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Abstract Modern explanatory inductive logic programming methods like Progol, Residue
procedure, CF-induction, HAIL and Imparo use the principle of inverse entailment (IE).
Those IE-based methods commonly compute a hypothesis in two steps: by first constructing
an intermediate theory and next by generalizing its negation into the hypothesis with the
inverse of the entailment relation. Inverse entailment ensures the completeness of general-
ization. On the other hand, it imposes many non-deterministic generalization operators that
cause the search space to be very large. For this reason, most of those methods use the in-
verse relation of subsumption, instead of entailment. However, it is not clear how this logical
reduction affects the completeness of generalization. In this paper, we investigate whether or
not inverse subsumption can be embedded in a complete induction procedure; and if it can,
how it is to be realized. Our main result is a new form of inverse subsumption that ensures
the completeness of generalization. Consequently, inverse entailment can be reduced to in-
verse subsumption without losing the completeness for finding hypotheses in explanatory
induction.
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Fig. 1 Hypothesis finding based
on inverse entailment

1 Introduction

Learning from entailment (Muggleton 1995; Flach 1996; De Raedt 1997; Inoue 2004) is
one of the most widely studied frameworks for the paradigm of inductive machine learning.
Given a background theory B and examples E, the task of learning from entailment is to
find a hypothesis H such that B ∧H |� E where B ∧H is consistent. This style of inductive
learning is alternatively called explanatory induction (Flach 1996) and is used as a standard
setting in inductive logic programming (ILP) (Muggleton and De Raedt 1994; Nienhuys-
Cheng and De Wolf 1997). By the principle of inverse entailment (IE) (Muggleton 1995), the
above task is logically equivalent to finding a consistent hypothesis H such that B ∧ ¬E |�
¬H . This equivalence means that the inductive hypothesis H can be computed by deriving
its negation ¬H from B and ¬E. We can represent this derivation process as:

B ∧ ¬E |� F1 |� · · · |� Fi |� · · · |� Fn |� ¬H (1)

where each Fi (1 ≤ i ≤ n) denotes a clausal theory.
Modern explanatory ILP methods like Progol (Muggleton 1995; Tamaddoni-Nezhad

and Muggleton 2009), Residue procedure (Yamamoto 2003), CF-induction (Inoue 2004;
Yamamoto et al. 2008), HAIL (Ray et al. 2003; Ray and Inoue 2008; Ray 2009) and Imparo
(Kimber et al. 2009) are based on IE. These IE-based methods compute a hypothesis H in
two steps: by first constructing an intermediate theory Fi in Relation (1) and next gener-
alizing its negation ¬Fi into the hypothesis H . The relation between ¬Fi and H can be
obtained from the contrapositive of Relation (1) as:

¬(B ∧ ¬E) =| ¬F1 =| · · · =| ¬Fi =| · · · =| ¬Fn =| H (2)

where =| denotes the inverse relation of entailment, simply called anti-entailment.1 In other
words, every IE-based method first uses the entailment relation to construct Fi in Rela-
tion (1), and then switches to anti-entailment to generate the hypothesis H in Relation (2).
(See Fig. 1.)

Inverse entailment ensures the completeness of generalization in the sense of generating
any hypothesis H such that Fi |� ¬H for an intermediate theory Fi in Fig. 1. On the other
hand, it needs a variety of different operators such as inverse resolution (Muggleton and
Buntine 1988) which applies the inverse of the resolution principle. There are several such
operators each of which can be applied in many different ways. This fact leads to a large
number of choice points that cause the huge search space of IE-based methods. For this rea-
son, some methods use the inverse relation of subsumption, simply called anti-subsumption,
due to computational efficiency. However, it was not clear whether or not their generalization
becomes incomplete by reducing anti-entailment to anti-subsumption, and thus they may fail
to find a relevant hypothesis worth considering. To distinguish their specific approach using
anti-subsumption from IE, we term it inverse subsumption (IS).

1We distinguish two terms: anti-entailment and inverse entailment. Note that inverse entailment generally
indicates the approach to find hypotheses using anti-entailment in ILP.
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Fig. 2 Hypothesis finding based
on inverse subsumption

For this open problem, the paper investigates whether or not inverse subsumption can
be embedded in a complete inductive procedure; and if it can, how it is to be realized.
Consequently, the paper shows a new form of inverse subsumption that can ensure the com-
pleteness of generalization. Our result is applicable to every previously proposed method.
Firstly, it enables to logically characterize the possible hypotheses obtained by each IS-based
method (Muggleton 1995; Yamamoto 2003; Ray et al. 2003; Ray and Inoue 2008; Ray 2009;
Tamaddoni-Nezhad and Muggleton 2009; Kimber et al. 2009). Secondly, it enables to
logically simplify the generalization procedure in each IE-based method (Inoue 2004;
Yamamoto et al. 2008) using the new form of inverse subsumption without losing the com-
pleteness for finding hypotheses.

The key idea lies in the logical relation Fi |� ¬H for a ground intermediate theory Fi

and a ground hypothesis H in Relation (1). We show that there is a certain clausal theory
F ∗

i such that F ∗
i is logically equivalent to ¬Fi and F ∗

i � H . Note here that � denotes anti-
subsumption, that is, F ∗

i is subsumed by H .

Example 1 We give the intuition of our idea by drawing a passage from Hamlet. Given
E1 = defeat(claudius), suppose the following hypothesis:

H1 = risk_life(hamlet) ∧ (risk_life(hamlet) ⊃ defeat(claudius)).

H1 may describe Hamlet’s decision to risk his life to defeat Claudius. Let an intermediate
theory Fi be ¬E1. The complement Fi = defeat(claudius) is entailed by H1, but is not
subsumed by it. We then consider another intermediate theory F ′

i obtained by adding the
tautology risk_life(hamlet) ∨ ¬risk_life(hamlet) to Fi . Since F ′

i is logically equivalent to
Fi , the following complement F ′

i :

(risk_life(hamlet) ∨ defeat(claudius)) ∧ (risk_life(hamlet) ⊃ defeat(claudius))

is also entailed by H1. Besides, F ′
i is subsumed by H1, unlike the case of Fi . Hence, adding

the tautology (i.e. Hamlet risks his life or not) plays a role of reducing anti-entailment to
anti-subsumption. Note that the above F ∗

i can be regarded as F ′
i .

This feature enables us to logically reduce the derivation process based on inverse entail-
ment in Fig. 1 to the one based on inverse subsumption described in Fig. 2.

This paper uses two kinds of clausal theories regarded as F ∗
i , called residue and minimal

complements, respectively. Together with these two complements, we show how inverse
entailment can be reduced to inverse subsumption. In both cases, inverse subsumption is
sufficient to ensure the completeness of generalization.

The rest of this paper is organized as follows. After Sect. 2 describes the theoretical
background, we show inverse subsumption with residue and minimal complements ensure
the completeness of generalization in Sects. 3 and 4, respectively. In Sect. 5, we clarify
some commonness between two approaches with residue and minimal complements and
apply them to each IE-based method. In Sect. 6, we conclude.
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2 Background

2.1 Preliminaries

We assume the reader to be familiar with the basic concepts in first-order logic and in-
ductive logic programming (Nienhuys-Cheng and De Wolf 1997). A clause is a finite
disjunction of literals which is often identified with the set of its literals. A clause of
the form {¬B1, . . . ,¬Bn,A1, . . . ,Am}, where each Ai,Bj is an atom, is also written as
B1 ∧ · · · ∧ Bn ⊃ A1 ∨ · · · ∨ Am. Every variable of a clause is assumed to be universally
quantified at the front. A Horn clause is a clause which contains at most one positive literal;
otherwise it is a non-Horn clause. It is known that a clause is a tautology if it has two com-
plementary literals A and ¬A. We denote by ⊥ the empty clause which contains no literal.
Note that ⊥ is inconsistent.

A clausal theory is a finite set of clauses, which represents the conjunction of the clauses
in it. A clausal theory is full if it contains at least one non-Horn clause. A clausal theory
is ground if it contains no variable. A (universal) conjunctive normal form (CNF) formula
is a conjunction of clauses, and a disjunctive normal form (DNF) formula is a disjunction
of conjunctions of literals. A clausal theory is identified with the CNF formula that is the
conjunction of clauses in it. We denote by |� the classical logical entailment relation and by
=| the inverse relation of entailment, called anti-entailment. Let S and T be two clausal the-
ories. S and T are (logically) equivalent, denoted by S ≡ T , if S |� T and T |� S. A clause
C is a consequence of S if S |� C.

A (ground) substitution θ replaces variables x1, . . . , xk occurring in a clause C to
(ground) terms t1, . . . , tk in Cθ . Note that Cθ is called an instance of C. Let L1 and L2

be two literals. A substitution θ is called a unifier for L1 and L2 if L1θ = L2θ . A unifier θ is
a most general unifier (mgu) if there is no other unifier σ for which the unified literal L1σ

is more general than L1θ . Let C and D be two clauses. C subsumes D, denoted by C � D,
if there is a substitution θ such that Cθ ⊆ D. C properly subsumes D if C � D but D �� C.

Definition 1 (Theory-subsumption) Let S and T be two clausal theories. Then, S (theory-)
subsumes T , denoted by S � T , if for any clause D ∈ T , there is a clause C ∈ S such
that C � D. We denote by � the inverse relation of the (theory-) subsumption, called anti-
subsumption.

Now, we have two concepts: entailment and subsumption to characterize the logical
relation between two clausal theories S and T . It is known that S |� T holds if S � T ,
though S � T does not necessarily hold even if S |� T . Suppose two clausal theories
S = {p(X) ⊃ p(f (X))} and T = {p(Y ) ⊃ p(f (f (Y )))} are given. Indeed, S �� T , but
S |� T holds, since T is derivable from S using the resolution principle. The two concepts
can be logically connected in the context of the resolution principle by Lee’s theorem (Lee
1967), alternatively called the Subsumption theorem (Nienhuys-Cheng and De Wolf 1997).

Let C and D (called parent clauses) be two clauses, and Lc and Ld two literals in C and
D, respectively. If there is a most general unifier θ for Lc and ¬Ld , then the clause

(Cθ − {Lcθ}) ∪ (Dθ − {Ldθ})
is called a resolvent of C and D. For example, recall the above S and T . The clause in T

is a resolvent of two copies of the clause in S: R1 = p(X1) ⊃ p(f (X1)) and R2 = p(X2) ⊃
p(f (X2)), since two literals p(f (X1)) and p(X2) has a mgu θ that replaces X1 and X2 to
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Y and f (Y ), respectively. Then, the resolvent (R1θ − {p(f (Y ))}) ∪ (R2θ − {¬p(f (Y ))})
corresponds to the clause in T .

A derivation of a clause C from S is a finite sequence of clauses R1, . . . ,Rk = C such
that each Ri is either in S, or is a resolvent of two clauses in {R1, . . . ,Ri−1}. Then, the
Subsumption theorem states that S |� T if and only if for each clause C ∈ T , C is a tautology
or there is a derivation of a clause D from S such that D subsumes C.

2.2 Hypothesis finding based on inverse entailment

We give the definition of a hypothesis H in the setting of learning from entailment:

Definition 2 (Hypothesis) Let B and E be clausal theories, representing a background the-
ory and positive examples, respectively. A clausal theory H is a hypothesis wrt B and E if
H satisfies that B ∧ H |� E and B ∧ H is consistent.

We refer to a hypothesis instead of a hypothesis wrt B and E if no confusion arises.

Example 2 Suppose that

B2 = {buy(john,diaper) ∨ buy(john,beer)}, E2 = {shopping(john,at_night)}

are given. Then,

H2 = {buy(X,diaper) ⊃ buy(X,beer), (3)

buy(Y,beer) ⊃ shopping(Y,at_night)} (4)

is a hypothesis, since B2 ∧ H2 |� E2 and B2 ∧ H2 is consistent. Note here that the clause (3)
means that customers who buy diapers also tend to buy beer,2 and the clause (4) means that
customers who buy beer tend to go shopping at night.

Hypothesis finding in Definition 2 is logically equivalent to seeking a consistent hy-
pothesis H such that B ∧ ¬E |� ¬H . Using this alternative condition, IE-based meth-
ods (Muggleton 1995; Yamamoto 2003; Ray et al. 2003; Ray and Inoue 2008; Ray 2009;
Tamaddoni-Nezhad and Muggleton 2009; Kimber et al. 2009) compute a hypothesis H

in two steps. First, they construct an intermediate theory F such that F is ground and
B ∧ ¬E |� F . Hereafter, we call F a bridge theory wrt B and E as follows.

Definition 3 (Bridge theory) Let B and E be a background theory and examples, re-
spectively. Let F be a ground clausal theory. Then F is a bridge theory wrt B and E if
B ∧ ¬E |� F holds. If no confusion arises, a bridge theory wrt B and E will simply be
called a bridge theory.

After constructing a bridge theory F , they next generalize its negation ¬F to a hypothesis
H such that H |� ¬F .

2This rule is often used to introduce the market basket analysis that detects cross-selling opportunities from
the custom behavior.
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Example 3 Recall Example 2. Let a ground clausal theory F2 be as follows:

{buy(john,diaper) ∨ buy(john,beer), ¬shopping(john,at_night)}.
Since F2 = B2 ∪ ¬E2, F2 is a bridge theory wrt B2 and E2. We easily have the DNF for-
mula of ¬F2 using De Morgan’s laws. By translating this DNF formula into CNF with the
standard equivalent operations, we get ¬F2 as the following clausal theory:

¬F2 = {buy(john,diaper) ⊃ shopping(john,at_night), (5)

buy(john,beer) ⊃ shopping(john,at_night)}. (6)

The clause (5) is subsumed by the resolvent of two parent clauses (3) and (4) in H2. The
other clause (6) is also subsumed by the clause (4) in H2. Hence, H2 |� ¬F2 holds, though
H2 does not subsume ¬F2.

Every IE-based method generalizes the negation of a constructed bridge theory to a hy-
pothesis in its own way. On the one hand, CF-induction (Inoue 2004) generalizes it based
on anti-entailment. There are several well-known operators to realize this generalization,
such as inverse resolution (Muggleton and Buntine 1988) which applies the inverse of res-
olution, anti-weakening which adds some clauses, anti-instantiation which replaces ground
terms with variables and dropping which drops some literals from a clause. These general-
ization operators are soundly applied, and can jointly generate any hypothesis H such that
H |� ¬F . For example, H2 is generated from ¬F2 in such a way that we first replace the
term john in the clause (5) with a variable using anti-instantiation, and next derive the two
parent clauses (3) and (4) by applying inverse resolution to the clause (5).

Note here that there are many ways to apply inverse resolution to a clause, because in-
verse resolution can generate whatever two parent clauses of it. In turn, the other general-
ization operators are also applicable in many ways. Moreover, any combination of them can
be applied as another operator. This fact makes generalization with anti-entailment highly
non-deterministic and causes the search space to be very large.

Because of this situation, most IE-based methods (Muggleton 1995; Yamamoto 2003;
Ray et al. 2003; Ray and Inoue 2008; Ray 2009; Tamaddoni-Nezhad and Muggleton 2009;
Kimber et al. 2009), except for CF-induction, are based on inverse subsumption that gen-
eralizes the negation of a bridge theory using anti-subsumption, instead of anti-entailment.
Generalization with anti-subsumption has been actively studied in the context of refine-
ment operators (Nienhuys-Cheng and De Wolf 1997; Badea and Stanciu 1999; Bratko 1999;
Riguzzi 2005; Tamaddoni-Nezhad and Muggleton 2009). They systematically explore the
hypothesis space structured by a bounded subsumption lattice. However, it was not yet clar-
ified how their logical reduction from inverse entailment to inverse subsumption affects the
completeness of generalization. For example, though H2 can be generated from ¬F2 by
inverse entailment, inverse subsumption cannot do as H2 does not subsume ¬F2. For this
problem, the following two sections show that given a bridge theory F and a hypothesis H

such that H |� ¬F , there is a certain clausal theory F ∗ such that F ∗ ≡ ¬F and H � F ∗.

2.3 Residue and minimal complements

We define two kinds of clausal theories regarded as the above F ∗. A clausal theory S is
irredundant if there is no clause C ∈ S such that S − {C} ≡ S; otherwise it is redundant.
Note that S becomes redundant if S contains either tautologies or clauses that are properly
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subsumed by others. τ(S) denotes the clausal theory obtained by removing all the tautolo-
gies from S. μ(S) denotes the clausal theory obtained by removing from S all clauses that
are properly subsumed by clauses in S. We say S is subsume-minimal if S = μ(S) holds.

Let S be a ground clausal theory {C1,C2, . . . ,Cn} where each clause Ci (1 ≤ i ≤ n)
= li,1 ∨ li,2 ∨ · · · ∨ li,mi

. The complement of S, denoted by S, is defined as follows:

S =
{
¬l1,k1 ∨ ¬l2,k2 ∨ · · · ∨ ¬ln,kn

1 ≤ k1 ≤ m1, 1 ≤ k2 ≤ m2,
. . . , 1 ≤ kn ≤ mn

}
.

In case that S is empty, S is defined as the set {⊥} where ⊥ is the empty clause. Note that
S is a CNF formula such that S ≡ ¬S. Accordingly, τ(S) and μ(S) are also CNF formulas
logically equivalent to ¬S. In the following, we denote τ(S) and μ(S) as the functions
R(S) and M(S), called the residue and minimal complement of S, respectively. For sake
of simplicity, we often denote R(R(S)) and M(M(S)) by R2(S) and M2(S), respectively.
Note that R(S) ≡ M(S) ≡ ¬S and R2(S) ≡ M2(S) ≡ S.

Example 4 Let S be the clausal theory {a ∨ b, b ∨ c, ¬c}. Then, S, R(S) and M(S) are as
below. M(S) is obtained by removing two clauses ¬a ∨ ¬b ∨ c and ¬b ∨ ¬c ∨ c, which are
subsumed by the clause ¬b ∨ c. Note that M(S) contains a tautology. On the other hand,
R(S) is obtained by all of the tautologies in S, though R(S) contains a redundant clause
subsumed by another.

S = {¬a ∨ ¬b ∨ c, ¬a ∨ ¬c ∨ c, ¬b ∨ c, ¬b ∨ ¬c ∨ c},
M(S) = {¬a ∨ ¬c ∨ c, ¬b ∨ c}, R(S) = {¬a ∨ ¬b ∨ c, ¬b ∨ c}.

In next two sections, we use the residue and minimal complements as the two kinds of
clausal theories representing the above F ∗ such that H � F ∗ holds, and show that inverse
subsumption with each of them ensures the completeness for finding hypotheses.

3 Inverse subsumption with residue complements

Let S and T be two ground clausal theories such that S |� T . Our approach is based on the
fact that the logical relation between the two CNF formulas translated from ¬S and ¬T

is represented by anti-subsumption. We intend to apply this feature to Relation (1). Since
¬S and ¬T are DNF formulas after applying De Morgan’s laws, there are several ways to
represent ¬S and ¬T into CNF. In this section, we use the residue complement and consider
the logical relation between R(S) and R(T ), which is represented primarily by the following
theorem3.

Theorem 1 (Yamamoto 2003) Let S and T be two clausal theories such that T is ground
and both S and T do not include any tautologies. If S |� T , there is a finite subset S ′ of
ground instances from S such that R(T ) � R(S ′).

By Theorem 1, the following holds, when S is ground.

3Theorem 1 and Lemma 1 have been proved in the literature (Yamamoto 2003). We give their alternative
proofs in the appendix.
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Corollary 1 Let S and T be two ground clausal theories such that S and T do not include
any tautologies. If S |� T , then R(T ) � R(S).

We first recall the following lemma4 to prove Corollary 1.

Lemma 1 (Yamamoto 2003) For ground clausal theories S and T that do not include tau-
tologies, T ⊆ S implies R(T ) � R(S).

Using Lemma 1 and Theorem 1, Corollary 1 is proved as follows:

Proof of Corollary 1 By Theorem 1, there is a ground theory S ′ such that S ′ ⊆ S such that
R(T ) � R(S ′). By Lemma 1, R(S ′) � R(S) holds. Hence, R(T ) � R(S) holds. �

We apply Corollary 1 to the logical relation F |� ¬H where F is a bridge theory and
H is a ground hypothesis. We represent ¬H using the residue complement R(H). Suppose
that F does not include any tautologies. Then, by Corollary 1, R2(H) � R(F) holds. In
other words, R2(H), which is logically equivalent to H , can be obtained from R(F) using
anti-subsumption.

Theorem 2 Let F be a bridge theory such that F does not include tautologies, and H be
a hypothesis such that F |� ¬H . Then, there is a hypothesis H ∗ such that H ∗ ≡ H and
H ∗ � R(F).

Proof of Theorem 2 By Herbrand’s theorem,5 there is a ground clausal theory Hg such that
H � Hg and F |� ¬Hg . Since ¬Hg ≡ R(Hg) holds, R2(Hg) � R(F) holds by Corollary 1.
Assume the clausal theory H ∗ = H ∪ R2(Hg). Since H � Hg and Hg ≡ R2(Hg), H |�
R2(Hg) holds. Accordingly, H |� H ∗ holds. Hence, H ∗ ≡ H holds. Since R2(Hg) � R(F)

and H ∗ ⊇ R2(Hg), H ∗ � R(F) holds. �

Example 5 Let B3, E3 and H3 be a background theory, examples and a target hypothesis as
follows:

B3 = {p ⊃ q}, E3 = {p ⊃ r},
H3 = {q ⊃ r}.

Suppose the clausal theory F3 = {p ⊃ q, p, ¬r}. Since ¬E3 = p ∧ ¬r , F3 corresponds
to B3 ∧ ¬E3. Then, F3 is a bridge theory wrt B3 and E3 such that F3 |� ¬H3. The residue
complement R(F3) is {¬q ∨ p ∨ r}. We notice that R(F3) is subsumed by H3. Hence, the
hypothesis H3 can be obtained from R(F3) using anti-subsumption.

Theorem 2 means that for every hypothesis H , its equivalent hypothesis H ∗ can be de-
rived from the residue complement R(F) using anti-subsumption. In this sense, inverse
subsumption with residue complements ensures the completeness of generalization.

4In case that T is empty, T = {⊥} holds. Since R(T ) = τ(T ), R(T ) contains the empty clause ⊥ which
subsumes any clause. Hence, for any clausal theory S, R(T ) � R(S) holds.
5A set of clauses � is unsatisfiable if and only if a finite set of ground instances of clauses of � is unsatisfiable
(Chang and Lee 1973).



Mach Learn (2012) 86:115–139 123

However, every target hypothesis itself is not necessarily obtained from the residue com-
plement by anti-subsumption. The below example describes such a case.

Example 6 Let B4, E4 and H4 be a background theory, examples and a target hypothesis as
follows:

B4 = {p(a)}, E4 = {p(f (f (a))},
H4 = {p(a) ⊃ p(f (a)), p(f (a)) ⊃ p(f (f (a)))}.

Let F4 be the clausal theory {p(a),¬p(f (f (a)))}. Since F4 corresponds to B4 ∧ ¬E4, F4

is a bridge theory wrt B4 and E4 such that F4 |� ¬H4. R(F4) is {p(a) ⊃ p(f (f (a)))}. Then
we notice that R(F4) is not subsumed by H4. Indeed, R(F4) is the resolvent of two clauses
in H4. Hence, we need to apply an inverse resolution operator to R(F4) for obtaining the
target hypothesis H4. Note that R(H4) and R2(H4) are as follows:

R(H4) = {p(a) ∨ p(f (a)), p(a) ∨ ¬p(f (f (a))), ¬p(f (a)) ∨ ¬p(f (f (a)))},
R2(H4) = {¬p(a) ∨ p(f (a)), ¬p(a) ∨ p(f (f (a))), ¬p(f (a)) ∨ p(f (f (a))),

¬p(a) ∨ p(f (f (a))) ∨ p(f (a)), ¬p(a) ∨ p(f (f (a)) ∨ ¬p(f (a))}.

We notice that R2(H4) contains the unique clause ¬p(a) ∨ p(f (f (a))) in R(F4). Hence,
R2(H4) subsumes R(F4). Since R2(H4) ≡ H4, Theorem 2 holds by regarding the equivalent
hypothesis H ∗

4 as R2(H4).

The problem described in the above example is caused by the fact that R2(H) = H

cannot necessarily hold. Indeed, the key idea in Theorem 2 lies in the logical relation
R2(H) � R(F). If R2(H) = H should not hold, H cannot be obtained from R(F) using
anti-subsumption. We thus need another CNF formula F(H) for representing the negation
of a hypothesis H such that F(F(H)) = H .

4 Inverse subsumption with minimal complements

4.1 Properties of minimal complements

We here investigate minimal complements. Firstly, the following theorem holds.

Theorem 3 Let S be a ground clausal theory. Then, M2(S) = μ(S) holds.

Proof The proof of Theorem 3 is given in the appendix. �

This theorem can be regarded as a fixpoint theorem on the function M computing the
minimal complement of μ(S). Unlike residue complements, M2(S) corresponds to S itself
in case that S is subsume-minimal. Thus, minimal complements may not cause the problem
of residue complements that they cannot necessarily obtain a target hypothesis using anti-
subsumption, as described in Sect. 3.
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Example 7 We recall Example 4. Then, S, R(S), R2(S), M(S) and M2(S) are as follows.
In fact, M2(S) = S holds, whereas R2(S) does not.

S = {¬a ∨ ¬b ∨ c, ¬a ∨ ¬c ∨ c, ¬b ∨ c, ¬b ∨ ¬c ∨ c},
R(S) = {¬a ∨ ¬b ∨ c, ¬b ∨ c}, R2(S) = {a ∨ b, ¬c ∨ a, b, ¬c ∨ b, ¬c},
M(S) = {¬a ∨ ¬c ∨ c, ¬b ∨ c}, M2(S) = {a ∨ b, b ∨ c, ¬c}.

On the other hand, unlike residue complements, the logical relation M(T ) � M(S) does
not necessarily hold whenever S |� T holds for ground clausal theories S and T .

Example 8 We recall Example 6. M(H4) is as follows:

{p(a)∨p(f (a)), p(a)∨¬p(f (f (a))), ¬p(f (a))∨¬p(f (f (a))), ¬p(f (a))∨p(f (a))}.

Suppose the same bridge theory F4 = {p(a), ¬p(f (f (a)))}. Then, F4 |� M(H4) holds.
But, M2(H4) � M(F4) does not hold. Because M2(H4) corresponds to H4 by Theorem 3,
and H4 does not subsume M(F4) = {¬p(a) ∨ p(f (f (a)))}.

This is because minimal complements can include tautologies that residue complements
never have. Indeed, Corollary 1, which shows the logical relation between R(T ) and R(S),
does not allow any tautologies to be included in S and T . We then extend Corollary 1 so as
to deal with tautologies as follows:

Theorem 4 Let S and T be ground clausal theories such that S |� T and for every tautology
D ∈ T , there is a clause C ∈ S such that C � D. Then,

τ(M(T )) � τ(M(S)).

Proof The proof of Theorem 4 is given in the Appendix B. �

Example 9 Recall Example 6. We have F4 |� M(H4), but M(H4) contains one tautol-
ogy: ¬p(f (a)) ∨ p(f (a)), which is not subsumed by any clause in F4. Suppose that
this tautology is added to F4. We denote by F ′

4 the added clausal theory. Since F ′
4 =

{p(a), ¬p(f (f (a))), ¬p(f (a)) ∨ p(f (a))}, τ(M(F ′
4)) is as follows:

{¬p(a) ∨ p(f (f (a))) ∨ ¬p(f (a)),

¬p(a) ∨ p(f (f (a)) ∨ p(f (a))}.

We then notice that H4 subsumes τ(M(F ′
4)) (See the dotted surrounding parts). This sub-

sumption relation can be derived using Theorem 4. Since F ′
4 ≡ F4 and F4 |� M(H4), it holds

that F ′
4 |� M(H4). Since the tautology in M(H4) is also contained in F ′

4, we can use The-
orem 4, and then have τ(M2(H4)) � τ(M(F ′

4)). By Theorem 3, τ(M2(H4)) = τ(μ(H4))

holds. Since H4 is subsume-minimal and it does not contain any tautologies, it holds that
τ(μ(H4)) = H4. Hence, we obtain H4 � τ(M(F ′

4)).
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4.2 Generalization with minimal complements

Theorems 3 and 4 enable us to construct an alternative generalization procedure using min-
imal complements. To describe the hypotheses that can be found by this, we first introduce
the following language bias, called an induction field:

Definition 4 (Induction field) An induction field, denoted by IH = 〈L〉, where L is a finite
set of literals to appear in ground hypotheses. A ground hypothesis Hg belongs to IH if
every literal in Hg is included in L. Given an induction field IH = 〈L〉, Taut(IH ) is defined
as the set of tautologies {¬A ∨ A | A ∈ L and ¬A ∈ L}.

We next define the target hypotheses using the notion of an induction field IH , together
with a bridge theory F as follows:

Definition 5 (Hypothesis wrt IH and F ) Let H be a hypothesis. H is a hypothesis wrt
IH and F if there is a ground hypothesis Hg such that Hg consists of instances from H ,
F |� ¬Hg and Hg belongs to IH .

Now, the generalization procedure based on inverse subsumption with minimal comple-
ments is as follows:

Definition 6 Let B , E and IH = 〈L〉 be a background theory, examples and an induction
field, respectively. Let F be a bridge theory wrt B and E. A clausal theory H is derived
by inverse subsumption with minimal complements from F wrt IH if H is constructed as
follows.

Step 1. Compute Taut(IH );
Step 2. Compute τ(M(F ∪ Taut(IH )));
Step 3. Construct a clausal theory H satisfying the condition:

H � τ(M(F ∪ Taut(IH ))). (7)

Inverse subsumption with minimal complements ensures the completeness for finding
hypotheses wrt IH and F , by way of (7).

Main Theorem Let B , E and IH be a background theory, examples and an induction field,
respectively. Let F be a bridge theory wrt B and E. For every hypothesis H wrt IH and F ,
H is derived by inverse subsumption with minimal complements from F wrt IH .

Proof of Main Theorem It is sufficient to prove the following lemma. �

Lemma 2 Let B , E and IH be a background theory, examples and an induction field,
respectively. Let F be a bridge theory wrt B and E. For every hypothesis H wrt IH and F ,
H satisfies the following condition:

H � τ(M(F ∪ Taut(IH ))).

Proof of Lemma 2 Since H is a hypothesis wrt IH and F , there is a ground hypothesis Hg

such that H � Hg , F |� ¬Hg and Hg belongs to IH . Since ¬Hg ≡ M(Hg), F |� M(Hg)
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holds. Accordingly, F ∪ Taut(IH ) |� M(Hg) holds. Since Hg belongs to IH , every lit-
eral in Hg is included in IH . Then, for every tautological clause D ∈ M(Hg), there is a
clause C ∈ Taut(IH ) such that C � D. By Theorem 4, τ(M2(Hg)) � τ(M(F ∪ Taut(IH )))

holds. Since μ(Hg) = M2(Hg) by Theorem 3, τ(μ(Hg)) � τ(M(F ∪ Taut(IH ))) holds.
Since Hg ⊇ τ(μ(Hg)), Hg � τ(μ(Hg)) holds. Hence, H � τ(M(F ∪ Taut(IH ))) holds. �

4.3 Examples

We show how a target hypothesis is derived by inverse subsumption with minimal comple-
ments using the below examples.

Example 10 Recall Example 6 that could not be solved using residue complements. Let an
induction field IH4 be as follows:

IH4 = 〈{¬p(a), p(f (a)), ¬p(f (a)), p(f (f (a)))}〉.
H4 belongs to IH4 and H4 |� ¬F4 holds. Then, H4 is a hypothesis wrt IH4 and F4. Taut(IH4)

is the set {p(f (a))∨¬p(f (a))}. Note that F4 ∪ Taut(IH4) corresponds to F ′
4 in Example 9.

Then, H4 subsumes τ(M(F4 ∪ Taut(IH4))) as shown in Example 9. Hence, H4 is derivable
by inverse subsumption with minimal complements.

Example 11 Recall H2 and F2 in Example 3. R(F2) corresponds to ¬F2 consisting of two
clauses (5) and (6). Then, H2 does not subsume R(F2), and cannot be generated from R(F2)

by inverse subsumption. In contrast, it is derivable by inverse subsumption with minimal
complement. Let an induction field IH2 be as follows:

〈{¬buy(john,diaper), buy(john,beer), ¬buy(john,beer), shopping(john,at_night)}〉.
Consider the following ground hypothesis Hg2 consisting of instances from H2:

Hg2 = {buy(john,diaper) ⊃ buy(john,beer),

buy(john,beer) ⊃ shopping(john,at_night)}.
Hg2 belongs to IH2 and F2 |� ¬Hg2 holds. Then, H2 is a hypothesis wrt IH2 and F2.
Taut(IH2) contains one tautology: buy(john,beer) ∨ ¬buy(john,beer). After adding this
tautology to F2, we compute τ(M(F2 ∪ Taut(IH2))) represented as follows.

{ ¬buy(john,diaper) ∨ buy(john,beer) ∨ shopping(john,at_night),

¬buy(john,beer) ∨ shopping(john,at_night) }.

Then, H2 indeed subsumes τ(M(F2 ∪Taut(IH2))) (See the dotted surrounding parts). Hence,
H2 can be generated by inverse subsumption with this minimal complement.

Example 12 We next consider the following example on pathway completion:

B5 = {arc(a, b), arc(X,Y ) ∧ path(Y,Z) ⊃ path(X,Z)}, E5 = {path(a, c)},
IH5 = {arc(b, c), ¬arc(b, c), path(b, c), ¬path(b, c)},
H5 = {arc(b, c), arc(X,Y ) ⊃ path(X,Y )}.
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Note that arc(X,Y ) (resp. path(X,Y )) means there is an arc (resp. a path) from a node X

to a node Y . B5 contains one fact that there is an arc from a to b and one rule that, if there
is an arc from X to Y and a path from Y to Z, then there is a path from X to Y . However,
only B5 cannot logically explain E5 that there is a path from a to c. One possible cause is
that one arc from b to c and another rule defining the concept of pathways are missing in
the background theory. Then, we seek for the hypothesis H5 that completes these missing
fact and rule. To complete H5, both abduction and induction must involve, but most current
ILP systems cannot compute it. This advanced inference has a possibility to be effectively
applied when we need to complete both facts and rules that are missing in a prior background
theory. In fact, there is a recent work to use it for finding master reactions from incomplete
biochemical networks in systems biology (Yamamoto et al. 2009b).

Let F5 be the clausal theory {arc(a, b), arc(a, b)∧path(b, c) ⊃ path(a, c), ¬path(a, c)}.
Since F5 is the set of ground instances from B5 ∧ ¬E5, F5 is a bridge theory wrt B5

and E5. Since there is a ground hypothesis Hg5 = {arc(b, c), arc(b, c) ⊃ path(b, c)}
such that Hg5 consists of instances from H5, F5 |� ¬Hg5 and Hg5 belongs to IH5 ,
H5 is a hypothesis wrt IH5 and F5. Then, H5 could be derived by inverse subsump-
tion with minimal complements. We first compute Taut(IH5). Then, Taut(IH5) is the set
{¬arc(b, c) ∨ arc(b, c), ¬path(b, c) ∨ path(b, c)}. After adding Taut(IH5) to F5, we com-
pute τ(M(F ∪ Taut(IH5))) represented as follows.

{¬arc(a, b) ∨ path(b, c) ∨ arc(b, c) ∨ path(a, c),

¬arc(a, b) ∨ ¬arc(b, c) ∨ path(b, c) ∨ path(a, c)}.
We then notice that H5 subsumes τ(M(F ∪ Taut(IH5))) (See the dotted surrounding parts).
Therefore, H5 can be derived by inverse subsumption with minimal complements.

In contrast, Since R(F5) is {¬arc(a, b) ∨ path(b, c) ∨ path(a, c)}, H5 does not subsume
the residue R(F5). Hence, H5 cannot be obtained from the residue complement, whereas the
minimal complement can do with inverse subsumption.

Example 13 We lastly consider a biological example to find cellular regulations.

B6 = {glucose_ext ⊃ induced(hxt) ∨ active(snf 3)},
E6 = {glucose_ext ⊃ glycolysis_on},
H6 = {active(snf 3) ⊃ induced(hxt), induced(hxt) ⊃ glycolysis_on}.

Most eukaryotic cells, including yeasts and humans, can sense the availability of carbon
sources in their surroundings and, in the presence of their favorite sugar (often glucose),
they transport glucose into the cell and use it through the glycolysis pathway to produce
energy (Westergaard et al. 2006). The example E6 describes this causality between glucose
and glycolysis. Now, we know that if glucose is available, the hexose transporter Hxt can be
induced or the sensing protein Snf3 can be active. This prior background theory B6 cannot
logically explain E6, and thus there are some missing links between B6 and E6. In recent
work (Westergaard et al. 2006), it has been made known that a signal triggered by Snf3 leads
to induce Hxt, and then glucose can be moved into the cell via the transporter Hxt. Then,
H6, which describes these cellular regulations, is a considerable hypothesis. However, it is
not straightforward for most current IE-based methods to generate the target hypothesis. In
the following, we show how our proposal can solve this example. Let a bridge theory F6 be
B6 ∧ ¬E6. We give the induction field IH6 as follows:

〈{¬active(snf 3), induced(hxt), ¬induced(hxt), glycolysis_on}〉.
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Since H6 belongs to IH6 and F6 |� ¬H6 holds, H6 is a hypothesis wrt IH6 and F6. Taut(IH6)

contains one tautology: induced(hxt)∨¬induced(hxt). After adding the tautology to F6, we
compute τ(M(F6 ∪ Taut(IH6))) as follows:

{¬glucose_ext ∨ ¬active(snf 3) ∨ induced(hxt) ∨ glycolysis_on,

¬glucose_ext ∨ ¬induced(hxt) ∨ glycolysis_on}.

H6 subsumes τ(M(F6 ∪ Taut(IH6))) (See the dotted surrounding parts). Then, H6 is deriv-
able by inverse subsumption with minimal complements. Note that the residue complement
R(F6) is as follows:

{¬glucose_ext ∨ ¬active(snf 3) ∨ glycolysis_on,

¬glucose_ext ∨ ¬induced(hxt) ∨ glycolysis_on}.
Then, H6 does not subsume R(F6), and then cannot be generated by inverse subsumption
with residue complements.

5 Further topics and related work

5.1 The commutative property of residue and minimal complements

We have proposed two approaches with residue and minimal complements for inverse sub-
sumption. The derivable hypotheses in two approaches are characterized as Theorem 2 and
Main Theorem, respectively. In this section, we clarify some commonness between these
approaches and investigate what aspect causes their crucial difference.

Lemma 3 Let S be a clausal theory. Then, τ(μ(S)) = μ(τ(S)).

Proof of Lemma 3 We show that, for any clause C ∈ S, C �∈ μ(τ(S)) if and only if C �∈
τ(μ(S)). (⇒) Suppose C �∈ μ(τ(S)). There is a clause D ∈ τ(S) such that D � C. Since
D ∈ S holds, we have C �∈ μ(S). Then, C �∈ τ(μ(S)) holds. (⇐) Suppose C �∈ τ(μ(S)). C

is a tautology or there is a clause D ∈ S such that D � C. If C is a tautology, C �∈ μ(τ(S))

holds. In the other case, since D � C and C is not a tautology, D is also not, that is, D ∈ τ(S)

holds. Then, C �∈ μ(τ(S)) holds. �

By Lemma 3, τ(M(S)) = μ(R(S)) holds, since τ(M(S)) = τ(μ(S)) and μ(R(S)) =
μ(τ(S)). Hence, residue and minimal complements satisfy the commutative property. Using
this property, we obtain a new variation by replacing τ(M(S)) with μ(R(S)) in Lemma 2
as follows:

Corollary 2 Let H be a hypothesis wrt IH and F . Then, H � R(F ∪ Taut(IH )).

Proof of Corollary 2 By Lemma 2, H � τ(M(F ∪ Taut(IH ))) holds. Since μ(R(S)) =
τ(M(S)), H � μ(R(F ∪ Taut(IH ))), and thus H � R(F ∪ Taut(IH )) holds. �

Every hypothesis wrt IH and F is also derivable by inverse subsumption with residue
complements by adding Taut(IH ) to the original bridge theory. In contrast, even if the tau-
tologies are not added, inverse subsumption with minimal complements ensures the equiva-
lent completeness in the case of residue complements.
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Corollary 3 Let F be a bridge theory without tautologies, and H be a hypothesis such that
F |� ¬H . Then, there is a hypothesis H ∗ such that H ∗ ≡ H and H ∗ � τ(M(F)).

Proof of Corollary 3 By Theorem 2, there is a hypothesis H ∗ such that H ∗ ≡ H and
H ∗ � R(F). Since R(F) � μ(R(F)), H ∗ � μ(R(F)) holds. Since μ(R(F)) = τ(M(F)),
we get H ∗ � τ(M(F)). �

The completeness of inverse subsumption with either residue or minimal complements
is varied by whether adding tautologies or not. In the case of adding tautologies, both ap-
proaches can derive every hypothesis H wrt IH and F . In the other case, they can derive its
equivalent hypothesis H ∗, which can be characterized as follows:

Definition 7 (Maximal Hypothesis) Let H be a hypothesis. H is a maximal hypothesis if,
for each consequence C of H , there is a clause D in H such that D � C.

Example 14 Let H7 and H8 be two hypotheses as follows:

H7 = {p(X) ⊃ p(f (X))}, H8 = {p(a), p(X) ⊃ q(X)}.
H7 is not a maximal hypothesis since a consequence p(X) ⊃ p(f (f (X))) of H7 is not
contained in H7. H8 is also not, since the consequence q(a) is not in H8. In contrast, H8 ∪
{q(a)} is a maximal hypothesis. Note that, like non-recursive rules, any hypothesis where
no derivations exist is a maximal hypothesis.

Maximal hypotheses are derivable by inverse subsumption even if tautologies are not
added.

Corollary 4 Let H be a maximal hypothesis wrt IH and F . Then, H � R(F).

Proof of Corollary 4 There is a maximal hypothesis Hg such that Hg consists of ground
instances from H and F |� ¬Hg . Since ¬Hg ≡ R(Hg), F |� R(Hg) holds. By Corollary 1,
we have R2(Hg) � R(F). Since Hg is a maximal hypothesis, for every consequence C of
Hg , there is a clause D ∈ Hg such that D � C. Since Hg ≡ R2(Hg), every clause in R2(Hg)

is regarded as a consequence of Hg . Then, Hg � R2(Hg) holds. Hence, we get H � R(F)

because of H � Hg and R2(Hg) � R(F). �

Corollary 5 Let H be a maximal hypothesis wrt IH and F . Then, H � τ(M(F)).

Proof of Corollary 5 By Corollary 4, H � R(F) holds. Since μ(R(F)) = τ(M(F)) and
R(F) � μ(R(F)), we get H � τ(M(F)). �

5.2 Embedding inverse subsumption to IE-based methods

The results in the paper can be applied to previously proposed IE-based methods. Firstly,
we review those methods in brief.

Progol (Muggleton 1995; Tamaddoni-Nezhad and Muggleton 2009), one of the state-of-
the-art ILP systems in Horn clause learning, uses the technique of Bottom Generalization.
Its bridge theory F corresponds to the conjunction of ground literals each of which is de-
rived from B and ¬E. After constructing ¬F called the bottom clause ⊥(B,E), Progol
generalizes it with anti-subsumption, instead of anti-entailment.
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HAIL (Ray et al. 2003; Ray and Inoue 2008) constructs so-called Kernel Sets to over-
come some limitation on Bottom Generalization. Each ground clause Ci in a Kernel Set
KS = {C1, . . . ,Cn} is given by the form of Bi

1 ∧ · · · ∧Bi
mi

⊃ Ai , where B ∪ {A1, . . . ,An} |�
E and B |� {B1

1 , . . . ,Bn
mn

}. After constructing a Kernel Set, HAIL also generalizes it us-
ing anti-subsumption like Progol. A Kernel Set KS is regarded as the negation of a certain
bridge theory F . In other words, HAIL directly constructs the negation of F by separately
computing head and body literals of each clause in the negation.

Example 15 We recall Example 6. The bottom clause ⊥(B4,E4) = p(a) ⊃ p(f (f (a))) and
the Kernel set KS only contains the bottom clause. Then, H4 does not subsume neither
⊥(B4,E4) nor KS. Hence, both Progol and HAIL cannot solve this example.

We remark there is an extension called X-HAIL (Ray 2009) which allows the body in a
Kernel Set KS to contain such literals that are derived by B with the head literals of KS.
There is a recent work to extend Kernel Sets into so-called Connection Theories with an
iterative procedure, called Imparo (Kimber et al. 2009). Note that X-HAIL and Imparo can
solve Example 6.

The residue procedure (Yamamoto 2003), which has been firstly proposed to find hy-
potheses in full clausal theories, constructs a bridge theory F consisting of ground instances
from B ∧Eσ , where σ is a ground substitution to skolemize E. It then computes the residue
complement R(F), and generalizes it with anti-subsumption. In contrast, CF-induction (In-
oue 2004) is sound and complete for finding hypotheses in full clausal theories. It constructs
a bridge theory F consisting of ground instances from so-called characteristic clauses of
B ∧ Eσ . Each characteristic clause is a subsume-minimal consequence of B ∧ Eσ that sat-
isfies a given language bias. Then CF-induction translates the DNF formula ¬F into a CNF
formula and generalizes it with anti-entailment.

Every method in the above, except for CF-induction, is based on inverse subsumption.
Hence, it reduces anti-entailment to anti-subsumption. Based on our result, we investigate
the completeness of generalization in those IS-based methods.

Definition 8 (Completeness in generalization) Suppose an IS-based method �. � is (resp.
partially) complete in generalization if for each bridge theory F� of � and each induction
field IH , � derives any (resp. maximal) hypothesis wrt IH and F� .

For simplicity, we denote by p, h, x, i and r Progol, HAIL, X-HAIL, Imparo and Residue
procedure, respectively. Note that HAIL (X-HAIL) and Imparo directly compute the nega-
tions of certain bridge theories. Then, we regard their bridge theories Fh (Fx ) and Fi as the
minimal complements of a Kernel Set and a Connection theory, respectively.

Corollary 6 For each � ∈ {p, h, x, i, r}, � is partially complete in generalization.

Proof of Corollary 6 Let H be a maximal hypothesis wrt IH and FX where X ∈
{p, h, x, i}. By Corollary 5, H � τ(M(FX)) holds. In case that X = p, τ(M(Fp)) cor-
responds to the bottom clause. Then, H is derivable from the bottom clause by p. In case
that X ∈ {h, x}, FX corresponds to M(KS) for some Kernel Set KS. Then, τ(M(FX)) =
τ(M2(KS)) holds. By Theorem 3, τ(M(FX)) = τ(μ(KS)) holds. Since KS does not con-
tain tautologies, H � μ(KS) holds. Then, H is derivable from KS by X ∈ {h, x}. In case
that X = i, Fi corresponds to M(CT ) for some Connection Theory CT . Since CT also does
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not contain tautologies, H is derivable from CT by i, just like in the above case. In case that
X = r , by Corollary 4, H � R(Fr) holds. Hence, H is derivable from R(Fr) by r . �

Every IS-based method at least ensures the partial completeness of generalization. Pro-
gol and HAIL are incomplete in generalization by Example 15. On the other hand, it is still
an open question whether or not X-HAIL and Imparo are also incomplete. The residue pro-
cedure is incomplete in generalization by Example 6. However, by Corollary 2, it becomes
complete by adding the tautologies to the original bridge theory.

Our results can be applied to CF-induction in order to logically simplify its general-
ization procedure. Previously, it generalizes the negation of F to a hypothesis H using
anti-entailment. As shown in Sect. 2.1, this generalization involves many non-deterministic
operators that are the cause of its huge search space. By Main Theorem, it is sufficient
to generalize τ(M(F ∪ Taut(IH ))) to H using anti-subsumption. This simplification en-
ables us to systematically search relevant hypotheses in the subsumption lattice bounded by
τ(M(F ∪Taut(IH ))). Indeed, the other IS-based methods developed refinement operators to
efficiently explore with heuristics the lattice structure (Tamaddoni-Nezhad and Muggleton
2009). By our results, such previously proposed sophisticated techniques can be embedded
in CF-induction, while it preserves the completeness for finding hypotheses.

6 Conclusion and future work

This paper has shown a new form of inverse subsumption that can be embedded in a com-
plete induction procedure. Most IE-based methods use anti-subsumption, instead of anti-
entailment, for their generalization. However, it has not yet been clarified whether or not
this logical reduction affects the completeness of generalization. For this open problem, we
have shown that inverse subsumption can ensure the completeness only by adding tautolo-
gies associated with a language bias to the original bridge theory.

We have investigated the possible hypotheses obtained by each previously proposed
method like Progol, HAIL, X-HAIL, Imparo and the residue procedure. As a result, we
have shown that they are at least partially complete in the sense that they can derive any
maximal hypotheses. The residue procedure becomes complete by simply adding tautolo-
gies to its bridge theories. In contrast, it is an open question whether or not X-HAIL and
Imparo preserve the completeness of generalization. It would be fruitful to consider this
question in future: if they could construct the theory obtained by adding the tautologies as
another bridge theory, then they should be complete.

We have also shown that CF-induction can be logically simplified using the new form
of inverse subsumption. Inverse entailment needs many non-deterministic operators like in-
verse resolution which cause its huge search space. This simplification enables us to focus
on the search space characterized as a bounded subsumption lattice. This search space never
involve inverse resolution. We intend to investigate how the search space can be reduced by
the simplification in future.

Efficient implementation of inverse subsumption is an important future work. There is
an efficient algorithm for enumerating the minimal hitting sets (Satoh and Uno 2002; Uno
2002). This is applicable to computing the minimal complement, and is solvable in quasi-
polynomial total time (Fredman and Khanchiyan 1996). However, if the induction field IH

contains many complementary literals, we need vast computational costs, since the number
of tautologies in Taut(IH ) becomes large. To restrict them, one may consider a closed world
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assumption or does not allow new terms that do not appear in a prior knowledge base. This
issue on how to provide relevant induction fields should be addressed in future work.

It is also necessary to develop an algorithm to systematically explore the subsumption
lattice bounded by the minimal complement. This issue is related to refinement operators,
which have been studied in ILP. They use heuristics for guiding like compression and the
description length. We emphasis that inverse subsumption ensures the completeness of gen-
eralization. Hence, it can derive hypotheses which are beyond reach for incomplete methods.
In this point of view, we believe the algorithm for our approach should keep its complete-
ness in some way. For example, it would be beneficial to target an enumerating algorithm
that produces hypotheses in an incremental way.
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Appendix A: Proof of Theorem 3

We first introduce the notion of minimal hitting sets to prove Theorem 3.6

Definition 9 ((Minimal) Hitting set) Let � be a finite set and F be a subset family of �. A
finite set E is a hitting set of F if for every F ∈ F , E ∩ F �= ∅. A finite set E is a minimal
hitting set of F if E satisfies the following two conditions:

1. E is a hitting set of F ;
2. For every subset E′ ⊆ E, if E′ is a hitting set of F , then E′ = E.

It is known that minimal hitting sets satisfy the following lemma:

Lemma 4 (Uno 2002) Let F be a family of sets and E be a hitting set of F . E is a minimal
hitting set of F if and only if for every element e ∈ E, there is a set F ∈ F such that

E ∩ F = {e}.

Proof of Lemma 4

(⇒) Suppose that there is an element e ∈ E such that E ∩ F �= {e} for every set F ∈ F . Let
E′ be the subset E − {e} of E. Then, it holds that E′ ∩ F �= ∅ for every set F ∈ F ,
since E is a hitting set of F and E ∩F �= {e} for every F ∈ F . By the second condition
of Definition 9, E is not a minimal hitting set of F .

(⇐) Suppose that E is not a minimal hitting set of F . There is a subset E′ of E such that
E′ is a hitting set of F . For every F ∈ F , E′ ∩F �= ∅ holds. There is an element e in E

such that e �∈ E′. Since E′ ⊆ E − {e}, for every F ∈ F , (E − {e}) ∩ F �= ∅ also holds.
Accordingly, E ∩ F �= {e} holds for every F ∈ F . Hence, there is an element e ∈ E

such that E ∩ F �= {e} for every F ∈ F .

6Note that the proof of Theorem 3 has been partially shown in Yamamoto et al. (2009a), which is not a journal
paper. We then show the full proof in this paper.
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�

Let S be a family of sets {C1, . . . ,Cn} where each Ci (1 ≤ i ≤ n) is a finite set of ground
literals {l1

i , . . . , l
mi

i }. In the following, F (S) denotes the family of sets {C∗
1 ,C∗

2 , . . . ,C∗
n}

where each C∗
i is the set of literals {¬l1

i , . . . ,¬l
mi

i }. Let S be a ground clausal theory.7 Then,
F (F (S)) corresponds to S.

Example 16 Let S be the clausal theory {a ∨ ¬b, ¬b ∨ ¬c, ¬b ∨ ¬d}. Then, F (S) and
F (F (S)) are represented as follows:

F (S) = {{¬a, b}, {b, c}, {b, d}},
F (F (S)) = {{a, ¬b}, {¬b, ¬c}, {¬b, ¬d}}.

Given a ground clausal theory S, the number of minimal hitting sets of the family F (S)
is finite. We denote by MHS(S) the finite set of all the minimal hitting sets of F (S). Then,
MHS(S) corresponds to the minimal complement M(S) as follows.

Example 17 Recall Example 16. Then, MHS(S), S and M(S) are as follows:

MHS(S) = {{¬a, c, d}, {b}},
S = {¬a ∨ b, ¬a ∨ b ∨ d, ¬a ∨ c ∨ d, ¬a ∨ c ∨ d, b, b ∨ d, b ∨ c, b ∨ c ∨ d},
M(S) = {¬a ∨ c ∨ d, b}.

We notice that MHS(S) indeed corresponds to M(S).

Lemma 5 Let S be a ground clausal theory. Then M(S) = MHS(S) holds.

Proof of MHS(S) ⊆ M(S) Let E be a minimal hitting set of F (S). We show E ∈ μ(S)

since μ(S) = M(S) by the definition of minimal complements. By Lemma 4, for each literal
ei ∈ E (1 ≤ i ≤ n), there is a set Fi ∈ F (S) such that E ∩ Fi = {ei}. We denote by FE the
subfamily {F1, . . . ,Fn} of F (S) where each Fi is the above set for each literal ei ∈ E. By
the definition of complements, each clause in S is constructed by selecting one literal l

from each set in F (S). Since E is a minimal hitting set of F (S), for each set F in F (S),
E ∩ F �= ∅ holds. Then, E can be constructed by selecting the literal ei ∈ E from each set
Fi ∈ FE and by selecting any literal e in E ∩ F from another set F ∈ F (S) − FE . Hence,
E ∈ S holds. Suppose that E �∈ μ(S). Then, there is a clause D ∈ S such that D ⊂ E. Since
D ∈ S, D is a hitting set of F (S). However, this contradicts that E is a minimal hitting set
of F (S). Therefore, E ∈ μ(S) holds.

Proof of M(S) ⊆ MHS(S) Suppose that

(∗) there is a clause D ∈ M(S) such that D �∈ MHS(S).

Since D ∈ μ(S) and μ(S) ⊆ S, D ∈ S holds. By the definition of S, D satisfies that C ∩D �=
∅ for every C ∈ F (S). Hence, D is a hitting set of F (S). Accordingly, there is a clause D′

7Each clause in S is identified with the set of literals which it contains (See Sect. 2.1).
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in MHS(S) such that D′ ⊆ D. Since we assume D �∈ MHS(S), D �= D′ holds. Then, we get
D′ ⊂ D. Since D′ ∈ MHS(S) and MHS(S) ⊆ M(S), we have D′ ∈ M(S). Hence, there is a
clause D′ ∈ M(S) such that D′ properly subsumes the clause D in M(S). This contradicts
the minimality of M(S). Hence, the primary assumption (*) is false. Therefore for every
clause D ∈ M(S), D ∈ MHS(S) holds. �

Based on Lemma 5, we consider Theorem 3 in the context of minimal hitting sets. Here-
after, we simply denote MHS(MHS(S)) by MHS2(S).

Lemma 6 Let S be a ground clausal theory. Then MHS2(S) = μ(S) holds.

Proof of μ(S) ⊆ MHS2(S) We show every clause in μ(S) is a minimal hitting set of
F (MHS(S)). By the definition of MHS(S), for every clause D ∈ MHS(S), D satisfies that
D ∩ C �= ∅ for every set C ∈ F (S). In other words, for every set C ∈ F (S), C satisfies
that D ∩ C �= ∅ for every clause D ∈ MHS(S). Then, every set C ∈ F (S) is a hitting set
of MHS(S). Let C ′ be the set of negations of literals in C. Since C ∈ F (S), C ′ ∈ F (F (S))

holds. Since C is a hitting set of MHS(S), C ′ is a hitting set of F (MHS(S)). Accordingly,
every set C ∈ F (F (S)) is a hitting set of F (MHS(S)). Since the family F (F (S)) corre-
sponds to S, it holds that every clause C ∈ S is a hitting set of F (MHS(S)). Since μ(S) ⊆ S,
every clause C ∈ μ(S) is a hitting set of F (MHS(S)).

Suppose that there is a clause C ∈ μ(S) such that C is not a minimal hitting set of
F (MHS(S)). Then,

(∗) there is a literal l ∈ C such that C − {l} is a hitting set of F (MHS(S)).

For every clause Ci ∈ μ(S), if Ci �= C then there is a literal li ∈ Ci such that li �∈ C. We then
consider those literals E = {l1, l2, . . . , ln} where each li is a literal of Ci ∈ μ(S) − {C}
such that li is not included in C. Note that E ∩ C = ∅ holds. On the other hand, for any
literal l ∈ C, it holds that (E ∪ {l}) ∩ D �= ∅ for every clause D ∈ μ(S). Hence, E ∪ {l}
is a hitting set of μ(S). Accordingly, E ∪ {l} is also a hitting set of S. Then, there is a
minimal hitting set E′ of S such that E′ ⊆ E ∪ {l}. Since MHS(S) is the set of minimal
hitting sets of F (S), F (MHS(S)) corresponds to the set of minimal hitting sets of F (F (S)).
Since F (F (S)) = S, F (MHS(S)) is the set of minimal hitting sets of S. Hence, we have
E′ ∈ F (MHS(S)). Since E′ ⊆ E ∪ {l}, it holds that E′ ∩ (C − {l}) ⊆ (E ∪ {l}) ∩ (C − {l}).
Since E ∩C = ∅, (E ∪{l})∩ (C −{l}) = ∅ holds. Accordingly, we have E′ ∩ (C −{l}) = ∅.
However, this contradicts that C−{l} is a hitting set of F (MHS(S)), since E′ ∈ F (MHS(S)).
Then, the assumption (*) is false. Hence, every clause C in μ(S) is a minimal hitting set of
F (MHS(S)).

Proof of MHS2(S) ⊆ μ(S) Let D be a clause in MHS2(S). Suppose that there is a clause
C ∈ μ(S) such that C ⊂ D. Since μ(S) ⊆ MHS2(S), C ∈ MHS2(S) holds. This contradicts
with the minimality of MHS2(S). Hence, for every clause C ∈ μ(S), C �⊂ D. In other words,
for ever clause C ∈ μ(S), C = D or C �⊆ D. Suppose that

(∗) for any clause C ∈ μ(S), C �= D holds.

Then, C �⊆ D holds. Accordingly, for every clause Ci ∈ μ(S), there is a literal li ∈ Ci such
that li �∈ D. We consider the finite set E = {l1, l2, . . . , ln} where each li is the above literal
for each Ci ∈ μ(S). Note that E ∩ D = ∅. On the other hand, the intersection of E and any
clause in μ(S) is not empty. Hence, E is a hitting set of μ(S). Accordingly, E is a hitting set
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of S. Then, there is a minimal hitting set E′ of S such that E′ ⊆ E. Since MHS(S) is the set
of minimal hitting sets of F (S), F (MHS(S)) corresponds to the set of minimal hitting sets
of F (F (S)). Since F (F (S)) = S, F (MHS(S)) is the set of minimal hitting sets of S. Hence,
we have E′ ∈ F (MHS(S)). Since E′ ⊆ E and E ∩D = ∅, E′ ∩D = ∅ holds. Note that since
D ∈ MHS2(S), D is a minimal hitting set of F (MHS(S)). However this contradicts that
E′ ∩ D = ∅, since E′ ∈ F (MHS(S)). Then, the assumption (*) is false. Hence, there is a
clause C ∈ μ(S) such that C = D. Therefore, D ∈ μ(S) holds. �

Using Lemma 5 and Lemma 6, Theorem 3 is proved as follows:

Proof of Theorem 3 By Lemma 5, M2(S) = MHS2(S) holds. By Lemma 6, MHS2(S) =
μ(S) holds. Hence, M2(S) = μ(S) holds. �

Appendix B: Proof of Theorem 4

We introduce the following deductive operators for proving this theorem:

Definition 10 (Deductive operators (Yamamoto 2003)) Let S and T be clausal theories.
Then T is directly-derivable from S if T is obtained from S by one of the following three
operators:

1. (resolution) T = S ∪ {C}, where C is a resolvent of two clauses D1,D2 ∈ S.
2. (subsumption) T = S ∪ {C}, where C is subsumed by some clause D ∈ S.
3. (weakening) T = S − {D} for some clause D ∈ S.

We write S �r T , S �s T , S �w T to denote that T is directly derivable from S by reso-
lution, subsumption, weakening, respectively. �∗

X is the reflexive and transitive closure of
�X , where X is one of the symbols r, s,w. Alternatively, S �∗

X T if T follows from S by
application of zero or more �X .

Let S and T be clausal theories such that S and T contains no tautologies and S |� T .
Then, T can be generated from S with a concatenation of those operators, represented by
the following lemma:

Lemma 7 (Yamamoto et al. 2008) Let S and T be clausal theories without any tautologies.
If S |� T , then there are two clausal theories U and V such that

S �∗
r U �∗

s V �∗
w T .

Proof of Lemma 7 Let T = {C1, . . . ,Cn}. Then S |� Ci for each clause Ci in T . By
the Subsumption Theorem there is a derivation Ri

1, . . . ,R
i
mi

from S of a clause Ri
mi

that
subsumes Ci . Hence, it is sufficient to let U = S ∪ {Ri

j : 1 ≤ i ≤ n,1 ≤ j ≤ mi} and
V = U ∪ T . �

Using Lemma 7, we obtain the following lemma that allows tautologies to be included
in S and T :
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Fig. 3 A derivation from F4 to M(H4) in Example 8

Lemma 8 Let S and T be ground clausal theories such that S |� T and for every tautology
D ∈ T , there is a clause C ∈ S such that C � D. Then there are two ground clausal theories
U and V such that

S �∗
r U �∗

s V �∗
w T .

Proof of Lemma 8 We denote the two sets of tautologies in S and T by TautS and TautT ,
respectively. Since S theory-subsumes TautT , there is a ground clausal theory Vt such that
S �∗

s Vt �∗
w TautT . By Lemma 7, there are ground clausal theories U ′ and V ′ such that

S − TautS �∗
r U ′ �∗

s V ′ �∗
w T − T autT . Hence, we get

S �∗
r U ′ ∪ TautS �∗

s V ′ ∪ Vt �∗
w T . �

Example 18 Firstly, we recall the bridge theory F4 and the hypothesis H4 in Example 8.
Note that M(H4) contains the tautology ¬p(f (a)) ∨ p(f (a)), though F4 does not. Then,
M(H4) is obtained from F4 with the tautology (See the dotted surrounding parts) using the
subsumption and weakening operators in Fig. 3.

Secondly, we recall Example 12. Let F5 be the same bridge theory in Example 12 and
Hg5 be the ground hypothesis as follows:

Hg5 = {arc(b, c), arc(b, c) ⊃ path(b, c)}.
Note that Hg5 consists of ground instances from the target hypothesis H5 in Example 12 and
F5 |� M(Hg5). M(Hg5) is as follows:

M(Hg5) = {¬arc(b, c) ∨ ¬path(b, c), ¬arc(b, c) ∨ arc(b, c)}.
M(Hg5) contains the tautology ¬arc(b, c)∨ arc(b, c), though F5 does not. Then, M(Hg5) is
obtained from F5 with the tautology using the three: resolution, subsumption and weakening
operators in Fig. 4.

Based on Lemma 8, we prove Theorem 4 by showing that τ(M(T )) � τ(M(S)) when
S �X T holds for each symbol X ∈ {r, s, w}.

Lemma 9 Let S and T be two ground clausal theories such that S �r T . Then,

τ(M(T )) � τ(M(S)).

Proof of Lemma 9 Since S �r T , T is written as S ∪ {C} where C is a resolvent of two
clauses C1 and C2 in S. Since C1 and C2 are ground, the resolvent C is written as (C1 −
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Fig. 4 A derivation from F5 to M(Hg5 ) in Example 12

{l}) ∪ (C2 − {¬l}) for some literal l in C1. Let C ′, C ′
1 and C ′

2 be three sets such that C ′, C ′
1

and C ′
2 consist of the negations of literals in C, C1 and C2. Since C1,C2 ∈ S, C ′

1 and C ′
2 are

included in F (S), and C ′ is in F (S ∪ {C}). Let D be a clause in τ(MHS(S)). Since D is a
minimal hitting set of F (S), D ∩ C ′

1 �= ∅ and D ∩ C ′
2 �= ∅ hold. Suppose that

(∗) D is not a hitting set of F (S ∪ {C}).
Since C ′ ∈ F (S ∪ {C}), D ∩ C ′ = ∅ should hold. Since C ′ = (C ′

1 − {¬l}) ∪ (C ′
2 − {l}),

D ∩C ′ = ((C ′
1 −{¬l})∩D)∪ ((C ′

2 −{l})∩D) holds. Since D ∩C ′ = ∅, it holds that (C ′
1 −

{¬l}) ∩ D = ∅ and (C ′
2 − {l}) ∩ D = ∅. Since D ∩ C ′

1 �= ∅ and D ∩ C ′
2 �= ∅, we obtain that

D ∩ {¬l} �= ∅ and D ∩ {l} �= ∅. Then, D has complementary literals ¬l and l. It contradicts
that D is not a tautology, since D ∈ τ(MHS(S)). Thus, the assumption (*) is false. Hence,
D is a hitting set of F (S ∪ {C}). Accordingly, there is a clause E ∈ MHS(S ∪ {C}) such
that E � D. Since D is not a tautology, E is also not. Then, E ∈ τ(MHS(S ∪ {C})) holds.
By Lemma 5, we have τ(MHS(S)) = τ(M(S)) and τ(MHS(S ∪ {C})) = τ(M(S ∪ {C})).
Accordingly, we have D ∈ τ(M(S)) and E ∈ τ(M(S ∪ {C})). Therefore, for each clause
D ∈ τ(M(S)), there is a clause E ∈ τ(M(S ∪ {C})) such that E � D. �

Lemma 10 Let S and T be two ground clausal theories such that S �s T . Then,

τ(M(T )) � τ(M(S)).

Proof of Lemma 10 Since S �s T , T is written as S ∪{C} where C is a clause such that D �
C for some clause D ∈ S. Since D and C are ground, D ⊆ C holds. Let C ′ and D′ be two
sets such that C ′ and D′ consist of the negations of literals in C and D, respectively. Since
D ∈ S, D′ is included in F (S), and C ′ is in F (S ∪ {C}). Let E be a clause in τ(MHS(S)).
Since E is a minimal hitting set of F (S), E ∩ D′ �= ∅ holds. Since D ⊆ C, D′ ⊆ C ′ holds.
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Accordingly, E ∩ C ′ �= ∅ holds. Since C ′ ∈ F (S ∪ {C}), E is a hitting set of F (S ∪ {C}).
Then, there is a clause E′ ∈ MHS(S ∪ {C}) such that E′ � E. Since E ∈ τ(MHS(S)), E is
not a tautology, and E′ is also not. Hence, E′ ∈ τ(MHS(S ∪ {C})) holds. By Lemma 5, we
have τ(MHS(S)) = τ(M(S)) and τ(MHS(S ∪ {C})) = τ(M(S ∪ {C})). Therefore, for each
clause E ∈ τ(M(S)), there is a clause E′ ∈ τ(M(S ∪ {C})) such that E′ � E. �

Lemma 11 Let S and T be two ground clausal theories such that S �w T . Then,

τ(M(T )) � τ(M(S)).

Proof or Lemma 11 Since S �w T , T is written as S − {C} where C is a clause in S. Let E

be a clause in τ(MHS(S)). E is a minimal hitting set of F (S). Since T ⊂ S, F (T ) ⊂ F (S)

holds. Then, E is a hitting set of F (T ). Hence, there is a clause E′ ∈ MHS(T ) such that
E′ � E. Since E is not a tautology, E′ is also not a tautology, that is, E′ ∈ τ(MHS(T )) holds.
By Lemma 5, we have τ(MHS(S)) = τ(M(S)) and τ(MHS(T )) = τ(M(S)). Therefore, for
each clause E ∈ τ(M(S)), there is a clause E′ ∈ τ(M(T )) such that E′ � E. �

Using Lemmas 8, 9, 10 and 11, Theorem 4 is proved as follows:

Proof of Theorem 4 By Lemma 8, there are two ground clausal theories U and V such that

S �∗
r U �∗

s V �∗
w T .

By Lemma 9, τ(M(U)) � τ(M(S)) holds. By Lemma 10, τ(M(V )) � τ(M(U)) holds. By
Lemma 11, τ(M(T )) � τ(M(V )) holds. Hence, the following formula holds:

τ(M(T )) � τ(M(V )) � τ(M(U)) � τ(M(S)). �

Appendix C: Proofs of Theorem 1 and Lemma 1

Using theoretical results in the paper, we prove Theorem 1 and Lemma 1.

Proof of Theorem 1 By Herbrand’s Theorem, there is a finite subset S ′ of ground instances
from S such that S ′ |� T . By Theorem 4, τ(M(T )) � τ(M(S ′)) holds. By Lemma 3, it
holds that τ(M(T )) = μ(R(T )) and τ(M(S ′)) = μ(R(S ′)). Then, μ(R(T )) � μ(R(S ′))
holds. Since R(T ) � μ(R(T )) and μ(R(S ′)) � R(S ′), R(T ) � R(S ′) holds. �

Proof of Lemma 1 Since T ⊆ S, S �∗
w T holds. By Lemma 11, τ(M(T )) � τ(M(S)) holds.

By Lemma 3, μ(R(T )) � μ(R(S)) holds. Hence, we have R(T ) � R(S). �
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