-actions
6 Take action a, Observe r, s’

7 augState < (s, history) > Augment state with history
8 updateList < updateList U (augState, a, s', r)

9: PUSH (history, a) > Keep last k actions
10: if LENGTH (history) > k then
11: POP (history)
12: end if
13: s <
14: agentState < s > Set agent’s state for planning rollouts

15: end loop
16: end procedure

Algorithm 6 UCT()) with delays
1: procedure SEARCH(M, s, history, d) > Rollout from state s with history
if TERMINAL or d = maxDepth then
return 0
end if
Sgisc < DISCRETIZE(s, nBins, minVals, maxVals)

log c(sisc.history) )
c(Sgisc-history,a’)

rmax .
1—y
augState < (s, history)

2

3

4

5

6: a < argmax, (Q (Sgisc, history,a’) +2 -
7

8 (s',r) < M = QUERY-MODEL (augState, a)
9

: PUSH((history, a) > Keep last k actions
10: if LENGTH (history) > k then
11 POP(history)
12: end if
13: sampleReturn <— r + ySEARCH(M, s, history,d + 1)
14: c(Saisc, history) < c(Sgise, history) + 1 > Update counts

15: c(Saisc, history, a) <— c(Sgise, history, a) + 1

16: O (Sgisc, history, a’) <— a - sampleReturn + (1 — &) - Q (Sgise, history, a’)
17: return A - sampleReturn + (1 — 1) - max, Q (Syisc, history,a’)

18: end procedure

when querying the model (line 8). States may have different optimal actions when reached
with a different history, as different actions will be applied before the currently selected ac-
tion takes place. This problem can be remedied by planning over an augmented state space
that incorporates the k-action histories, shown in the visit count and value function updates
in lines 14 to 16. Katsikopoulos and Engelbrecht (2003) have shown that solving this aug-
mented MDP provides the optimal solution to the delayed MDP. However, the state space
increases by a factor of |A|*. While this would greatly increase the computation required by
a planning method such as value iteration that iterates over all the states, UCT(X) focuses its
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updates on the states (or augmented state-histories) the agent is likely to visit soon, and thus
its computation time is not greatly affected. Note that with k = 0, the history will be J and
the action thread and UCT(A) search methods presented here will exactly match the ones pre-
sented in Algorithms 3 and 2, respectively. Later, in Sect. 5.3, we evaluate the performance
of TEXPLORE’s approach for handling delays in comparison with other approaches.

This version of UCT()) planning on the augmented state space is similar to the approach
taken for planning inside the MC-AIXI algorithm (Veness et al. 2011). The difference is that
their algorithm performs rollouts over a history of previous state-action-reward sequences,
while TEXPLORE uses the current state along with only the previous k actions. One thing to
note is that while TEXPLORE’s approach is intended to address delays, it can also be used to
address partial observability, if a sufficient k is chosen such that the domain is k-Markov.

Addressing action delays by utilizing k-action histories integrates well with TEXPLORE’s
approaches for model learning and planning. TEXPLORE’s decision tree models select which
delayed action inputs provide the most information gain while making splits in the tree, and
can ignore the delayed actions that are not relevant for the task at hand. In addition, planning
with UCT(A) is easily modified to track histories while performing rollouts; planning with
a method such as value iteration would require the agent to plan over a state space that is
|A|* times bigger. Using k-action histories for delays is one example of how the various
components of TEXPLORE are synergistic.

3.4 Exploration

Our goal is to perform learning on robots, where taking hundreds or thousands of actions
is impractical. Therefore, our learning algorithm needs to limit the amount of exploration it
performs so that it has time to exploit its knowledge within this limited timeframe. On such
domains with a constrained number of actions, it is better for the agent to quickly converge
to a good policy than to explore more exhaustively to learn the optimal policy. With this
idea in mind, our algorithm performs limited exploration, which is targeted on state-actions
that appear promising for the final policy, while avoiding state-actions that are unlikely to
be useful for the final policy.

Using decision trees to learn the model of the MDP provides TEXPLORE with a model
that can be learned quickly with few samples. However, each tree represents just one possible
hypothesis of the true model of the domain, which may be generalized incorrectly. Rather
than planning with respect to this single model, our algorithm plans over a distribution of
possible tree models (in the form of a random forest) to drive exploration. A random forest
is a collection of decision trees, each of which differ because they are trained on a random
subset of experiences and have some randomness when choosing splits at the decision nodes.
Random forests have been proven to converge with less generalization error than individual
tree models (Breiman 2001).

Algorithm 7 presents pseudo-code for the random forest model. Each of the m decision
trees (tree; to tree,,) in the forest can be updated with a new input-output pair (tree =
UPDATE(in, out)) or queried for a prediction for a given input (free = QUERY(in)). This
algorithm implements the MODEL that is called on lines 11, 13, 18, and 21 of Algorithm 4.
Each tree is trained on only a subset of the agent’s experiences ({s, a, s’, r) tuples), as it is
updated with each new experience with probability w (line 8). To increase stochasticity in
the models, at each split in the tree, the best input is chosen from a random subset of the
inputs, with each one removed from this set with probability f. When UCT(A) requests a
prediction from the random forest model, it only needs to return the prediction of a single
tree in the forest, which saves some computation.
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Algorithm 7 MODEL: Random Forest

1: procedure INIT(m) > Init forest of m trees
2: fori=1— mdo
3: tree; = INIT() > Init tree i
4: end for
5: end procedure
6: procedure UPDATE(in, out) > Update forest with (in, out) example
7: fori=1— mdo > For m trees in the random forest
8 if RAND() < w then > Update each tree with prob. w
9: tree; = UPDATE(in, out)

10: end if

11: end for

12: end procedure

13: procedure QUERY (in) > Get prediction for in
14: i =RAND(1,m) > Select a random tree from forest
15: X < tree; = QUERY (in) > Get prediction from tree i
16: return x > Return prediction

17: end procedure

There are a number of options regarding how to use the m hypotheses of the domain
model to drive exploration. BOSS (Asmuth et al. 2009) is a Bayesian method that provides
one possible example. BOSS samples m model hypotheses from a distribution over possible
models. The algorithm plans over actions from any of the models, enabling the agent to
use the most optimistic model for each state-action. With m models, the value function
is calculated as follows, with the subscript on Q;, R;, and P; representing that it is from
model i:

Q(s,a) =max Q;(s, a) 3

Qi(S,a)ZRi(S,a)—l-J/ZP,-(S/|s,a)m2}x o(s',a'). 4)

B

The policy of the agent is then:

(s) = argmax Q(s, a). )

The agent plans over the most optimistic model for each state-action. Since one of the mod-
els is likely to be optimistic with respect to the true environment in each state, the agent is
guaranteed to explore enough to find the optimal policy in a polynomial number of steps.

Model Based Bayesian Exploration (MBBE) (Dearden et al. 1999) is another Bayesian
method that uses model samples for exploration. It samples and solves m models to get a
distribution over action-values. The action-values for each model i are:

Qi(s,a)=Ri(s,a) +vy Z Pi(s'|s,a) max Qi(s'.a'). 6)

Note that this differs from BOSS in that the next state values are using the same model i,
rather than a value from an optimistic merged model. The expected value, E[Q (s, a)], for
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a particular state-action is then the average of its value for each model. Using the expected
action-values, at any given state the agent has a best action a; and a second best action a,.
MBBE uses the distribution over action-values to calculate how much the agent’s policy will
improve if it learns that a particular model i is correct:

E[Q(s,a2)] — Qi(s,a), ifa=a;and Q;(s,a) < E[Q(s,a2)],
Gaini(s,a) = Qi(s,a) — E[Q(s,a1)], ifa#a;and Qi(s,a) > E[Q(s,ap)], (7)
0, otherwise.

The first case is if model i predicts that the value of the best action, a;, is not as good as
expected and is less than the expected value of action a,. The second case is if model i
predicts that another action would have a better value than a;. In either case the gain is
the improvement in the value function for the given state action pair. This value of perfect
information (VPI) for a state-action is then the average of the gains for that state-action for
each model. This value is added to the expected action-values to calculate the action-values
that the agent maximizes for its policy:

1 & ,
0, a)=— 3 0i(s, @) + Gaini(s, a). ®)

i=1

When the sampled models are optimistic or pessimistic compared to the true MDP, the agent
is encouraged to explore. With an optimistic model, the agent’s policy would be improved
if the model is correct and this improvement is reflected in the VPI for this model. With a
pessimistic model, the agent would be driven to explore the state-action because it would
gain the knowledge that its policy is poor and should not be followed. Thus, this approach
drives the agent to explore state-actions thoroughly to find the optimal policy.

For the goal of learning on robots, learning in polynomial time is not fast enough. Both
BOSS and MBBE explore thoroughly; on problems with very large (or continuous) state-
action spaces, they could take many hundreds or thousands of time-consuming, expensive,
and possibly dangerous actions to learn a policy. The key insight of our approach is to be
greedier than these methods in order to learn in fewer actions. TEXPLORE performs less
exploration than these approaches and thus exploits more of what it has learned. Since TEX-
PLORE is doing less exploration, the exploration it does perform must be targeted on state-
actions that appear promising. In other words, with such limited exploration, TEXPLORE
cannot afford to explore state-actions that may lead to low-valued outcomes (it decides not
to explore such state-actions).

Rather than using exploration bonuses or optimistic models like BOSS and MBBE, TEX-
PLORE plans greedily with respect to a distribution of m model hypotheses. TEXPLORE’s
action-values are then:

1 m 1 m
Q@)= — > Ri(s.a)+ v > Y Pi(sIs.a) max o(s',a'). ©)

i=1 i=1 s

Each decision tree in the random forest generalizes transitions differently, resulting in differ-
ent hypotheses of the true MDP. As each tree model’s predictions differ more, the predictions
from the aggregate model become more stochastic. For example, if each of five trees predict
a different next state, then the aggregate model will have a uniform distribution over these
five possible next states. The aggregate model includes some probability of transitioning
to the states and rewards predicted by the optimistic models as well as those predicted by
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the pessimistic ones. Thus, planning on the aggregate model makes the agent balance the
likelihood that the transitions predicted by the optimistic and pessimistic model will occur.
The agent will explore towards state-actions that some models predict to have higher values
while avoiding those that are predicted to have low values.

Another benefit of planning on this aggregate model is that it enables TEXPLORE to
explore multiple possible generalizations of the domain, as it can explore state-actions that
are promising in any one of the hypotheses in the aggregate model. In contrast, if TEXPLORE
acted using a single hypothesis of the task model, then it would not know about state-actions
that are only promising in other possible generalizations of its past experience. Figure 5
shows a diagram of how the entire model learning system works. In Sect. 5.1, we evaluate
TEXPLORE’s exploration in comparison with other approaches.

Using an aggregate model provides a few other advantages compared to prior approaches.
The aggregate random forest model provides less generalization error than simply sampling
a single decision tree model and using it (Breiman 2001). Another advantage of TEXPLORE
over BOSS and MBBE is that both of these methods require more planning, which can take
more computation time. BOSS must plan over a state space with m times more actions than
the true environment, while MBBE must plan for each of its m different models. In contrast,
TEXPLORE plans on a single model with the original |S||A| state-actions.

As an example, imagine TEXPLORE with m = 5 models is learning to control a humanoid
robot to kick a ball by shifting its weight and swinging its leg. If it shifts its weight more than
5 cm to one side, the robot will fall over, resulting in a negative reward of —1000. If the robot
kicks successfully, it gets a reward of 20. Until TEXPLORE has experienced the robot falling
over, it will not predict it is possible. If TEXPLORE finds a successful kicking policy without
ever falling over during its exploration, then it will have avoided falling over entirely. If it
does experience falling over during exploration, then each of its tree models may generalize
what causes the robot to fall over differently. For example, one tree model may predict that
the robot falls with a 2 cm shift, another with a 5 cm shift, etc. For a state with a 4 cm
shift, perhaps three of the models predict the robot will fall over and receive —1000 reward,
and two predict a successful kick with reward 20. Thus, the aggregate model predicts a
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reward of —592. This large negative reward will cause the agent to avoid exploring this
and similar state-actions, and instead focus exploration on state-actions where some models
predict successful kicks but none predict falling over. Avoiding these state-actions may lead
the agent to learn a sub-optimal policy if the best kick requires the robot to shift its weight
4 cm, but it will also save the robot from many costly and possibly damaging exploration
steps.

In contrast, BOSS would explore enough to guarantee optimality, which means it will
explore many weight shifts that cause the robot to fall over. Since BOSS plans over the most
optimistic model in each state (ignoring the others), at the 4 cm shift state, it will plan over
the optimistic model that predicts a successful kick and reward 20, ignoring the fact that
3 of its 5 models predict the robot will fall over. As long as at least one model predicts
high rewards, the agent will continue exploring these potentially damaging state-actions. In
contrast, TEXPLORE performs limited exploration and thus would focus its exploration on
other more promising state-actions while avoiding this one. MBBE would give a VPI bonus to
state-actions which one of its models suggests has a higher value. These exploration bonuses
are added to the expected value of the action, so the exploration should be less aggressive
than BOSS’s. Still, MBBE will explore many costly state-actions that may cause the robot to
fall over.

It is important to note that the best exploration-exploitation trade off will depend highly
on the domain. In the robotics domains we are focusing on, the agent has a limited number
of time steps for learning, and thus must limit its exploration and start exploiting more
quickly. In addition, exploring certain state-actions can be dangerous for the robot, providing
another impetus to avoid exploring too much. However, in other domains such as simulated
tasks where more time steps are available and actions are not damaging, it may be better to
explore more (like BOSS and MBBE) to find a better final policy.

Similar to the prior that is created for Bayesian RL algorithms, TEXPLORE can be given
some basic knowledge of the structure of the domain. TEXPLORE can be seeded with a few
sample transitions from the domain, which it uses to initialize its models. For example, in
an episodic task, a seed of the task’s goal state can give the agent a general idea of the task
at hand, instead of forcing it to search for an arbitrary goal state. The agent’s performance
is sensitive to these transition seeds since they bias the agent’s expectations of the domain.
TEXPLORE could be used as an apprenticeship learning algorithm if the seed experiences
come from user-generated trajectories in the domain.

3.5 The Complete TEXPLORE Algorithm

After presenting each of the components of TEXPLORE, we now combine them together
into one complete algorithm. TEXPLORE is constituted by the RTMBA architecture shown
in Algorithms 3 and 5 combined with the random forest model learning approach shown in
Algorithms 4 and 7 and the UCT(A) planning method shown in Algorithms 2 and 6. Two
separate versions of TEXPLORE can be run for discrete or continuous domains: Discrete
TEXPLORE uses discrete decision trees in its random forest, while Continuous TEXPLORE
uses linear regression trees to model continuous dynamics. For continuous domains, Dis-
crete TEXPLORE requires the domain be discretized entirely, while Continuous TEXPLORE
requires discrete states to maintain the value function, but learns models of the continuous
dynamics. TEXPLORE also takes a parameter, k, that specifies the history length to handle
delayed domains. When k is not defined, it is assumed to be O (the setting for non-delayed
domains).
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4 Related Work

Since TEXPLORE is addressing four different challenges, there is ample related work. How-
ever, to the best of our knowledge, none of the related work simultaneously addresses all four
challenges or is easily adapted to do so. Section 4.1 examines the related work addressing
challenge 1 on sample efficiency and exploration. We look at work addressing challenge 2
on continuous state spaces in Sect. 4.2, challenge 3 on delayed actions and observations in
Sect. 4.3, and challenge 4 on real-time actions in Sect. 4.4. Finally, we summarize the related
work and contrast it with TEXPLORE in Sect. 4.5.

4.1 Challenge 1: Sample Efficiency

For learning on robots or other real-world problems, sample efficiency is very important,
because taking millions of samples to learn a task can also mean taking many real-world
seconds to learn the task. For model-based methods, sample efficiency is mainly limited
by how long it takes the agent to learn an accurate model of the domain. Exploration is
very important for an agent to learn a model quickly. Therefore, we start by focusing on
various exploration methods in Sect. 4.1.1, and then go into depth about Bayesian methods
for exploration in Sect. 4.1.2.

4.1.1 Exploration

Many algorithms use e-greedy exploration (Sutton and Barto 1998), which is one of the
simplest approaches to exploration. Agents using it take what they think are the optimal
actions most of the time, but take a random action € of the time. Random exploration is
guaranteed to explore the entire state space when given an infinite number of samples, but
does not attempt to explore in any targeted way.

Boltzmann, or soft-max, exploration improves upon e-greedy exploration, by taking bet-
ter exploratory actions (Sutton and Barto 1998). Instead of taking a completely random
action when exploring, the probability of selecting action a is weighted by its value relative
to the other action-values using the following equation:

0@/t

Pla)= NG

(10)

where 7 is a temperature parameter determining the amount of exploration.

R-MAX (Brafman and Tennenholtz 2001) is a typical model-based approach that uses a
tabular model and explores thoroughly by providing intrinsic rewards of Ry« to all state-
actions with fewer than m visits. These reward bonuses encourage the agent to visit all state-
actions that are closer than states with maximal one-step reward. R-MAX is guaranteed to
find the optimal policy in time polynomial in the number of states and actions, but exploring
all the state-actions closer than the state with maximal one-step reward can be infeasible in
larger domains.

With tabular models, the agent must explore each state-action in order to learn an accurate
model for each one. In larger domains, however, it will not be feasible to visit every single
state-action. In this case, it is better if the agent generalizes its model to unvisited state-
actions. When using these models, the agent should efficiently explore where its model
most needs improvement.

SLF-R-MAX (Strehl et al. 2007), MET-R-MAX (Diuk et al. 2009), and LSE-R-MAX
(Chakraborty and Stone 2011) perform directed exploration on factored domains. They use
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a DBN to model the transition function where some features are only dependent on some
subset of the features at the previous state. The methods use an R-MAX type exploration
bonus to explore to determine the structure of the DBN transition model and to determine
the conditional probabilities. They can explore less than methods such as R-MAX since their
DBN model should determine that some features are not relevant for the predictions of cer-
tain features. With fewer relevant features, the number of states with unique relevant features
can be much less than the total number of states.

RAM-R-MAX is another approach that uses R-MAX-like exploration (Leffler et al. 2007).
In RAM-R-MAX, each state is mapped to a particular type, c. For a given type and action,
the agent learns a model of the possible outcomes (for example, the relative change in state
features). Using the state and the predicted outcome, the agent can predict the next state.
Since the agent is given information about the types of all the states, it can easily generalize
action effects across states with the same type. The authors demonstrate the RAM-R-MAX
agent learning to navigate a robot across various terrains with different dynamics. While
RAM-R-MAX’s generalization gives it good sample efficiency, it requires the user to provide
classifications for each state in the domain. In addition, it does not run in real-time.

Model Based Interval Estimation (MBIE) (Wiering and Schmidhuber 1998; Strehl and
Littman 2005) is an approach that looks at the distribution over transition probabilities to
drive exploration. The algorithm maintains statistical confidence intervals over the transition
probabilities where transitions that have been sampled more often have tighter distributions
around the same mean. When selecting actions, the algorithm computes the value function
according to the transitions probabilities that are both within the calculated confidence inter-
val and result in the highest policy values. Effectively, MBIE solves for the maximum over
likely transition probabilities in addition to the maximum over individual actions.

Literature on active exploration provides more ideas on how RL agents could explore.
Oudeyer et al. (2007) present Intelligent Adaptive Curiosity (IAC), a method for providing
intrinsic reward to encourage a developing agent to explore. Their approach does not adopt
the RL framework, but is similar in many respects. IAC splits the state space into regions and
attempts to learn a model of the transition dynamics in each region. They maintain an error
curve for each region and use the slope of this curve as the intrinsic reward for the agent,
driving the agent to explore the areas where its model is improving the most. The resulting
intrinsic motivation drive could provide efficient model learning, but their algorithm selects
actions only to maximize the immediate reward, rather than the discounted sum of future
rewards. In addition, their method has no way of incorporating external rewards or weighing
their value in deciding what to explore.

Knows What It Knows (KWIK) (Li et al. 2008) is a learning framework for efficient
model learning. A learning algorithm that fits the KWIK framework must always either make
an accurate prediction, or reply “I don’t know” and request a label for that example. KWIK
algorithms can be used as the model learning methods in an RL setting, as the agent can
be driven to explore the states the model does not know to improve its model quickly. The
drawback of KWIK algorithms is that they often require a large number of experiences to
guarantee an accurate prediction when not saying “I don’t know.”

Fasel et al. (2010) examine the INFOMAX agent, which ignores external rewards and
just tries to gain as much information as possible. The agent uses an intrinsic reward of the
negative entropy of the agent’s beliefs. They show that the agent can learn useful long-term
policies, and learn to take multi-step trajectories to maximize information gain. While they
want the agent to gain information to prepare it for future tasks, they do not use external
rewards or have any way of trading off between exploration and exploitation.
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4.1.2 Bayesian Methods

Model-based Bayesian RL methods seek to solve the exploration problem by maintaining
a posterior distribution over possible models. This approach is promising for solving the
exploration problem because it provides a principled way to track the agent’s uncertainty
in different parts of the model. In addition, with this explicit uncertainty measure, Bayesian
methods can plan to explore states that have the potential to provide future rewards, rather
than simply exploring states to reduce uncertainty for its own sake. However, these methods
have a few drawbacks. They must maintain a belief distribution over models, which can be
computationally expensive. In order to generalize, the user must design a model parametriza-
tion that ties the dynamics of different states together in the correct way. In addition, the user
must provide a well-defined prior for the model.

Duff (2003) presents an “optimal probe” that solves the exploration problem optimally,
using an augmented state space that includes both the agent’s state in the world and its beliefs
over its models (called a belief state MDP). The agent’s model includes both how an action
will affect its state in the world, and how it will affect the agent’s beliefs over its models
(and what model it will believe is most likely). By planning over this larger augmented state
space, the agent can explore optimally. It knows which actions will change its model beliefs
in significant and potentially useful ways, and can ignore actions that only affect parts of
the model that will not be useful. While this method is quite sample efficient, planning
over this augmented state space can be very computationally expensive. Wang et al. (2005)
make this method more computationally feasible by combining it with MCTS-like planning.
This can be much more efficient than planning over the entire state space, as entire parts of
the belief space can be ignored after a few samples. BEETLE (Poupart et al. 2006) takes a
different approach to making this solution more computationally feasible by parametrizing
the model and tying model parameters together to reduce the size of the model learning
problem. However, this method is still impractical for any problem with more than a handful
of states.

Another approach to the exploration problem is Gaussian Process RL. Deisenroth and
Rasmussen (2011) present one such approach called Probabilistic Inference for Learning
Control (PILCO), where the agent maintains a model of the domain using Gaussian Process
regression. This model generalizes experience to unknown situations and represents uncer-
tainty explicitly. This approach has achieved great results on motor control problems such
as the inverted pendulum and cart-pole problems. However, the algorithm requires ten min-
utes of computation time for every 2.5 seconds of experience when learning the cart-pole
task. Also, rather than learning from an arbitrary reward function, the reward must encode a
function of how far the agent is from the target state.

Other Bayesian methods use the model distribution to drive exploration without having
to plan over a state space that is augmented with model beliefs. Both Bayesian DP (Strens
2000) and Best of Sampled Set (BOSS) (Asmuth et al. 2009) approach the exploration prob-
lem by sampling from the distribution over world models and using these samples in differ-
ent ways.

Bayesian DP samples a single model from the distribution, plans a policy using it, and
follows that policy for a number of steps before sampling a new model. In between sampling
new models, the agent will follow a policy consistent with the sampled model, which may
be more exploratory or exploitative depending on the sampled model.

BOSS, as previously described in Sect. 3.4, samples m models from the model posterior
and merges them into a single model with the same state space, but an augmented action
space of mA actions. Planning over this model allows the agent to select at each state an
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action from the most optimistic model. The agent will explore states where the model is
uncertain because at least one of the sampled models is likely to be optimistic with respect
to the true environment in these states. One drawback to this approach is that the agent
ignores any possible costs to exploration, as the agent can always take the action from the
most optimistic model, even if the other models all predict a negative outcome.

Model Based Bayesian Exploration (Dearden et al. 1999) (MBBE) was also described
in Sect. 3.4. It maintains a distribution over model parameters and samples and solves m
models to get a distribution over action-values. This distribution is used to calculate the
value of perfect information (VPI), which is added as a bonus value to actions to drive
exploration.

These three methods (Bayesian DP, BOSS, and MBBE) provide three different approaches
to sampling from a Bayesian distribution over models to solve the exploration problem.
While these methods provide efficient exploration, they do require the agent to maintain
Bayesian distributions over models and sample models from the distribution. They also re-
quire the user to create a well-defined model prior. In addition, the user must come up with
a way for the model’s predictions to be generalized across states or the agent will have to
visit every state-action similar to the tabular approaches.

4.2 Challenge 2: Continuous Domains

Most of the model-based methods presented above are intended for discrete domains. This
section looks at some of the related work on learning models for domains with continuous
state spaces. The PILCO method presented earlier (Deisenroth and Rasmussen 2011) can
handle continuous dynamics by using Gaussian Process regression for both learning a model
and computing a policy.

Strehl and Littman (2007) introduce a linear regression model that provides its confidence
in its predictions, which is useful for driving exploration. However, this model only works
in domains that are linearly parametrized, whereas the linear regression tree model used by
TEXPLORE works on those domains by learning a tree with a single leaf containing a linear
function, and can also fit a piecewise linear function to any other domain that is not linear.
In addition, the authors do not solve the problem of planning over a continuous state space,
instead assuming they have a perfect planner. In later work (Walsh et al. 2009b), they use
the algorithm to predict a continuous reward function in a domain with discrete states, again
avoiding the continuous state problem.

For planning over continuous domains, a common method is fitted value iteration (Gor-
don 1995), which adapts value iteration to continuous state spaces. It updates the values of a
finite set of sampled states, and then fits a function approximator to their values. Like value
iteration, it must iterate over the entire sampled state set which can be computationally ex-
pensive. In addition, this method only plans over the finite state set, while TEXPLORE, by
using MCTS, can plan from the agent’s real-valued state.

Jong and Stone (2007) present an extension of R-MAX to continuous domains called
FITTED R-MAX. The authors use an instance based model and determine if a state is known
based on the density of nearby visited states. The agent is driven to visit unknown states,
like R-MAX. The policy is computed using fitted value iteration. While this method is a
good extension of R-MAX to continuous domains, it suffers from the same over-exploration
as R-MAX, while TEXPLORE focuses its exploration on parts of the state space that appear
promising.

Finally, model-free methods can be extended to work in continuous domains by using
function approximators to approximate the value function. For example, using Q-LEARNING
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or SARSA with neural networks or tile coding as a function approximator is a common
approach for these problems. However, these model-free methods do not have the sample
efficiency required to meet the first challenge of sample efficiency.

Munos and Moore (2002) use kd-trees to approximate the value function in continuous
domains. In their approach, they incrementally refine the trees to improve their represen-
tation of the value function. They have specific value function based metrics to determine
when is the best time to add new splits to the tree. While this method takes advantage of
trees similar to TEXPLORE, it does it for value function approximation, instead of for ap-
proximating the transition and reward models.

4.3 Challenge 3: Observation and Action Delays

On real devices such as robots, there are frequently delays in both sensor readings and the
execution of actions. This section presents some related work on handing delays in both
actions and state observations, which are equivalent (Katsikopoulos and Engelbrecht 2003).

Walsh et al. (2009a) develop a method called Model Based Simulation (MBS) for delayed
domains. Given the domain’s delay, k, as input, the algorithm can uncover the underlying
MDP and learn a model of it. When the agent is selecting an action, MBS uses its model
to simulate what state the selected action is likely to take effect in, and returns the action
given by its policy for this state. The authors combine this approach with R-MAX learning
the underlying model, creating an algorithm called MBS-R-MAX. The algorithm works well,
but requires knowledge of the exact amount of delay, k, while TEXPLORE only requires an
upper bound on the delay. Also, in stochastic domains, the agent may make poor predictions
of the state where the action will take effect.

Methods with eligibility traces such as SARSA(XA) can be useful for delayed domains,
because the eligibility traces spread credit for the current reward over the previous state-
actions that may be have been responsible for it. Schuitema et al. (2010) take this a step
further, updating action-values for the effective action that was enacted at that state, rather
than the action actually selected by the agent at the given state. However, the agent still
selects actions based on its current state observation, so the values for which actions to
select may not be correct.

The U-TREE (McCallum 1996) algorithm is the inspiration for TEXPLORE’s approach
of adding additional inputs to the decision trees used for learning the domain model. While
TEXPLORE uses decision trees strictly for learning a model, U-TREE builds trees to represent
a value function of the domain, with each leaf representing a set of states that have similar
value. Value iteration is performed using each tree leaf as a state. TEXPLORE separates the
policy representation from the model representation, as there are often cases where states
have similar values but different transition dynamics (or vice versa).

The MC-AIXI algorithm (Veness et al. 2011) takes a very similar approach to TEXPLORE,
although theirs is intended for POMDPs rather than domains with delay. They use UCT to
plan using a history of previous state-action-reward sequences, while TEXPLORE uses the
current state augmented with the previous k actions. Both approaches take advantage of
the ability of UCT to easily incorporate histories into its rollouts and focus planning on the
relevant parts of the state space.

Outside of RL, there is some evidence that a mechanism similar to TEXPLORE’s approach
is used in the mammalian cerebellum. The cerebellum determines the proper control output
on a delayed task by using different fibers which provide signals at various delays (Ohyama
et al. 2003).

@ Springer



Mach Learn (2013) 90:385-429 411

4.4 Challenge 4: Real-Time Actions

Learning on a robot requires actions to be given at a specific control frequency, while main-
taining sample efficiency so that learning does not take too long. Model-free methods typ-
ically return actions quickly enough, but are not very sample efficient, while model-based
methods are more sample efficient, but typically take too much time for model updates and
planning. This section describes related work that makes model-free methods more sample
efficient as well as work making model-based methods run in less clock time.

Batch methods such as experience replay (Lin 1992), fitted Q-iteration (Ernst et al. 2003),
and LSPI (Lagoudakis and Parr 2003) improve the sample efficiency of model-free methods
by saving experiences and re-using them in periodic batch updates. However, these methods
typically run one policy for a number of episodes, stop to perform their batch update, and
then repeat. While these methods take breaks to perform computation, RTMBA continues
taking actions in real-time even while model and policy updates are occurring.

The DYNA framework (Sutton 1990) incorporates some of the benefits of model-based
methods while still running in real-time. DYNA saves its experiences, and then performs
[ Bellman updates on randomly selected experiences between each action. Thus, instead
of performing full value iteration each time, its planning is broken up into a few updates
between each action. However, it uses a simplistic model (saved experiences) and thus does
not have very good sample efficiency.

The DYNA-2 framework (Silver et al. 2008) extends DYNA to use UCT as its planning
algorithm. In addition, it maintains separate value function approximators for updates from
real experience and sample-based updates, such that the sample-based planner can have a
finer resolution in the region the agent is in. This improves the performance of the algorithm
compared to DYNA. However, to be sample-efficient, DYNA-2 must have a good model
learning method, which may require large amounts of computation time between action
selections.

Real Time Dynamic Programming (RTDP) (Barto et al. 1995) is a method for perform-
ing dynamic programming in real-time by performing rollouts, similar to UCT. It simulates
trajectories from the start of the task using Boltzmann exploration. For each state that it
visits, it does a full backup on that’s states values. It differs from TEXPLORE’s version of
UCT in that it is doing full one-step backups rather than A-returns, and it is using Boltzmann
exploration rather than upper confidence bounds. Still, it presents an intriguing alternative
to UCT.

Walsh et al. (2010) argue that with new compact representations for model-learning,
many algorithms have PAC-MDP sample efficiency guarantees. The bottleneck is now that
these methods require planning every step on a very large domain. Therefore, they want to
replace traditional flat MDP planners with sample-based methods where computation time
is invariant with the size of the state space. In order to maintain their PAC-MDP guarantees,
they create a more conservative version of UCT that guarantees e-accurate policies and is
nearly as fast as the original UCT. They show that this new algorithm is still PAC-MDP
efficient.

These methods all have drawbacks; they either have long pauses in learning to perform
batch updates, or require complete model update or planning steps between actions. None
of these methods accomplish both goals of being sample efficient and acting continually in
real-time.

4.5 Summary

While there is a large body of work relating to each challenge that TEXPLORE addresses,
none of these approaches address all four challenges together. A few methods come close.
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The PILCO algorithm (Deisenroth and Rasmussen 2011) is extremely sample efficient, tar-
gets exploration where the model needs improvement, and works on robots with continuous
state spaces. However, it cannot take actions in real-time.

Policy search methods such as Policy Learning by Weighting Exploration with the Re-
turns (PoWER) (Kober and Peters 2011) provide an alternative approach to applying RL to
robots. In these approaches, the control policy is parametrized and the parameters for this
policy are updated between each episode. With a good policy parametrization, a good policy
can be learned in few samples. However, these methods require the user to create the policy
parametrization and can take considerable time between each episode for computation.

The Horde architecture (Sutton et al. 2011) takes a very different approach to learning
on robots. In parallel, it learns to predict the values of many different sensors using general
value functions. In addition, it learns policies to maximize those sensor values. Horde can
learn these predictions while running in real-time on a robot that is following some other
policy. While Horde adopts a parallel real-time architecture like TEXPLORE to learn predic-
tions about the world, it cannot use these predictions as a model to plan more complicated
policies. In addition, it is not particularly sample efficient, as it takes 8.5 hours of experi-
ence to learn a light-following policy. However, sample efficiency is less important in this
scenario as Horde can learn while the robot is doing other things.

In contrast to these approaches, TEXPLORE addresses all of the desired criteria: it is
sample-efficient, takes actions continually in real-time, works in domains with continuous
state spaces, and can handle sensor and actuator delays. It also does not require much user
input: a discretization size for continuous domains, an upper bound on the delay in the
domain, and possibly seed experiences to bias initial learning. In the following section, the
various aspects of the algorithm are examined empirically.

5 Empirical Results

This section presents experiments that examine TEXPLORE’s solution to each challenge in
isolation from the other parts. It examines a variety of options for each challenge while
keeping the other components of the TEXPLORE algorithm fixed. Each component is demon-
strated on a simulation of controlling an autonomous vehicle. First, Sect. 5.1 examines TEX-
PLORE’s approach to challenge 1: sample efficiency and exploration. Section 5.2 examines
how TEXPLORE’s models address challenge 2 by modeling continuous domains. The use
of k action histories to handle delays (challenge 3) is explored in Sects. 5.3 and 5.4 exam-
ines the effects of using the real-time architecture, addressing challenge 4. Finally, Sect. 5.5
shows the algorithm learning to control the physical autonomous vehicle, rather than the
simulation.

Each component of the algorithm is examined on a simulation of a robot task: controlling
the velocity of an autonomous vehicle (Beeson et al. 2008). This task requires an algorithm
to address all the challenges laid out in the introduction: it has a continuous state space and
delayed action effects, and it requires learning that is both sample efficient (to learn quickly)
and computationally efficient (to learn on-line while controlling the car).

The experimental vehicle is an Isuzu VehiCross (Fig. 6) that has been upgraded to run
autonomously by adding shift-by-wire, steering, and braking actuators to the vehicle. The
brake is actuated with a motor physically moving the pedal, which has a significant delay.
ROS (Quigley et al. 2009) is used as the underlying middleware. Actions must be taken in
real-time, as the car cannot wait for an action when a car stops in front of it or it approaches
a turn in the road. To the best of our knowledge, no prior RL algorithm is able to learn in
this domain in real time: with no prior data-gathering phase for training a model.
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Fig. 6 The autonomous vehicle
operated by Austin Robot
Technology and The University
of Texas at Austin

Since the autonomous vehicle was already running ROS as its middleware, we created a
ROS package for interfacing with RL algorithms similar to the message system used by RL-
Glue (Tanner and White 2009). We created an RL Interface node that wraps sensor values
into states, translates actions into actuator commands, and generates reward. This node uses
a standard set of ROS messages to communicate with the learning algorithm. At each time
step, the RL Interface node computes the current state and reward and publishes them as a
ROS message to the RL agent. The RL agent can then process this information and publish
an action message, which the interface will convert into actuator commands. Whereas RL
agents using RTMBA respond with an action message immediately after receiving the state
and reward message, sequential methods may have a long delay to complete model updates
and planning before sending back an action message. In this case, the vehicle would continue
with all the actuators in their current positions until it receives a new action message. The
ROS messages we defined for communicating with an RL algorithm are available as a ROS
package: http://www.ros.org/wiki/rl_msgs.

The task is to learn to drive the vehicle at a desired velocity by controlling the pedals. For
learning this task, the RL agent’s 4-dimensional state is the desired velocity of the vehicle,
the current velocity, and the current position of the brake and accelerator pedals. For the
discrete methods and the planner for the continuous methods, desired velocity is discretized
into 0.5 m/s increments, current velocity into 0.25 m/s increments, and the pedal positions
into tenths of maximum position. The agent’s reward at each step is —10.0 times the error
in velocity in m/s. Each episode is run at 10 Hz for 10 seconds. The agent has 5 actions:
one does nothing (no-op), two increase or decrease the desired brake position by 0.1 while
setting the desired accelerator position to 0, and two increase or decrease the desired acceler-
ator position by 0.1 while setting the desired brake position to 0. While these actions change
the desired positions of the pedals immediately, there is some delay before the brake and ac-
celerator reach their target positions. The experiments are run with a discount factor of 0.95.
None of the algorithms are given prior inputs or seed transitions before starting learning; the
algorithms all start learning with no prior knowledge of this task. Table 2 formally defines
the states, actions, and rewards for the domain.

5.1 Challenge 1: Sample Efficiency and Exploration
First, TEXPLORE’s exploration and sample efficiency are compared against other possible

approaches. We compare both with other exploration approaches utilized within TEXPLORE
and with other existing algorithms such as BOSS and Gaussian Process RL. To fully examine

@ Springer


http://www.ros.org/wiki/rl_msgs

414 Mach Learn (2013) 90:385-429

Table 2 Properties of the autonomous vehicle velocity control task

State Desired Velocity, Current Velocity, Throttle Position, Brake Position

Actions Do nothing, Increase Throttle position by 0.1, Decrease Throttle Position by 0.1,
Increase Brake Position to 0.1, Decrease Brake Position to 0.1

Reward —10.0 x IDesired Velocity — Current Velocityl

Algorithm 8 Bayesian DP-like Approach
1: procedure QUERY(in) > Get prediction for input in
2: return tree.,,, = QUERY (in) > Prediction from model curr
3: end procedure

Algorithm 9 BoSs-like Approach

1: procedure QUERY(in) > Get prediction for input in
2: (s,a) «<in

3 model <— ROUND(a/m) > Action a defines which model
4: act < amodm > And which action on that model
5 input < (s, act)

6: return tree,, 4., = QUERY (input) > Prediction from tree model for action act
7. end procedure

the exploration of TEXPLORE, experiments are performed on both the simulated car control
task and a gridworld domain designed to illustrate differences in exploration.

5.1.1 Simulated Vehicle Velocity Control

We examine TEXPLORE’s exploration while keeping TEXPLORE’s model learning, planning,
and architecture constant. Its exploration is compared with a number of other approaches,
including some that are inspired by Bayesian RL methods. By treating each of the regression
tree models in the random forest as a sampled model from a distribution, we can examine the
exploration approaches taken by some Bayesian RL methods, without requiring the compu-
tational overhead of maintaining a posterior distribution over models or the need to design
a good model parametrization.

Bayesian DP (Strens 2000) was described in detail in Sect. 4.1.2. It samples a single
model from the distribution, plans a policy on it, and uses it for a number of steps. We create
a similar method for comparison by replacing the QUERY procedure in Algorithm 7 with
the one shown in Algorithm 8. At the start of each episode, curr is set to a random number
between 1 and m. The procedure returns the predictions of tree.,,, until a new model is
chosen on the next episode.

Best of Sampled Set (BOSS) (Asmuth et al. 2009) was also described in detail in
Sect. 4.1.2. It creates an augmented model with mA actions—a set of actions for each sam-
pled model. By replacing QUERY in Algorithm 7 with Algorithm 9, we create a comparison
method that takes a similar approach. The action that is passed in as part of in is used to
determine which model to query.
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In addition to the Bayesian-inspired approaches, we compare with the approach taken
in the PILCO algorithm (Deisenroth and Rasmussen 2011) (described in Sect. 4.1.1), which
adds a bonus reward into the model for state-actions where the predictions have the highest
variance. This bonus reward encourages the agent to explore state-actions where its models
disagree, and therefore where they need more experiences to learn a more accurate model.
Each tree in the random forest model makes its own (possibly different) prediction of the
next value of each feature and reward. The variances in the predictions made by the different
trees are calculated, and the reward sample r returned by the QUERY-MODEL method for a
given (s, a) of Algorithm 4 is modified by a value proportional to the average variance:

1 n
r:r+bm|:02R(s,a)+ZazP(s,’d|s,a):|. (11)

i=1

Here, b is a coefficient which determines the bonus amount, o2R(s, a) is the variance in
the reward predicted by each model, and aZP(si’el | s,a) is the variance in the prediction
of the change in each state feature. This VARIANCE-BONUS approach takes an exploration
parameter, b, which adds or subtracts intrinsic rewards based on a measure of the variance
in the model’s predictions for each feature and reward. By setting b < 0, the agent will avoid
states that the model is uncertain about; setting b > 0 will result in the agent being driven
to explore these uncertain states. If » = 0, the agent will act greedily with respect to its
model. Changing the parameter b affects how aggressive the agent is in trying to improve
uncertainties in its model.
In total, we compare 7 different exploration approaches listed below:

. Greedy w.r.t. aggregate model (TEXPLORE default)
. e-greedy exploration (¢ =0.1)

. Boltzmann exploration (r = 0.2)

. VARIANCE-BONUS Approach b =1 (Eq. (11))

. VARIANCE-BONUS Approach b = 10 (Eq. (11))

. Bayesian DP-like Approach (Algorithm 8)

. BOSS-like Approach (Algorithm 9)

N O\ WN =

We do not run a version of MBBE because planning on m different models is too computa-
tionally inefficient to run at the frequency required by the car. Based on informal testing, all
experiments with TEXPLORE are run with A = 0.05, the probability that each experience is
given to each model, w, set to 0.6, and the probability a feature is randomly removed from
the set used for each split in the tree, f, set to 0.2. The values of € and T were also found
through informal testing. All of these experiments are run with TEXPLORE’s architecture
and random forest model with the length of action histories, k, set to 2.

Figure 7 shows the average reward per episode for each of these exploration ap-
proaches. TEXPLORE’s greedy approach, e-greedy exploration, Boltzmann exploration, and
the Bayesian DP-like approach are not significantly different. They all receive significantly
more average rewards than the other three approaches after episode 24 (p < 0.001). Note
that adding e-greedy exploration, Boltzmann exploration, or Bayesian DP-like exploration
on top of TEXPLORE’s aggregate model does not significantly improve the rewards that it
receives. Since the agent has a fairly limited number of steps in this task, the methods that
explore more (the VARIANCE-BONUS approaches and the BOSS-LIKE approach) do not start
exploiting in time to accrue much reward on this task. In contrast, TEXPLORE performs lim-
ited exploration using its aggregate random forest model and accrues equal or more reward
than all the other methods.
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Fig. 7 Average reward over Simulated Car Control Between Random Velocities
1000 episodes on the simulated 500
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In addition to comparing with methods using TEXPLORE’s models, we compare with
other methods that are state of the art for exploration, particularly Bayesian methods. Here
TEXPLORE is compared against the full versions of these methods, where sparse Dirichlet
priors over models are maintained and sampled from. The parallel architecture is used to
select actions in real-time. TEXPLORE is compared with the following 5 algorithms:

. BOSS (Asmuth et al. 2009)

. Bayesian DP (Strens 2000)

. PILCO (Deisenroth and Rasmussen 2011)

. R-MAX (Brafman and Tennenholtz 2001)

. Q-LEARNING using tile-coding (Watkins 1989; Albus 1975)

N AW =

Both BOSS and Bayesian DP utilize a sparse Dirichlet prior over the discretized version of
the domain as their model distribution (Strens 2000), while PILCO uses a Gaussian Process
regression model and R-MAX uses a tabular model.

Results for these comparisons are shown in Fig. 8. Here, TEXPLORE accrues significantly
more rewards than all the other methods after episode 24 (p < 0.01). In fact, the Bayesian
methods all fail to improve during this time scale (however, they would eventually learn an
optimal policy). Thus, the combination of model learning and exploration approach used by
TEXPLORE is the best for this particular domain.

5.1.2 Fuel World

Next, we created a novel domain called Fuel World to further examine exploration, shown
in Fig. 9. In it, the agent starts in the middle left of the domain and is trying to reach a
terminal state in the middle right of the domain which has a reward of 0. The agent has a
fuel level that ranges from O to 60. The agent’s state vector, s, is made up of three features:
its ROW, COL, and FUEL. Each step the agent takes reduces its fuel level by 1. If the fuel
level reaches 0, the episode terminates with reward —400. There are fuel stations along the
top and bottom row of the domain which increase the agent’s fuel level by 20. The agent
can move in eight directions: NORTH, EAST, SOUTH, WEST, NORTHEAST, SOUTHEAST,
SOUTHWEST, and NORTHWEST. The first four actions each move the agent one cell in that
direction and have a reward of —1. The last four actions move the agent to the cell in that
diagonal direction and have reward —1.4. An action moves the agent in the desired direction
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Fig. 8 Average reward over Simulated Car Control Between Random Velocities
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Fig. 9 The Fuel World domain.
Starting states have blue
hexagons, fuel stations have
green brick patterns, and the goal
state is shown in red with vertical
lines. The possible actions the
agent can take are shown in the
middle. Here, the fuel stations are
the most interesting states to
explore, as they vary in cost,
while the center white states are
easily predictable

Table 3 Properties of the Fuel World task

State Row, Column, Fuel Level
Actions NORTH, EAST, SOUTH, WEST, NORTHEAST, SOUTHEAST, SOUTHWEST, NORTHWEST
Reward Ranges from —400.0 to +-20.0

with probability 0.8 and in the two neighboring directions each with probability 0.1. For
example, the NORTH action will move the agent north with probability 0.8, northeast with
probability 0.1 and northwest with probability 0.1. The domain has 21 x 31 cells, each with
61 possible energy levels, and 8 possible actions, for a total of 317, 688 state-actions. The
agent does not start with enough fuel to reach the goal, and must learn to go to one of the
fuel stations on the top or bottom row before heading towards the goal state. The domain is
formally defined in Table 3.
Actions from a fuel station have an additional cost, which is defined by:

R(x) = base — (x mod 5)a, (12)
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Table 4 Parameters for Eq. (12)

for the two versions of the Fuel Domain Bottom Row Top Row

World task base a base a
Low variation Fuel World —18 1 —21 1
High variation Fuel World —-10 5 —13 5

where R(x) is the reward of a fuel station in column x, base is a baseline reward for that
row, and a controls how much the costs vary across columns. There are two versions of the
domain which differ in how much the costs of the fuel stations vary. The parameters for both
the Low variation and High variation Fuel World are shown in Table 4.

The Fuel World domain was designed such that the center states have easily modeled
dynamics and should be un-interesting to explore. The fuel stations all have varying costs
and are more interesting, but still only the fuel stations that may be useful in the final policy
(i.e. the ones on a short path to the goal) should be explored. In addition, there is a clear cost
to exploring, as some of the fuel stations are quite expensive.

The following 8 methods are compared:

. Greedy w.r.t. aggregate model (TEXPLORE default)

. e-greedy exploration (¢ =0.1)

. Boltzmann exploration (t = 0.2)

. VARIANCE-BONUS Approach b =10 (Eq. (11))

. Bayesian DP-like Approach (Algorithm 8)

. BOSS-like Approach (Algorithm 9)

. Bayesian DP with sparse Dirichlet prior (Strens 2000)
. BOSS with sparse Dirichlet prior (Strens 2000)

0NN R W~

The first six methods are the ones shown in the previous section that use the TEXPLORE
model with various forms of exploration. The last two algorithms are Bayesian methods
that are using models drawn from a sparse Dirichlet distribution. We did not run PILCO
because this is a discrete domain (note that other Gaussian Process based methods can be
run in discrete domains). We do not present results for Q-LEARNING and R-MAX because
they performed so poorly on this task. All of these methods are run in real-time with actions
taken at a rate of 10 Hz.

All of the algorithms are given seeding experiences in the domain. They are given two
experiences from the goal state, two transitions from each row of fuel stations, and two
experiences of running out of fuel for a total of eight seeding experiences. Since the sparse
Dirichlet prior used by BOSS and BAYESIAN DP does not generalize, the sample experiences
are only useful to them in the exact states they occurred in. In contrast, TEXPLORE’s random
forest models can generalize these experiences across state-actions.

Figure 10 shows the average reward per episode over 50 trials for the methods in the Low
variation Fuel World (Results are similar in the High variation Fuel World). TEXPLORE
learns the fastest and accrues the most cumulative reward of any of the methods. TEXPLORE
receives significantly more average rewards than all the other methods on episodes 20-32,
36-45, 68-91, and 96-110 (p < 0.05). TEXPLORE is not significantly worse than any other
methods on any episode. All of the methods using TEXPLORE’s model are able to learn
the task to some degree, while the two Bayesian methods are unable to learn it within 300
episodes and their agents run out of fuel every episode.
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Fig. 10 Average reward over the Low Variation Euel World
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To further examine how the agents are exploring, Fig. 11 shows heat maps of which states
the agents visited. The shading (color) represents the number of times the agent visited each
cell in the domain (averaged over 50 trials and all fuel levels), with lighter shading (brighter
color) meaning more visits.

Figures 11(a) and 11(b) show the heat maps over the first 50 episodes for TEXPLORE in
the Low and High variation Fuel World domains and Figs. 11(e) and 11(d) show the heat
maps over the final 50 episodes. First, the figures show that the algorithm is mainly exploring
states near the fuel stations and the path to the goal, ignoring the space in the middle and
right of the domain. Looking at the cells in the top and bottom rows between columns 5
and 10, Fig. 11(a) shows that the agent in the Low variation Fuel World explores more of
these fuel stations, while in the High variation world in Fig. 11(b), the higher exploration
costs cause it to quickly settle on the stations in column 5 or 10. The effects of the agent’s
different exploration in these two domains can be seen in its final policy in each domain.
Since the agents in the Low variation Fuel World explore more thoroughly than in the High
variation world, they settle on better (and fewer) final policies. In the High variation task,
the agent explores less after finding a cheap station and thus the various trials settle on a
number of different policies. Since the reward within one fuel row can vary up to 20.0 in
the High variation domain, it is not worthwhile for the agent to receive this additional cost
while exploring, only to find a fuel station that is minimally better than one it already knows
about.

The reason that TEXPLORE out-performs the other methods is that they explore too thor-
oughly and are unable to start exploiting a good policy within the given number of episodes.
In contrast, TEXPLORE explores much less and starts exploiting earlier. Since TEXPLORE
explores in a limited fashion, it uses these limited exploratory steps wisely, focusing its ex-
ploration on fuel stations rather than the other states. In contrast, the VARIANCE-BONUS,
BAYESIAN DP-like, and BOSS-like approaches explore all of the state space. As an exam-
ple, Fig. 11(c) shows the exploration of the BOSS-like method on the Low Variation Fuel
World. This approach is very optimistic and explores most of the cells near the start and
near the fuel stations. The two complete Bayesian algorithms perform poorly because their
sparse Dirichlet distribution over models does not generalize across states. Therefore, they
explore each state-action separately and are only able to explore the starting states in the first
300 episodes, as shown in Fig. 11(d). When acting in such a limited time frame, it is better
to perform little exploration and target this exploration on useful state-actions. When given
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over first 50 episodes.
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(e) TEXPLORE on Low Variation Fuel World
over final 50 episodes.

Fig. 11 Heat maps displaying the average number of visits to each state over 50 episodes in the Fuel World
domain, averaged over 50 trials and all fuel levels. With the higher fuel station costs in the High Variation
Fuel World, TEXPLORE explores less there (b) than in the Low Variation domain (a). In either case, it explores
less thoroughly than the BOSS-like algorithm (c) or the complete BOSS algorithm (d). The last two figures
show the final policies for TEXPLORE in the two versions of the domain. In the High Variation domain (d),
TEXPLORE explores less and converges to more final policies, while the Low Variation version (e), it explores

more and converges to fewer final policies across the 30 trials

more time, it would be better to explore more thoroughly, as all of the other exploration
methods will converge to the optimal policy if given enough time.

5.2 Challenge 2: Modeling Continuous Domains
Next, we examine the ability of TEXPLORE’s model learning method to accurately predict

state transitions and rewards on the continuous simulated vehicle velocity control task. In
order to separate the issues of planning and exploration from the model learning, we train the
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Fig. 12 Average error in the prediction of the next state and reward for each model, averaged over 50 trials
and plotted with 95 % confidence intervals. Each model is trained on random experiences from the domain
and tested on its ability to predict 10,000 random experiences from the domain. The state error is the average
Euclidean distance between the most likely predicted state and the true most likely next state and the reward
error is the error in expected reward. Note that TEXPLORE’s model, a random forest of regression trees, is the
most accurate for next state predictions and second best for reward prediction

model on a random sampling of experiences from the domain and then measure its accuracy
on predicting the next state and reward for a randomly sampled 10,000 experiences in the
domain.

Seven different model types are compared:

. Regression Tree Forest (TEXPLORE Default)

. Single Regression Tree

. Decision Tree Forest

. Single Decision Tree

. Tabular Model

. KWIK Linear Regression (Strehl and Littman 2007)

. Gaussian Process Regression (PILCO model) (Deisenroth and Rasmussen 2011)

NN R W=

The first four are variants of TEXPLORE's regression tree forest model, while the last three
are typical benchmark approaches.

To compare the accuracy of the models, the Euclidean distance between the next state
the model predicted most likely and the true most likely next state is used. For reward, the
average error between the expected reward predicted by the model and the true expected
reward in the simulation is calculated.

Figure 12 shows the average next state and reward prediction error for each model. For
prediction of the next state, the regression tree forest and single regression tree have signif-
icantly less error than all the other models (p < 0.001). The single regression tree and the
forest are not significantly different. For reward prediction, Gaussian process regression is
significantly better than the other models (p <= 0.001). The regression tree forest has the
next lowest error and is significantly better than all other models (including the single regres-
sion tree) after training on 205 state-actions (p < 0.001). While Gaussian process regression
has the lowest error on reward prediction, its prediction of the next state is very poor, likely
due to discontinuities in the function mapping the current state to the next state. These re-
sults demonstrate that TEXPLORE’s model is well-suited to the robot learning domain: it
makes accurate predictions, generalizes well, and has significantly less error in predicting
states than the other models.
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5.3 Challenge 3: Delayed Actions

Next, we examine the effects of TEXPLORE’s approach for dealing with delays on the sim-
ulated car velocity control task. As described in Sect. 3.3, TEXPLORE takes a k-Markov
approach, adding the last k actions as extra inputs to its models and planning over states
augmented with k-action histories. The other components of TEXPLORE are particularly
suited to this approach, as UCT(A)’s rollouts can easily incorporate histories and the tree
models can correctly identify which delayed inputs to use.

We evaluate TEXPLORE’s approach using values of k ranging from 0 to 3. In addition,
we compare with Model Based Simulation (MBS) (Walsh et al. 2009a), which represents the
main alternative to handling delays with a model-based method. MBS requires knowledge of
the exact value of k to uncover the true MDP for model learning. MBS then uses its model to
simulate forward to the state where the action will take effect and uses the policy at that state
to select the action. MBS is combined with TEXPLORE's parallel architecture and models. In
addition, to show the unique advantages of using regression trees for modeling, we compare
with an approach using tabular models. Since the tabular models do not generalize, the
agent must learn a correct model for every history-state-action. The following variations are
compared:

1. TEXPLORE k=0
2. TEXPLORE k=1
3. TEXPLORE k =2
4. TEXPLORE k=3
5. MBS k=1

6. MBS k=2

7. MBS k=3

8

. Tabular model £k =2

The delay in the velocity control task comes from the delay in physically actuating the
brake pedal (which is modeled in the simulation). The brake does not have a constant delay;
it is slow to start moving, then starts moving quickly before slowing as it reaches the target
position. MBS is not well suited to handle this type of delay, as it expects a constant delay
of exactly k. In contrast, TEXPLORE’s model can potentially use the previous k actions to
model the changes in the brake’s position.

The average reward for each method on the simulated car control task is shown in Fig. 13.
The TEXPLORE methods using k = 1, 2, and 3 receive significantly more average rewards
than the other methods after episode 45 (p < 0.005). These three delay levels are not sig-
nificantly different, however, TEXPLORE with k = 1 learns faster, receiving more average
rewards through episode 80, but TEXPLORE with k = 2 learns a better policy and has the
best average rewards after that. TEXPLORE with k = 0 learns a poor policy, while the meth-
ods using MBS and the TABULAR model do not learn at all.

5.4 Challenge 4: Real-Time Action

In this section, we demonstrate the effectiveness of the RTMBA architecture to enable the
agent to act in real-time. The goal is for the agent to learn effectively on-line while running
continuously on the robot in real-time, without requiring any pauses or breaks for learn-
ing. This scenario conforms to the eventual goal of performing lifelong learning on a robot
without pauses or breaks. TEXPLORE’s RTMBA architecture enables this by employing a
multi-threaded approach along with UCT(X) planning.
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Fig. 13 Average reward over Simulated Car Control Between Random Velocities
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Various approaches for real-time action selection are evaluated on the simulated vehicle
velocity control task. We compare with three other approaches: one that also does approx-
imate planning in real-time, one that does exact planning in real-time, and one that does
not select actions in real-time at all. All four approaches use TEXPLORE’s model and explo-
ration:

. RTMBA (TEXPLORE)

. Real Time Dynamic Programming (RTDP) (Barto et al. 1995)
. Parallel Value Iteration

. Value Iteration

FENEROS I NS

RTDP is an alternative way to do approximate planning instead of using UCT. In contrast
to UCT, RTDP does full backups on each state of its rollout and performs action selection
differently. The implementation of RTDP still uses TEXPLORE’s multi-threaded architecture
to enable parallel model learning and planning, but uses RTDP for planning instead of UCT.

For a comparison with a method doing exact planning and still acting in real-time, we
implemented a multi-threaded version of value iteration (Parallel Value Iteration) that runs
model updates and value iteration in a parallel thread while continuing to act using the most
recently calculated policy.

Finally, we compare with value iteration run sequentially, to show what happens when
actions are not taken in real-time. Since this architecture is sequential, there could be long
delays between action selections while the model is updated and value iteration is performed.
If the vehicle does not receive a new action, its throttle and brake pedals remain in their
current positions.

In addition to these four different architectures, we also compare with DYNA (Sutton
1990) and Q-LEARNING with tile-coding (Watkins 1989; Albus 1975). DYNA saves experi-
ences and updates its value function by performing Bellman updates on randomly sampled
experiences. The implementation of DYNA performs as many Bellman updates as it can
between actions while running at 10 Hz. Q-LEARNING with tile-coding for function approx-
imation could select actions faster than 10 Hz, but the environment only requests a new
action from it at 10 Hz. Both DYNA and Q-LEARNING perform Boltzmann exploration with
7 = 0.2, which performed the best based on informal tests.

Figure 14 shows the average rewards for each of these approaches over 1000 episodes
and averaged over 50 trials while controlling the simulated vehicle. TEXPLORE’s architec-
ture receives significantly more average rewards per episode than the other methods after
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Fig. 14 Average reward over Simulated Car Control Between Random Velocities
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episode 29 (p < 0.01). While RTDP is out-performed by TEXPLORE'’s architecture here, re-
cent papers have shown modified versions of RTDP to be competitive with UCT (Kolobov
etal. 2012). Both TEXPLORE and RTDP are run with k = 2. Since running value iteration on
this augmented state space would result in 25 times more state-actions to plan on, the value
iteration approaches are run with k = 0. Still, they perform significantly worse than TEX-
PLORE with k = 0 (not shown) after episode 41 (p < 0.001). This issue provides another
demonstration that k-Markov histories work well with UCT(A) planning but make methods
such as value iteration impractical.

In addition to these experiments, in previous work (Hester et al. 2012), we further ana-
lyzed the trade-offs of using the multi-threaded architecture. We showed that at slow enough
action rates (10-25 Hz), RTMBA does not perform significantly worse than using sequential
architectures which have unlimited computation time between actions.

5.5 On the Autonomous Vehicle

After demonstrating each aspect of TEXPLORE on the simulated vehicle control task, this
section demonstrates the complete algorithm learning on the physical autonomous vehicle.
Due to the time, costs, and dangers involved, only TEXPLORE is tested on the physical
vehicle. Five trials of TEXPLORE with £ = 2 are run on the physical vehicle learning to drive
at 5 m/s from a start of 2 m/s. Figure 15 shows the average rewards over 20 episodes. In
all five trials, the agent learns the task within 11 episodes, which is less than 2 minutes of
driving time. In 4 of the trials, the agent learns the task in only 7 episodes.

As the first author was physically present in the vehicle for the learning experiments, we
can report on the typical behavior of the agent while learning to drive the car. Typically,
on the first episode or two, the agent takes actions mostly randomly, and the car’s velocity
simply drifts from its starting velocity. Then on the next few trials, the learning algorithm
explores what happens when it pushes the throttle or brake all the way down (by alternatively
pushing the throttle or brake to the floor for a few seconds). Next, the agent starts trying to
accelerate to the target velocity of 5 m/s. For the remaining episodes, the agent learns how
to track the target velocity once it is reached and makes improvements in the smoothness
of its acceleration and tracking. This experiment shows that TEXPLORE can learn on a task
requiring all the challenges presented in the introduction.
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Fig. 15 Average rewards of Physical Vehicle Velocity Control from 2 to 5 m/s
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6 Discussion and Conclusion

We identify four properties required for RL to be practical for continual, on-line learning on
a broad range of robotic tasks: it must (1) be sample-efficient, (2) work in continuous state
spaces, (3) handle sensor and actuator delays, and (4) learn while taking actions continu-
ally in real-time. This article presents TEXPLORE, the first algorithm to address all of these
challenges.

TEXPLORE addresses challenge 1 by learning random forest models that generalize tran-
sition and reward dynamics to unseen states. Unlike methods that guarantee optimality by
exploring more exhaustively, TEXPLORE learns faster by limiting its exploration to states
that are promising for the final policy. Instead of exploring more broadly, it quickly moves
to exploiting what it has learned to accrue good rewards in a limited time frame.

TEXPLORE works in continuous domains (addressing challenge 2) by learning regression
tree models of the domain. For the 3rd challenge: learning in domains with delayed sensors
and actuators, TEXPLORE provides its models with histories of actions to learn the delay of
the domain. This approach requires the user to provide an upper bound on the delay in the
domain. TEXPLORE is uniquely suited for this approach because its models are capable of
determining which delayed inputs to use for predictions, and UCT(X) can plan over histories
instead of the full state space.

Challenge 4 is for the agent to learn while taking actions continually in real-time. TEX-
PLORE addresses this challenge by using sample-based planning and a multi-threaded ar-
chitecture (RTMBA). In addition, RTMBA enables the algorithm to take advantage of the
multi-core processors available on many robotic platforms.

In addition to addressing these challenges, TEXPLORE requires minimal user input. Un-
like many methods that require users to define model priors or model parametrization, TEX-
PLORE only requires a discretization (for continuous domains), an upper bound on the sen-
sor/actuator delay (typically 0), and possibly some seed experiences to bias learning (op-
tional).

For each of these challenges, TEXPLORE's solution is compared with other approaches
on the task of controlling the velocity of a simulated vehicle. In each case, its approach is
shown to be the best one and leads to the most rewards. Finally, the algorithm is shown
to successfully learn to control the actual vehicle, a task which requires an algorithm that
addresses all four challenges.
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The empirical results show that TEXPLORE addresses each challenge and, in fact, out-
performs many other methods designed to address just one of the challenges. Not only does
TEXPLORE address each challenge, but it addresses all of them together in one algorithm.
The approach taken for each challenge meshes well with the other components of the algo-
rithm, enabling the entire algorithm to work well as a whole.

While TEXPLORE out-performs other methods on the comparison tasks, it is important
to note that TEXPLORE cannot outperform all of these methods all of the time. In domains
where the effects of actions do not generalize across states, TEXPLORE’s random forest
model will not learn as quickly and other methods are likely to outperform TEXPLORE. In
addition, TEXPLORE is not guaranteed to converge to an optimal policy, and may not explore
fully enough to find arbitrarily located high-rewarding state-actions that cannot be predicted
from neighboring states. Such states are guaranteed to be found by methods with conver-
gence guarantees that explore every state-action, however, in many real-world domains, this
exploration is not feasible. In these cases, the assumptions that TEXPLORE makes (i.e. that
similar states have similar dynamics) are more practical, and enable it to learn a good policy
very quickly. The key trade-off is that in domains with a limited number of time-steps, it
is better to perform more targeted and limited exploration like TEXPLORE does, while with
more steps, it is better to explore more thoroughly to learn a better final policy.

There are a few other issues with learning on robots that we have not addressed. For
example, many real world tasks are partially observable. With a sufficiently high value of
k, the k action histories TEXPLORE uses for delay could also handle partially observable
domains. In addition, one of the advantages of the model learning and UCT planning ap-
proaches that TEXPLORE uses is that they can utilize a rich feature space without it greatly
affecting the computation time needed for model learning or planning. The state could be
made up of a rich set of features from the robot, including both sensor values and internally
calculated features such as estimated poses. Thus, most of the state would be observable,
although unknown aspects of the environment would still be unobservable. These unknown
aspects could be treated as stochastic transitions, enabling the robot to plan for and react to
a range of possible environments that it may encounter. Incorporating a better solution for
POMDPs remains an area for future work.

There are a number of other possible directions for future work. For now TEXPLORE
uses discrete actions as an approximation to the continuous actuators that most robots have,
but addressing the issue of continuous actuators remains an area for future work. Another
direction we are interested in pursuing is using the algorithm for developmental and lifelong
learning. In a domain with limited or no external rewards, exploration rewards from the
model could be used to provide intrinsic motivation for a developing, curious agent. The
resetting of the visit counts for UCT(X) when the model changes could be improved by
setting the values based on how much the model has changed. In addition, we intend to
perform more empirical testing on larger, more complex robot learning tasks. Finally, there
are many opportunities for us to further parallelize the architecture to take advantage of
robots with multiple cores. Each tree of the random forest could be learned on a separate
core, and many UCT(A) rollouts can be performed at the same time in parallel as well.

In summary, this article presents four main contributions:

. The use of regression trees to model continuous domains.

. The use of random forests to provide targeted, limited exploration for an agent to quickly
learn good policies.

3. A novel multi-threaded architecture that is the first to parallelize model learning in addi-

tion to planning and acting.

N =
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4. The complete implemented TEXPLORE algorithm, which is the first to address all of
the previously listed challenges together in a single algorithm, and is publicly available
online.

By addressing all the challenges laid out in the introduction, TEXPLORE represents an im-
portant step towards the applicability of RL to larger and more real-world tasks such as
robotics problems. The algorithm can work on a large variety of problems, and act continu-
ally in real-time while maintaining high sample efficiency. Because of its sample efficiency,
TEXPLORE is particularly useful on problems where the agent has a very limited number of
samples in which to learn.
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