Mach Learn (2011) 85:149-173
DOI 10.1007/s10994-010-5231-6

Boosted multi-task learning

Olivier Chapelle - Pannagadatta Shivaswamy -
Srinivas Vadrevu - Kilian Weinberger - Ya Zhang -
Belle Tseng

Received: 27 February 2010 / Revised: 27 September 2010 / Accepted: 25 November 2010 /
Published online: 24 December 2010
© The Author(s) 2010

Abstract In this paper we propose a novel algorithm for multi-task learning with boosted
decision trees. We learn several different learning tasks with a joint model, explicitly ad-
dressing their commonalities through shared parameters and their differences with task-
specific ones. This enables implicit data sharing and regularization. Our algorithm is de-
rived using the relationship between ¢, -regularization and boosting. We evaluate our learn-
ing method on web-search ranking data sets from several countries. Here, multi-task learning
is particularly helpful as data sets from different countries vary largely in size because of the
cost of editorial judgments. Further, the proposed method obtains state-of-the-art results on
a publicly available multi-task dataset. Our experiments validate that learning various tasks
jointly can lead to significant improvements in performance with surprising reliability.

Keywords Multi-task learning - Boosting - Decision trees - Web search - Ranking

Editors: Siireyya Ozogiir-Akyiiz, Devrim Unay, and Alex Smola.

O. Chapelle () - S. Vadrevu - B. Tseng
Yahoo! Labs, Sunnyvale, CA, USA
e-mail: chap @yahoo-inc.com

S. Vadrevu
e-mail: svadrevu@yahoo-inc.com

B. Tseng
e-mail: belle@yahoo-inc.com

P. Shivaswamy
Department of Computer Science, Cornell University, Ithaca, NY, USA
e-mail: pannaga@cs.cornell.edu

K. Weinberger
Washington University, Saint Louis, MO, USA
e-mail: kilian@wustl.edu

Y. Zhang

Shanghai Jiao Tong University, Shanghai, China
e-mail: ya_zhang @sjtu.edu.cn

@ Springer

mailto:chap@yahoo-inc.com
mailto:svadrevu@yahoo-inc.com
mailto:belle@yahoo-inc.com
mailto:pannaga@cs.cornell.edu
mailto:kilian@wustl.edu
mailto:ya_zhang@sjtu.edu.cn

150 Mach Learn (2011) 85:149-173

1 Introduction

Multi-task learning algorithms (Caruana 1997) aim to improve the performance of several
learning tasks through shared models. In this paper, we introduce a novel multi-task learning
algorithm for gradient boosting. This is motivated by our interest in web search ranking,
where gradient boosted decision trees are state-of-the-art methods (Li et al. 2008; Zheng et
al. 2008).

Web search ranking is often treated as a supervised machine learning problem (Burges et
al. 2005; Zheng et al. 2008): each query-document pair is represented by a high-dimensional
feature vector and its label indicates the document’s degree of relevance to the query. Like
many other supervised learning problems, machine learned ranking requires a large number
of labeled training examples, which are time consuming and expensive to obtain. This prob-
lem becomes more acute with specialization: most major search engines offer specialized
rankings for different countries or regions as shown in Fig. 1. Queries like “football” issued
in the UK generally should lead to different results than in the US. The problem of high
editorial cost becomes even more prominent if one attempts to build many such specialized,
country-specific ranking functions—as building each ranking function requires its own set
of hand-labeled data. On the other hand, a large fraction of queries are region-insensitive.
Thus, it seems worthwhile to treat the different markets as tasks that are not completely
independent of one another as they share some commonalities, yet, differ enough that one
cannot naively combine their training data sets.

There has been extensive research on multi-task learning in the past decade start-
ing with the early works of Caruana (1997), Thrun (1996). Multi-task learning has been
explored by various authors in different frameworks. This has lead to multi-task learn-
ing using kernel-methods (Argyriou et al. 2007, 2008; Evgeniou et al. 2006; Evgeniou
and Pontil 2004), probabilistic approaches (Bakker and Heskes 2003; Yu et al. 2005;
Xue et al. 2007), maximum-entropy discrimination (Jebara 2004), hashing (Weinberger et al.
2009) as well as theoretical work (Ben-David and Schuller 2003; Maurer 2006). However,
despite the theoretical and empirical success of boosting, there are surprisingly few papers
that consider multi-task learning in a boosting framework. In fact, we are not aware of any
work other than (Wang et al. 2009) (which combines ideas from probabilistic methods and
boosting) on multi-task learning in a boosting framework.

In this paper, we propose a novel algorithm to capture task specifics and commonalities
simultaneously. Given data from 7 different tasks, the idea is to learn 7 4 1 models—one
for each specific task and one global model that captures the commonalities amongst them.
The algorithm is derived systematically based on the connection between boosting and ¢;
regularization (Rosset et al. 2004). We are not aware of any work that jointly models sev-
eral tasks by explicitly learning both the commonalities and idiosyncrasies through gradient
boosted regression.

Fig. 1 Search engines have : -~

g e . 2 = ~ YaHoO! § ¢ 4
specialized ranking functions for s ik tERE O - o
particular countries. T :
Traditionally, these specialized LT
search engines are trained i
independently of each other Y Egggp

g, o s sy Ot
I =
YAI_IF%E? Recharcha wen

@ Springer

Mach Learn (2011) 85:149-173 151

Our contribution in this paper is three-fold:

1. We introduce a novel multi-task learning algorithm based on gradient boosted decision
trees—the first of its kind.

2. We exploit the connections between boosting and ¢, regularization to motivate the algo-
rithm.

3. Driven by the success of gradient boosted decision trees on web-search, we perform a
detailed evaluation on web-scale datasets.

The rest of the paper is organized as follows. After reviewing related work in Sect. 2,
we formally introduce the multi-task learning problem in Sect. 3 and propose our approach
in Sect. 4. The connection between boosting and ¢, regularization serves as motivation for
our derivations. The details of machine learning for ranking are given in Sect. 5. Then in
Sects. 6 and 7, we evaluate our method on several real-world large scale web-search ranking
data sets from different countries. Although we mainly focus on multi-task learning for
ranking across different countries, we show in Sect. 8 that our multi-task algorithm can also
be used for customizing ranking functions for different query types; and also experimental
results on a public dataset for regression are reported in Sect. 9.

2 Related work

A common related line of research to multi-task learning is domain adaptation (DA). Here,
one assumes a source domain with large training data and a farget domain with very little
training data. The test case is exclusively in the target domain. The main principle behind
DA is to learn a model for the source and adapt it to the farget domain. In the web-search
example the source could be a well established country and the target a new country where
the search engine is still relatively new. Gao et al. (2009) address this particular case with
boosted decision trees through model interpolation and refinement. Although the authors
are motivated by a very similar problem—adapting search engines to other countries—they
choose a fundamentally different approach from us. While we train many functions (includ-
ing a shared model) at the same time, they use an additive approach in which they first learn
a base function and then train only one country-specific function.

Also related is the work on EM based multi-task boosting for face verification (Wang
et al. 2009). Even though this work proposes a multi-task learning framework based on
boosting, it is significantly different from our approach. With data from m tasks, it learns k <
m boosted classifiers. A multinomial variable indicates how well each classifier performs
on each task. The proposed method uses an EM algorithm to maximize the log-likelihood
(based on a probability model) where the M-step involves gradient boosting.

Another approach to multi-task learning is by assuming that the tasks share a common
underlying representation. This viewpoint has lead to algorithms that learn a classifier, as
well as a joint shared representation simultaneously (Argyriou et al. 2007; Chen et al. 2009).
In a sense, multi-boost does this already; the mapping given by the weak learner is a common
feature representation. A function is then learned on top of such shared representation.

3 Background

Notation and setup ~ Assume that we are given learning tasks 7 € {1, 2, ..., T'}. Further, the
data for these tasks, {(x1, y1), ..., (x4, Y»)}, is also given to us. Each task ¢ is associated

@ Springer

152 Mach Learn (2011) 85:149-173

with a set of indices I that denotes the data for this particular task. These index sets form
a partition of {1,...,n} (ie, I' N I° = when t # s and U,Tzl I'=1{1,...,n}). We also
define 1° = {1,...,n}. At this point, we assume that all the tasks share the same feature
space; we will later show how this assumption can be relaxed. Finally, we suppose that we
are given a cost function C’ defined as a function of the predicted values for all points in /°.
For instance, in a regression setting, we might consider the squared loss:

C’(...,u,-,...),»ep = Z(yl —u,»)z. (1)

iel

We also overload the definition of C’ to allow it to be defined as a function of the parameters
of the function to be learned. For instance, in case of a linear class of functions,

C'(w):=C'"(..., (W, x;), ..)ier. 2)

Previous work Previous work has mainly focused on Neural Networks (Caruana 1997;
Collobert and Weston 2008) or Support Vector Machines (Evgeniou and Pontil 2004). This
latter work inspired the algorithm presented in this paper. The authors adapt SVMs to multi-
task learning by associating one classifier w, specifically for each task ¢. In addition, there
is a global classifier w® that captures what is common among all the tasks. The joint opti-
mization problem is then to minimize the following cost:

T T
o D A I3+ Cw +w. 9

In Evgeniou and Pontil (2004), all the %;, i > 1 have the same value, but 1, can be different.
Also, a classification task is considered: the labels are y; € {-1} and the loss function is

C'(w) =) max(0, 1 — y; (w, x;)). 4

iel

Note that the relative value between Ay and the other A; controls the strength of the con-
nection between the tasks. In the extreme case, if Ag — 400, then wy = 0 and all tasks are
decoupled; on the other hand, when A; — 400, Vi > 1, we obtain w; = 0 and all the tasks
share the same decision function with weights w°.

Kernel-trick In practice, the formulation (3) suffers from the draw-back that it only allows
linear decision boundaries. This can be very limiting especially for more complex real-world
problems. A standard method to avoid this limitation is to apply the kernel-trick (Scholkopf
and Smola 2002) and map the input vectors indirectly into a high dimensional feature space,
x; — ¢(x;), where, with careful choice of ¢, the data is often linearly separable. The kernel-
trick is particularly powerful, because the mapping ¢ is implicitly chosen such that the inner-
product between two vectors ¢ (x;) | ¢ (x ;) can be pre-computed very efficiently—even if the
dimensionality of ¢ (x;) is very high or infinite. The kernel-trick has been adapted to multi-
task learning by Evgeniou and Pontil (2004), Caponnetto et al. (2008). Unfortunately, for
many real-world problems, the quadratic time and space complexity on the number of input
vectors is often prohibitive.

@ Springer

Mach Learn (2011) 85:149-173 153

Hashing-trick In certain domains, such as text classification, it can be the case that the data
is indeed linearly separable—even without the application of the kernel-trick. However, the
input space X is often already so high dimensional, that the dense weight vectors w’ become
too large for learning to be feasible—especially when the number of tasks 7 becomes very
large. Recently Weinberger et al. (2009) applied the hashing-trick to a non-regularized vari-
ation of (3) and mapped the input data of all tasks into a single lower dimensional feature
space. Similar to the kernel-trick, the high-dimensional representation is never computed
explicitly and all learning happens in the compact representation.

4 Multi-boost

In this paper we focus on the case where the data is too large to apply the kernel-trick and not
linearly separable, which is a key assumption for the hashing-trick. As already noted in the
introduction, boosted decision trees are very well suited for our web search ranking problem
and we now present our algorithm, multi-boost for multi-task learning with boosting.

4.1 Boosting-trick

Instead of mapping the input features into a high dimensional feature space with cleverly
chosen kernel functions, we propose to use a set of non-linear functions H = {h;, ..., h;} to
define ¢ : X — R” as ¢(x;) = [h1(x;), ..., h;(x;)]". Instead of assuming that we can com-
pute inner-products efficiently (as in the kernel-trick), we assume that we are provided with
an oracle O that solves the least-squared regression problem efficiently up to € accuracy:

O({(xi, 2)) ~ ar/;grginZ(h(x,-) —z)%,)

for some targets z;. For the sake of the analysis we assume that |H| = J is finite, but in
practice, we used regression trees and H is infinite.

Even though J may be very large, it is possible to learn linear combinations of functions
in H using the so-called boosting trick. Viewing boosting as a coordinate descent optimiza-
tion in a large space is of course not new and was first pointed out in (Mason et al. 2000).
The contribution of this paper is the adaptation of this insight to multi-task learning.

Let us apply the boosting-trick to the optimization problem (3). For disambiguation pur-
poses, we denote the weight vector for task ¢ in R’ as B’. As J can be very large, we
can only store vectors 8 € R’ if they are extremely sparse. For this reason, we change the
regularization in (3) from an £,-norm to an £;-norm. We can state our modified multi-task
learning formulation as

T
: Ct 0+ t
ﬁ"-/grll,l.?,ﬁrlgl: @)

(6)

T
under constraint ZA, 1811 < w,
t=0

where, asin (2), C'(B) is defined as C' (..., (B, ¢(x;)), .. Dics, - A minor technical difference
from (3) is that the regularizer is introduced as a constraint. We do not make any explicit
assumptions on the loss functions C’(-), except that it needs to be differentiable.

@ Springer

154 Mach Learn (2011) 85:149-173

Similar to the use of the kernel-trick, our new feature representation ¢ (x;) forces us to
deal with the problem that in most cases the feature space R’ will be extremely high di-
mensional. For example, for our experiments in the result section, we set H to be the set
of regression trees (Breiman et al. 1984)—here |H| is infinite and ¢ (x;) cannot be explic-
itly computed. To the rescue comes the fact that we will never actually have to compute
¢ (x;) explicitly and that the weight vector 8’ can be made sufficiently sparse with the ¢;-
regularization in (6).

4.2 Boosting and ¢, regularization

In this section we will derive an algorithm to solve (6) efficiently. In particular we will follow
previous literature by Rosset et al. (2004) and ensure that our solver is in fact an instance
of gradient boosting (Mason et al. 2000). To simplify notation, let us first transform the
multi-task optimization (6) into a traditional single-task optimization problem by stacking
all parameters into a single vector 8 € R+ defined as:

B’ .
D] and CB):=) C'(B +8. @)
ﬂT t=1

=
Il

This reduces (6) to the following optimization problem:

min C(f), (8)

1Bl =

where we define the norm

T
1Bl =Y AdlB 1.

=0

The goal in this section is to find an algorithm that solves (8) without ever computing any
vector ¢ (x;) explicitly.

e-boosting As a first step, let us define a simple iterative algorithm to solve (8) that Ros-
set et al. (2004) refers to as e-boosting. Intuitively, the idea is to follow the regularization
path as u is slowly increased from O to the desired value in tiny € > O increments. This
is possible under the assumption that the optimal vector 8 in (8) is a monotonic function
of i componentwise.! At each iteration, the vector 8 is updated only incrementally by an
additive factor of AB, with || AB]|;. < €. More precisely, AB is found through the following
optimization problem:

n;iﬂn CB+Ap) st |ABllr<e. (C))
Following Rosset et al. (2004), it can be shown that, under the monotonicity assumption

stated above, solving (9) for the right number of iterations does in fact solve (7). Therefore,
e-boosting satisfies the £, regularization constraint from (6) implicitly. Because the £;-norm

In practice this assumption will only be partly satisfied. e-boosting should thus be considered as a way to
obtain an approximate solution of the £ regularized optimization problem.

@ Springer

Mach Learn (2011) 85:149-173 155

of the vector f increases by at most € during each iteration, the regularization is not con-
trolled by the upper bound p but instead by the number of iterations S for which the vector
B is updated. In particular, after S iterations, the £; norm of the solution will be bounded
by Se.

Multi-task e-boosting ~ As we are only moving in very tiny € steps, it is fair to approximate
C(-) with the first-order Taylor expansion. By “unstacking” the representation from (7), this
leads to

T
CB+AB)~CB)+ > (4B g). (10)
=0
with g} := oC

=
Let us define the outputs at the training points as

ui = (B ¢ () + (B (x)) foriel', 1>0. (1

Using the chain-rule,

On the other hand,

81,{1' hJ()C,) lfl S I;,
B o otherwise.

Combining the above equations, we finally obtain:

aC
=0 . (12)

iell i
We can now rewrite our optimization problem (9) with the linear approximation (10) as:

T T
i AB g .t ! .
min) (4p",g") st > nlABh <e (13)
t=0 t=0
If we make the additional assumption that the class of functions H is closed under nega-
tion (h € H = —h € H) then it is relatively easy to show (see appendix) that the solution of
(13) is given by:

. . . g
if (¢, j) = argming, ;) T:’

AR =17 (14)

0 otherwise.
Intuitively, (14) finds the direction with steepest descent, across all tasks and all functions
in H, and takes a step in that direction.
It remains to show that we can compute the single non-zero index of (14) efficiently with
the help of the oracle (5). Assuming that the weighted functions 4 € H are normalized over

@ Springer

156 Mach Learn (2011) 85:149-173

the input,” that is, Y, h(x;)* = 1, we can express (5) with z; = —%fi“) as

argmin Z(hj (xi)—z) = argminz —hj(xi)zi

I ernt I gert
_ i ol
= argmin g;

J

= ().

The optimal task-feature pair (¢, j) from (14) is thus (7, j(f)) with

o 1
i =argmax — Zhj(,) (x;)zi- 15)
t t

iel!

The parametrization in terms of § is just conceptual and in practice we update the func-
tion F'(-) := (B8', ¢(-)) instead of B:

Fi() < FI() +ehjp (). (16)

The length of the step in (16) is € instead of €/); as indicated in (14). However since €
is supposed to be infinitesimally small, both are equivalent. The algorithm multi-boost with
the update-rule (16) is summarized in algorithm 1 and is illustrated in Fig. 2.

4.3 Generalizations

For the sake of simplicity, we have tried to keep the above derivation as simple as possible,
but there are in fact several extensions that we have implemented:

Different feature sets The training points from different tasks may have different features,
and in fact, that is the case in our web search ranking application. To address this issue, we
introduce, for each task #, a set of functions H’ defined over the features for that task. HC is

Fig. 2 A layout of four ranking
tasks that are learned jointly. The
four countries symbolize the
different ranking functions that
need to be learned, where

,31, ey ,84 are the parameter
vectors that store the specifics of
each individual task. The various
tasks interact through the joint
model, symbolized as a globe
with parameter vector /30. More
complicated (e.g. pairwise)
interactions could be allowed
through additional cross-task
links

’In general this cannot hold for all # simultaneously—an easy fix is to make /4 dependent on #, as we will
show later on.

@ Springer

Mach Learn (2011) 85:149-173 157

the set of functions defined over the intersection of the various feature sets. That does not
change the algorithm fundamentally; the main difference is that now u; in (11) is defined as
(B, #°(x)) + (B, @' (x;)), where ¢° and ¢’ are defined with respect to the functions of 7°
and H' respectively.

Second order information Instead of performing an e-gradient step, we follow the frame-
work of Zheng et al. (2008) and perform an approximate Newton step at each iteration. At

2
% b
and the use of a weighted least square algorithm as an oracle with weights #;. More details
can be found later in Sect. 5 and Algorithm 2.

the core of this approach is the computation of the second derivatives of the loss, t; =

Weights We introduce a weight ¢’ for each task ¢ such that the new global objective func-

tionis C :=) ¢'C". We experiment with two choices for ¢': ¢! =1 and ¢’ = ﬁ

Algorithm 1 Multi-boost (§ iterations)
F'=0VvV0<t<T
for s < 1to S do

; :——f’gy‘) Vi<i<n
h' < argminy “(h(x;) —z))>. 0<t<T.
her jen
~ 1 A
f < argmax — h'(x)z;.
Fl <« F' + el
u; <—M,‘+6ht(x,‘) Viel

end for
Predict a new example x of task t as FO(x) + F'(x)

4.4 Extensions

We finish with two extensions that we have not yet tested, but are rather straightforward to
implement:

Multiple interactions So far we assumed that the 7 tasks only interact through a single
global model F? (as it is illustrated in Fig. 2). It is possible to allow more interactions by
adding additional sets I7+!, ..., I"**. For example I7*' could explicitly model the pair-
wise interaction between two tasks #;, t, by setting I7+! = 't U 2. The final prediction for
an example x; becomes Y, cr,q() F' (x), where Tasks(x) contains all the real and artificial
tasks to which x belongs.

AdaBoost style algorithm In binary classification problems, it is possible to motivate an
AdaBoost style algorithm with multiple tasks. In this case: y; € {1} and h : X — {£1}.
Based on the stage-wise greedy minimization of interpretation of AdaBoost, it is straight-
forward to derive an update rule to minimize Y, C'((8° + AB°) + (B’ + AB")) in AB,
where, AS now has all but one of the elements set to zero, C' is the exponential loss. The
resulting algorithm either updates the weights for all the examples (if it is a global step) or
for all the examples of a specific task (if it is a local step).

@ Springer

158 Mach Learn (2011) 85:149-173

5 Machine learned ranking

Document retrieval has traditionally been based on a manually designed ranking function
(e.g., BM25). However, web page ranking is now considered as a supervised learning prob-
lem, and several machine learning algorithms have already been applied to it. One of the
earliest publications in the context of web page ranking is Burges et al. (2005), where a
neural network is trained on pairwise preferences. Pairwise learning is now one of the most
popular techniques: it can be used directly with linear functions (Cao et al. 2006) or it can
be combined within the boosted decision tree framework (Zheng et al. 2008). Recent work
has addressed the possibility of directly optimizing ranking measures such as MAP (Yue
et al. 2007) or NDCG (Taylor et al. 2008; Chapelle and Wu 2010). Finally, it is notewor-
thy that a simple regression on regression labels (Cossock and Zhang 2006) turns out to be
competitive compared to more advanced techniques (Li et al. 2008).

Functional gradient boosting The functional gradient boosting framework introduced by
Friedman (2001) has already been discussed in Sect. 4. We now present more details about a
second order extension introduced in Zheng et al. (2008). It is indeed this extension that we
use as our underlying boosting algorithm. Let R(f) be an objective function which depends
on the value of the function evaluated at the training points:

ROf(x1), -0, (X))

In the case of least-squares regression—as in GBDT (Friedman 2001)—this objective func-
tion is simply:

D (f) —w)?
i=1

But in the case of ranking, it can be beneficial to define the objective function as a sum of
pairwise losses over preference pairs, as in RankSVM (Herbrich et al. 2000) and GBRank
(Zheng et al. 2008):

D max(0, 1= (f(x) — £ (),

@.j))eP

where P is a set of preference pairs: (i, j) € P mean that the i-th document is to be preferred
to the j-th one. We thus refer in the experimental section to GBDT and GBRank as our
learning methods for ranking.

Given a set H of base functions such as decision trees, the goal is to optimize R over the
linear span of H. In other words, we want to find a solution of the form:

f:Z,Bihia hi e H.

The functional gradient boosting algorithm from Zheng et al. (2008) and described in Algo-
rithm 2 is one way to do so and the one we will use in the rest of this paper. Compared to the
original algorithm of Friedman (2001), it uses second order information to better approxi-
mate the objective function. More precisely, it uses the following quadratic approximation:

(f) 1 & P*R(S) 2
R(f+h)~72(f)+zaf(S xi)+§;3f(Xi)2h(x,-). (17)
= ——
_gl =wi

@ Springer

Mach Learn (2011) 85:149-173 159

Algorithm 2 Generic gradient boosting algorithm with second order approximation

f<0

repeat
gj < ‘;ﬁi’; ; Functional gradient
w; < giz%; Functional curvature
tj < —gj/w;j. Target value
I < argmin; 3 w; (R (x;) —t)2 Steepest component
0 < argminR(f + ph;). Line search
f < f+nph;. “Shrinkage” when n < 1.

until Max iterations reached.

The right hand side of (17) can be written as:

1< 1\ 2
S w (h(x,-)—i—i—) +C,
i=1 i

where C is a constant independent of 4. The quadratic approximation of R can thus be
minimized by solving a weighted least squares problem where the targets are given by ¢, :=

—&i/w;.

Features For each query-document pair a set of features is extracted to form a feature
vector which typically consists of three parts:

Query-feature vector, comprising features depending only on the query ¢ and have constant
values across all the documents d in the document set, for example, the number of terms
in the query, whether or not the query is a person name, etc.

Document-feature vector, comprising features depending only on the document d and have
constant values across all the queries ¢ in the query set, for example, the number of inbound
links pointing to the document, the amount of anchor-texts in bytes for the document, and
the language identity of the document, etc.

Query-document feature vector, comprising features which depend on the relation of the
query g with respect to the document d, for example, the number of times each term in the
query g appears in the document d, the number of times each term in the query g appears
in the anchor-texts of the document d, etc.

The total number of features we use for our experiments is of the order of 500.

Data collection The data sets used in our experiments include large-scale web ranking
training sets for various countries. All the data sets contain randomly sampled queries from
the search engine query logs. For each query, a set of URLs is sampled from the results
retrieved by several search engines. Finally, for each query-url pair, an editorial grade con-
taining 0—4 is obtained that describes the relevance of the url to the query. The size in terms
of number of queries and the number of query-url pairs in the training, test and validation
sets for each country is shown in Table 1. The country names are anonymized for confiden-
tiality purposes. Note that there are some empty cells for some countries which indicate that
the test and validation sets are not available for them.

@ Springer

160 Mach Learn (2011) 85:149-173

Table 1 Details of the subset of data used in experiments. The countries have been sorted in increasing size
of the number of training queries

Country Examples Queries

Train Validation Test Train Validation Test
A 72k 7k 11k 3486 477 600
B 64k 10k - 4286 563 -
C 74k 4k 11k 5992 298 600
D 108k 12k 14k 7027 383 600
E 162k 14k 11k 7204 586 600
F 74k 11k 11k 7295 486 600
G 57k Sk 15k 7356 238 600
H 137k 11k 12k 7644 807 600
1 95k 12k 12k 8153 835 600
J 166k 12k 11k 11145 586 600
K 62k 10k 20k 11301 548 600
L 307k - - 12850 - -
M 474k - - 15666 - -
N 194k 16k 12k 18331 541 600
(¢} 401k - - 33680 - -

Evaluation The performance of various ranking models is measured on the test set using
Discounted Cumulative Gain (Jarvelin and Kekalainen 2002), which is a popular measure
for multi-level relevance judgments. In its basic form it has a logarithmic position discount:
the benefit of seeing a relevant document at position i is 1/1log, (i + 1). Following (Burges et
al. 2005), it became usual to assign exponentially high weight 2/ to highly rated documents
where /; is the grade of the i-th document going for instance from 0 (irrelevant) to 4 (perfect
result). Thus the DCG for a ranking function r of a query having m associated documents is
defined as:

2 — 1
pee:= Zlogz(l +r(@)’

where r (i) is the position (or rank) of the i-th document in the ranking. We only consider
the top 5 positions in the ranking and refer to the DCG of these 5 documents as DCG-5.

Model selection In most of the experiments, the parameters of the algorithms are tuned
using a validation set. But for some of them—that we will point out—some parameters are
set to default values which in general give good performances. These values are 20 for the
number of nodes per tree, 1200 for the number of trees and 0.05 for the shrinkage rate
(Friedman 2001).

6 Preliminary experiments

The main experimental results—multi-task learning applied to country specific web search
ranking—have been divided into two sections. In this section we present preliminary results

@ Springer

Mach Learn (2011) 85:149-173 161

on a small feature set containing 11 most important features such as a static rank for the page
on the web graph, a text match feature and the output of a spam classifier. For the large-scale
experiments in Sect. 7, we present the results with the complete feature set containing more
than 500 features.

We did not use in this section the validation and test sets described in Table 1. Instead we
split the given training set into a smaller training set, a validation set and a test set. The pro-
portions of that split are, in average over all countries, 70%, 15% and 15% for respectively
the training, validation and test sets. The reason for this construction will become clearer in
the next section; in particular, the test sets from Table 1 were constructed by judging the doc-
uments that our candidates functions retrieved and cannot thus be used for experimentation
but only as a final test.

We initially discuss the correlation between train MSE and test DCG. Later, we compare
several baseline ranking models and discuss the effect of sample weighting.

For each experiment, we calculated the DCG on both validation set and the test set after
every iteration of boosting. All parameters—the number of iterations, number of nodes in
regression trees and the step size e—where selected to maximize the DCG on the validation
set and we report the corresponding test DCG.

Train MSE and test DCG ~ We show how the train MSE and test DCG change for a typical
run of the experiment in Fig. 3. The training loss always decreases with more iterations. The
test DCG improves in the beginning and but the model starts overfitting at some point, and
the DCG slightly deteriorates after that. Thus it is important to have a validation set to pick
the right number of iterations as we have done. In the rest of the experiments in this section,
we tuned the model parameters with the validation set and report the improvements over the
test.

Baseline experiments We first did a smaller experiment on six countries. The aim in this
experiment was to compare with the following baseline methods:

Fig. 3 Train MSE and test DCG 9.9
as a function of iterations

9.8
9.7
9.6

9.5

Test DCG

Train MSE

1 ! ! ! ! ! !
0 100 200 300 400 500 600 700
lterations

@ Springer

162 Mach Learn (2011) 85:149-173

Table 2 Percentage change in
DCG over independent ranking
models for various baseline

Country Weighted Unweighted Pooling Cold-start

ranking models A 0.561 1.444 —0.320 —0.282
C 1.135 1.295 0.972 1.252
D —0.043 —0.233 —1.096 —2.378
E 0.222 0.342 —2.873 —3.624
M —2.385 —0.029 —1.724 —6.376
N —0.036 0.705 —1.160 —3.123

Independent: Each country trained on its own data;

Cold-start: Model trained using all the countries other than the local itself. The aim of this
baseline was to see how much other countries could help a given country;

Pooling: All the countries are used in training. We ensured that the total weight on the local
country was equal to that of all the other countries put together.

Table 2 summarizes the results relative to the independent baseline. The two heuristic
schemes—cold-start and pooling—did not show any improvement overall (in fact, most
DCG values were lower). Hence in all of the experiments that follow, we used the inde-
pendent ranking model as the baseline and show that our multi-task learning algorithm can
improve over the independent models as well. As described in Sect. 4.3, we can provide a
weight for each data set in the multi-task learning scenario that we proposed. In this table the
unweighted scheme refers to setting the weight as 1 for each example and weighted refers to
weighting each data set by the reciprocal number of samples in the data set. Thus weighted
gives equal weight to each data set, while unweighted has no weight on each sample, so ef-
fectively larger data sets have higher weight in the unweighted setting. The results indicate
that the average performance of the unweighted scheme seems better than the weighted one.
Note that a relative improvement of 1% is considered to be substantial in the web search
ranking domain.’

Steps taken by the two weighting schemes Typical behavior of the steps taken with the two
weighting schemes are shown in Fig. 4. In both the schemes, initially, a number of global
steps are taken. Since global steps minimize the objective function for every country, it is at-
tractive initially. However, once the commonality among the tasks has been captured by the
global steps, they are no longer very attractive. The algorithm takes many local steps from
that point onwards. Furthermore, with the unweighted scheme, the countries with signifi-
cantly more data dominate the objective. Thus, the multi-task algorithm takes significantly
more steps in such countries. On the other hand, in the weighted scheme, smaller countries
are relatively easier to fit than bigger ones and a lot of steps are taken in these countries.
Although we presented two extreme weighting schemes, other weighting schemes with spe-
cific weights to each country are possible.

Finding appropriate groups of countries Finding an appropriate grouping of countries that
is beneficial to each country so that the tasks in that group can help each other is a nontrivial
task. Since we wanted to find out the best group of countries that is most beneficial to
each country, we searched all possible combinations of countries. Specifically we explored

3What we mean here is that improvements reported in web search ranking papers are typically of the order
of 1%; see for instance Fig. 1 of Zheng et al. (2008).

@ Springer

Mach Learn (2011) 85:149-173 163

unweighted weighted
—— Market A 300} | ——Market A
550 —— Market B] —— Market B
—— Market C —— Market C
——Market E 5501 Market E 1
c 500t | —— Market J - —— Market J
] Market K] 500 Market K 1
< —Gilobal 47 < —— Gilobal
*5 550 o
a = & 550 g
2 j/f‘ﬁ 2
(] (]
500 s
/ i 500 7 i.fﬂ_/j
Soﬁ% [% ‘
0 0
200 400 600 800 1000 1100 1100 200 400 600 800 1000 1100
Number of iterations Number of iterations

Fig. 4 (Color online) Steps taken by the multi-task algorithm with the two weighting schemes. The country
labels A-K are sorted by increasing data set sizes. The unweighted (left) version takes more steps for the
larger data sets, whereas the weighted (right) variation focusses more on countries with less data

Table 3 Percentage

improvement over independent Country % gain Best countries

for the best countries found on

the validation set A +4.21 CDFHLMN
B +2.06 N
C +1.70 AM
D +2.95 CHLN
E +0.35 BCFLO
F +1.43 ABEHLN
H +1.11 ABDEFL
L +0.57 ABCEFM
M +0.45 ACN
N +1.00 AFL
(6] +0.61 AF

2! combinations of possible groupings for eleven countries and found the best group of
countries that helps a given country based on the validation data set. Then we tested this
best model on the test set to observe its performance. Since this experiment involves a very
large number of combinations, we have fixed to some default values the learning parameters
of the gradient boosted decision tree algorithm (number of nodes, shrinkage and number of
trees). Table 3 shows the experimental results for this task. Each row shows the DCG-5 gain
of the best grouped multi-task ranking model over the independent ranking model for each
country. We can see that the multi-task ranking model improves the performance in every
single country over the country-specific ranking model.

7 Large scale experiments
In this section we present the experimental results by testing the multi-task algorithms on

the large scale web search ranking data sets with complete feature sets. We illustrate that
our methods help to customize the ranking models on a number of country-specific data

@ Springer

164 Mach Learn (2011) 85:149-173

sets. For Sects. 7.1, 7.2 and 7.3, we fixed the parameters such as number of trees, number
of nodes per tree and compare multi-task ranking models with independent models on the
validation set. In Sects. 7.4 and 7.5, we did complete model selection on the validation set
and report the results on the test set.

Note that we have two different experimental settings in this paper. Most of the experi-
ments are in a reranking setting, where a fixed set of documents with relevance grades are
exposed to the ranking models for each query. This is the traditional setting used in almost
all of the learning to rank papers. On the other hand, in Sects. 7.4 and 7.5, we present re-
sults based on web-scale experimental setting, where all the documents* in the web index
are exposed to the ranking models. To our knowledge, we are the first to provide results in
such a setting. It also serves as a further validation to the results obtained with the reranking
experimental setting.

7.1 Effect of the loss function

As described in Sect. 4 our method can be applied to any loss function and in particular
it can be combined with pairwise or listwise ranking models. In this section, we compare
the results of pointwise and pairwise ranking schemes, which we refer to as Multi-GBDT
and Multi-GBRank methods, to the independent ranking models in each country. Table 4
shows the results with the two learning algorithms in both the weighting schemes discussed
in Sect. 6. It can be seen that in both pointwise and pairwise ranking schemes, multi-task
ranking models have better average performance over the independent models.

7.2 Grouping related tasks

An important aspect of the multi-task learning algorithms that we proposed is that if we can
group the tasks so that they are related and benefit each other, we can boost the performance

Table 4 DCG-5 gains with : :
Multi-GBDT and Multi-GBRank Country Multi-GBDT Multi-GBRank

learning algorithms in two Unweighted Weighted Unweighted Weighted
different weighting settings. The

gains are over A +1.53 +0.72 +0.69 +0.75
;ZZZ’; endent- GBDT and B +1.81 +1.58 +2.22 +1.64
respectively C +0.92 +0.52 +0.92 +0.01
D +4.14 +3.62 +1.77 +1.84
E ~1.37 —1.45 —0.18 —091
F +0.57 +1.80 +1.67 +2.22
G +4.34 +4.68 +1.74 +0.75
H +0.34 +0.96 +0.52 +0.85
I —0.50 —0.80 —0.07 +0.32
J +0.10 —0.69 +0.74 —0.64
K +2.37 +2.38 +3.40 +2.01
N +0.53 ~1.23 +0.51 —0.92
Mean +1.23 +1.01 +1.16 +0.66

4To be precise, it would be infeasible to score all the documents in the index and only the potentially relevant
documents—as determined by a basic ranking function—are scored.

@ Springer

Mach Learn (2011) 85:149-173 165

Table 5 Improvement of multi-task models with various groupings of countries over independent ranking
models. Each column in the table indicates a group that includes a subset of countries and each row in the
table corresponds to a single country. The numbers in the cell are filled only when the corresponding country
is part of the corresponding group. The symbol T indicates that this country was included for training but has
not been tested

Country Group 1 Group2 Group3 Group4 Group5 Group6 Group7 Group 8

A +0.33 +1.53 +0.46

B +1.87 +1.81 +1.60

C +1.81 +0.92 +0.64

D +2.90 +4.14 +2.29

E —1.02 —1.37 —1.24
F +1.82 +0.57 —0.20

G +1.51 +4.34 +3.59

H +0.00 +0.34 +0.08

I —0.85 —0.50 —-0.97

J +0.76 +0.10 +0.38
K +2.37 +1.98

L i i i

N +0.53 —0.09

o T i

of the individual tasks. To demonstrate the benefits of grouping the related tasks, we grouped
the related countries into several groups and present results in Table 5. For each country,
DCG-5 gain compared to the independent ranking model is shown for all the groups in
which it was involved. The underlying learning algorithm in this experiment was GBDT
and we used the unweighted scheme of our multi-task learning algorithm.

We organized the countries into eight groups based on continents and language of the
countries and we anonymized the group names. Each of these groups involve a set of coun-
tries which are indicated in the columns of Table 5. It can be noted that different groups are
beneficial to each country and finding an appropriate grouping that is beneficial to a spe-
cific country is challenging. The negative numbers for some countries indicate that none of
the groups we selected were improving that particular country and the independent ranking
model is still better than various groupings we tried.

7.3 Comparison over adaption models

In this section we present comparison results of our multi-boost method with the domain
adaptation method described in Gao et al. (2009). In this domain adaptation setting, the
key idea is to utilize the source data to help and adapt to the target domain. We chose the
source data as the simple combination of data from all of the countries and varied the target
domain. In addition, the adaptation method also requires an additional parameter in terms
of the number of trees that are added at the end of the base model to train with the target
domain data. We fixed the number of base model trees to be 1000 and the number of additive
trees as 200. Figure 5 shows the DCG-5 gains of our method over the adaptation method in
Gao et al. (2009). The multi-task method outperforms the adaptation method in most of the
countries, while the adaptation method is better in a couple of countries. Since the multi-task
method allows the domains to learn from each other, it fosters better interaction among the

@ Springer

166 Mach Learn (2011) 85:149-173

Fig. 5 DCG-5 gains of 3
multi-task models over the
adaption models. The dashed line
represents the mean gain, 0.65%

% improvedment (DCG5)

domains than the adaptation method. Also a key difference with the adaption method is that
multi-task automatically decides the number of steps taken towards each of the domains by
choosing the domain that minimizes the objective function at each step. Moreover, since the
steps are interleaved among the domains, the target data is introduced earlier to the model
than the adaptation method.

7.4 Web scale experiments

The experimental results with web-scale experimental setting are shown in Table 6. To per-
form this test, several multi-task models were first trained with various parameters including
the grouping and weighting as some of the parameters in addition to the standard GBDT pa-
rameters such as number of trees, number of nodes per tree and the shrinkage rate (Friedman
2001). Of these models, we picked the model with the highest DCG-5 on the validation set
as the Besty,;q model. We also selected the top three models on the validation set as well
as the independent model to be evaluated in the web-scale experimental setting. This means
that all the top documents retrieved by these models were sent for editorial judgements. Of
these three selected models, the one achieving the highest DCG-5 on the test set is denoted
Bestie. Table 6 shows the improvements with both Best,,j;q and Best,y models.

The results indicate that the small tasks have much to benefit from the other big tasks
where the training data size is large. It can also be noticed that the difference between
reranking and web scale results is also dependent on the size of the validation or rerank-
ing data set. When the size of the validation set is large, there is more confidence on the
results from the reranking results.

7.5 Experiments with global models

As discussed in Sect. 4, a byproduct of our multi-task learning algorithm with multiple
countries is a global model, F° that is learned with data from all the countries. This global
model can be utilized to deploy to the countries where there is no editorial data available
at all, which could serve as a good generic model. Table 7 shows the results of the global
models in the same web-scale setting as in the previous section. For each country we present
the DCG-5 gains of the multi-task global models over the baseline ranking model that is

@ Springer

Mach Learn (2011) 85:149-173 167

Table 6 Web scale results

obtained by judging all the urls Country Bestyalid Bestiest
retrieved by the top 3 multi-task
models as well as the A +2.99 +3.02
independent model. Besty,jiq C +2.31 +3.73
refers to DCG-5 gain with the
best model on the validation set D —1.03 +0.27
while Besteg; refers to the E —0.02 +0.07
highest DCG-5 gain on the test F +2.12 +3.27
set G +4.80 +4.80

H +3.27 +3.27

I +0.10 +1.38

J +4.04 +4.20

K +6.85 +9.39

N +2.11 +2.11
Table 7 DCG-5 gains of global - 0
models trained with multi-task Country Improvements with F
approach compared with simple
data combination from of all A +2.94
countries C —0.20

D —0.17

E —0.33

F +0.83

G +0.49

H +1.18

I +0.73

J +4.83

K +0.85

N —1.48

Mean +0.88

trained with a simple combination of data from all countries. A key difference between
these two models is that the multi-task global model primarily learns the commonalities in
the countries while simple data combination model could learn both commonalities and the
country specific idiosyncrasies. While these country specific idiosyncrasies are helpful for
the that specific country, it might actually hurt other countries. Although the global model
does not perform well in a few countries, the average performance of the multi-task global
ranking model is better than the simple data combination model.

8 Query dependent ranking

Most of the learning to rank approaches, including the ones presented in this paper, attempt
at learning a relevance function which can then be applied to any query. But there are dif-
ferent types of queries and it might be beneficial to have a different ranking function for
each query class. For instance, Kang and Kim (2003) proposed to used different ranking
functions for navigational and informational queries (Broder 2002). More recently, Geng et
al. (2008) proposed a version of local learning (Bottou and Vapnik 1992) for ranking: at test

@ Springer

168 Mach Learn (2011) 85:149-173

time, a model is built using the only most similar queries to the test query. This is of course
an expensive approach and the authors proposed offline approximations. Finally, Bian et al.
(2010) proposed to learn specialized ranking functions for each query class and this learning
is done jointly in the RankSVM framework. Let us give some more details of this approach,
but for simplicity, let us consider the squared loss instead of a pairwise preference loss as in
RankSVM. The objective function to be optimized in Bian et al. (2010) can then be written
as:

2

argmm ZZ quFf(x)—y, , (18)

q=lieDy \ j=I

where g goes over the Q queries in the training set, D, is the set of document indices
associated with the g-th query, p?. is the probability that the query belongs to the j-th class
> ; p? = 1) and finally, F', ..., FT are the specialized ranking functions corresponding to
the T different query classes.

The potential drawback of the formulation (18) is that in the extreme case where each
query belong to a only one category, that is when p? € {0, 1}, the estimation of the functions
F',..., FT becomes uncoupled. The problem of query dependent ranking is thus a case
where multi-task learning can be helpful: a function F° captures the commonalities among
the various query classes, while each of the F/ captures the specifics of a given query class.
By introducing this global function F°, we can rewrite (18) as

2

argmin ZZ Zp,(Fo(x)+Ff<x,>)—y, : (19)

FOFL,.. qulEDq j=1

Instead of optimizing (19), we optimized a slightly different objective function, more
precisely an upper bound on (19):

r 0
argmin Z DD PHE)+ FI) —)’ (20)
j=1 q=1ieDy,

FOF1 FT

This is indeed an upper bound because:

2 2

T
SR + Fi) — v | = | 3Pl + Fi) — 30

j=1
T
Z TF () + FI () — i)’

Mﬂ HMﬂ TH\MH

PIF () + F/ (xi) —)2,

.
Il

where the first and last equalities hold because Z]T.Zl p? = 1 and the inequality is the appli-
cation of the Cauchy-Schwarz inequality.

@ Springer

Mach Learn (2011) 85:149-173 169

The reason to consider (20) instead of (19) is two-fold:

1. The objective function (20) is more stringent because it aims at enforcing that the output
of every function is near the target value while (19) only considers the weighted average
output.

2. Itis closer to our multi-boost framework. It can indeed be seen as an extension of multi-
boost where all the training examples for a given task are identical, but where the weights
for each task are different.

Multi-task boosting with objective function (20) is thus similar to algorithm 1, but with
the following differences when building the regression trees:

— For task j > 1, the entire training set is used, the targets are as usual F°(x;) + F/ (x;) — y;,
but each training sample is weighted by pf-.

— For task 0, the training samples are unweighted and the targets are ZLI p? (FO(x)) +
FI(x;) = yi).

Evaluation To evaluate the effectiveness of multi-task learning for query dependent rank-
ing, we considered queries and urls from our largest country (referred to M in Table 1). For
training we had 45k queries and 887k urls, and for testing, 1132 queries and 39k urls. We
then used an internal tool to compute the probability that a query belongs to one of these 5
predefined categories: auto, local, product, travel, and a general catch-all category. Since a
query can belong to multiple categories, these probabilities do not necessarily sum to 1: we
then normalized the probabilities over these 5 categories to ensure that they sum to 1.
Figure 6 plots the DCG-5 on the test set as a function of the total number of trees.
The baseline ignores the different categories and trains a global model. For this com-
parison, all the hyperparameters for both methods have been set to the same value. We
stopped the boosting when the number of trees for all classes are at least 1500, that is
when min;; #trees(F°) + #trees(F/) = 1500. But the x-axis is the total number of trees:
Z?:o #trees(F/). This is the reason why the blue curve extends a bit beyond 1500 in Fig. 6.
The performance until 1000 trees is similar for both methods, which is understandable
because in earlier iterations, the multi-task method takes mostly global steps and the com-
monalities between the tasks is first modeled. But after 1000 trees, the baseline saturates,

Fig. 6 (Color online) DCG-5 as 6.5
a function of the number trees for
query dependent ranking. The 6.48¢
blue curve corresponds to the 6.461
multi-task model (20) trained ’
over the T =5 categories, while 6.44+
the red curve is the equivalent of
a pooling baseline where the © 6.42r
categories are ignored 8 6.4l
o
6.38f
6.36f
6.341
6.321
6.3

500 1000 1500 2000
Number of iterations

@ Springer

170 Mach Learn (2011) 85:149-173

Fig. 7 (Color online) Percentage 1
of time the global function F 0
and the local functions F/, j > 1
have been updated as a function 0.8l |
of the number of iterations @ '
9}
= —— Category 1
© 0.6} | — Category 2]
3 —— Category 3
% —— Category 4
o 0.4F | — Category 5)
2 —— Gilobal
©
[}
o
0.2r 1
0
0 500 1000 1500

Number of iterations

while the multi-task keeps improving. It is indeed able to model the specifics of each query
class better. This results in a DCG improvement of 0.74% when the number of trees is se-
lected optimally for both methods. Finally, Fig. 7 shows the fraction of times each F/ has
been updated.

9 Multi-task regression on a public dataset

To compare our multi-boost with many other existing approaches to multi-task learning,
we applied our algorithm on the school dataset. This dataset consists of 15362 examination
records of students from 139 different schools. Each school serves as a task and the aim is
to predict the grades of students based on socio-economic, demographic and other features.
In fact, this dataset has been used extensively in the multi-task learning literature. Further,
ten train-test splits of the data that were previously used by Bakker and Heskes (2003),
Evgeniou and Pontil (2004) are also publicly available. Since our results are also on these
ten splits, a direct comparison with the previous literature is thus possible.

The metric used in evaluating the multi-task approaches in Bakker and Heskes (2003),
Evgeniou and Pontil (2004), Argyriou et al. (2008) is the so-called “explained-variance”
which is a percentage version of the well known measure R? in statistics; we evaluated our
approach with the same metric.

For each data fold, we first divided the training data into two splits. A two fold internal
validation (among these two splits) was done to pick the number of iterations of boosting
and €. In this case, we merely used a one node regression tree as a weak learner. With the
selected values of € and the number of boosting iterations, we learned a regression function
using the entire training data in each fold. We then obtained the explained-variance on the
test data (for all the tasks put together). To get a better perspective, we also obtained results
for pooling (same as our boosting but only global steps allowed) and independent tasks.
In the case of independent tasks, the values of the parameters were tuned for each task
independently, yet the final explained-variance was by putting together the predictions for
all the tasks.

The results are summarized in Table 8. It can be observed that pooling improves over
independent tasks and multi-boost improves further over pooling. A direct comparison with
results in the previous literature (Bakker and Heskes 2003; Evgeniou and Pontil 2004;
Argyriou et al. 2008) shows that our results are comparable to the state-of-the-art.

@ Springer

Mach Learn (2011) 85:149-173 171

Table 8 Mean and standard deviation of explained-variance on school dataset obtained by various boosting
algorithms and previous approaches (appear with citations). Results obtained by multi-boost algorithm is
comparable to the best result in the literature

Method Explained-variance|
Independent 341+1.2
Pooling—weighted 358+1.2
Pooling—unweighted 36.1£1.1
Bayesian MTL (Bakker and Heskes 2003) 290.5+04
Regularized MTL (Evgeniou and Pontil 2004) 348+£0.5
MTL-FEAT (linear kernel) (Argyriou et al. 2008) 37.1+1.5
MTL-FEAT (Gaussian kernel) (Argyriou et al. 2008) 37.6+1.0
Multi-boost—weighted 373+£1.2
Multi-boost—unweighted 37.7£1.2

10 Conclusions

In this paper we introduced a novel multi-task learning algorithm for gradient boosted de-
cision trees and applied it to web search ranking. We mainly focused on the problem of
learning the ranking functions for various countries in a multi-task learning framework. The
customization of the ranking models to each country happens naturally by modeling both
the characteristics of the local countries and the commonalities separately. We provided a
thorough evaluation of multi-task web search ranking on large scale real world data. Our
multi-task learning method lead to reliable improvements in DCG, especially after specifi-
cally selecting sub-sets that are learned jointly.

As future work, we could look into modeling more diverse interactions between different
countries. In particular, our approach is by no means restricted to a single global model. In
fact, given domain-knowledge, it could make sense to add additional functions that capture
the interactions between a sub-set of the countries. For example, one could imagine func-
tions FT+!_ ... FT+¢ for various continents, such that the relevance of a document of task 7,
from continent c, is predicted with F(x) + F'(x) + FT*°(x). Even finer interactions could
be modeled through hierarchies of additional functions.

Even though our primary interest was to learn ranking functions across countries, our
framework is very general and can be applied to other machine learning tasks beyond rank-
ing for which boosted decision trees are well suited. We illustrated this point by applying
our algorithm to a standard multi-task benchmark dataset.

Appendix

We derive here the optimal solution of optimization problem (13):

T T
. t t t
%pgmﬁ,g) st Y MAB |l <e.

t=0

@ Springer

172 Mach Learn (2011) 85:149-173

With a change of variables A ,3’/ < A ABj, the problem becomes one of minimizing an
inner product under £, constraint:

min(AB.g) st 4Bl =€
Ap

where we came back to the stacked representation (7) and defined g; = g_’j /s
Let 7 and J be the indices such that

7, j = argmin g'. (21)
t.j
Note that
min g = —max g; = — max |g}]. (22)
tj t,j tj

This is because of the assumption that 7 is closed under negation and thus,
vt,Vj, 3k, g; =—g;.

A lower bound on the dot product can be found using Holder’s inequality:
(4B.8) = —I(AB. 8)

114811 18l

~r
Zégj-,

v

where we made use of (21) and (22) for the last inequality.

Let AB; =¢if j=jand r =1, 0 otherwise. This AS satisfies the £, constraint and is
also optimal because it satisfies the above lower bound with equality.

Coming back to the original variables, the optimal Ap is thus given by (14).

References

Argyriou, A., Evgeniou, T., & Pontil, M. (2007). Multi-task feature learning. In Advances in neural informa-
tion processing systems (Vol. 19). Cambridge: MIT Press.

Argyriou, A., Evgeniou, T., & Pontil, M. (2008). Convex multi-task feature learning. Machine Learning,
73(3), 243-272.

Bakker, B., & Heskes, T. (2003). Task clustering and gating for Bayesian multitask learning. Journal of
Machine Learning Research, 4, 83-99. doi:10.1162/153244304322765658.

Ben-David, S., & Schuller, R. (2003). Exploiting task relatedness for multiple task learning. In 16th annual
conference on learning theory (pp. 567-580).

Bian, J., Li, X., Li, F., Zheng, Z., & Zha, H. (2010). Ranking specialization for web search: a divide-and-
conquer approach by using topical ranksvm. In WWW’10: proceedings of the 19th international World
Wide Web conference.

Bottou, L., & Vapnik, V. (1992). Local learning algorithms. Neural Computation, 4(6), 888-900.

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Lon-
don/Boca Raton: Chapman & Hall/CRC.

Broder, A. (2002). A taxonomy of web search. SIGIR Forum, 36(2), 3-10.

Burges, C., Shaked, T., Renshaw, E., Deeds, M., Hamilton, N., & Hullender, G. (2005). Learning to rank
using gradient descent. In Internation conference on machine learning (pp. 89-96).

Cao, Y., Xu, J., Liu, T., Li, H., Huang, Y., & Hon, H. (2006). Adapting ranking SVM to document retrieval.
In Proceedings of the 29th international ACM SIGIR conference on research and development in infor-
mation retrieval (pp. 186—193).

@ Springer

http://dx.doi.org/10.1162/153244304322765658

Mach Learn (2011) 85:149-173 173

Caponnetto, A., Micchelli, C., Pontil, M., & Ying, Y. (2008). Universal multi-task kernels. The Journal of
Machine Learning Research, 9, 1615-1646.

Caruana, R. (1997). Multitask learning. In Machine learning (pp. 41-75).

Chapelle, O., & Wu, M. (2010). Gradient descent optimization of smoothed information retrieval metrics.
Information Retrieval Journal, 13(3), 216-235.

Chen, D., Xiong, Y., Yan, J., Xue, G. R., Wang, G., & Chen, Z. (2009). Knowledge transfer for cross domain
learning to rank. Information Retrieval.

Collobert, R., & Weston, J. (2008). A unified architecture for NLP: deep neural networks with multitask
learning. In Proceedings of the 25th international conference on machine learning (pp. 160—167). New
York: ACM.

Cossock, D., & Zhang, T. (2006). Subset ranking using regression. In Proceedings of the conference on
learning theory.

Evgeniou, T., & Pontil, M. (2004). Regularized multi-task learning. In KDD (pp. 109-117).

Evgeniou, T., Micchelli, C., & Pontil, M. (2006). Learning multiple tasks with kernel methods. Journal of
Machine Learning Research, 6(1), 615.

Friedman, J. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29,
1189-1232.

Gao, J., Wu, Q., Burges, C., Svore, K., Su, Y., Khan, N., Shah, S., & Zhou, H. (2009). Model adaptation via
model interpolation and boosting for web search ranking. In EMNLP (pp. 505-513).

Geng, X., Liu, T. Y., Qin, T., Arnold, A., Li, H., & Shum, H. Y. (2008). Query dependent ranking using
k-nearest neighbor. In SIGIR’08: proceedings of the 31st annual international ACM SIGIR conference
on research and development in information retrieval (pp. 115-122). New York: ACM.

Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression.
In A. Smola, P. Bartlett, B. Scholkopf, D. Schuurmans (Eds.), Advances in large margin classifiers
(pp- 115-132). Cambridge: MIT Press.

Jarvelin, K., & Kekalainen, J. (2002). IR evaluation methods for retrieving highly relevant documents. In
ACM special interest group in information retrieval (SIGIR) (pp. 41-48). New York: ACM.

Jebara, T. (2004). Multi-task feature and kernel selection for svms. In Proceedings of the 21st international
conference on machine learning.

Kang, I. H., & Kim, G. (2003). Query type classification for web document retrieval. In SIGIR’03: Proceed-
ings of the 26th annual international ACM SIGIR conference on research and development in informa-
tion retrieval (pp. 64-71). New York: ACM.

Li, P, Burges, C., & Wu, Q. (2008). Mcrank: learning to rank using multiple classification and gradient
boosting. In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing
systems (Vol. 21, pp. 897-904). Cambridge: MIT Press.

Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Boosting algorithms as gradient descent in function
space. In Neural information processing systems (Vol. 12, pp. 512-518).

Maurer, A. (2006). Bounds for linear multi-task learning. Journal of Machine Learning Research, 7, 117—
139.

Rosset, S., Zhu, J., Hastie, T., & Schapire, R. (2004). Boosting as a regularized path to a maximum margin
classifier. Journal of Machine Learning Research, 5, 941-973.

Scholkopf, B., & Smola, A. (2002). Learning with kernels. Cambridge: MIT Press.

Taylor, M., Guiver, J., Robertson, S., & Minka, T. (2008). SoftRank: optimizing non-smooth rank metrics. In
Proceedings of the 1st ACM international conference on web search and data mining (pp. 77-86).
Thrun, S. (1996). Is learning the n-th thing any easier than learning the first? In D. Touretzky & M. Mozer
(Eds.), Advances in neural information processing systems (NIPS) (Vol. 8, pp. 640-646). Cambridge:

MIT Press.

Wang, X., Zhang, C., & Zhang, Z. (2009). Boosted multi-task learning for face verification with applications
to web image and video search. In Proceedings of IEEE computer society conference on computer vision
and patter recognition.

Weinberger, K., Dasgupta, A., Attenberg, J., Langford, J., & Smola, A. (2009). Feature hashing for large
scale multitask learning. In JCML.

Xue, Y., Liao, X., Carin, L., & Krishnapuram, B. (2007). Multi-task learning for classification with Dirichlet
process priors. Journal of Machine Learning Research, 8, 2007.

Yu, K., Tresp, V., & Schwaighofer, A. (2005). Learning Gaussian processes from multiple tasks. In Proceed-
ings of the 22nd international conference on machine learning.

Yue, Y., Finley, T., Radlinski, F., & Joachims, T. (2007). A support vector method for optimizing average
precision. In Proceedings of the 30th international ACM SIGIR conference on research and development
in information retrieval (pp. 271-278).

Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., & Sun, G. (2008). A general boosting method and its
application to learning ranking functions for web search. In J. Platt, D. Koller, Y. Singer, & S. Roweis
(Eds.), Advances in neural information processing systems (Vol. 20, pp. 1697-1704).

@ Springer

	Boosted multi-task learning
	Abstract
	Introduction
	Related work
	Background
	Notation and setup
	Previous work
	Kernel-trick
	Hashing-trick

	Multi-boost
	Boosting-trick
	Boosting and l1 regularization
	epsilon-boosting
	Multi-task epsilon-boosting

	Generalizations
	Different feature sets
	Second order information
	Weights

	Extensions
	Multiple interactions
	AdaBoost style algorithm

	Machine learned ranking
	Functional gradient boosting
	Features
	Data collection
	Evaluation
	Model selection

	Preliminary experiments
	Train MSE and test DCG
	Baseline experiments
	Steps taken by the two weighting schemes
	Finding appropriate groups of countries

	Large scale experiments
	Effect of the loss function
	Grouping related tasks
	Comparison over adaption models
	Web scale experiments
	Experiments with global models

	Query dependent ranking
	Evaluation

	Multi-task regression on a public dataset
	Conclusions
	Appendix
	References

