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Abstract Multi-label classification exhibits several challenges not present in the binary
case. The labels may be interdependent, so that the presence of a certain label affects the
probability of other labels’ presence. Thus, exploiting dependencies among the labels could
be beneficial for the classifier’s predictive performance. Surprisingly, only a few of the ex-
isting algorithms address this issue directly by identifying dependent labels explicitly from
the dataset. In this paper we propose new approaches for identifying and modeling existing
dependencies between labels. One principal contribution of this work is a theoretical confir-
mation of the reduction in sample complexity that is gained from unconditional dependence.
Additionally, we develop methods for identifying conditionally and unconditionally depen-
dent label pairs; clustering them into several mutually exclusive subsets; and finally, per-
forming multi-label classification incorporating the discovered dependencies. We compare
these two notions of label dependence (conditional and unconditional) and evaluate their
performance on various benchmark and artificial datasets. We also compare and analyze
labels identified as dependent by each of the methods. Moreover, we define an ensemble
framework for the new methods and compare it to existing ensemble methods. An empirical
comparison of the new approaches to existing base-line and state-of-the-art methods on 12
various benchmark datasets demonstrates that in many cases the proposed single-classifier
and ensemble methods outperform many multi-label classification algorithms. Perhaps sur-
prisingly, we discover that the weaker notion of unconditional dependence plays the decisive
role.
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1 Introduction and motivation

Conventional classification tasks deal with problems where each item should be assigned to
exactly one category from a finite set of available labels. This type of classification is referred
to in the literature as (single-label) multi-class. Conversely, in multi-label classification, an
instance can be associated with several labels simultaneously. Multi-label classification has
many applications in everyday life. For example, a news item about an assassination attempt
in the course of a presidential election campaign can be classified simultaneously to Na-
tional Elections and Crime concepts at the same time; a photograph can similarly belong to
more than one conceptual class, such as sunset and beaches; and in music categorization, a
song may belong to more than one genre. Multi-labeling is a very common problem in text
classification: medical documents, Web pages, and scientific papers, for example, often be-
long simultaneously to a number of concept classes. Due to its increasing practical relevance
as well as its theoretical interest, multi-label classification has received more attention from
the machine learning community in recent years and many recent studies look for efficient
and accurate algorithms for coping with this classification challenge.

In an exhaustive overview of existing approaches for multi-label classification, Tsoumakas
et al. (2010) partition them into two main categories: problem transformation and algorithm
adaptation. Problem transformation includes methods that transform the multi-label classi-
fication problem into one or more single-label classification problems. The main advantage
of these methods is that they are suitable for use with any readily available single-label clas-
sifier. Algorithm adaptation embraces methods that extend specific learning algorithms in
order to handle multi-label data directly. The main criticism of the adaptation methods is that
their application requires changing known classification algorithms in order to adapt them
to a specific problem. Algorithm adaptation methods are beyond the scope of this paper.

In the problem transformation category, the common methods used are the Label Power-
set (LP) and Binary Relevance (BR) approaches. According to the LP approach, each distinct
combination of labels that exists in the multi-label dataset is considered as a single class. The
main problem of this method is that many of the created classes are associated with too few
examples.

According to the BR approach, a multi-label classification problem is decomposed into
multiple, independent binary classification problems and the final labels for each data point
are determined by aggregating the classification results from all binary classifiers. The main
criticism of this method is that possible dependencies among the labels are ignored.

Recently, many problem transformation methods addressing problems in the LP and BR
approaches have been proposed. Some of these methods are discussed in the next section,
Related Work.

The aim of this paper is to examine whether the dependencies (conditional or uncondi-
tional) among labels can be leveraged to improve the classification accuracy. To this end,
we define a natural family of cost functions that interpolates between the 0—1 and the
Hamming distances on the multi-label vectors. For each cost function in this family, we
derive apparently novel generalization bounds. Furthermore, we give theoretical evidence
that unconditional dependence reduces sample complexity. In addition, we propose new al-
gorithms for explicitly identifying conditionally and unconditionally dependent labels and
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multi-label classification incorporating the discovered dependencies. Heuristic analysis is
used to demonstrate why and under what circumstances the proposed multi-label classifica-
tion algorithm will be beneficial. Empirical evaluation of the proposed methods on a wide
range of datasets confirms our theoretical findings.

The rest of the paper is organized as follows. In the next section, related work is dis-
cussed. In Sect. 3 we formally define the multi-label classification problem and analyze a
number of measures commonly used for evaluating multi-label classification algorithms. In
Sect. 4 some general theoretical results for multi-label learning are derived. Section 5 de-
scribes the proposed method and analyzes the circumstances in which it will be beneficial.
Section 6 presents the setup of the empirical experiment conducted for evaluating the pro-
posed approaches. And in Sect. 7 the results of the experiment are presented. Finally, Sect. 8
concludes the current work and outlines some further research directions.

2 Related work

In this section we briefly review several recently proposed algorithms for multi-label classi-
fication and then, in the light of these and other previous works, summarize what we believe
are the original contributions of this paper.

The data sparseness problem of the LP approach was addressed in Read et al. (2008).
The authors propose Pruned Sets (PS) and Ensemble of Pruned Sets (EPS) methods to con-
centrate on the most important correlations. This is achieved by pruning away examples
with infrequently occurring label sets. Some of the pruned examples are then partially rein-
troduced into the data by decomposing them into more frequently occurring label subsets.
Finally, a process similar to the regular LP approach is applied on the new dataset. The
authors show empirically that the proposed methods are often superior to other multi-label
methods. However, these methods are likely to be inefficient in domains with a large pro-
portion of distinct label combinations (Read et al. 2008) and with an even distribution of
examples over those combinations. Another limitation of the PS and EPS methods is the
need to balance the trade-off between information loss (caused by pruning training exam-
ples) and adding too many decomposed examples with smaller label sets. For this purpose
there is a need to choose some non-trivial parameter values before applying the algorithm
or, alternatively, to perform calibration tests for parameters adjustment. And still another
limitation is that the dependencies within the decomposed label sets are not considered.

Another approach for multi-label classification in domains with a large number of labels
was proposed by Tsoumakas et al. (2008). The proposed algorithm (HOMER) organizes all
labels into a tree-shaped hierarchy with a much smaller set of labels at each node. A multi-
label classifier is then constructed at each non-leaf node, following the BR approach. The
multi-label classification is performed recursively, starting from the root and proceeding into
the child nodes only if their labels are among those predicted by the parent’s classifier. One
of the main HOMER processes is the clustering of the label set into disjoint subsets so that
similar labels are placed together. This is accomplished by applying a balanced k-means
clustering algorithm on the label part of the data. In this work, differently from HOMER
we try to cluster labels based on the level of dependency among them and perform a flat
multi-label classification (considering internal dependencies) into each one of the clusters.

A recent paper by Read et al. (2009) argues in defense of the BR method. It presents a
method for chaining binary classifiers—Classifiers Chains (CC)—in a way that overcomes
the label independence assumption of BR. According to the proposed method, a single bi-
nary classifier is associated with each one of the predefined labels in the dataset and all these
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classifiers are linked in an ordered chain. The feature space of each classifier in the chain is
extended with the 0/1 label associations of all previous classifiers. Thus, each classification
decision for a certain label in the chain is augmented by all prior binary relevance predictions
in the chain. In this way correlations among labels are considered. The CC method has been
shown to improve classification accuracy over the BR method on a number of regular (not
large-size) datasets. One of the disadvantages of this method, noted by authors, is that the
order of the chain itself has an effect on accuracy. This can be solved either by a heuristic for
selecting a chain order or by using an ensemble of chain classifiers. Any of these solutions
increases the required computation time.

Recently, a probabilistic extension of the CC algorithm was proposed (Dembczynski
etal. 2010a). According to the probabilistic classifier chains (PCC) approach, the conditional
probability of each label combination is computed using the product rule of probability. For
estimating the joint distribution of labels, a model is learned for each label on a feature space
augmented by previous labels as additional attributes. The classification prediction is then
derived from the calculated join distributions in an explicit way. Authors theoretically and
empirically confirm expectations that PCC produces better estimates than original Classifier
Chains. However, the price is paid in a much higher algorithm complexity. In fact, the main
disadvantage of the PCC method is its applicability only on datasets with a small number of
labels, not more than about 15.

An idea relatively close to that described in this research is presented in Tsoumakas
and Vlahavas (2007). The authors propose an approach that constructs an ensemble of LP
classifiers. Each LP classifier is trained using a different, small random subset of the set of
labels. This approach (RAKEL) aims at taking into account label correlations and at the same
time avoiding the LP limitations mentioned above. A comparison shows the superiority of
RAKEL’s performance over popular BR and LP methods on the full set of labels. Tsoumakas
and Vlahavas note that the random nature of their method may lead to including models that
affect the ensemble’s performance in a negative way.

To the best of our knowledge, few works on multi-label learning have directly identified
dependent labels explicitly from the dataset. One such method where the degree of label
correlation is explicitly measured was presented in Tsoumakas et al. (2009). In this paper
the authors use stacking (Wolpert 1992) of BR classifiers to alleviate the label correlations
problem. The idea in stacking is to learn a second (or meta) level of models that consider as
input the output of all first (or base) level models. In this way, correlations between labels are
modeled by a meta-level classifier. To avoid the noise that may be introduced by modeling
uncorrelated labels in the meta-level, the authors prune models participating in the stacking
process by explicitly measuring the degree of label correlation using the phi coefficient.
They showed, by exploratory analysis, that detected correlations are meaningful and useful.
The main disadvantage of this method is that the identified correlations between labels are
utilized by a meta-level classifier only. In this paper we show that direct exploration of label
dependence (i.e. by a base-level classifier) is more beneficial for predictive performance.

Another recent paper by Zhang and Zhang (2010) exploited conditional dependencies
among labels. For this purpose the authors utilize a Bayesian network representing the joint
probability of all labels conditioned on the feature space, such that dependency relations
among labels are explicitly expressed by the network structure. Zhang and Zhang learn
approximate network structure from classification errors of independent binary models for
all labels. On the next step, a new binary classifier is learned for each label by treating its
parental labels in the network as additional input features. The labels of unseen examples
are predicted by binary classifiers learned on the feature space augmented by its parental
labels. The ordering of the labels is implied by the Bayesian network structure. Zhang and
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Zhang (2010) showed empirically that their method is highly comparable to some of the
state-of-the-art approaches over a range of datasets using 3 multi-label evaluation measures.
Note that according to this method all parental labels, which a certain label is found to be
dependent on, are added to the feature space. The main limitation of this method is in the
complexity of Bayesian network learning. It can be efficiently learned with only a small (up
to 20) number of variables. To handle cases where the number of variables is larger than
20, the authors switch the algorithm to approximate maximum a posterior (MAP) structure
learning for which maximum running time and some other parameters should be specified.

Tenenboim et al. (2009) demonstrated that dividing the whole set of labels into several
mutually exclusive subsets of dependent labels and applying a combination of BR and LP
methods to these subsets provides in many cases higher predictive performance than regular
LP and BR approaches.

A general detailed analysis of the label dependence issue was presented in Dembczynski
et al. (2010b). The paper distinguishes and formally explains the differences and connec-
tions between two dependence types—conditional and unconditional. Also an overview of
state-of-the-art algorithms for MLC and their categorization according to the type of la-
bel dependence they seek to capture is given. As well, authors analyze potential benefit of
exploiting label dependencies in the light of 3 different loss functions.

Recently, some algorithm adaptation methods considering labels correlations in various
ways were proposed. For example, Zhang et al. (2009) proposed an extension to the popular
Naive Bayes classifiers for dealing with multi-label instances called MLNB. The authors
incorporated feature selection techniques (principal component analysis and genetic algo-
rithms) to mitigate the harmful effects caused by the classic Naive Bayes assumption of class
conditional independence. Furthermore, correlations between different labels were also ex-
plicitly addressed through the specific fitness function used by the genetic algorithm. Au-
thors experimentally demonstrated the effectiveness of utilized feature selection techniques
in addressing the inter-label relationships and reported significant rise in the performance of
MLNB due to these techniques.

Another example of algorithm adaptation for multi-label classification considering inter-
label relationships is ML-SVDD, a fast multi-label classification algorithm based on support
vector data description (Xu 2010). According to this algorithm, a k-label problem is divided
into k sub-problems each of which consists of instances from a specific class. For each class
a sub-classifier is learned using support vector data description method. For making an entire
multi-label classification decision predictions of all sub-classifier are combined as follows.
The classes which predicted pseudo posterior probability above some threshold are added to
the set of predicted labels. To compensate missing correlations between labels linear ridge
regression model is used when constructing a threshold function.

In this paper, we analyze the commonly used multi-label evaluation measures and
demonstrate that classification accuracy is better suited than other measures for general eval-
uation of classifier performance for most regular multi-label classification problems. Thus,
accuracy is the target evaluation measure that we aim to improve in the current research.

We propose to discover existing dependencies among labels in advance, before any clas-
sifiers are induced, and then to use the discovered dependencies to construct a multi-label
classifier. We define methods estimating conditional and unconditional dependencies be-
tween labels from a training set and apply a new algorithm that combines the LP and BR
methods on the results of each one of the dependence identification methods. The new al-
gorithm is termed “LPBR”. We then compare the contributions of both methods for la-
bel dependency identification on classifier predictive performance in terms of 4 evaluation
measures. Moreover, an ensemble framework that we introduce for the proposed algorithm
makes it possible to further improve the classifier’s predictive performance.
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We empirically evaluate the proposed methods on twelve multi-label datasets and show
that the new approach for multi-label classification outperforms many existing methods.
The main contributions of this paper are:

e The development of the LPBR algorithm which combines the best features of the LP and
BR methods while eliminating their inherent disadvantages.

e Theoretical confirmation of the reduction in sample complexity that is gained from un-
conditional dependence.

e Heuristic analysis of conditions for which the LPBR method is supposed to be beneficial.

e The formulation of novel algorithms—ConDep and ChiDep—for explicitly identifying
conditionally and unconditionally dependent label pairs, clustering them into disjoint sub-
sets and applying LPBR for modeling the specified dependencies.

e An ensemble framework for the ConDep and ChiDep algorithms.

e An extensive empirical evaluation experiment comparing the effectiveness of developed
algorithms to nine existing multi-label algorithms on a wide range of various datasets.

3 Problem formulation and evaluation measures analysis
3.1 Formal definitions

Our learning model is the following standard extension of the binary case. We have a teacher
generating examples X € X iid according to some distribution P. Each example X; is ac-
companied by its multi-label Y;, for which we use subset notation ¥ C [L] or vector notation
Y € {0, 1}%, as dictated by convenience.'

Assume ) is a given set of predefined binary labels )V = {A{, ..., A }. For a given set of
labeled examples D = { X, X», ..., X, } the goal of the learning process is to find a classifier
h: X — Y, which maps an object X € X to a set of its classification labels Y € ), such that
h(X)C{r,..., A} forall X in X.

The main feature distinguishing multi-label classification from a regular classification
task is that a number of labels have to be predicted simultaneously. Thus, exploiting po-
tential dependencies between labels is important and may improve classifier predictive per-
formance. In this paper we consider two types of label dependence, namely conditional and
unconditional. The first type refers to dependencies between labels conditional to (i.e. given)
a specific instance, while the second one refers to general dependencies existing in the whole
set, independently of any concrete observation.

Both types of dependence are formally defined below.

Definition 1 A set of labels ¥ C [L] is called unconditionally L-independent if

L
P =]]p",

i=1

where p¥(Y;) is the marginal distribution of A;.

lActually, most of our results continue to hold in the agnostic setting (Kearns et al. 1994), where there is no
“teacher” and the probability distribution P is over example-label pairs (X, V).
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Definition 2 A set of labels Y C [L] is called conditionally L-independent given X if

L
Py =[PP,

i=1

where p®(Y;) is the marginal distribution of A; given X.

We refer to these definitions when talking about conditional and unconditional dependencies
in Sect. 5.1, Label Dependence Identification.

3.2 Evaluation measures analysis

In this paper we consider the most commonly used multi-label evaluation measures from
Tsoumakas and Vlahavas (2007), namely multi-label example-based classification accuracy,
subset accuracy, Hamming loss, and label-based micro-averaged F-measure. Their formal
definition and analysis are presented below.

Let D be a multi-label evaluation dataset, consisting of |D| multi-label examples
(X;,Y),i=1...|D|, Y; C[L]. Let h be a multi-label classifier.

Hamming loss computes the percentage of labels whose relevance is predicted incor-
rectly. For the two label subsets A, B C [L], their Hamming distance is

L
1
Chan(A, B) = T ;IM £ 1jicp)- )

Over all dataset examples the Hamming loss is averaged as follows:

. I s YiA(X))
Hamming loss(h, D) D] ; 7
where A stands for the symmetric difference between two sets.

Hamming loss is very sensitive to the label set size L. It measures the percentage of
incorrectly predicted labels both positive and negative. Thus, in cases where the percentage
of positive labels is low relative to L, the low values of the Hamming loss measure do not
give an indication of high predictive performance. Thus, as the empirical evaluation results
demonstrate below, the accuracy of the classification algorithm on two datasets with similar
Hamming loss values may vary from about 30 to above 70 percent (as, for example, in the
“bibtex” and “medical” datasets). However, the Hamming loss measure can be useful for
certain applications where errors of all types (i.e., incorrect prediction of negative labels and
missing positive labels) are equally important.

Subset accuracy computes the number of exact predictions, i.e., when the predicted set
of labels exactly matches the true set of labels. This measure is the opposite of the zero-one
loss, which for the two binary vectors A, B C [L] is defined as follows:

Lo1(A, B) = 1isxp). (2)

Over all dataset examples the subset accuracy is averaged as follows:

|D|

1
Subset accuracy(h, D) = ﬁ Z I(Y,v = h(Xi)).
i=1

It should be noted also that subset accuracy is a very strict measure since it requires the
predicted set of labels to be an exact match of the true set of labels, and equally penalizes
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predictions that may be almost correct or totally wrong. However, it can be useful for cer-
tain applications where classification is only one step in a chain of processes and the exact
performance of the classifier is highly important. For example, assume a LEDs classifica-
tion problem where each combination of turned on LEDs specifies a certain number. In this
case, an incorrect prediction even of a single LED makes the whole classification decision
absolutely incorrect and useless.

Accuracy computes the percentage of correctly predicted labels among all predicted and
true labels. Accuracy averaged over all dataset examples is defined as follows:

|D|
Accuracy(h, D) = L Z M
|D| = Y; Uh(X;)
Accuracy seems to be a more balanced measure and better indicator of an actual algorithm’s
predictive performance for most standard classification problems than Hamming loss and
subset accuracy. However, it should be noted that it also is relatively sensitive to dataset
label cardinality (average number of labels per example). This means that for two classifica-
tion problems (i.e., datasets) of the same complexity, accuracy values would be lower in the
dataset with the higher label cardinality. The empirical evaluation experiment below sup-
ports this conclusion (consider, for example accuracy and F-measure values on “emotions”,
“scene” and “yeast” datasets).
The F-measure is the harmonic mean between precision (;r) and recall (p) and is com-

monly used in information retrieval. Precision and recall are defined as follows:
TP, TP,
= 7P, +FP, T TP +FN,
where TP;, FP, and FN, stands for the number of true positives, false positives and false
negatives correspondingly after binary evaluation for a label A.

The micro-averaged precision and recall are calculated by summing over all individual
decisions:

TT),

L L
7= ZA:I TP; 0= ZA:I TP;
Sr (TP, + FP,) L (TP, 4+ FN,)

where L is the number of labels. The micro-averaged F-measure score of the entire classi-
fication problem is then computed as:

2rp
T4+p

Note that micro-averaged F-measure gives equal weight to each document and is there-
fore considered as an average over all the document/label pairs. It tends to be dominated by
the classifier’s performance on common categories and is less influenced by the classifier’s
performance on rare categories.

Of the various measures that are discussed here, the micro-averaged F-measure seems
to be the most balanced and the least dependent on dataset properties. Thus it could be the
most useful indicator of classifier general predictive performance for various classification
problems. However it is more difficult for human interpretation, as it combines two other
measures (precision and recall).

Summarizing the above analysis of some of the most commonly used evaluation mea-
sures, we conclude that accuracy and micro-averaged F-measure are better suited for gen-
eral evaluation of algorithm performance for most regular multi-label classification prob-
lems while the Hamming loss and subset accuracy measures may be more appropriate for
some specific multi-label classification problems.

F (micro-averaged) =
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Actually the accuracy measure, where the number of true labels among the predicted
ones is important, can be considered as a “golden mean” between Hamming loss where all
labels are equally important and subset accuracy where only the whole set of positive labels
is important. Thus, in this research we aim at improving the accuracy measure.

Some other evaluation measures, such as one-error, coverage, ranking loss and aver-
age precision, which are specially designed for multi-label ranking do exist (Schapire and
Singer 2000). This category of measures, known as ranking-based, is often used in the liter-
ature (although not directly related to multi-label classification), and is nicely presented in
Tsoumakas et al. (2010) among other publications. These measures are tailored for evalua-
tion of specific-purpose ranking problems and are of a less interest for our research.

4 Generalization bounds for multi-label learning
In this section, we derive some general theoretical results for multi-label learning.
4.1 General theory

Following Egs. (1) and (2) we can interpolate between the Hamming and the 0—1 distance
via the family of distances ¢y, fork=1,..., L:

I\
L (A, B) = <k> Z Liane+BnE)- 3)

EC[L]
|E|=k

Note that kK = 1 corresponds to £y, and k = L corresponds to £, .
Given Definition 1 our goal is to guarantee that any hypothesis 4 : X — {0, 1}, in some
class H achieves, with high probability,

1 n
E[t(h(X), V)] < =3 tu(h(Xp), V) +e. @
i=1
We denote by H the space of all admissible hypotheses and make the following structural

assumption on H: there is some fixed concept class C C 2 such that each h € H is of the
form

h(x) = (h1(x), ha(x), ..., hp (x)),

where h; € C.
Let us define the auxiliary function f : X x {0, 1}X — [0, 1] as

FX,Y)=6(h(X),Y)

where h € H; we denote by F the space of all functions f that may be obtained in this way.
In words, f combines the prediction of a hypothesis with the loss that it suffers. Note that
the function class F is determined entirely by C and ¢;.

For any class of real valued functions F, its pseudo-dimension is defined as follows
(Pollard 1984; Vapnik 1995). For ¢ € R, define the operator Binary, : R — {0, 1}, which
maps a function f : X — R to the function g: X — {0, 1}, given by

g(Z) = 1g(z)>t~
For a class of functions: 7 C R?, its pseudo-dimension is defined by

Pdim(F) = VCdim({Binary,(f) : f € F,t € R}).
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(We will occasionally abuse notation by writing VCdim(H) as a shorthand for Pdim(F),
where F is the auxiliary class defined above, under the 0—1 loss £, .)

In order to bound Pdim(F), we will need the following result. Define the step function
0 :R — {0, 1} by 8(x) = 1,>0;. For any concept class C over X’ and any T € N, define the
concept class of thresholded linear combinations of concepts in C:

T
er(C) = [xH@(Za,h[ —b) :b,a, €R, h, ec}.

=1
The techniques developed in Blumer et al. (1989) and Baum and Haussler (1989) allow us
to obtain tight (see Eisenstat and Angluin 2007; Eisenstat 2009) bounds on VCdim(®7(C))
in terms of VCdim(C):
Lemma 1 (Baum and Haussler 1989)

VCdim(©7(C)) < 2(d + 1)(T + 1) log,(e(T + 1)) = O(TdlogT)
where d = VCdim(C).

Corollary 1 Define CY* to be the set of all k-fold unions of over C:
CH* ={hUhyU---Uhy:h; €C).
Then

VCdim(C™) < 2(d + D)(k + 1) log, (e(k + 1))
= O(kdlogk).

Proof Any function 7 € C* may be represented as

k
h=6 (Z hi — 1)
i=1
with h; € C. Thus, the claimed bounds follow immediately from Lemma 1. O

Theorem 2 Let F be the family of functions induced by C and ¢y, as above. Then

LdlogL, k=1
Pdim(F) =0 | { Ld, k=L
L L
(i )kdlogklog(}), 1<k<L

where d = VCdim(C).

Proof Consider the case 1 < k < L. Each function f: X x {0, 1}’ — R in F may be ex-
pressed as

I3 -1
f(x,y>=<k> Z] fe(x, )

ECIL
|El=k

where for x € X,y € {0, 1}F and E C [L],

SEC,Y) = Linptye
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where h € H and the subscript E indicates the restriction of the L coordinates to the set
E C [L]. Denote by F; the set of all fz : X x {0, 1}* that can be obtained in this way; then
Lemma 1 implies that

L L
VCdim(F) =0 << i ) VCdim(Fg) log ( i )) . (®)]
Now we apply Lemma 1 again to F;:
VCdim(F;) = O (k VCdim(C) log k). (6)
The theorem follows by combining (5) and (6); the analysis for k = 1 and k = L is a spe-
cialization of the arguments above. |

Our desired generalization bound (4) is now immediate:
Theorem 3 Let (X;,Y;),i =1,...,n be an iid sample, with X; € X and Y; € {0, 1}~. Sup-
pose the hypothesis h : X — {0, 1} is of the form

h(x) = (h1(x), ha(x), ..., hi (x)),

where h; € C for some concept class C C 2% with VCAim(C) = d. Then for any § > 0 we
have with probability at least 1 — 8, for any h € H

1 2Dlog £ log
Ele 0. 1) =13 o v+ [ 228 E s

i=1

where D = O ((%)kd logk log(%)) and £y is the interpolated loss defined above, for k € [L].

Proof Immediate from the pseudo-dimension estimate in Theorem 2 and the standard gen-
eralization bounds (Pollard 1984; Vapnik 1995). O

4.2 Tighter bounds via unconditional dependence

To illustrate the advantage conferred by unconditionally dependent labels, let us consider the
following toy example. Take X = {0, 1}" and let C be the set of all monotone conjunctions
over the n Boolean variables. That is, each member of C is an AND of some fixed subset of
the n variables, without negations.

We will consider the 0-1 distance over multi-labels (corresponding to k = L). Since
|IC] = 2", we have d = VCdim(C) < n. In fact, d = n, since the C shatters the set
{10"~1,010"2,...,0"'1} C {0, 1}*. Similarly, it is easy to see that H = C* has VC-
dimension Ln. Thus, a sample of size $2(Ln/e) is necessary in order to achieve a
distribution-free generalization error bounded by ¢ with high probability (Blumer et al.
1989).

How might we exploit dependence between the labels? Let us consider the case of 2
labels (L = 2). Thus, the target concept is a function g : X — {0, 1}?, given by g(x) =
(g1(x), g2(x)), with g1, g, € C. Without any assumption on the dependence between g; and
g2, we have VCdim(H) = 2n. However, let us suppose that g; and g, are not independent
in the following sense: they can only differ by at most t variables. That is, if A, Ay C [n]
are the two sets of variables corresponding to g; and g, then |A; AA;| < 7. For a fixed set
of variables S C [n], there are not more than

(Z (7))2 < (en/1)** = O (™)

i=0

@ Springer



12 Mach Learn (2013) 91:1-42

subsets A}, A, € [n] s.t. Aj N Ay, =S and |A;AA;| < 7. This upper-bounds the number of
such “r-close” conjunctions by 2" (en /)", implying VCdim(H) < n + 2t log,(en/t)—a
clear improvement over the independent case. One can easily extend this analysis to the case
that there are L > 2 conjunctions all intersecting on a large subset of the variables, leaving
only t variables for each conjunction outside the intersection. The above analysis implies
that in this case (L > 2 conjunctions) VCdim(H) < n + Lt log,(en/t), as opposed to the
Ln in the independent case.

In greater generality, we may define a dependence ratio as follows. Let X be an instance
space and C a concept class over X. For some fixed L, let H be a collection of functions
X — {0, 1}%, such that h(x) = (h(x), ha(x), ..., hr(x)), with h; € C. Define the depen-
dence ratio
VCdim(Ct) VCdim(C)

VCdim(H) ~ VCdim(H)
(recall our convention of writing VCdim(H) as a convenient shorthand for Pdim(F), where
F is the auxiliary class defined above, under the 0-1 loss £ ).

Then, combining the sample complexity lower bound (Blumer et al. 1989) with the VC

dimension upper bound (Vapnik and Chervonenkis 1971), we obtain the following result:

p(C,H) =

Theorem 4 Let CL be the collection of all functions h : X — {0, 1}£ of the form h(x) =
(hi(x), ha(x), ..., hp(x)),withh; € C andlet' H C C. Let mc (€, 8) be the sample complexity
corresponding to Ct—i.e., the smallest number of examples required for a consistent learner
to achieve an expected 0-1 loss of not more than € with probability at least 1 — §. Let
mq (€, 8) be the analogous sample complexity for H. Then

my(€,8) <me(e,8)/0(p(C, H))

where the © (-) notation suppresses logarithmic factors.

Putting computational issues aside (e.g., how to efficiently find a consistent pair of t-close
conjunctions), this analysis implies that dependence among the labels can be exploited to
significantly reduce the sample complexity.

5 Methods

This section describes the proposed methods for multi-label classification.

Our approach comprises two main steps. The aim of the first step is preliminary identi-
fication of dependencies and the clustering of all labels into several independent subsets. In
this paper we examine two methods for handling this step, namely, identifying unconditional
and conditional label dependencies.

The second step is multi-label classification incorporating the category dependencies dis-
covered in the previous step. For this we apply a combination of standard BR and LP ap-
proaches to the independent groups of labels that have been defined.

Following is a description of the methods applied for each of the steps.

5.1 Label dependence identification
5.1.1 Unconditional label dependence

The proposed method is based on analyzing the number of instances in each category. We
apply the chi-square test for independence to the number of instances for each possible
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Table 1 General contingency A —A; total
table for labels 2; and A ; : :
Aj a b a+b
-k c d c+d
total a+c b+d a+b+c+d=N

Unconditional label dependence identification

input: D — training set; ) — a set of labels {Ai, ...,AL}
output: orderedScoresList — ordered list of dependence score for each label pair
1. FOR each label pair (A, A;), where i=0,...L-1 and j=i+1,...L

2. score = compute chi-square score of the labels pair (A, A;)
3. add new pair [(A;, A;), score] to the dependencyScoresList
4. ENDFOR

5. orderedScoresList = sort the dependencyScoresList in descending order of the score
6. RETURN orderedScoresList

Fig. 1 A pseudo-code for the unconditional label dependence identification algorithm

combination of two categories. The level of dependence between each two labels in the
dataset is thus identified.

Given two labels, A; and A, and the frequency counts of their co-occurrences as pre-
sented in Table 1, the )(2 score is computed as follows:

s (ad —bc)*(a+b+c+d)

T a+b(c+db+da+c)

The label pairs with x2 score higher than a critical value of x? are considered as depen-
dent.

A pseudo-code for the unconditional label dependence identification algorithm is given
in Fig. 1. This algorithm along with the label clustering and LPBR approaches described
below will subsequently be referred to as ChiDep.

5.1.2 Conditional label dependence

Conditional label dependence is hard to identify since it is specific for each instance x. We
try to estimate the conditional dependencies between each pair of labels by evaluating the
advantage gained by exploiting this dependence for classification.

For two conditionally independent labels A; and A,, the following holds:

P(r1lAz, X) = P (11| X).

The above equation means that if labels A; and A, are conditionally independent, then the
predictions (of A;) by probability-based classification models trained once on a regular fea-
tures space x and second on the features space x augmented by label A, should be at least
very similar.

Following this condition, for each pair of labels A; and X ;, we train two binary classifiers
for predicting A;. One—unconditional on A ;—is trained on a regular features space x; the
second one—conditional on A ;j—is trained on the features space x augmented by label A ; as
additional feature. Then we compare the accuracy of both classifiers using 5 x 2 fold cross-
validation. If the accuracy of the conditional model is significantly higher than that of the
unconditional one, we conclude that the labels are conditionally dependent. The statistical
significance of the difference between the resultant vectors of both classifiers is determined
using two-sample t-test. Since both models were evaluated on the same folds of data a paired
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Conditional label dependency identification

input: D — training set; ) — a set of labels {Aj, ..., AL}

output: orderedScoresList — ordered list of dependence score for each label pair

1. FOR each label pair (A, &), where i=0,...L-1 and j=i+1,...L

2. Create N data folds — trainDataArray, testDataArray

3 FOR each fold

4. train binary modelA: h(x) — { A; }on the trainDataArray[fold]

5. train binary modelB: h(x, &) — { A; } trainDataArray|[fold]

6 accuracyArrayA[fold] =
correctPredictions(modelA.evaluate(testDataArray[fold])

7. accuracyArrayBl[fold] =
correctPredictions(modelB.evaluate(testDataArray[fold])

8. ENDFOR each fold

9. avgd = averageValues(accuracyArrayA)

10. avgB = averageValues(accuracyArrayB)

11.  t-value = applyPairedT-test(accuracyArrayA , accuracyArrayB)

12. IF (avgB > avgA) AND (t-value > t-critical) THEN val(\;, N)= t-value

13.  ELSE val(ki, 4)=0

14. REPEAT STEPS 2-13 for the labels pair (A, A;) to get val(k;, &)

15.  score = maximum of val(A;, ;) and val(k;, Ay

16. add new pair [(Ai, Aj), score] to the dependencyScoresList

17. ENDFOR each two labels

18. orderedScoresList < sort the dependencyScoresList in descending order of the score

19. RETURN orderedScoresList

Fig. 2 A pseudo-code for the conditional label dependence identification algorithm

t-test is applied. To comply with the t-test assumptions each of the two compared popula-
tions should follow a normal distribution. We checked the normality assumption using the
Shapiro-Wilk test and find out that in most of the cases this assumption holds.

The label pairs with a t-value higher than t-critical are considered as dependent. We
perform this procedure for all possible label pairs considering the labels order in the pair.”
Among the two pairs with the same labels, the pair with maximal t-statistic value is added
to the resulting list of dependent pairs (for the clustering algorithm the order of labels in the
pairs does not matter). Finally, we sort the resultant label pairs according to their t-statistic
value in descending order (i.e., from the most to the least dependent pairs).

A pseudo-code for the conditional label dependence identification algorithm is given
in Fig. 2. This algorithm for dependent label identification along with the label clustering
and LPBR approaches described below will subsequently be referred to as ConDep.

Note that even such approximate estimation of conditional dependencies is very com-
putationally expensive. Indeed, the approach becomes very time consuming and sometimes
not feasible at all for large datasets.

5.1.3 Dependent labels clustering

In this paper we implemented a straightforward greedy clustering approach. Initially we as-
sume all labels to be independent and perform a multi-label classification according to the
BR approach. We then get the list of label pairs ordered according to their dependence score
value (2 or ¢ for unconditional and conditional dependence respectively), and start to group

2Theoretically, based on the symmetry rule of conditional independence we could skip the test of a pair
(%, 2;) if the pair (A;, 2 ;) was found to be independent. However the described procedure only approxi-
mately estimates conditional independence. Thus in these circumstances, the symmetry rule may not hold for
some pairs.
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the most dependent labels together. First, the two most dependent labels are clustered into a
group and a multi-label classification model (LPBR) is induced on the new set of labels as
described in Sect. 5.2. Then, the next most dependent label pair is analyzed. If both labels are
single, they will be joined into a new group. If one of the labels already belongs to a group,
the second label will be appended to this group. If both labels belong to two different groups
those groups are unified. If both labels belong to the same group, the procedure proceeds
to the next pair of labels. In the next step, a multi-label classification model will be con-
structed using the new set of grouped labels. After each classification model is constructed,
we compare its accuracy (in terms of the configurable target evaluation measure) to that of
the model from the previous step. The process of grouping labels continues as long as the
accuracy improves. However, we allow a number of steps without seeking any concomitant
improvement in the accuracy. This allows the algorithm to escape from a local-minimum
when it encounters a “non-useful” pair of labels. Hence, a “non-useful” combination is fil-
tered out and the algorithm continues to evaluate subsequent pairs of dependent labels until
one of the stop conditions is reached. The possible stop conditions are:

— no more label pairs to consider

— all labels are clustered into one single group

pair dependence score (chi-square value or #-value) is below some threshold value ¢
— the number of allowed “non-improving” label pairs n is exceeded.

While the first two stop conditions are beyond our control, the third and fourth could be
configured and used to control model complexity. Intuition suggests that if there are a num-
ber of consequent reductions in accuracy, it is not “by chance” and further clustering of less
dependent labels can cause model over-fitting to the training data. Thus, appropriate values
for the number of “non-improving” pairs n are very small and may vary from 1 to 10. To
achieve the best results, this parameter can be tuned specifically for each dataset since it may
vary depending on different dataset properties. In case when specific configuration tuning
is impossible we would suggest setting this parameter to 10, for the reason that when a sig-
nificant number (such as 10) of concurrent pairs does not improve classifier performance,
there are very few chances that any of the following less dependent pairs will make a sig-
nificant improvement. For dependence score threshold values, we used the x?2 critical® and
t-critical* values for significance level 0.01 according to the tested dependence type.
A pseudo-code for this clustering algorithm is presented in Fig. 3.

5.2 LPBR method

We defined and examined a method that combines BR and LP approaches for multi-label
classification to the defined independent groups of labels. One of the main disadvantages of
the regular BR approach commonly applied to multi-label classification is that dependencies
among labels are ignored. The main limitation of the LP approach is data sparseness and the
large number of class combinations. Our approach involves a combination of these common
methods and eliminates disadvantageous elements. Once we have identified the dependent
labels and clustered them into independent groups, we divide the classification responsibility
in the following way:

3Critical value of x2 statistic with one degree of freedom is 6.635 for the significance level 0.01.

4Critical value of ¢ statistic with nine degrees of freedom is 3.25 for the significance level 0.01.
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Dependent labels clustering

input: D — training set; ) — a set of labels {\,, ...,AL}; pairScoreList — ordered list of label pairs
dependence scores; F - single-label classification algorithm

output: clusters — label set partitioning

clusters < { Ao}, { M}, .., { M}

acc <« LPBRclassifier(clusters, F).evaluate(D)
=0

REPEAT

labelsPair < pairScoreList.getPair(i)

newClusters < updateCluster(clusters, labelsPair)
newAcc <« LPBRclassifier(newClusters, F).evaluate(D)
IF newAcc >= acc THEN clusters < newClusters

=i+l

10. UNTIL (stop condition)

11. RETURN clusters

O XA N B WD =

updateCluster(clusters, labelsPair)

input: clusters — label set partitioning; labelsPair — a pair of labels to be clustered

output: newClusters — new label set partitioning

1. i<« labelsPair.getFirstLabel

J < labelsPair.getSecondLabel

IF i and j are single labels THEN newClusters < clusters + {Ai, i} — {Ai}—{¥;}

IF i € groupA and} is single label THEN newClusters < add label j to groupA

IF j € groupA and i is single label THEN newClusters < add label i to groupA

IF i € groupA and j € groupB THEN newClusters < join groupA and groupB into one
cluster

7. RETURN newClusters

S

Fig. 3 A pseudo-code for the dependent labels clustering algorithm

— the BR approach to the independent groups of labels is applied without the limitation of
ignored dependencies;

— the LP approach to classification into labels within the groups of dependent labels is
applied without incurring the problem of a large number of class combinations (since it
is applied to a group with a limited, potentially small, number of classes).

Following is a precise description of the whole process:

For each independent group of labels, one single LP classifier is independently created to
determine the relatedness of each instance to the labels from a group. In the case of a group
including only one category, the classifier is binary. However, if a group consists of k labels,
the classifier is, actually, a single-label multi-class classifier with 2k 1abels. Note that k is the
number of maximum labels within one group and can be controlled by the model designer.
Eventually, the final classification prediction is determined, similarly to the BR approach,
by combining labels generated by each single LP and BR classifier.

On the one hand, this approach is more powerful than the regular BR approach, because
it does not make the independence assumption which is wrong at times and, on the other,
allows simple multi-label classification using any readily available single-label classifier.

A pseudo-code for LPBR model construction and labels prediction processes is presented
in Fig. 4.

5.3 LPBR discussion

Dembczynski et al. (2010a) showed that the BR approach estimates marginal label probabil-
ities and thus is tailored for the Hamming loss measure; the LP approach estimates the joint
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LPBR method — model construction

input: Q - label set partitioning (i.e. list of label subsets); F - single-label classification
algorithm

output: modelsArray - LPBR model (an array of classification models for each label
subset)

1. FOR each label subset in Q

2 IF subset contain a single label i

3. THEN modelsArray[subset] = build BR model for the label 7 using the F algorithm
4 ELSE modelsArray[subset] = build LP model for all subset labels using the F
algorithm

ENDFOR

6. RETURN modelsArray

W

LPBR method — classification prediction for unseen example x

input: x — unseen example; Q - label set partitioning; modelsArray - LPBR model
output: Y — array of predicted labels

1. FOR each subset of labels in Q

2 prediction = modelsArray[subset].classify(x)

3. FOR each label in the subset

4. Y[label] = prediction[label]
5 ENDFOR each label
6. ENDFOR each subset
7. RETURNY

Fig. 4 A pseudo-code for the LPBR method

distribution of the whole label subset and thus is tailored for the subset accuracy measure.
The authors also show that in case of conditionally independent labels, both BR and LP
approaches are supposed to perform equally well.

In this paper we claim that the LPBR approach can improve the classification perfor-
mance of both the LP and BR methods in terms of the accuracy measure on datasets where
part of the labels are dependent. We claim as well that LPBR might be beneficial in terms of
subset accuracy, also, in cases where there is a small training set without sufficient examples
for all labels combinations.

In this section two reasons for the above conjectures are presented.

We believe that the most common case in practice is datasets where the partial dependen-
cies among labels exist. In this case, given a dataset and a label set partitioning into groups
of dependent labels, LPBR algorithm applies BR method on each independent label and LP
on each group of dependent labels. For the conditionally independent labels, maximizing the
marginal probabilities (by BR) is equivalent to maximizing their joint probability. And for
conditionally dependent labels their joint probability is directly maximized by applying LP.
Thus, the maximal conditional joint probability of the whole label set is estimated. At the
same time applying LP (or BR) separately on the whole set of labels will maximize the con-
ditional joint (or marginal) probability of both dependent and independent labels. This can
lead to classification prediction different from that estimated by LPBR. An example of such
a case is presented in Fig. 5.

Assuming that label dependencies supplied to LPBR were identified correctly, the LPBR
prediction is expected to be more accurate than that of LP and BR separately.

The cases when all labels are independent or oppositely all labels are dependent are the
borderline cases of LPBR in which it will apply the BR or LP strategy correspondingly for
all labels and will predict the results same to BR or LP.
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Consider a problem in which three labels A, 4,, A; are to be predicted. Assume
that: (1) labels A, and 4, are conditionally dependent on X and label A, is
conditionally independent on X and (2) the joint distribution p(X, A, 4,, ;) on
X x Yis given as in the following table (a):

M o3 by Px(Y) M A Px(Y)

0 0 0 0.15 0 0 0.25

0 0 1 0.1 0 1 0.35

0 1 0 0.15 1 0 0.3

0 1 1 0.2 1 1 0.1

1 0 0 0.05

1 0 1 025 M| PX(Y) ) | Px(Y) X | Px(Y)

1 1 0 0 0 0.6 0| 055 0| 035

1 1 1 0.1 1 0.4 1| 045 1| 065
(a) (b)

Based on the given the joint distribution the prediction by each classification
method would be as following: LP—(1,0,1); BR—(0,0,1); LPBR—(0,1,1). See
the derived distribution tables on the side (b).

Fig. 5 Example of LPBR vs. LP and BR methods prediction

Although, the above justification of the LPBR method refers to conditional label de-
pendence, in this paper we consider unconditional label dependence as well, and compare
between both types.

The next reason for the superiority of LPBR refers to the targeted evaluation measures.
As shown in Sect. 3, the accuracy measure can be considered as a kind of “golden mean”
between subset accuracy and Hamming loss measures. Thus, the LPBR method, which in-
terpolates between these two end-point measures, should perform well for the accuracy mea-
sure. The power of the LP classifier can suffer in the case of a few, if any, training examples
for some label combinations. In such cases, separating the labels of these combinations
into different subsets, which are treated independently of each other, is an advantage of the
LPBR approach, allowing it to provide more accurate results. These hypotheses were tested
by empirical experiments discussed below.

5.4 Computational complexity

The complexity of the dependent labels identification step varies between the ChiDep
and ConDep methods. Comparison of computational time analysis for these methods
is presented in Sect. 7.1.3. This section analyzes the computational complexity of the
ChiDep\ ConDep approaches after the dependent labels identification step.

The proposed clustering approach searches the space between the BR and LP mod-
els in an optimized method such that if there are no dependencies found, the result of
ChiDep\ConDep is the same as the BR result. If all labels are interdependent, then the result
is the same as that of LP. Thus, the complexity of the ChiDep\ConDep algorithm depends
on the number of dependent label pairs that have been identified within the dataset and on
the complexity of the underlying learner. If the complexity of the single-label base classifier
is O(f (L, |A], |D])), where L is the number of labels, |A] is the number of attributes and |D|
is the number of examples in training set. The ChiDep\ConDep’s ‘best case’ complexity is
equal to that of BR, that is O(L* f (2, |A|, |D|)). The ‘worst case’ complexity is equal to that
of LP, that is O( (2%, |A|, |D])). Note, that value of 2" is bounded by |D|, as there cannot
be more label combinations than training examples.

@ Springer



Mach Learn (2013) 91:1-42 19

We assume that in most regular cases there are partial dependencies among labels within
the dataset and ChiDep\ConDep will stop much earlier before it reaches the ‘worst case’.
Thus, ChiDep\ConDep’s complexity is approximated as follows: at each step, when two
groups are clustered and a new set of labels is created, an evaluation of the new model
is performed. It is important to note that the difference between the new model and the
previous one is only in the newly clustered group. This allows us to optimize the calculation
time by reusing models of the unchanged subsets, which were constructed at previous steps.
Thus, reducing each step computation time to O( £ (2%, |A|, |D|)), where k is the size of the
new cluster at step s which increases from 2 to L as the algorithm proceeds. This results in
a total complexity of O(L* £(2, |Al, |D])) + O(sf (2%, |A|, |D|)), where s is the number of
clustering steps actually performed by the algorithm. The whole expression can be replaced
by a general one O((L + s) £ (2%, |A], |D])).

Note that number of classes to be considered at each step (2%) is actually limited by
the number of distinct label combinations in dataset Lpc (see Sect. 6.1 and Table 2) and
typically is relatively small. Also, it is possible to limit both parameters k and s at the
application stage.

5.5 Ensemble framework for ChiDep and ConDep algorithms

Ensemble methods are well known for their capability to improve the prediction perfor-
mance over a single classifier (Rokach and Maimon 2005). We follow this approach and
gather several different ChiDep\ConDep classifiers into a composite ensemble model which
is expected to further improve overall classification accuracy. For this purpose, a large num-
ber (i.e. 50000) of possible label sets partitions is randomly generated and a score for each
partition is computed according to the dependence (i.e. x? or t-value) score of all label pairs
within the partition. The top m label set partitions are selected as members of the ensemble.
The dependence scores of pairs of labels (a, b) are normalized, such that:

NS(a,p)y = SCOV€(q p)y — SCOF€critical

This normalization assures that all pairs of dependent labels receive a positive score and
pairs of independent labels a negative score. The overall partition score is then calculated by
summing up the scores of all pairs whose labels are in the same group and subtracting the
scores of all pairs whose labels are in different groups of the set, such that:

Fartition “dependence” score = Zns(i,j) - Zns(q,,),

where i, j labels are in the same group; and ¢, r labels are in different groups. For example
the “dependence” score of the label set partition {{a, c}; {b, d, e}} is:

Total = NSa,c) T NSp.a) + NS,e) + NSpe) — NS(a.b)
— NS@a,d) — NS(a,e) — NS(c,b) — NS(c,d) — NS(c,e)

Finally, we choose m distinct sets with the highest scores to be included in the ensemble.
The m is a user-specified parameter defining the number of classification models in the
ensemble.

A pseudo-code for this algorithm is presented in Fig. 6.

For classification of a new instance, binary decisions of all models for each label are
averaged and the final decision is taken. All labels whose average is greater than a user-
specified threshold ¢ are returned as a final classification result.
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Ensemble of ChiDep/ConDep algorithm

input: D — training set; ) — a set of labels {\,, ...,AL}; F - single-label classification algorithm; m — number
of models for ensemble; (for the diverse version: N-number of high scored partition to
consider; k-percent of most different partitions to consider)

output: models - array (ensemble) of LPBR classification models

create R random label set partitions (R should be large, i.e. 50000)
weightsMatrix < compute normalized dependence sores of all label pairs
FOR each partition

totalScore — computePartitionScore(partition, weightsMatrix)
ENDFOR
labelSetPartitions « select m partitions with highest totalScore
OR for the diverse version:
labelSetPartitions < selectDiversePartitions (m, N, k)
7. =0
8. FOR each partition from the labelSetPartitions
9. models[i] « LPBRclassifier(partition, F).build(D) // the algorithm is presented on Fig. 4
10.  i=i+l
11. ENDFOR
12. RETURN models

kR =

computePartitionScore(partition, weightsMatrix)
output: w — partition "dependence" score

1. w=0

2. FOR each label pair (A;, Aj), where i=0,...L-1 and j=i+1,...L

3 IF X; and A;are in the same group THEN w= w+weightsMatrix.getScore(i,j)
4. IF A; and A;are in different groups THEN w= w-weightsMatrix.getScore(i,j)
5. ENDFOR

6. RETURN w

selectDiversePartitions(m, N, k)
output: selectedPartitions — array of label set partitions for ensemble classifier

7. candidatePartitions < select N partitions with highest fotalScore

8. distanceMatrix < compute distance between each two partitions from
candidateModels

9. selectedModels[0] « select from candidateModels a partition with highest totalScore

10. FOR i=1 tom

11.  FOR each partition ¢ in candidateModels

12. FOR each partition s in selectedModels

13. dist[s] < compute distance between ¢ and s
14. ENDFOR each s

15. minDist. < getMinimalValue(dist)

16.  ENDFOR each ¢

17.  bestCandidateModels < select k percents of candidateModels with highest
minDist

18.  selectedModels[i] < select from bestCandidateModels a partition with highest
totalScore

19. ENDFOR

20. RETURN selectedModels

Fig. 6 A pseudo-code for the ChiDep/ConDep ensemble algorithm

Ensemble model diversity Accuracy of the ensemble classifier might be further improved
by selecting the most different from the highly scored models. This property has been
demonstrated in other ensemble settings (Rokach 2010). Thus we have defined a strategy
for selecting more diverse models for participation in the ensemble than simply selecting
the m models with the highest score.

For this purpose we utilize the distance function defined in Rokach (2008). For each pair
of labels /;, I; the distance function adds “1” to the total distance if both labels belong to
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the same subset in one partitioning structure and to different subsets in the other partitioning
structure. We defined the following procedure for selecting the diverse models from among
the highly scored ones.

1. Compute the distance matrix between all pairs of N partitions with highest “dependency”
scores. Later we will refer to these N high-scored partitions as the set of “candidate”
models.

2. Select the label set partition with the highest dependence score and add it to the set of
“selected” models for participation in the ensemble.

3. Find the minimal distance d; ,,;; from each one of the “candidate” models to all “se-
lected” models.

4. Sort all “candidate” models in descending order of their d,,;, value (in step 3) and select
k percent of the partitions with the highest d,,;,. This step is intended to choose k percents
of the “candidate” models that are most different from the “selected” models. We refer
to this set of models as “best candidates”.

5. From the “best candidates” set, select the partition with the highest dependence score
and add it to the set of “selected” models.

6. Repeat steps 3—5 until the number of the models in the set of “selected” models
reaches m.

7. Return the “selected” set of models for participating in the ensemble.

A pseudo-code for the “diverse” version of the algorithm is presented in the procedure Se-
lectDiversePartitions of Fig. 6.

This procedure allows us to trade-off between “diversity” and “dependency” scores
among the selected models. Let us clarify how parameter values N and k influence the
model selection process and level of “diversity”—*“dependency” among the ensemble mod-
els. Parameter N defines the number of high-scored partitions which would be considered
as “candidates” for ensemble. As higher this number as more diverse but less “dependent”
partitions would be selected. For example for a dataset with 6 labels there are 172 possible
distinct label-set partitions which dependence score may vary from high positive to high neg-
ative numbers. Thus, when defining N = 100 more than half of all possible partitions will be
considered and some of them will probably have negative “dependency” scores. However,
for a dataset with 14 labels there are above 6300 possible distinct label-set partitions and
most probably all of the 100 high scored ones will have high positive “dependence” scores.
Thus, for datasets with small number of labels and\or low dependency level among the la-
bel, relatively small values (between 20 and 100) for N should be considered. However,
for datasets with large number of labels and\or higher dependency level among the labels,
higher values of N (100 and above) are likely to perform better. Parameter k allows defin-
ing dynamically a threshold value for models which are “different enough” from already
selected ones. For example, given that N = 100 setting k to 0.2 means that all 20 (20 per-
cent of 100) of the most different from all the currently selected models will be considered
as enough different and finally one of them having the highest dependency score will be
added to ensemble. Larger values of k are expected to reduce the level of diversity among
the selected models. Clearly, the “best” values for these parameters are dependent on dataset
properties. Thus, in order to achieve the best performance, we recommend calibrating these
parameters for each dataset specifically.

In this research we carried out a variety of global calibration experiments in order to
define the appropriate default values which would allow parameters to perform sufficiently
for most datasets. The selected values are presented in the following section.
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Table 2 Datasets used in the experiment: information and statistics

Name Domain Labels Train Test Attributes LCcARD Lpc
Emotions Music 6 391 202 72% 1.869 27
Scene Image 6 1211 1196 294* 1.074 15
Yeast Biology 14 1500 917 103* 4.237 198
Genbase Biology 27 463 199 1186 1.252 32
Medical Text 45 645 333 1449 1.245 94
Enron Text 53 1123 579 1001 3.378 753
Slashdot Text 22 2348 1434 1079 1.18 156
Ohsumed Text 23 8636 5293 1002 1.66 1147
tmc20072 Text 22 21519 7077 500 2.158 1341
rcvl(subsetl) Text 101 3000 3000 944%* 2.88 1028
Mediamill Video 101 30993 12914 120* 4.376 6555
Bibtex Text 159 4880 2515 1836 2.402 2856

4tmc2007-500 version of dataset was used

*Notes numeric attributes

6 Empirical evaluation

This section presents the setup of empirical experiments we conducted to evaluate the pro-
posed approaches. It describes the datasets and learning algorithms used during the experi-
ments, and presents the measures used for evaluation.

6.1 Datasets

We empirically evaluated the proposed approach by measuring its performance on twelve
benchmark multi-label datasets® from different domains and variable sizes. All datasets
along with their properties are listed in Table 2.

Besides the regular classification properties, such as label set and feature set size and
the number of train and test examples, we present specific statistical information for multi-
label classification. This information includes: (1) Label Cardinality (Lcarp)—a measure
of “multi-labeled-ness” of a dataset introduced by Tsoumakas et al. (2010) that quantifies
the average number of labels per example in a dataset; and (2) Label Distinct Combinations
(Lpc)—a measure representing the number of distinct combinations of labels found in the
dataset.

As shown in Table 2, six small to medium size datasets and six large size datasets are
included in the experiment. The datasets are ordered by their approximate complexity and
roughly divided (by horizontal line) between regular and large size datasets. From the rcvl
corpus only the subset 1 dataset was used. In addition, dimensionality reduction has been
performed on this dataset as in Zhang and Zhang (2010), such that the top 944 features with
highest document frequency have been retained.

5The datasets are available at http://mlkd.csd.auth.gr/multilabel.html, http://meka.sourceforge.net/#datasets,
http://davis.wpi.edu/~xmdv/datasets/ohsumed.html.
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6.2 Procedure

We implemented the ChiDep and ConDep methods and their ensemble versions (the im-
plementation is written in Java using Weka® and Mulan’ open-source Java libraries). The
new algorithms have been integrated into the Mulan library. The tests were performed using
original train and test dataset splits. The internal selection of a model label set was carried
out using 3-fold cross-validation over the large training sets (namely, slashdot, ohsumed,
tmc2007, rcvl, mediamill and bibtex) and 10-fold over the rest training sets. The overall
cross-validation process was repeated ten times for the training sets with less than 500 exam-
ples (namely, emotions and genbase). For the rest of training sets we followed the approach
proposed by Kohavi and John (1997). According to this approach the number of repetitions
was determined on the fly by looking at the standard deviation of the accuracy estimate.
If the standard deviation of the accuracy estimate was above 1 % and ten cross-validations
have not been executed, another cross-validation run was executed. Although this is only
a heuristic, Kohavi and John claim that this heuristic seems to work well in practice and
avoids multiple cross-validation runs for large datasets.

First, we observed the results achieved by ChiDep and ConDep algorithms and com-
pared the level of performance achieved by modeling unconditional vs. conditional label
dependencies. We noticed that there is no benefit from modeling conditional dependencies
(as presented on Sect. 7.1). Taking into consideration that modeling conditional dependen-
cies is very computationally expensive and not feasible for large datasets, we continued the
evaluation with the ChiDep (modeling unconditional dependencies) method.

We compared the results achieved by the ChiDep (denoted CD) approach to those of the
standard multi-label classification methods such as the BR and LP approaches, and, also
to some state-of-the-art methods addressed in the Related Work section: HOMER (HO),
MLStacking (2BR), Pruned Sets (PS) and Classifier Chains (CC).

The RAKEL (RA) method is an ensemble algorithm combining votes from a number of
multi-label classifiers to a single classification decision. We thus compare it to the ensemble
versions of the ChiDep (CDE), Classifier Chains (ECC) and Pruned Sets (EPS) methods.
Due to the random nature of the RAKEL and ECC algorithms and the partially random
nature of CDE, results vary between runs. Thus, we averaged the results of each one of
these algorithms over five distinct runs on each dataset. Consecutive numbers from 1 to 5
were used as initialization seed for the random number generator allowing reproducibility
of the experimental results.

All methods were evaluated using the Mulan library. All the algorithms were supplied
with Weka’s J48 implementation of a C4.5 tree classifier as a single-label base learner. We
compare the results using the evaluation measures presented in Sect. 3. The statistical signif-
icance of differences in algorithm results was determined by Friedman test (Demsar 2006)
and post-hoc Holm’s procedure for controlling the family-wise error in multiple hypothesis
testing.

6.3 Parameter configuration

All configurable parameters of the participating algorithms were set to their optimal values
as reported in the relevant papers. For HOMER, its balanced k means version with k =3

6Software is available at http://www.cs.waikato.ac.nz/ml/weka/.

TSoftware is available at http://mulan.sourceforge.net/.
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was set. The 2BR was supplied with J48 for both base-level and meta-level binary classifi-
cation algorithms. The PS’s p and s parameters require tuning for each dataset. We used the
parameters chosen by the authors for datasets presented in the PS paper (Read et al. 2008).
For other datasets we set p = 1 (as the dominant value among chosen values in the PS paper)
and s was computed by PS’s utility (from Meka® library) according to label cardinality and
the number of labels in the dataset as recommended by the authors. BR, LP and CC do not
require parameters. For the ChiDep and ConDep algorithms, we set the n parameter to 10
for all datasets, for the reason mentioned in Sect. 5.1.3. The target evaluation measure was
set accordingly to each one of the considered measures, namely accuracy, subset accuracy,
micro-averaged F-measure and Hamming loss measure. The x2 and ¢ critical values were
set to 6.635 and 3.25 respectively, as described in Sect. 5.

Ensemble methods configuration The number of models participating in the ensemble
classifier is supposed to influence the predictive accuracy of the classifier. For the sake of
a fair comparison, we wanted to evaluate ensemble models of an equivalent complexity. To
achieve this, we configured all of the ensemble algorithms in the experiment to construct the
same number of distinct models. ChiDep\ConDep ensemble algorithms construct a varying
number of models for each label set partition according to the number of dependent labels
groups at each partition. Thus, for the ChiDep\ConDep ensemble we set the number of label
set partitions m to 10 (as frequently used for the number of classifiers in an ensemble) and
averaged the number of distinct models constructed by the ensemble across all the random
runs. This number, presented in Table 13, was taken as the base number of models for all
ensemble methods. RAKEL, ECC and EPS were configured to construct the same number
of distinct models. RAKEL and EPS allow supplying the number of desired models via the
constructor. However, ECC aggregates the number of CC classifiers and each one of them
constructs a number of models equal to the number of labels in the dataset. Thus, for ECC
we divided the desired number of models by L and rounded it up. The result was set as
the number of CC classifiers participating in ECC. For all ensemble methods the majority
voting threshold was set to a commonly used intuitive value of 0.5.

Other parameters of ensemble methods were configured as follows. The RAKEL’s k pa-
rameter was set to 3. ECC does not require additional (to the number of models and thresh-
old) parameters. For the EPS, at each dataset p and s, parameters were set to the same values
as those used for the PS algorithm. The diverse version of the ChiDep ensemble (CDE-d)
was supplied with N =100 and k = 0.2 (i.e. twenty percents), accordingly to the results of
calibration experiments described in Sect. 7.2.

7 Experimental results

This section presents the results of the evaluation experiments that we conducted. Initially,
we compare results of the algorithms utilizing unconditional (ChiDep) vs. conditional (Con-
Dep) dependence identification and select the best one for further comparison to other base-
line and state-of-the-art multi-label algorithms. Then we compare the selected algorithm and
its ensemble version to other single-classifier and ensemble algorithms accordingly.

8Software is available at http://meka.sourceforge.net/.
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Table 3 Predictive performance of ChiDep and ConDep algorithms and their ensemble versions on various
datasets

Dataset Accuracy micro-avg. F-measure

Single-classifier Ensemble Single-classifier Ensemble
ChiDep  ConDep  ChiDep  ConDep  ChiDep  ConDep  ChiDep  ConDep

Emotions ~ 43.28 43.84 51.05 44.87 60.31 59.25 63.87 59.66
Scene 57.71 56.76 59.91 59.29 60.4 60.4 66.06 65.72
Yeast 42.88 42.88 49.53 44.73 56.92 56.72 62.31 58.9
Genbase 99.16 98.66 98.66 98.66 98.97 98.77 98.77 98.77
Medical 72.52 72.9 71.34 71.17 79.36 77.99 78.97 78.92
Enron 41.14 38.73 42.91 40.46 51.94 50.63 54.81 53.58
Slashdot 38.73 38.78 38.42 38.69 48.93 49.56 47.81 49.59
Dataset Subset accuracy Hamming loss
Single-classifier Ensemble Single-classifier Ensemble

ChiDep  ConDep  ChiDep  ConDep  ChiDep ConDep  ChiDep  ConDep

Emotions ~ 22.28 17.82 26.24 13.86 25.41 25.99 22.77 25.66
Scene 53.68 50.59 54.26 50.42 14.51 14.35 11.4 12.12
Yeast 14.94 12.00 14.76 10.45 26.59 26.59 21.5 24.39
Genbase 98.49 97.49 97.49 97.49 0.09 0.11 0.11 0.11
Medical 65.47 64.26 62.93 62.76 1.17 1.17 1.11 1.12
Enron 12.95 11.92 12.55 10.71 5.38 5.40 5.08 5.17
Slashdot 33.47 33.12 33.66 33.1 4.36 4.20 4.4 4.21

7.1 Conditional vs. unconditional dependencies

In this section the results of the new algorithm utilizing two different methods for depen-
dence identification, are presented, namely, ChiDep using the chi-square test for uncondi-
tional dependence identification and ConDep for estimating conditional label dependencies.

Table 3 presents the results of the ChiDep and ConDep algorithms and their ensemble
versions on small and medium size datasets for each evaluation measure. On the rest of
datasets, the identification of conditional dependencies takes more than a week of computa-
tion and thus is generally not feasible under existing time constraints and available resources
(see footnote 9 for the characteristics of the utilized hardware). The best result for each mea-
sure on a particular dataset is separately marked in bold for single and ensemble methods.

Consider first the single algorithms. It can be observed that the ChiDep algorithm out-
performs ConDep on all datasets for subset accuracy measure and on the most datasets for
the F-measure. However, for the accuracy and Hamming loss measures the ConDep out-
performs the ChiDep on 3 and 2 datasets correspondingly. For the ensemble algorithms we
observe that ChiDep outperforms ConDep for all measures on almost all datasets.

The above results indicate that among the two methods of modeling dependencies, the
modeling of unconditional dependencies (ChiDep) is superior in terms of subset accuracy
and F-measure. In addition, its ensemble version is superior in terms of accuracy and Ham-
ming loss as well.

To verify these quite surprising results, we performed some experiments on artificial
datasets where various types of dependencies are simulated. The results of these simulation
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Fig.7 l?ata pattc.aljns used for features labels

introducing conditional

dependence #/1 2 3 4 5 6 7 8|1 2 3 45 6 7 8
1/t 0 1 . . . . .1 1
2 1 0 1 . 0 1 [1]
3 1 0 1 0 [1]
4 0 1 1 .1 [0]
5|0 0 1 0 1 [1]

experiments (presented in the next section) correspond to our findings on the benchmark
datasets.

Furthermore, these results correspond with the results presented in Ghamrawi and
McCallum (2005), where two models were evaluated, one of which parameterizes condi-
tional dependencies, the CMLF, and another which parameterizes unconditional dependen-
cies, the CML. The results presented in their work show that the CMLF model is not better
and in many cases even worse (in terms of micro and macro-averaged F-measure and subset
accuracy) than the CML model.

Taking into consideration that the computational cost of conditional dependencies is also
much higher than that of unconditional dependencies (as can be observed from the times
comparison reported in Sect. 7.1.3), we conclude that modeling unconditional dependencies
is sufficient enough for solving multi-label classification problems. The rest of the compar-
isons are performed with ChiDep and an ensemble of ChiDep algorithms.

7.1.1 Experiments on artificial datasets

In this section the methods for conditional and unconditional label’s dependence identifica-
tion are compared on artificially created multi-label datasets.

We experimented with two types of artificially generated datasets. In the first type of
datasets, a predefined pattern was introduced to a set of randomly generated sequences.
In the second type, artificial datasets were generated according to the models defined by
Dembczynski et al. (2010a).

We hypothesize that in cases where label’s dependence is accurately expressed, the con-
ditional method might perform better than the unconditional. However, in non-ideal cases
where various levels of noise and less dependence examples are present, the unconditional
dependence identification would perform better than the conditional. These hypotheses are
tested in the experiments below.

Experiments on the predefined patterns data In this experiment we generated 100,000
instances with 8 attributes and 8 labels. The instances were randomly drawn from the set
of binary vectors E = {0, 1}'®. For introducing conditional dependence, the five patterns
presented in Fig. 7 were introduced to the data. If a record matches the defined pattern
(point means that any value O or 1 is allowed), the specified label, written in the quadratic
parenthesis, is set to the defined value. Each one of the defined patterns was introduced to the
data separately from others to avoid the effects of mutual interaction between the patterns.
In total five datasets, one for each pattern, were created.

For each one of these datasets, two distinct experiments were conducted. In one of the ex-
periments (referred as experiment-1), 9,000 random records (i.e., not matching the pattern)
and 1,000 records matching the pattern were selected from the full set of generated records.
These 10,000 instances were used as a training set. For the remaining experiment (referred
as experiment-2), 500 “pattern” records were removed from the experiment-1 dataset, thus
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Table 4 Dependent label pairs identified by ChiDep and ConDep algorithms on training data

Pattern Experiment-1 Experiment-2

number ChiDep ConDep ChiDep ConDep
pair p-value pair p-value pair p-value pair p-value

1 [2, 8] 1.2E-24 [2, 8] 1.0E-06 [2, 8] 2.6E-09 [2, 8] 9.0E-08
[4, 8] 1.6E-21 [4, 8] 3.9E-05 [4, 8] 1.9E-07 [4, 8] 4.7E-06
[2, 4] 1.9E-12 [2,1] 4.2E-03 [8, 3] 1.9E-03

[5, 6] 8.1E-03
[8, 3] 9.7E-03

2 [5,7] 2.8E-24 [5,7] 1.8E-06 [5,7] 3.6E-09 [5,71 1.8E-05
[6,7] 1.8E-17 [6,7] 1.7E-04 [6,7] 2.2E-05 [7,1] 1.0E-03
[5, 6] 6.0E-09 [6,7] 1.3E-03
3 [2, 3] 9.8E-26 [2, 3] 5.8E-07 [2, 3] 5.9E-10 [1, 3] 5.7E-07
[1, 3] 4.0E-14 [1, 3] 4.4E-04 [1, 3] 1.4E-03 [2, 3] 1.3E-05
[1,2] 4.3E-12 [5,7] 1.6E-03 [6, 3] 4.4E-04

[6, 2] 6.1E-03
[5, 4] 6.8E-03

4 [2, 3] 2.6E-18 [2, 3] 4.0E-08 [2,3] 2.3E-05 [2, 3] 2.5E-07
[2, 5] 2.9E-03

5 [4, 6] 7.0E-24 [1, 6] 1.1E-05 [4, 6] 1.3E-08 [1, 6] 5.6E-06
[1, 6] 2.1E-22 [4, 6] 2.6E-05 [1, 6] 6.5E-08 [4, 6] 7.2E-05

[1, 4] 6.5E-12 [1, 8] 7.6E-03 [8, 4] 6.2E-03

[7, 6] 6.4E-03
[8, 2] 8.3E-03

reducing the number of dependency examples. The remaining 9,500 instances were used
for training. In both experiments, the two algorithms, ChiDep, using the chi-square test for
unconditional dependence identification, and ConDep, estimating conditional label depen-
dencies, were tested on 1,000 records of the corresponding pattern, which were generated
using another set of random vectors E’ = {0, 1}'S.

The label’s dependencies identified by each one of the methods on the training data are
presented in Table 4. Pairs of the correctly identified dependent labels are marked in bold.

Consider the algorithm’s results on pattern number 1, where labels 2, 4, and 8 are depen-
dent. We can see that in the experiment-1, the “unconditional” (ChiDep) method identifies
all three pairs of dependent labels. In the same experiment, the “conditional” (ConDep)
method identifies only two pairs correctly. Additionally, the ConDep method misidentifies
three other label pairs as dependent. In the experiment-2, both methods identify the same two
(out of three) label pairs as dependent. However, ConDep again misidentifies another pair
as dependent labels. The results on all the other patterns are quite similar. For experiment-1,
the ChiDep method correctly identifies all pairs of dependent labels on all patterns, while the
ConDep identifies only two out of three dependent pairs on all patterns except pattern num-
ber 4. In pattern 4, only one pair of labels (2 and 3) is dependent and is correctly identified
by both methods. In experiment-2, both methods identify the same label pairs as dependent,
however, the ConDep misidentifies some other pairs as dependent labels on all the patterns.

The results of these experiments demonstrate that on “noisy” datasets with different lev-
els of dependence representations, the “unconditional” ChiDep method identifies a label’s
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Table 5 Predictive performance of ChiDep and ConDep algorithms on predefined patterns data

Measure Experiment-1 Experiment-2
PatternS Pattern2 Pattern3 PatternS
ChiDep ConDep ChiDep ConDep ChiDep ConDep ChiDep ConDep

Accuracy 0.5735  0.5647 0.5606  0.5588 0.5888  0.5720 0.5789  0.5712
Subset Accuracy  0.0340  0.0250 0.0270  0.0220 0.0260  0.0250 0.0240  0.0220
Micro F-measure  0.7213  0.7136 0.7110  0.7091 0.7362  0.7210 0.7284 0.7212
Hamming Loss 0.3140  0.3160 0.3199  0.3185 0.3113 03116 0.3165  0.3154

dependencies more accurately than the “conditional” ConDep method. One of the problems
with the ConDep method is the identification of spurious dependencies. We hypothesize that
the origin of these misidentifications is the false positive of the statistical t-test, known in
statistics as the Type 1 error. As can be seen from the results, the p-value of the misidenti-
fied pairs is relatively high and almost always much higher than that of the actual dependent
pairs. An additional glitch of the ConDep method is that the actual dependent pairs are not
always identified.

The results of the ChiDep and ConDep algorithms on the test data are presented in Ta-
ble 5. In some cases the results of the algorithms are the same despite the fact that not all
pairs were identified as dependent by the method for a conditional label’s dependence identi-
fication. This is due to the clustering procedure (described in Sect. 5.1.3) in which two pairs
are clustered in a group of three labels, if the classification performance is improved. The
experiments where both methods performed exactly the same are omitted from the results
in Table 5.

It can be seen that the ChiDep method was outperformed by ConDep on two experiments
for the Hamming loss measure only. On the other hand, the ChiDep outperforms the ConDep
in four experiments on almost all measures.

Experiments on independent, dependent, and combined datasets In Dembczynski et al.
(2010a), two models for generating artificial three-label datasets are defined and used. In the
first dataset, all the labels are conditionally independent, however the unconditional depen-
dence exists between labels 2 and 3. In the second dataset, all the labels are conditionally
dependent. We utilized these models for our experiments. The models, defined in Dem-
bezynski et al. (2010a) are briefly presented below for reading convenience.

For each dataset, 10,000 instances were generated. The first (conditionally independent)
dataset was generated by uniformly drawing instances from the square x € [—0.5, 0.5]%. The
label distribution is given by the product of the marginal distributions defined by P, (y;) =
1/(1 +exp(— f;(x))), where the f; are linear functions: fi(x) = x; +x3, fo(x) = —x1 + x2,
f3(x) = x; — x,. This model generates conditionally independent labels. However, labels
2 and 3 are dependent marginally (unconditionally) as f>(x) = — f3(x). This dataset will
subsequently be referred to as independent or conditionally independent.

The second (dependent) dataset was generated by drawing the instances from an uni-
variate uniform distribution x € [—0.5,0.5]. The label distribution is given by the prod-
uct rule: P, (Y) = P, (y1) Px(32|y1) Px(y3|y1, ¥2), where the probabilities are modeled by
linear functions similarly as before: f1(x) =x, f2(y1,x) = —x —2y; + 1, 52,1, %) =
x 4+ 12y; — 2y, — 11. This dataset will subsequently be referred to as dependent.

Additionally, for a simulation of “noisy” dependencies, we created a third dataset com-
bined of the first two. The third dataset consists of two features and six labels. The feature’s
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Table 6 Dependence
identification results on
dependent (left) and independent ChiDep ConDep ChiDep ConDep
(right) datasets. In bold mark the
label pairs identified as
dependent

Dependent dataset Independent dataset

pair  p-value pair p-value pair p-value pair p-value

[1,3] 0.0E+00 [1,3] 6.5E-17 [2,3] 1.1E-06 [2,3] 2.3E-01
[2,3] 0.0E+00 [2,3] 4.0E-15 [1,3] 6.3E-01 [1,2] 3.2E-01
[1,2] 0.0E+00 [1,2] 6.4E-15 [1,2] 8.8E-01 [3,1] 5.3E-01

Table 7 Dependence
identification results on
combined datasets ChiDep ConDep ChiDep ConDep

pair  p-value pair p-value pair p-value  pair  p-value

10000 training examples 1000 training examples

[4,6] 0.0E+00 [4,6] 1.1E-15 [4,6] 5.6E-102 [4,6] 2.3E-10
[5,6] 0.0E+00 [5,6] S5S.1E-15 [5,6] 3.9E-68 [S,4] 7.9E-10
[5,4] 0.0E+00 [5,4] 2.1E-14 [5,4] 2.9E-51 [5,6] 1.5E-08
[2,3] 1.1E-06 [2,3] 1.1E-03

[1,6] 1.2E-04

[1,5] 2.4E-04

[2,6] 2.2E-03

[2,4] 4.9E-03

attributes and first three labels were generated according to the conditionally independent
model and the next three labels were generated according to the dependent model, consid-
ering x = x,. This dataset will subsequently be referred to as combined. On the combined
dataset, we experimented with various training set sizes, namely, 10,000, 1,000, 500 and 300
instances.

The results of the label’s dependence identification for the independent and dependent
datasets are shown in Table 6 and for the combined dataset in Table 7.

As can be seen in Table 6, in the dependent dataset, both methods correctly identified all
label pairs as dependent. In the case of independent data, the identification results are correct
as well. The ConDep method identifies all the labels as independent. The ChiDep method
identifies pairs [1, 3] and [1, 2] as independent and pair [2, 3] as dependent. Note that labels
2 and 3 are indeed unconditionally dependent. For the combined dataset sets with 500 and
300 train instances, both methods equally identified the three label pairs from the dependent
model as dependent. Thus, these results are omitted from Table 7. The results presented are
for the training sets of 10,000 and 1,000 instances. It can be seen that on both these training
sets, the ConDep method correctly identifies the three label pairs from the dependent model
as dependent. The ChiDep method identifies the same three pairs as the most dependent. It
correctly identifies the pair of labels [2, 3] as depended, as well. Additionally, on the training
set with 10,000 examples, four other pairs are identified as unconditionally dependent by the
ChiDep method. These dependencies are caused by a mutual interaction between the two
underling data models.

The classification performance of the ChiDep and ConDep methods was evaluated on all
the generated datasets using a 3-fold cross-validation. The average results for each evalua-
tion measure over test instances are reported in Table 8. Note that due to the cross-validation,
the dependencies identification for each dataset was performed on two thirds of the instances
for each fold.
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Table 8 Classification results on independent, dependent, and combined datasets

Measure Independent Dependent Combined Combined
(10000 train) (300 train)

ChiDep ConDep ChiDep ConDep ChiDep ConDep ChiDep  ConDep

Accuracy 0.43 0.4265 0.4795  0.4795 0.4155  0.4166 0.3363 0.3194
Subset Accuracy  0.1936  0.1939 0.4024  0.4024 0.0795  0.0786 0.0267  0.0233
Micro F-measure  0.5836  0.5774 0.5336  0.5336 0.5549  0.5559 0.492 0.4714
Hamming Loss 04231  0.4217 0.4127  0.4127 0.4168  0.4168 0.4828 0.49

Considering the classification results of the ChiDep and ConDep algorithms, we can
see that on dependent data both methods perform equally for all evaluated measures. On
the other hand, the results of ConDep in the independent dataset are slightly better for the
subset accuracy and Hamming loss measures, while utilizing the unconditional dependence
discovered between labels 2 and 3 by the ChiDep method results in a better performance in
terms of accuracy and micro-averaged F-measure.

In the case of the combined dataset, we can see that on the large training set of 10,000
instances, the results of the two algorithms are very close. The ConDep slightly outperforms
the ChiDep for accuracy and micro-averaged F-measures. Alternatively, ChiDep slightly
outperforms the ConDep for the subset accuracy measure. However, on the small training
set of 300 instances, the ChiDep significantly outperforms the ConDep on all evaluated
measures. On the training sets of 1,000 and 500 instances, both methods perform equally
for all evaluated measures, thus these results are omitted from Table 8.

Experiments conclusions Summarizing the experiments on artificial datasets where vari-
ous dependence types and conditions were simulated, we draw the following conclusions.
Both methods for conditional and unconditional dependence identification correctly identify
the existing dependencies in datasets with well-expressed dependencies and on datasets with
many examples for dependence. In such cases the classification results of both methods are
either the same or very close to each other. However, on small or with a limited number of
dependence examples datasets, the unconditional method is more accurate in dependence
identification and consequently in classification predictions. In most of such cases, the con-
ditional method does not identify all existing dependencies and additionally suffers from
Type 1 errors, causing identification of spurious dependencies. These results correspond to
our results on benchmark datasets and confirm that in practice, modeling of unconditional
dependencies provides either very similar or more effective results than modeling of condi-
tional dependencies.

7.1.2 Comparison of computational time for unconditional vs. conditional label
dependence identification

As we already noted the computation of conditional dependencies is very time consuming.
This section presents comparison of computational time required by the methods for condi-
tional and unconditional label dependence identification. The time required for constructing
the ordered list of dependent pairs by both methods is considered. Figure 8 presents those
times in thousand of seconds (see footnote 9 for the characteristics of the utilized hardware).

It can be seen from the graph that time required for approximation of conditional label
dependencies increases exponentially with the number of training examples in the dataset.
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Fig. 8 Comparison of computational time (in thousands of seconds) for unconditional vs. conditional label
dependence identification

For each one of the five largest datasets (namely, ohsumed, tmc2007, rcv1, mediamill and
bibtex) this approximation took more than one week and thus could not be completed. On
the other hand the time required by chi-square test applied on labels data for identification
of unconditional label dependencies took about 4-5 seconds even on the largest datasets.

7.1.3 Identified label dependencies

Although, the ConDep algorithm concede to the ChiDep in predictive performance, we felt
that it might be of interest to compare the pair of labels identified as dependent by each of
the methods on benchmark datasets. Below we present and compare dependencies identified
by both algorithms for each dataset. Number of label pairs identified as dependent by each
one of the methods is summarized in Table 9. The “NF” mark indicates that execution of an
algorithm was Not Feasible (i.e. took more than a week) under existing resources constraints.
The dependence is identified at the significance level of p = 0.01 wherever it is not stated
differently.

For the emotions dataset, the unconditional label dependence identification using the chi-
square test identified 14 (from 15) label pairs as dependent. The only pair of independent la-
bels is {amazed-surprised, happy-pleased}. According to our conditional dependence iden-
tification procedure, there are two dependent pairs of labels with a 0.01 significance level,
and four more pairs are dependent at a 0.05 significance level. The two most conditionally
dependent label pairs are {relaxing-calm, angry-aggressive} and {happy-pleased, angry-
aggressive}, the next four (at p = 0.05) are {happy-pleased, sad-lonely}, {happy-pleased,
quiet-still}, {amazed-surprised, quiet-still} and {amazed-surprised, relaxing-calm}. The
{relaxing-calm, angry-aggressive} pair is also the most unconditionally dependent pair.
For the scene dataset, all labels were found to be unconditionally dependent. But only five
were found to be conditionally dependent at a p = 0.01 significance level; three more pairs
were conditionally dependent at p = 0.05. The first five conditionally dependent label pairs
are {Mountain, Urban}, {Beach, Urban}, {Sunset, Fall Foliage}, {Beach, Mountain} and
{Beach, Field}. The {Mountain, Urban} pair is also the most unconditionally dependent
pair. For the yeast dataset, 53 unconditionally dependent pairs and 16 conditionally depen-
dent pairs were found from a total of 91 pairs. Also in this dataset, the first most dependent
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Table 9 Number of label pairs identified as dependent by the methods for conditional and unconditional
label dependence identification at the significance level of p = 0.01

Dataset Total label pairs Number of Number of
unconditionally conditionally
dependent label pair dependent label pairs

Emotions 15 14

Scene 15 15 5

Yeast 91 53 16

Genbase 351 42 0

Medical 990 29 2

Enron 1378 136 6

Slashdot 231 50

Ohsumed 253 110 NF

tmc2007 231 178 NF

rcvl(subsetl) 5050 582 NF

Mediamill 5050 1532 NF

Bibtex 1566 1157 NF

pair of labels is the same for both methods. As well all of the 16 conditionally dependent
labels were also found to be unconditionally dependent. For the slashdot dataset, 50 uncon-
ditionally dependent pairs and only one {Idle, Games} conditionally dependent pair were
found from a total of 231 pairs. Three more pairs { Games, Technology}, {Idle, Mobile} and
{Science, Technology} were conditionally dependent at p = 0.05. Also in this dataset, the
first most dependent pair of labels that was identified by both methods is the same. The situ-
ation was very similar for the genbase, medical and enron dataset. Details for these datasets
can be seen in Table 9.

Summarizing these results, we conclude that in general there are many more label pairs
identified as unconditionally dependent, than those identified as conditionally dependent.
Although the results of both methods are very different, some correspondence between the
identified dependent label pairs can be noticed. So, for example, in many cases the most
dependent label pairs are the same for both methods. As well most of the conditionally
dependent pairs are also identified as unconditionally dependent.

7.2 ChiDep vs. single-classifier algorithms

In this section, the results of the ChiDep algorithm are compared to other multi-label single-
classifier algorithms. The results are presented in Table 10. The ‘OOM’ mark indicates that
the algorithm did not finish the run because of Java OutOfMemoryException.” We verified
the statistical significance of the results by a comparison of ChiDep to other methods using
a Friedman test and post-hoc Holm’s procedure at p = 0.01. The rank of the ChiDep algo-
rithm result relative to all other algorithms for a specific dataset can be seen in the ‘ChiDep
rank’ column. The average rank of each algorithm over all datasets for a certain evaluation
measure is presented at the last row of each sub table.

9The tests were performed on 64bit Intel Core Quad CPU Q6600@2.40 GHz machine providing 4GB of
RAM for each algorithm.
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Table 10 Comparing ChiDep to other single-classifier algorithms on various datasets. [+], [-]-statistically
significant improvement or degradation vs. ChiDep

Dataset ChiDep rank Accuracy

ChiDep BR LP[-] HOI[-] 2BR[-] PS[-] CC
Emotions 2 43.28 43.84 42.15 42.34 41.7 41.49 42.77
Scene 2.5 57.71 51.34 57.71 46.98 47.07 57.04 59.45
Yeast 4 42.88 42.26 39.84 43.27 45.62 40.76 43.17
Genbase 1 99.16 98.66 98.41 97.91 98.74 98.41 98.66
Medical 3 72.52 71.17 71.92 69.07 66.12 73.22 73.17
Enron 1 41.14 36.71 30.97 40.19 37.25 33.18 39.41
Slashdot 3 38.73 38.69 41.87 34.26 37.58 42.28 38.43
Ohsumed 1 36.46 35.84 32.14 34.37 35.19 32.18 35.89
tmc2007 1 75.71 75.12 75.38 73.75 59.56 75.08 74.16
revl(subsetl) 2 6.88 6.94 6.26 6.49 6.8 6.41 6.7
Mediamill 2 36.66 36.89 33.72 36.46 35.08 33.66 36.47
Bibtex 2 29.62 29.92 25.17 24.23 25.92 OOM 28.79
Avg. rank 2.0 2.0 3.1 5.0 5.1 4.6 4.8 3.1
Dataset ChiDep rank Subset accuracy

ChiDep BRI[-] LP HO[-] 2BR[-] PS CC
Emotions 1.5 22.28 12.87 22.28 12.38 19.8 18.81 16.34
Scene 1.5 53.68 40.13 53.68  32.61 42.31 51.92 53.34
Yeast 1 14.94 6.43 11.89 6.98 9.49 12.43 14.29
Genbase 1 98.49 97.49 96.98 96.48 97.49 96.98 97.49
Medical 2 65.47 62.76 63.66 59.46 58.56 65.47 65.47
Enron 1 12.95 8.64 9.67 10.36 3.8 11.23 11.57
Slashdot 3 33.47 33.12 36.89 2594 32.71 36.75 32.64
Ohsumed 4 17.48 18.04 16.36 13.02 21.12 16.78 18.12
tmc2007 3 53.82 52.18 64.45  47.25 29.31 63.71 53.45
rcvl(subsetl) 2.5 0.13 0.03 0.13 0 0.13 0.13 0.03
Mediamill 4 6.90 5.35 7.22 5.68 4.89 7.43 8.42
Bibtex 1 14.19 13.32 13.96 9.62 12.6 OOM 13.96
Avg. rank 2.1 2.1 5.0 3.1 6.3 4.8 32 3.2

Consider first the base-line BR and LP algorithms. It can be observed that for accuracy,
subset accuracy and F-measure the ChiDep algorithm outperforms BR and LP in 25 and
28 (from a total of 36) cases and achieves the same results in 1 and 3 other cases, respec-
tively. For the Hamming loss measure, the ChiDep algorithm is more accurate than LP on
all datasets. However it is outperformed by BR in 9 of 12 cases. In general, ChiDep is sig-
nificantly better than LP in respect to the accuracy, F-measure and the Hamming loss; and
is significantly better than BR in respect to the subset accuracy measure.

Considering the recently developed state-of-the-art methods, we notice that ChiDep is
significantly better than HOMER, 2BR and PS in respect to the accuracy measure. It is also
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Table 10 (Continued)

Dataset ChiDep rank micro-avg. F-measure

ChiDep BR LP[-] HO[-] 2BR PS[-] CC
Emotions 1 60.31 59.25 52.59 56.75 55.78 52.69 55.63
Scene 3 60.4 60.86 58.75 56.13 58.36 58.59 61.53
Yeast 3 56.92 56.9 52.65 57.6 60.04 53.98 55.84
Genbase 1 98.97 98.77 98.35 98.14 98.77 98.35 98.77
Medical 2 79.36 78.94 74.54 75.78 75.82 75.74 79.46
Enron 1 51.94 50.42 39.53 50.38 51.39 42.35 51.45
Slashdot 3 48.93 49.64 42.26 44.24 47.68 42.98 49.28
Ohsumed 3 48.04 48.4 37.52 45.54 46.64 37.56 48.36
tmc2007 2 83.31 83.42 78.79 81.2 70.87 78.43 81.85
revl(subsetl) 2 12.48 12.3 10.09 11.46 11.75 10.72 12.68
Mediamill 2 50.44 50.55 45.39 48.66 48.82 46.08 49.41
Bibtex 2 39.09 39.67 28.97 29.37 36.09 OOM 38.18
Avg. rank 2.1 2.1 2.2 6.4 4.8 4.0 5.7 2.6
Dataset ChiDep rank Hamming loss

ChiDep BR LP[-] HOI[-] 2BR PS[-] CcC
Emotions 2 25.41 25.99 30.2 30.94 25.25 30.53 28.96
Scene 4 14.51 13.89 14.72 17.49 12.63 14.91 13.92
Yeast 4 26.59 25.88 28.7 28.91 21.43 27.18 26.38
Genbase 1 0.09 0.11 0.15 0.17 0.11 0.15 0.11
Medical 3 1.17 1.11 1.39 1.29 1.23 1.31 1.11
Enron 2 5.38 5.4 7.41 6.86 5.59 6.45 5.3
Slashdot 35 4.36 4.2 5.96 5.29 4.36 5.88 4.25
Ohsumed 4 6.59 6.49 8.78 8.98 5.89 8.5 6.49
tmc2007 2 3.13 3.11 4.2 3.97 5.65 4.21 34
rev1(subsetl) 4 4.6 4.56 5.04 5.59 4.29 4.82 4.45
Mediamill 2.5 3.82 3.82 4.7 5.03 3.71 4.59 4.01
Bibtex 35 1.49 1.48 2.08 2.72 1.34 OOM 1.49
Avg. rank 3.0 3.0 2.2 5.9 6.3 24 53 2.7

significantly better than HOMER and 2BR in respect to the subset accuracy measure and is
significantly better than HOMER and PS for the F-measure and the Hamming loss measures.

The overall comparison of the algorithms indicates that the ChiDep algorithm is success-
ful for accuracy and subset accuracy with four first ranked places at each one of measures;
and sharing the first rank with other algorithms for subset accuracy measure in three addi-
tional cases. For the Hamming loss measure, ChiDep is outperformed by the BR, 2BR and
CC methods. However, the difference is not statistically significant.

Summarizing this comparison, we notice that, as expected, the ChiDep algorithm is
mainly beneficial for accuracy, subset accuracy and F-measure providing the best average
rank for these measures. Even when ChiDep is outperformed by other methods, its value of
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Table 11 Comparing LP superiority vs. BR in terms of subset accuracy measure as function of dependent
labels percentage in dataset

Dataset Subset accuracy LP vs. BR superiority (diff. Unconditionally
BR LP in subset accuracy values) dependent label pairs (%)

Scene 40.13 53.68 13.55 100

tmc2007 52.18 64.45 12.27 77

Emotions 12.87 22.28 9.41 93

Yeast 6.43 11.89 5.46 58

Slashdot 33.12 36.89 3.77 22

Mediamill 5.35 7.22 1.87 30

Enron 8.64 9.67 1.03 10

Medical 62.76 63.66 0.9 3

Bibtex 13.32 13.96 0.64

rev1(subsetl) 0.03 0.13 0.1 12

Genbase 97.49 96.98 —0.51 12

Ohsumed 18.04 16.36 —1.68 43

a predictive quality measure is still relatively high and is among the three highest in 34 of
36 prediction cases for the above measures.

Also, we notice that the 2BR method demonstrates high performance in terms of the
Hamming loss measure. It provided the best (the lowest) Hamming loss in 7 of 12 datasets
and in four other datasets it was only slightly outperformed by BR and\or ChiDep. However,
on the tmc2007 dataset it is outperformed by all other algorithms. In general, the BR method
is the most successful in terms of the Hamming loss measure achieving the best average
rank over all datasets, although having the best rank on three datasets only. For the subset
accuracy measure, the LP algorithm performs best on 5 of 12 datasets however, its average
rank is much worse than that of the ChiDep method. Note that LP achieves results higher
than ChiDep algorithm mainly on datasets with relatively large number of examples per
distinct label combination (i.e. |Train|/Lpc).

7.2.1 LP vs. BR considering percentage of dependent label pairs

Additionally we noted that LP superiority vs. BR in terms of subset accuracy measure is
almost proportional to the percent of (unconditionally) dependent label pairs discovered in
the dataset. The only exceptions are “genbase” and “ohsumed” datasets, where the BR al-
gorithm slightly outperforms LP. For more convenient comparison, we summarize all the
related information in Table 11. The datasets are ordered by difference in subset accuracy
measure between LP and BR algorithms (the third column in the table). It can be easily
observed that the LP results with subset accuracy values much higher from those of BR
for datasets with large percentage of dependent labels. So, we conclude that the superior-
ity of the LP approach compared to BR in respect to subset accuracy is growing with the
percentage of dependent labels in dataset.

7.3 Ensemble diversity

In this section we compare the predictive performance of the “base” version of the ChiDep
Ensemble (CDE) method according to which m best (i.e. with highest dependence score)
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models are selected for participation in the ensemble to the “diverse” version (CDE-d). Ac-
cording to the “diverse” version of the ChiDep ensemble we try to select the most different
(at least in k percent) models among the N-high scored ones. The k and N are configured
parameters of the algorithm and might be specific for each dataset.

We performed several calibration experiments to examine if the “diverse” version of the
CDE algorithm with some default values for the configured parameters can improve the pre-
dictive performance of the “base” version. The calibration experiments were run on scene,
emotions, yeast and medical training sets using 10-fold cross-validation with parameter k
varying from 0.1 to 0.9 with step 0.1 and parameter N varying from 100 to 500 with step 50.
In the result analysis, we found that combination of values k = 0.2 and N = 100 performed
well and was the only combination appearing among the 25 best results on all evaluated
datasets. The test of CDE-d with the selected parameters on all the datasets showed that
indeed the “diverse” version of the CDE algorithm, even with default parameters, improves
the predictive performance of the ensemble.

Table 12 presents the results of the CDE-d algorithm with selected default parameters
on all datasets and compares them to those of the base CDE version. The results for each
algorithm are obtained by averaging five distinct runs on each dataset, with an initialization
seed for random number generator varying from 1 to 5 consecutively.

The results show that model diversity, even with default parameters, leads to an improve-
ment of prediction accuracy (in terms of all considered evaluation measures) of the ensemble
classifier on almost all datasets. Note that higher predictive performance can be achieved by
specifically calibrating the parameters for each dataset.

7.4 ChiDep vs. ensemble algorithms

In this section the results of the “diverse” version of ChiDep Ensemble algorithms are com-
pared to other multi-label ensemble algorithms.

Table 13 presents the results of the compared ensemble classifiers. The results of CDE-d,
RAKEL and ECC algorithms are averaged over five distinct runs on each dataset. The aver-
aged number of distinct classification models constructed by the ChiDep Ensemble for each
dataset is also presented. The results of the RAKEL algorithm on the emotions and scene
datasets are for the 20 models ensemble as it is the maximal number of possible distinct
subset combinations of three labels out of total six. On the tmc2007 and rcv1 datasets the
EPS algorithm with a configured number of models failed because of insufficient memory
for computation (i.e. with Java OutOfMemory Exception). Thus, the result presented is for
the 10 models ensemble allowing at least for an estimate of the algorithm’s performance.
OOM for EPS indicates that the algorithm caused Java OutOfMemoryException also when
configured to construct 10 models for the ensemble.

The differences between algorithms were found statistically significant in terms of ac-
curacy and F-measure scores by Friedman test at p = 0.02. The followed post-hoc Holm’s
procedure indicate that there is no significant case where RAKEL, ECC or EPS is more ac-
curate than CDE-d. On the other hand, CDE-d is significantly more accurate than EPS for
accuracy and F-measure. In addition, the CDE-d accuracy, subset accuracy and F-measure
values are higher than those of ECC and RAKEL algorithms in most cases. However these
differences are not statistically significant. In general, the CDE-d method obtains the best
average rank at the accuracy, subset accuracy and F-measure scores. From a detailed com-
parison we can observe that CDE-d algorithm achieves best results on 7, 5 and 6 datasets
(from a total of 12) respectively for accuracy, subset accuracy and F-measure scores.
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Table 12 Comparing ChiDep Ensemble base and “diverse” versions

Dataset Accuracy micro-avg. F-measure

CDE CDE-d CDE CDE-d
Emotions 51.05 53.92 63.87 66.84
Scene 59.91 60.05 66.06 67.29
Yeast 49.04 49.7 62.42 62.91
Genbase 98.56 98.66 98.6 98.77
Medical 71.48 71.56 79.12 79.02
Enron 43.14 43.26 55.21 55.29
Slashdot 38.57 38.37 47.55 47.47
Ohsumed 39.69 39.74 51.22 51.1
tmc2007 83.7 83.55 88.92 88.85
rcv1(subsetl) 7.2 7.2 12.81 12.78
Mediamill 42.54 43.11 56.17 56.63
Bibtex 30.06 30.17 40.03 40.23
Dataset Subset accuracy Hamming loss

CDE CDE-d CDE CDE-d
Emotions 26.24 28.22 22.77 21.62
Scene 54.26 54.93 11.4 10.76
Yeast 14.92 15.01 21.66 21.3
Genbase 97.09 97.49 0.13 0.11
Medical 63.06 63.18 1.11 1.12
Enron 12.23 12.57 5.03 5.02
Slashdot 33.67 33.77 4.49 4.45
Ohsumed 22.49 22.79 5.87 5.84
tmc2007 67.39 67.12 2.11 2.12
rcvl(subsetl) 0.09 0.11 4.42 4.42
Mediamill 9.52 10.07 3.23 3.18
Bibtex 13.63 13.74 1.45 1.44

In respect to Hamming loss, the RAKEL method seems to perform best achieving 4 best
results and having the best average rank. Generally, the Hamming loss values for all algo-
rithms are very close in many cases and the differences between them are not significant.

7.5 Algorithms computational time comparison

This section presents results of train and test computational time required by single-classifier
and ensemble methods. We present the results for the two largest datasets, where the com-
putational time becomes the important issue and the difference between algorithms is most
perceptible. Figure 9 depicts times (in hours) required by single-classifier and ensemble
methods algorithms for classifier training; and Fig. 10 presents the times (in minutes) re-
quired for classifiers testing.

It can be observed from the graphs that ChiDep train times are relatively long; however its
test times are short and comparable to that of BR. On the other hand, both train and test times
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Table 13 Comparing ChiDep Ensemble (CDE-d) to other ensemble algorithms on various datasets. [+],
[-]-statistically significant improvement or degradation vs. CDE-d

Dataset CDE-d ModelsNum CDE-d rank Accuracy

CDE-d RA ECC EPSI-]
Emotions 22 2 53.92 51.28 54.02 53.63
Scene 21 3 60.05 60.87 62.24 58.5
Yeast 37 1 49.7 48.39 45.63 49.14
Genbase 111 1.5 98.66 98.66 98.63 98.32
Medical 239 3 71.56 71.14 73.82 75.03
Enron 249 1 43.26 41.89 42.26 34.65
Slashdot 95 2 38.37 38.54 36.20 37.22
Ohsumed 86 1 39.74 37.90 39.36 32.56
tmc2007 71 1 83.55 80.90 72.19 75.69
rcv1(subsetl) 473 1 7.2 7.04 6.662 6.94
Mediamill 459 2 43.11 44.52 40.89 OOM
Bibtex 761 1 30.17 29.88 29.37 OOM
Avg. rank 1.6 1.6 2.4 2.8 3.1
Dataset CDE-d ModelsNum CDE-d rank Subset accuracy

CDE-d RA ECC EPS

Emotions 22 2 28.22 24.75 24.95 29.21
Scene 21 2 54.93 54.60 51.97 55.77
Yeast 37 2 15.01 12.52 14.42 16.9
Genbase 111 1.5 97.49 97.49 97.39 96.48
Medical 239 3 63.18 62.70 65.29 67.57
Enron 249 2 12.57 11.54 13.47 11.57
Slashdot 95 1 33.77 32.98 31.52 33.26
Ohsumed 86 1 22.79 21.58 19.48 21.46
tmc2007 77 1 67.12 62.44 48.28 58.08
rcvl(subsetl) 473 1.5 0.11 0.11 0.01 0.07
Mediamill 459 3 10.07 11.38 10.98 OOM
Bibtex 761 2.5 13.74 13.74 15.79 OOM
Avg. rank 1.9 1.9 2.7 2.9 2.2

of the ChiDep Ensemble method are comparable to those of other ensemble methods. The
CDE train times are shorter than RAKEL’s train times and are slightly longer than those of
ECC. The test times of all ensemble methods are almost equal. Recall that the EPS algorithm
on these datasets resulted with OutOfMemory Exception, thus its computational times are

not presented.

7.6 Discussion

Comparing the two methods for label dependence identification indicates that estimating
conditional dependencies is much more computationally expensive than estimating uncon-
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Table 13 (Continued)
Dataset CDE-d ModelsNum CDE-d rank micro-avg. F-measure

CDE-d RA ECC EPS[-]
Emotions 22 2 66.84 64.93 66.17 67.21
Scene 21 3 67.29 68.62 66.57 67.61
Yeast 37 1 62.91 62.08 58.78 62.41
Genbase 111 1.5 98.77 98.77 98.73 98.34
Medical 239 2 79.02 78.91 79.7 77.79
Enron 249 1 55.29 54.87 53.48 45.29
Slashdot 95 3 47.47 49.63 47.53 45.92
Ohsumed 86 2 51.1 50.04 52.08 41.99
tmc2007 77 1 88.85 87.37 80.35 81.3
revl(subsetl) 473 1.5 12.78 12.45 12.78 12.42
Mediamill 459 2 56.63 57.21 53.82 OOM
Bibtex 761 1 40.23 40.03 38.61 OOM
Avg. rank 1.8 1.8 2.2 2.7 3.2
Dataset CDE-d ModelsNum CDE-d rank Hamming loss

CDE-d RA ECC EPS
Emotions 22 2 21.62 22.19 23.48 20.05
Scene 21 3 10.76 10.45 12.53 9.87
Yeast 37 2 21.3 21.81 23.60 19.71
Genbase 111 2 0.11 0.11 0.11 0.15
Medical 239 2.5 1.12 1.12 1.1 1.18
Enron 249 2.5 5.02 4.90 5.05 5.02
Slashdot 95 4 4.45 4.19 4.21 4.43
Ohsumed 86 1 5.84 591 6.33 5.85
tmc2007 77 1 2.12 2.37 3.85 3.56
rcvi(subsetl) 473 4 4.42 4.34 4.04 4.05
Mediamill 459 2 3.18 3.03 32 OOM
Bibtex 761 3 1.44 1.41 1.32 OOM
Avg. rank 2.4 24 2.1 2.8 2.4

ditional dependencies. The former method is also inferior from the predictive performance

point of view on regular size datasets.

Analysis of identified dependent label pairs by both methods on benchmark datasets
showed that many more label pairs were identified as unconditionally dependent, than those

identified as conditionally dependent.

The results of the empirical experiments evaluating the ChiDep algorithm support our
conjectures from Sect. 5.3 that modeling partial dependencies by combining the BR and
LP approaches (as the LPBR method does) can be beneficial, compared to each algorithm
separately, in terms of (1) accuracy measure and (2) subset accuracy measure for small and
medium training sets.

@ Springer



40 Mach Learn (2013) 91:1-42

16 1 cD 10 3
14 ] 9 A
12 1 8 1
7 4
h-]
10 4 6 4 uw e é
£ £ 8 w
381 cp 2BR 351 © 8 8
T s 26R T, o @
O
4 w
4 4 8
5 cc 21
1 BRr Lp 1O cc Br P Ho| |Ps 1
0 /| 0 |
bibtex mediamill bibtex mediamill
(a) (b)
Fig. 9 Train times (in hours) required by (a) single-classifier methods and (b) ensemble methods
35 4 45
3 1 ZBj 44 -]
3.5 4 u Q
25 6 g ¢
3 4
2 24 2BR o5 |
=] 5
c c
S 15 4 = 24 o
u Q
1.5 - fa] 8
] ]
1 cc ps CC ] g w
05 { CPBR LP
LP HO co - Mo 0.5
0 | - 0 .
bibtex mediamill bibtex mediamill
(a) (b)

Fig. 10 Test times (in minutes) required by (a) single-classifier methods and (b) ensemble methods

Indeed, the empirical results demonstrate that ChiDep algorithm significantly outper-
forms BR in terms of the subset accuracy measure and LP in terms of the accuracy, micro-
averaged F-measure and Hamming loss measures. In addition, for the subset accuracy mea-
sure, ChiDep outperforms LP on datasets with a limited number of training examples or
with a small average number of examples per distinct label combination (i.e. | Train|/Lpc is
comparatively small). As for F-measure, ChiDep outperforms LP on all datasets and as well
outperforms BR on most of the regular size datasets. However on datasets having sufficient
number of training examples BR performs with highest F-measure values.

Moreover, we found that the ChiDep algorithm has the highest average rank among all the
compared algorithms in terms of accuracy, subset accuracy and micro-averaged F-measure
scores. As well, the ChiDep Ensemble has the highest average rank among all the compared
ensemble algorithms in terms of the same measures.

Summarizing the above we conclude that ChiDep and ChiDep Ensemble methods are es-
pecially beneficial when accuracy is the target measure of a classification problem. ChiDep
is also beneficial in respect to subset accuracy and F-measure on datasets with a limited
number of training examples.

Another finding reveals that the BR and 2BR methods demonstrate the highest perfor-
mance in terms of Hamming loss measure among the single-classifier algorithms, whereas
ensemble models make it possible to reduce the Hamming loss even further. It was also
found that in terms of subset accuracy measure, the superiority from utilizing LP over BR is
growing directly with the level of label interdependence in dataset.
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A general conclusion of this wide range experiment is that different algorithms could be
beneficial for various evaluation measures depending on the dataset properties. We believe
that guidelines for practitioner for selection the algorithm for a specific problem might be
indeed very useful. We can already draw some preliminary rules from the results of the
current experiment:

— “Among the baseline methods, use LP algorithm if you are interested in highest Subset
accuracy on dataset with many interdependent labels and enough training examples for
the existing label combinations.”

— “If Accuracy or F-measure is the target of a classification problem, BR algorithm is able
to provide highest results (among the single-classifier methods) on most datasets with
large number of training examples.”

— “For highest Accuracy values on datasets with few training examples choose the ChiDep
algorithm (among the single-classifier methods).”

— “For best Hamming loss measure values use BR or 2BR method (among the single-
classifier methods). To further reduce the values use one of the ensemble methods.”

However, these rules yet should be refined and confirmed by specifically designed experi-
ments. Much more investigation is needed to reach a comprehensive set of valuable rules.
This is one of our future research directions.

8 Conclusions

In this paper we have presented a novel algorithm for label set partitioning into several
subsets of dependent labels and for applying a combination of LP and BR methods on these
subsets. The basic idea is to decompose the original set of labels into several subsets of
dependent labels, build an LP classifier for each subset, and then combine them as in the BR
method.

To evaluate the new algorithm we first compared methods for identifying conditional vs.
unconditional label dependencies on various benchmark and artificial datasets. The results
confirm that modeling unconditional dependencies is good enough for solving multi-label
classification problems and modeling conditional dependencies does not improve the pre-
dictive performance of the classifier. Then, we evaluated and compared the new algorithm
and its ensemble version to nine other multi-label algorithms with four different measures,
utilizing 12 datasets of various complexities to give as wide as possible a picture of the
algorithm’s effectiveness.

Summarizing the results of this evaluation experiment, we conclude that the multi-label
classification method presented in this paper is able to improve prediction accuracy and in
some cases also subset accuracy compared to other known multi-label classification algo-
rithms.

In addition, we presented generalization bounds for a flexible family of multi-label
penalty functions. Our analysis yields a theoretical understanding of the reduction in sample
complexity that is gained from unconditional label independence. The present analysis is a
worst-case model, and we intend to examine average-case models in future work.

Among the additional issues to be further studied are: development of more efficient
labels clustering procedure for improvement of the ChiDep time performance; exploration of
better methods for identification of conditional label dependence; and development of rules
and tools that could help in selection the optimal algorithm for multi-label classification
according to specific dataset and classification problem properties.

@ Springer



42 Mach Learn (2013) 91:1-42

References

Baum, E. B., & Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1(1),
151-160.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989). Learnability and the Vapnik-
Chervonenkis dimension. Journal of the ACM, 36(4), 929-965.

Dembczynski, K., Cheng, W., & Hullermeier, E. (2010a). Bayes optimal multilabel classification via proba-
bilistic classifier chains. In Proc. ICML 2010, Haifa, Israel.

Dembczynski, K., Waegeman, W., Cheng, W., & Hiillermeier, E. (2010b). On label dependence in multi-label
classification. Working notes of the 2nd international workshop on learning from multi-label data, Haifa,
Israel.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7, 1-30.

Eisenstat, D., & Angluin, D. (2007). The VC dimension of k-fold union. Information Processing Letters,
101(5), 181-184.

Eisenstat, D. (2009). k-fold unions of low-dimensional concept classes. Information Processing Letters,
109(23-24), 1232-1234.

Ghamrawi, N., & McCallum, A. (2005). Collective multi-label classification. In CIKM 2005 (pp. 195-200).

Kearns, M. J., Schapire, R. E., & Sellie, L. (1994). Toward efficient agnostic learning. Machine Learning,
17(2-3), 115-141.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2),
273-324.

Pollard, D. (1984). Convergence of stochastic processes. New York: Springer.

Read, J., Pfahringer, B., & Holmes, G. (2008). Multi-label classification using ensembles of pruned sets. In
Proceedings of eighth IEEE international conference on data mining (pp. 995-1000).

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2009). Classifier chains for multi-label classification. In
Proceedings of 20th European conference on machine learning and knowledge discovery in databases
(Vol. 2, pp. 254-269).

Rokach, L. (2008). Genetic algorithm-based feature set partitioning for classification problems. Pattern
Recognition, 41(5), 1693-1717. doi:10.1016/j.patcog.2007.10.013.

Rokach, L. (2010). Pattern classification using ensemble methods. Series in machine perception and artificial
intelligence: Vol. 75. Singapore: World Scientific.

Rokach, L., & Maimon, O. (2005). Feature set decomposition for decision trees. Journal of Intelligent Data
Analysis, 9(2), 131-158.

Schapire, R. E., & Singer, Y. (2000). Boostexter: a boosting-based system for text categorization. Machine
Learning, 39(2-3), 135-168.

Tenenboim, L., Rokach, L., & Shapira, B. (2009). Multi-label classification by analyzing labels dependencies.
In G. Tsoumakas, M. L. Zhang, & Z. H. Zhou (Eds.), Proceedings of the 1st international workshop on
learning from multi-label data, Bled, Slovenia (pp. 117-132).

Tsoumakas, G., & Vlahavas, 1. (2007). Random k-labelsets: an ensemble method for multilabel classification.
In Proceedings of 18th European conference on machine learning, Warsaw, Poland (pp. 406—417).
Tsoumakas, G., Katakis, 1., & Vlahavas, 1. (2008). Effective and efficient multilabel classification in domains
with large number of labels. In Proceedings of ECML/PKDD 2008 workshop on mining multidimen-

sional data (pp. 30-44).

Tsoumakas, G., Dimou, A., Spyromitros, E., Mezaris, V., Kompatsiaris, 1., & Vlahavas, I. (2009). Correlation-
based pruning of stacked binary relevance models for multi-label learning. In G. Tsoumakas, M. L.
Zhang, & Z. H. Zhou (Eds.), Proceedings of the Ist international workshop on learning from multi-
label data, Bled, Slovenia (pp. 101-116).

Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In O. Maimon & L. Rokach
(Eds.), Data mining and knowledge discovery handbook (2nd ed., pp. 667-686). New York: Springer.

Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and Its Applications, 16, 264-279.

Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241-259.

Xu, J. (2010). Constructing a fast algorithm for multi-label classification with support vector data description.
In IEEE international conference on granular computing (pp. 817-821).

Zhang, M. L., Peiia, J. M., & Robles, V. (2009). Feature selection for multi-label naive Bayes classification.
Information Sciences, 179(19), 3218-3229.

Zhang, M., & Zhang, K. (2010). Multi-label learning by exploiting label dependency. In Proceedings of the
16th ACM SIGKDD international conference on knowledge discovery and data mining, Washington,
DC, USA (pp. 999-1008). http://doi.acm.org/10.1145/1835804.1835930.

@ Springer


http://dx.doi.org/10.1016/j.patcog.2007.10.013
http://doi.acm.org/10.1145/1835804.1835930

	Exploiting label dependencies for improved sample complexity
	Abstract
	Introduction and motivation
	Related work
	Problem formulation and evaluation measures analysis
	Formal definitions
	Evaluation measures analysis

	Generalization bounds for multi-label learning
	General theory
	Tighter bounds via unconditional dependence

	Methods
	Label dependence identification
	Unconditional label dependence
	Conditional label dependence
	Dependent labels clustering

	LPBR method
	LPBR discussion
	Computational complexity
	Ensemble framework for ChiDep and ConDep algorithms
	Ensemble model diversity


	Empirical evaluation
	Datasets
	Procedure
	Parameter configuration
	Ensemble methods configuration


	Experimental results
	Conditional vs. unconditional dependencies
	Experiments on artificial datasets
	Experiments on the predefined patterns data
	Experiments on independent, dependent, and combined datasets
	Experiments conclusions

	Comparison of computational time for unconditional vs. conditional label dependence identification
	Identified label dependencies

	ChiDep vs. single-classifier algorithms
	LP vs. BR considering percentage of dependent label pairs

	Ensemble diversity
	ChiDep vs. ensemble algorithms
	Algorithms computational time comparison
	Discussion

	Conclusions
	References


