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Abstract We consider the problem of hierarchical or multitask modeling where we simulta-
neously learn the regression function and the underlying geometry and dependence between
variables. We demonstrate how the gradients of the multiple related regression functions
over the tasks allow for dimension reduction and inference of dependencies across tasks
jointly and for each task individually. We provide Tikhonov regularization algorithms for
both classification and regression that are efficient and robust for high-dimensional data,
and a mechanism for incorporating a priori knowledge of task (dis)similarity into this frame-
work. The utility of this method is illustrated on simulated and real data.

Keywords Multitask learning - Dimension reduction - Covariance estimation - Inverse
regression - Graphical models
1 Introduction

The problem of dimension reduction in the context of regression models is of fundamen-
tal interest in the physical and biological sciences and has a storied history (Fisher 1922;
Hotelling 1933; Cook 2007). For much of biological and psychometric data, regression
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modeling needs to be extended to respect dependencies between observations based on tem-
poral, structural, or general subgroup structure due to the way the data is collected. Classic
examples of these regression models fall under the purview of Bayesian hierarchical models,
hierarchical models with mixed effects, and, in the context of machine learning, multitask
models. These models are closely related and can be restated as independent models con-
nected by shared hyper-priors and seek to combine similar data for analysis under a single
model, rather than each separately. In this paper we develop a method for simultaneous di-
mension reduction and inference of dependence structure for Bayesian hierarchical or mul-
titask regression models. We first motivate the method with an important applied problem
in whole genome analysis or expression analysis in cancer genetics.

Cancer like many complex traits is a heterogeneous disease requiring the accumulation
of mutations in order to proceed through tumorigenesis, and an important problem is to
predict and infer the mechanism for cancer progression. For any particular cancer the genetic
heterogeneity of the disease is caused by two main sources: the stage or phenotypic variation
of the disease and variability across individuals. A regression model can be built for each
disease state to address the heterogeneity across the disease stage and one can select genes
that are strongly correlated with progression. The problem with this stratification approach is
the reduction of statistical power from the smaller sample sizes, and the fact that few genes
or features individually may be predictive of phenotype. A natural paradigm to address
this loss of power is to borrow strength across samples—multitask learning—and borrow
strength across genes—simultaneous dimension reduction and regression. We return to this
application in Subsect. 5.4.2 where we model the progression of prostate cancer.

This same problem arises in more classical artificial intelligence applications such as
digit classification and text categorization since both documents and images of digits have
hierarchical structure. In Subsect. 5.2 we illustrate this, demonstrating that inference of the
distinction between a “5” and an “8” helps with discriminating a “3” from an “8.” In this
case we are borrowing strength across the digit images and learning linear combinations of
pixels that are predictive subspaces.

The argument behind multitask learning is that pooling related samples (fasks) together
in a joint analysis can improve predictive accuracy (Evgeniou et al. 2005; Caruana 1997,
Ben-David and Schuller 2003; Obozinski et al. 2006; Argyriou et al. 2006; Ando and Zhang
2005; Jebara 2004), especially under conditions where there are few samples. Two inter-
esting examples where this idea is used in therapeutics is to pool across stages in tumor
progression (Edelman et al. 2008) or across drug treatments for HIV (Bickel et al. 2008).

Typically in this framework the idea of data similarity is traditionally considered in one
of two distinct ways: sharing a similar discriminative function, or having variables or fea-
tures that tend to covary. Our objective is to model these two properties of the data conjointly
to uncover shared structure between tasks (dependent task variables) as well as the task spe-
cific structure (independent task variables).

We will show that this conjoint analysis across tasks as well as dependence structure re-
sults in more accurate predictive models than addressing each task individually. However, a
point of emphasis of this paper is that the inference of the predictive geometry and depen-
dencies between variables is of vital importance to interpret the results of our models. This
point is stressed in Sect. 5 where we use the dimension reduction and graphical modeling
approaches we develop to infer structure in genomic data, scientific documents, and im-
ages of digits. The central methodology for learning this structure will be the simultaneous
inference of the regression (classification) function and its gradient.
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2 Statistical basis for multitask gradient learning

In multitask learning we are given n, observations for each of t € {1,..., N} tasks where
the observations are drawn from a task specific joint distribution function, (X, Y;;)'., g
p:(X,Y). The input variables are a subspace of R” and the output variable Y;, € R for re-
gression or Y, € {—1, 1} for classification. The total number of samples is n =), n,. We
will denote the observations from the task ¢ as D, and D as the set of all the observations:
D ={D,, ..., Dy}. The objective in multitask modeling is to build a regression or classifi-
cation function, F;(x), for each task ¢ that has a baseline term f;(x) over all tasks and a task
specific correction f;(x):

Yo =F(X)+e=fo(X)+ fi(X)+& &Y No(0,07). 1)

The common as well as task specific regression functions are simultaneously learned using
all D observations.

The key idea in multitask gradient learning is providing an estimate of the regression
functions {fo, (f,)!_,} and their gradients {fo, V fo, (f;, V.f; ,N: 1}. The gradients provide
information both for dimension reduction as well as the inference of a conditional inde-
pendence graph for the input variables. The central assumption in our model is that each
regression function depends on a few dimensions, d, in R?,

Yr:Ft(Xt)“‘g:g(b;T]Xt»---,b,ZXr)‘l‘& 2)

where ¢ is noise, X, is the independent variable for the 7-th task, Y; is the dependent variable,
and B, = (b)|, ..., bl)) is the dimension reduction (DR) space for task .

In a series of papers (Mukherjee and Zhou 2006; Mukherjee and Wu 2006; Mukherjee et
al. 2010; Wu et al. 2010) a formal relation between dimension reduction and the conditional
independence of predictive variables was developed. The central quantity in this relation is

the gradient outer product matrix I', a p x p matrix with elements'

oF, OF,
r,«,:< ; —’>2 , 3)
L

axi’ ax
where p, is the marginal distribution of the explanatory variables in task ¢. Using the nota-
tion a ® b = ab” for a, b € R”, we can write
I'=E(VF,Q VF).

In the single task setting a spectral decomposition of I' = I'; can be used to compute
relevant directions for dimension reduction due to the following observation (Wu et al. 2010,
Lemma 1):

Proposition 1 Under the assumptions of the semi-parametric model (2) and N = 1 task, the
gradient outer product matrix I is of rank at most d. Denote by {vy, ..., v,} the eigenvectors
associated to the nonzero eigenvalues of T the following holds

span(B) = span(vy, ..., Ug).

IThe gradient outer product matrix shares similarity with the Fisher information. The difference is that the
Fisher information is an outer product of the gradient of the likelihood with respect to parameters. This
characterizes a manifold in parameter space. In our case I" characterizes a manifold on the data space.
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The main argument for this result is the following observation for a vector v € R?,

oF
1(x) 0. VF,

av

is identically zero if F) does not depends on v and is not zero if F; changes along the
direction v.

It was further shown in Wu et al. (2010) that for the single task setting I has a nat-
ural interpretation as a composition of variances and covariances. For linear functions the
following observation was made in Wu et al. (2010, Proposition 1):

Proposition 2 Given the model
y=p"x+e,  Ee=0,

and the covariance of the inverse regression, Qx|y = covy(Ex (X | Y)), the variance of the
output variable, 03 = var(Y), and the covariance of the input variables, ¥x = cov(X), the
gradient outer product matrix is

o2\’ __ _
r:gg<1__€2> 2 Q2 4)
Oy
assuming that Xx is full rank.

This result was extended to any smooth nonlinear function by the following observation
based on Wu et al. (2010, Corollary 2):

Proposition 3 For a smooth function that is locally approximately linear over partitions R;
of the input space X

f)~Brx +e, Es; =0 forx€R;,

and X = UiI:l R;, we define the following local quantities: the covariance of the input vari-
ables ¥; = cov(X € R;), the covariance of the inverse regression Q; = cov(E(X € R; | Y)),
the variance of the output variable oiz =var(Y | X € R;). Assuming that matrices X; are full
rank, the gradient outer product matrix can be computed in terms of these local quantities

i

s o2 2
I~ ZpX(R,»)UI?(l — 72) Tt
i=1

where p, (R;) is the measure of partition R; with respect to the marginal distribution p, .
A probabilistic interpretation of p, (R;) is the mixing proportion of partition R;.

The above propositions suggest that learning the common gradient outer product as well
as the task specific gradient outer products

' =EV fo®Vf),
' =E(Vf®Vf),
' =E(VF,  VF)),
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can be used to find the common and task specific subspaces { By, (B; IN: 1}. We will illustrate
the utility of these subspaces in Sect. 5.

For the single task case the above conclusions were shown to extend under weak condi-
tions to the case where the input space is concentrated on a lower dimensional manifold M,
dn < p (Mukherjee et al. 2010). The main idea of this paper is that for a variety of algo-
rithms (Xia et al. 2002; Mukherjee and Zhou 2006; Mukherjee and Wu 2006) the gradient
estimate in the ambient space converges to the gradient on the manifold. Under mild con-
ditions (see Mukherjee et al. 2010) if the input variables are concentrated on a Riemannian
manifold M of dimension d,, with an unknown isometric embedding ¢ : M — R? then
given a gradient estimate in the ambient space f from n observations with probability 1 — §

A 2
(de) = Vafllz SClog(—>n_”dM,
v )
where (dg)* is the dual of the map de.
2.1 Comments

A variety of methods for simultaneous dimension reduction and regression to find directions
that are informative with respect to predicting the response variable have been proposed.
These methods can be summarized by three categories: (1) methods based on inverse regres-
sion (Li 1991; Cook and Weisberg 1991; Fukumizu et al. 2005; Wu et al. 2007), (2) methods
based on gradients of the regression function (Xia et al. 2002; Mukherjee and Zhou 2006;
Mukherjee and Wu 2006), (3) methods based on combining local classifiers (Hastie and
Tibshirani 1996; Sugiyama 2007). In this paper we will build upon the approach outlined
in Mukherjee and Zhou (2006), Mukherjee and Wu (2006). Mathematical and statistical
relations between some of these approaches are developed in Wu et al. (2010).

3 Learning multitask gradients
3.1 Formulating the optimization problem

Given observations D = {D,, ..., Dy} over N tasks, our goal is to estimate the regression
or classification functions { fy(x), fi(x),..., fr(x)} and gradients {V fy(x), V fi(x), ...,
V fr(x)}. These estimates can be used to obtain the gradient outer product matrix specific to
each task, 'Y, and the baseline gradient outer product for all tasks, I'/0), We will formu-
late the optimization problem to estimate functions and their gradients both for classification
and regression, although in this section we limit our discussion to the classification problem
as the regression problem is conceptually similar.

For binary classification on a single task, y;, € {—1, 1}, we first define a convex loss
function ¢ (¢) based on a link function such as the logistic link. Under this model F; is
real-valued and may be smooth. For example, in the case of the logistic function

¢ (yF(x)) =log(1+ ")

the classification function has a clear statistical interpretation (modeling the conditional
probability Prob(y|X) as a Bernoulli random variable)

1

Probl(y =+10) = =75
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In this case the classification function is

F(o) = ln[ Prob(y = 1|x) ]

Prob(y = —1}x)

and the gradient of f; exists under very mild conditions on the underlying marginal distrib-
ution. In addition, for a rich enough class of functions F; a Bayes optimal classifier exists

F, =arg gleiglEp(x,,y,)[rﬁ(Y;F;(Xz))].

Assume that F; is smooth then the first order Taylor series expansion is written as
F(x)~ F,(u)+ VF,(x)-(x —u), forx=u. (®)]

If a function f and a vector valued function f = (f1, ..., f,) approximates F; and its gradi-
ent well, then given the data D, = {(x;,, y,-,)}?’;l, the expected error

ne

1 8
E(Y, F¢ (X)) ~ &), (f.6) = — D wllp (i (fx)) +Ex) - (xi — x))))

L j=1

is small, where w,-(f} is a weight function with bandwidth s restricting the locality by w; ; —
I as |lx; — x|l — O. Estimates of the classification function and its gradient can be computed
by minimizing the above functional with a reproducing kernel Hilbert space penalty added

for regularization

(fo,.fp) =arg min {5 (£ 0 + Ml 1% + Aallfll% ),
(fherit!

where fp, and f), are estimates of F; and V F}, respectively, ||f||§( = l.p=1 Il fi ||§<, and Ay, Ay
are regularization parameters. The bandwidth function imposes localization of the samples
as required by the Taylor expansion, while the regularization parameters provide numeric
stability to the classification and gradient functions estimates.

To extend from a single task to multiple tasks we begin with the hierarchical model in (1)

Fi(x) = fo(x) + fi(x),

and substitute this into (5)
Fi(x)~ fow) +Vfo(x) - (x —u)+ fi(u) + V f,(x) - (x —u), forx=u. (6)

This results in an empirical error functional of the form

ny

1
€D for fiofo £ = —5 3 wi s e ((foljo) + fiie)) + Bo(xj0) + £ (xj0) - (i = x,0)
()

where f; and f, are vector valued functions and model the gradient of f and f; respectively.
Since we want to build a model jointly over all tasks and borrow strength across the entire
data set D = {Dy, ..., Dy} we use the average empirical error over the tasks as the error
functional for the model

ij=1

1 N
& for (SN0 Fo AL = = D €D, (fo, f o ).
i=1
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The above functional is regularized by a RKHS penalty resulting in the following penal-
ized error functional which we minimize to obtain our classification function and gradient
estimates

(f.0, (D 4oy £0.0, {0, 12 )

= argmin 5g(fo,{ﬁ}f\[:1,fo, )

(fednLgerst!
A " al
+ §<||fo||’§; + Ifoll%) + N ;umné +IE1%) §- ®)

The regularization parameters p and A provide a priori assumptions on task similarity such
that when % becomes small the model puts greater emphasis on the N tasks as independent
functions whereas for a large ratio the common model dominates the optimization.

The above optimization problem can be considered as a combination of the gradient esti-
mation ideas in Mukherjee and Zhou (2006), Mukherjee and Wu (2006) with the Tikhonov
regularization formulation of multitask learning in Evgeniou and Pontil (2004). The behav-
ior of this optimization problem with respect to the regularization is identical to that of
Evgeniou and Pontil (2004). Note that there are identifiability issues with the model stated
in (6) unless we assume a priori that V fy LV f;, i.e. the task corrected gradient is in the null
space of the common gradient. This assumption does not effect the model fit but it does
effect the interpretation of the model.

3.2 Solving the optimization problem

A key insight in the Tikhonov regularization formulation of multitask learning in Evgeniou
and Pontil (2004) was that the multitask problem can be restated as a single task optimization
problem over all the data D with a very particular kernel. We will couple this observation
with the single task gradient learning results in Mukherjee and Zhou (2006), Mukherjee and
‘Wu (2006) to outline the classification and regression multitask gradient learning algorithms.

3.2.1 Regression

We begin with regression since the resulting optimization problem is simpler. In the regres-
sion setting we are given observations from the regression model, y;; & F;(x;;), so we need
only estimate the gradients. Assuming a Gaussian noise model and adapting the empirical
error derived in (7), this results in the following least square task dependent loss functional

1 &
Ep, By, 1) = 2z Z Wi g ie = yie — EoCj) +£.(x0)) - (o — xj0))7

T, j=1

Minimizing the regularized version of the above error functional leads to the following op-
timization problem

N N
. 1 A 2 1% 2
(fp.0,fp,) = argmin —Zspl<fo,ft>+§||fon,{+ﬁ;nffn,( : ©

E)_geHy =1

@ Springer



272 Mach Learn (2011) 83: 265-287

The minimizer of this infinite dimensional optimization problem has the following finite
dimensional representation

fo=>" K@) =) ciK@.). (10)
t i i

with the coefficients «g,;, ¢;; € RP. This is a result of the representer theorem (Wahba
1990) and was proven in the single task setting in Mukherjee and Zhou (2006, Theorem 5).

Substituting the above representation into (9) and setting the partial derivatives to 0 we
obtain the following linear system which we solve to obtain the coefficients

N
perj+ B (Z S K Gy xj0a0, + Z K (xi1, xj0)cr, 1) =Y, (11)

s=1 I=1

where
%
Ao,r,i = mct,iv
Bt,j = Z w, s (X — xjt)(xit _sz)T, (12)

ny

Z wz J e — Vi) (Xis _sz)-

The linear system in (11) can be simplified based on ideas developed in Evgeniou and
Pontil (2004). Denote the data set D= {(Xi, ¥i)i=1....n} as the samples arranged by task order
and ¢; as the task of the i-th sample. For example, X; = x;; when i < n;. Denote by §;, the
Kronecker delta on tasks, é,; = 1 if s =t and §;; = O otherwise. Define the kernel

K((x,s), (',0)=K(x, x)(— +5w> 13)

Define W, as the n, x n, matrix with entries W, (i, j) = n%w,;j;, and W =diag(W,, ..., Wy).
t

Let B be the np x np matrix composed by N x N blocks where the (s,7) block is an
ngp X n, p sub-matrix with

By =0ifs#¢ and B, =diag(B,,,...,B.,,)ifs=1.

Let ¥, = (Y7 Y )" and Y =T,...,Y})7T. We can rewrite the linear system (11) as

(uly, +BK®1,)c=Y (14)

where /I, is the p-dimensional identity matrix and

T T T T T T T
C=(Cl,l’""Cl,nl’CZ,]’""("2,:12’""CN,I""’CN,HN) .

The solution to the linear system (14) results in gradient estimates that minimize the
following single-task gradient learning problem

f5(c, 1) =argmin Y Wi ;(5i — §; — £, 1) - (8 — %)) + plIfll%,
i,j=1
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where

fpo(x) +1£p,(x) =f5(x, 1),

N
w

f :—E fp,.

DO = - D1

The linear system (14) is np x np which when p is large is not practically feasible. How-
ever, this linear system can be reduced to an n? x n? linear system using the matrix reduction
argument developed for single-task gradient learning in Mukherjee and Zhou (2006). For the
single task setting this formulation is based on the observation that due to the Taylor expan-
sion the gradient estimates will be in the span of the difference between data points

My =1[X1 — Xp, X2 — Xpy o ooy Xyl — Xy X — X, ] € RP,
This matrix has rank at most d < min{p, n — 1}. A singular value decomposition of My
Uy

T
diag{oy, o, . . ., 04} 0] Uy

Mx=VEUT=[V1V2~~Vn][ 0 0

Un
can be used to reparameterize the gradient estimate in terms of the left singular vectors V

n o ( d
f= Z{ZGJW}K(M’ ).
im1 Le=1

The number of parameters is at most n? (n> <d x n)

(75 N & W'Y

N
Il

Cta - Can
This parameterization is used when p > n and results in a linear system of equations, see
Mukherjee and Zhou (2006, Sect. 3.1).
3.2.2 Classification
The minimizer of the infinite dimensional optimization problem in (8) has the following
finite dimensional representation

ny

N n;
foo=_Y a0 iKGi ), for=) e iK(xi. ),
t=1 i=l i=1 (15)

ne

N ng
fpo= Z Zco,z,iK(xm ), fp, = th,iK(xm ),

=1 i=1 i=1

with coefficients o ; ;, & ; € Rand ¢, ;, ¢;; € R”. This is aresult of the representer theorem
(Wahba 1990) and was proven in the single task setting in Mukherjee and Wu (2006).
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Substituting the above representation into (8) and setting the partial derivatives to O re-
sults in a system of equations equivalent to the following

ne

1
0= — 3 wijud (Vi) + e,
o

ny

1
0= 22w11t¢(tht)(xzf xjt)+l’l‘ctjs

’1]

"

Qi = maz,i,
"

Co,ti = mct.i

where

let - ylt{ZZQOAIK(xluxﬂ) + Zath(xltvij)

s=1 =1

(ZZCOSIK(xlsvxﬂ) + thlK(xlhx]t)> - (xir _xjt):|~

s=1 I=1

The above system of equations is a n(p + 1) x n(p + 1) system and can be solved using
Newton’s method. Note that when p is very large this is not practical.

To address this computational problem we use the idea of reducing the multitask op-
timization problem to a single-task optimization problem with a different kernel. This al-
lows us to use the efficient solver developed in Mukherjee and Wu (2006). Denote by
D= {(Xi, Yi)i=1....n} the samples rearranged in task order and #; is the task associated with
sample X;. Define the same kernel K as in the regression setting. Let W, be the n; x n;
matrix with entries W, (i, j) = %wi,j;, and W = diag(Wl, e WT). Given the kernel K,

ny

weight matrix W, and data D the following single-task optimization problem can be used
to compute the coefficients for the multitask problem. The following is a direct result of the
computations in Mukherjee and Wu (2006, Sect. 2).

Proposition 4 Consider the following single-task learning gradient problem

_ _ _ : ¢ 2 2
(gp(x, 1), 85(x, 1)) —afgg’grenéléﬂ{gbw(g,g) + gl +nvlighzt- (16)
We have
Spo+ foi=gpC.t) and fy+f =g(,1). (I7)

A result of this equivalence is that

N N
I I
fpo= m;faz and fpo= N_g (18)

The system can be reduced to solving a n> x n? nonlinear system of equations by using
the same singular value decomposition used in the classification setting Mukherjee and Wu
(2006). This can be solved efficiently using Newton’s method when »n is small.
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4 Dimension reduction, task similarity, and conditional dependencies

The fundamental quantities inferred in the MTGL framework are the N 4 1 gradient outer
product matrices {fo, ry,....,T ~}. These matrices and the subspaces spanned by them will
be used both for dimension reduction to infer predictive structure as well as learning graph-
ical models to infer the predictive conditional dependencies in the data.

In Sect. 5 we illustrate how we can use these gradient outer product matrices to develop
more accurate classifiers as well as better understand the predictive geometrical and depen-
dence structure in the data. This analysis will require three ideas based on the gradient outer
product matrices that we now introduce.

4.1 Dimension reduction

A primary purpose in estimating the N + 1 gradient outer product matrices {fo, Iy,....T N}
is to estimate the dimension reduction subspace that is common across tasks, l}o, in addition
to the effective dimension reduction subspace for each task (B, N ,. The dimension reduc-
tion subspace is the span of the gradient outer product B; = span(f‘[) which is computed
by spectral decomposition of the gradient outer product matrices. Given [; the eigenval-
ues {1\ .. .1} and eigenvectors .. , v} are computed and the dimension reduction
subspace is the span of the eigenvectors correspondmg to eigenvalues above a threshold ,
B; = span{ v,((’e) « ) where K = {i such that ! > 7}. Alternatively, in the presence of a large
“eigengap”, T may be selected by observing the spectral decay.

The immediate application of the dimension reduction subspaces is to project the data
onto this space and use this lower dimensional representation for classification or clustering.

4.2 Inference of task similarity

In addition to using the dimension subspaces for better classification accuracy, the over-
lap between these spaces provides geometric information about the similarity or overlap
between tasks. This can be of fundamental interest since a natural question to ask is how
related are the tasks and what combinations of variables characterize task similarity. We
therefore construct a measure of subspace similarity, or overlap, as a way of measuring the
relatedness of linear subspaces. This score serves as a summary statistic of task similarity.
We use the following measure:

Definition 1 Let {I";...T'7} be the p x p symmetric (gradient outer product) matrices with
entries in R. Without loss of generality, we consider the case of two tasks, where B; de-
fines a d-dimensional subspace of I'y, and B, a f-dimensional subspace of I';. Also, let
..., vihy, o AP} and ... v, 7ASE .. 1§} be the eigenvectors, eigenval-
ues of I'y and I',, respectively. We define the subspace overlap score (SOS) of I'y and I',
as

SSi. SS,_, : )L(U p<2) <1> a )L<2) P(l) <2>
SSscorey , = ———=% 4 2221 L= |11 ) 2 + == |11 o) ”L. (19)
2 2 23 237 Al

We denote Pf) as the orthogonal projection matrix onto Bj, and determine the subspace
using the top d eigenvectors, for specified € € [0, 1], such that

Z k(l)
ZP k(l)
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Selection of an appropriate € may be deduced analytically by detection of a significant
“eigengap”, or reflect instead a preferred threshold for total variance captured. Scores are in
the interval [0, 1], and subspaces with complete symmetric overlap will have scores close
to 1. In the case where B; C B,, we would expect SS1_,, ~ 1 and it may therefore be useful
to consider the two terms from (19) separately instead of averaged together. We propose this
metric due to its intuitiveness—weighted projection of one linear subspace onto another—
although we recognize other potential metrics may be suitable, e.g. Kullback-Liebler diver-
gence between Gaussian covariance matrices.

4.3 Inference of graphical models and conditional dependencies

The theory of Gauss-Markov graphs (Speed and Kiiveri 1986; Lauritzen 1996) was devel-
oped for multivariate Gaussian densities to model conditional dependencies between vari-
ables

(s30e0m)
p(x) ocxexp Zx Jx+h'x),
where the covariance is J~! and the mean is i = J~'h. The result of the theory is that
the precision matrix J, given by J = X', provides a measurement of conditional indepen-
dence. For example, J;; is said to be conditionally independent given all other variables if
Jij = 0. The meaning of this dependence is highlighted by the partial correlation matrix Rx

where each element R;; is a measure of dependence between variables i and j conditioned
on all other variables §/%/ and i # j

R.— cov(X;, X;|87)
7 var(X; |S7i7)/var(X ;|S7T7)

The partial correlation matrix is typically computed from the precision matrix J
Rij=—Jij/\/ JiiJjj- (20)

In the regression and classification framework inference of the conditional dependence
between explanatory variables has limited information. A more useful measure would be the
conditional dependence of the explanatory variables conditioned on variation in the response
variable. Since the gradient outer product matrices provide estimates of the covariance of the
explanatory variables conditioned on variation in the response variable over all tasks and for
each task, the inverses of these matrices

(=115,
provide evidence for the conditional dependence between explanatory variables conditioned
on the response over all tasks and for each task. See Wu et al. (2010) for more details on the
relation between inference of conditional dependencies and dimension reduction.

We will use the inferred conditional dependencies to construct sparse graphs that indicate
the dependence structure on simulated and biological data.

5 Experiments

We apply the multitask gradient learning algorithm (MTGL) to simulated and real data for
simultaneous classification and inference of the variable dependence structure. We explore
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the effect of the regularization parameters in modulating the bias-variance trade-off (Hastie
et al. 2001) and its impact on predictive performance. We also compute subspace overlap
scores to aid in our interpretation of the structures we infer. We restrict our analysis to
the classification setting using only several tasks, although the method generalizes to any
number of tasks.

5.1 Simulation

We construct two tasks containing 40 samples each (20 in class 1, 20 in class —1) in a 120-
dimensional space. We generate a data matrix for binary classification that contains features
that are common to both tasks as well as features that are specific to each task. The matrix
is initialized with background noise drawn from No(0, .2), defined as normal distribution
No(i, o). We then generate samples according to the following table, using the notation of
x; as the i-th sample and x/ as the j-th component:

1. task 1, class 1: {xi}izg1

x/ ~No(2,2), for j=1,...,10; x/ ~No(2,.5), for j =11,...,20,
x/ ~No(2,2), for j =61,...,70; x/ ~No(2,.5), for j =71,...,80

2. task 1, class -1: {x; };‘221
x/ ~No(2,2), for j =91, ...,100; x/ ~ No(2,.5), for j =101, ..., 110,
3. task 2, class 1: {x; }?241

xJ ~No(2,2), for j =31,...,40; x/ ~No(2,.5), for j =41,...,50,
x/ ~No(2,2), for j =61,...,70; x/ ~No(2,.5), for j=71,...,80

4. task 2, class -1: {xi}§g61

x/ ~No(=2,2), for j =91,...,100; x/ ~ No(-2,.5), for j =101,...,110

We run MTGL on the simulated data with variations on the regularization parameters (i,
A) and observe their effect on predicting class membership for all the samples. Recalling our
definition for the multitask function,

Ft=f0+ft

we can observe the parameters’ effects on prediction in Fig. 1b—d for F; (red) and f; (blue).
Consistent with our expectations, when p 3> X, the model behaves as if it is one task and we
see f; — 0, Fig. 1c. Similarly, when p <« A, the model behaves as 2 independent tasks and
Jfo— 0, Fig. 1d.

We would also like to observe the effect of the regularization parameters on variable se-
lection. We plot the RKHS norm for the common and task specific variables using two sets
of regularization parameters (Fig. 2). We observe that the method correctly differentiates
task specific components, and that the common components are reflective of the overlap-
ping task variables. The effect of component variance on variable selection is also evident.
In general, larger regularization terms will tend to emphasize the mean of the component
values across all samples, which we observe with the larger ©« and A parameters, Fig. 2a—c.
Conversely, when p and A are both small, we observe the opposite effect which is the selec-
tion of components with larger variance, Fig. 2d—{.
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We calculate subspace overlap scores (SOS) on this data with € = .95. Between task 1
and task 2 the computed SOS is .18, a low overlap score induced by the negative feature
correlations. Taking the absolute values of the gradient outer product matrices reduces this
effect and produces a SOS of .63. As we would expect, the subspace of T is primarily con-
tained within the common subspace, where the weighted projection of 7; onto the common
subspace produces a score of .96.

5.2 Dimension reduction on digits

The MNIST digit database (http://yann.lecun.com/exdb/mnist) is an important data set in the
machine learning community for benchmarking classification methods. The data set consists
of thousands of hand-written numbers (0-9) captured as 784-dimension vectors correspond-
ing to the 28 pixel by 28 pixel image. All images have been centered and normalized. Our
experiment uses the 3, 5, and 8 digits by considering ‘3 vs 8" as one task, and ‘5 vs 8 as
a second task. The choice of these digits provides some helpful intuition: the bottom half
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Fig. 2 Variance-bias tradeoff and regularization. (a, b, ¢) u, A = 1. (d, e, f) 1, 2 = .01. High variance fea-
tures in red, low variance features in blue

of the 3 and 5 are nearly identical, and the top halves, when taken as a composite, repro-
duce the top half of an 8. This therefore becomes an interesting classification problem. The
goal of our experiment is to locate relevant subspaces within the predictive paradigm, and
to compare these subspaces across tasks.

We build our data matrix X with a random selection of 50 3’s, 50 5’s, and 50 8’s, where
X; e R™®* andi e{l,...,200}. We run MTGL on the data and obtain gradient outer product
matrices for the common, task 1 (3 vs 8) and task 2 (5 vs 8) models. By a spectral decompo-
sition we can observe the top eigenvector (corresponding to the largest eigenvalue) for each
of these matrices and compare the important components. We reshape the top eigenvector
back into the 28-by-28 matrix and plot the components, see Fig. 3. The dominant observable
features are what we would expect given the canonical forms of the 3, 5, and 8—the signifi-
cant common features are located in the left lower quadrant of the plot and correspond to the
common open loop of the 3 and 5 (Fig. 3a). We observe similar patterns in the task specific
plots (Figs. 3b, c).

We would like to demonstrate that the subspaces obtained from the spectral decompo-
sition are relevant for prediction (classification). This is analogous to the well-known PCA
regression which constructs a classifier after projection of the data onto a lower dimensional
space. We use the top [ = {1, 2, 3, 4} significant eigenvectors to define a subspace for our
data, and predict class membership using the MNIST validation set (3, n = 1010; 5, n = 892;
8, n =974). Unlike PCA, we have 3 subspaces in which to operate—common, task 1, and
task 2—so we utilize the following prediction strategy: we run k-nearest neighbors (kNN)
in each of the subspaces separately, and use the consensus of the largest nearest neighbor
values to determine the class label. We compare our method’s results with PCA regression
and support vector machines (SVM, Vapnik 1998), where the SVM is trained within the
original component space. All regression models and SVM are trained as ‘3,5’ vs ‘8’.

The above experiment is repeated 50 times and summary statistics are generated. We
report classification accuracy as well as standard deviations, see Table 1. Here we observe
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5 10 15 20 25 5 10 15 20 25
(a) Common (b) Task 1: 3 vs 8 (c) Task 2: 5vs 8

5 10 15 20 25

Fig. 3 Digit plots of the top eigenvectors after a decomposition of the common, task 1, and task 2 GOP
matrices

Table 1 Digit classification after

dimension reduction: ‘3 and 5’ 3 5 8 Total

vs ‘8’. Values are percentages

(standard deviations) of MTGL 94.3 (2.1) 94.0 (2.6) 82.4 (3.7) 90.2

prediction accuracy PCA-R 85.7 (5.2) 74.4 (13.5) 72.2 (6.9) 77.6
SVM 94.0 (2.2) 91.9 (3.4) 80.6 (4.3) 88.8

that MTGL outperforms PCA regression considerably, reflecting the importance of utilizing
response variables for dimension reduction. While MTGL outperforms SVM, the difference
in accuracy is less significant, although it is important to note that the final regression model
for MTGL has many fewer variables than the SVM model.

5.3 Science documents/words

We now consider a data set of 1047 science articles which has been previously shown to
have an interpretable hierarchical structure (Maggioni and Coifman 2007). Each article in
the document corpora is categorized according to one of the following 8 subjects: Anthro-
pology, Astronomy, Social Sciences, Earth Sciences, Biology, Mathematics, Medicine, or
Physics. We restrict our analysis to 2036 words considered most relevant over all the docu-
ments. This yields a document-word matrix where entry (i, j) is the frequency of word j in
document i. We formulate a multitask learning problem from this data by classifying Earth
Sciences and Astronomy as task 1 and 2, respectively, against the remaining subjects. We
randomly sample 25 documents from each of these 3 groups as input to MTGL and learn
the relevant subspaces, as was done previously. We plot the 2-dimensional embedding of
the validation data by projection on the top 2 eigenvectors (Fig. 4). We observe that with
just two dimensions, the categories separate well. As we would expect, the Earth Science
category is harder to classify since it is more likely to have overlapping terms with subjects
such as Biology and Anthropology.

‘We next use the gradient outer product matrices to extract strongly covarying components
(words) by selecting large off-diagonal elements. In general, the covarying terms we observe
have a natural interpretation with respect to their corresponding science categories (Table 2).
The most significant covarying term for both Astronomy and Earth Sciences is earth, a term
that we recognize as immediately relevant for both subjects. Within the Astronomy task,
earth co-varies with the words star, galaxy, and universe; for Earth Science, earth strongly
co-varies with water, lake, and ocean. (From these results, we are tempted to conclude that
the biggest difference between Earth and other planets is the presence or absence of water—
an idea not completely devoid of scientific merit.) In the “Common” and “Earth Sciences”
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Table 2 Science

Documents-Words. Table lists the ~ Common Earth Sciences Astronomy
most highly covarying terms

obtained from gradient outer star-earth lake-water planet-star
product matrices, with earth as planet-earth earth-water star-earth

one of the most significant terms.

Earth Sciences shows greatest galaxy-earth gene-cell galaxy-star

covariation with water-related planet-star water-year galaxy-earth

words; Astronomy with planet &  earth-water disease-cell galaxy-planet

star terms disease-cell ice-water astronomer-star
cell-people ocean-water universe-star
galaxy-star human-cell astronomer-earth
gene-cell lake-earth astronomer-planet
earth-year sea-water universe-earth

columns in Table 2, we observe biological terms such as gene, cell, and disease. Since
Biology is the least distinctive category with terms spanning many other subjects, we would
expect to see these uniquely biological terms for better classification. Overall, these results
suggest that our method can successfully infer the covariance structure of variables within
the predictive setting.

5.4 Graphical models
5.4.1 Simulated data

We begin with a simple, low-dimensional toy example to illustrate the application of the
gradient outer product matrices for graphical models, and specifically, how they can be used
to infer the full conditional dependencies for the common and task specific variables. We

construct the following dependent explanatory variables from the random normal variables

0y, ....605 “No(, 1) with

X, =6, X, =01+ 0y, X3 =105+ 04, X4 =04, X5 =05 — 0Oy,

and Xg, ..., Xg are drawn from independent Gaussians. Response data is modeled as 3
separate tasks

Y1:X1+X3+€,
Y2:X1+X5+€,
Y3:X3+X5+E

where € ~ No(0, .5). We generate 100 samples for each task and use this data to obtain the
estimated covariance matrix 3 x and estimated gradient outer product matrices, FO, e, F3.
We compute partlal correlations usmg (20), substituting the pseudo-inverse for the inverse
since & and I are rank deficient. In Ry we observe significant partial correlations between
the X, and X, variables, and the X3, X4, and X5 variables (see Fig. 5a). Applying this same
calculation to the gradient outer product matrices, we recover the response dependent partial
correlations (see Figs. 5b, ¢, d, and e). Here, only the variables X, X3, and X5 are depicted
as relevant, and the task-specific dependencies are correctly recovered.
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Fig. 5 Conditional Dependence Simulation (a) Partial correlation of data matrix X. (b—e) Partial correlation
matrices using gradient outer products

5.4.2 Prostate cancer

We repeat the previous experiment using microarray expression data obtained from prostate
cancer tumors (Tomlins et al. 2007). Each sample is annotated according to one of four
stages of tumor progression: benign, low, high, and metastatic. This data set had been previ-
ously analyzed using multitask techniques to understand the tumorigenic mechanism com-
mon to all stages, as well as each specific stage (Edelman et al. 2008). We repeat the experi-
mental design using a 3-task classification problem: task 1 defined as {benign — low}, task 2
as {low — high}, and task 3 as {high — metastatic}. In Edelman et al. (2008), the goal of
the analysis was primarily to identify important genes that characterized these stage transi-
tions. Using MTGL, we can now study the dependency structure across all tasks jointly and
potentially identify new sets of co-regulated genes within the context of cancer progression.

The prostate data set is composed of 22 benign, 12 low grade, 20 high grade, and 17
metastatic samples, each sample measuring the expression level of over 12,000 genes. We
eliminate those genes with low variance across all samples resulting in 4095 genes or vari-
ables. We run the multitask-gradient algorithm on this data to obtain four gradient outer
product matrices, one for the common, and one for each of the cancer stage transitions. We
compute the subspace overlap scores and report results in Table 3. We infer from these scores
that the transition from high grade to metastatic represents the greatest gene expression shift,
demonstrated by the largest value (.62) across the common model. The next greatest shift is
seen in the transition from benign to low grade. We also observe that the {ben — low} and
{low — high} transitions are highly scored (.63) suggesting that the genetic dysregulation
between these stage transitions may be one of degree and not kind.

To explore the genetic dependency structure in finer detail, we construct graphical models
from the {ben — low} and {high — met} gradient outer products. Since a graphical depic-
tion of all 4095 genes is too complex for visualization purposes here, we select a sub-set
of genes using as a threshold the upper-quartile of values along the diagonal of the gradient
outer product matrix. We next determine edges in the graphs by taking the pseudo-inverse
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Table 3 Prostate cancer: subspace overlap scores

Common Ben — Low Low — High High — Met
Common - .29 .18 .62
Ben — Low 29 - .63 41
Low — High 18 .63 - .26
High — Met .62 41 .26 -

Fig. 6 Graphical model of prostate cancer: benign vs low grade

of the (reduced) GOP matrix—producing a partial correlation matrix—and thresholding this
matrix at its upper-quartile. The non-zero elements in this matrix give rise to a sparse gene
network.

Figures 6 & 7 recapitulate some of the biological processes and significant genes known
in prostate cancer. In the center of the first graph (ben — low), we observe the gene MME
(labeled green) connected to all other nodes in the graph, suggesting its strong global de-
pendence. MME has been previously confirmed as strongly differentially expressed in ag-
gressive prostate cancer (Tomlins et al. 2007). Also in this graph, we observe two distinct
clusters; we label these C; and C, and annotate them in the graph with red and yellow,
respectively. The genes in cluster C; are not connected with each other but do all share an
edge with ENG (labled blue) and MME. Cluster C,, on the other hand, has many intercon-
nections within the cluster in addition to connections with MME and ENG. ENG (Endoglin)
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Fig. 7 Graphical model of prostate cancer: high-grade vs metastatic

has been previously implicated in vasculature development (angiogenesis), and is an impor-
tant hallmark of tumor growth. In cluster C, we identify many well known prostate cancer
genes including AMACR, ANXA1, CD38 and TFS3.

In Fig. 7 we depict the gene dependency graph for the {high — met} progression. The
labeled is dominated by two genes ABCC4 and PLA2G2A annotated in red and yellow
respectively. ABCC4 has the pseudonym MRP (multi-drug resistant protein) and is known
to have elevated expression in chemo-insensitive tumors, while PLA2G2A has also been
identified in malignant prostate cancer (Jiang et al. 2002). The cluster in blue is strongly
interconnected and contains several genes with known roles in prostatic tumor growth.

6 Discussion

We have presented a framework for dimension reduction of multivariate, multitask data in
the predictive setting. In addition to finding relevant subspaces, our method is capable of
learning the dependency structure of variables, allowing estimation of the full conditional
dependency matrix and the construction of graphical models. Our method is based on the
simultaneous learning of the regression function and its gradient, formulated as a linear
combination of common and task specific components. Assuming smooth functions over all
tasks, we can use the Taylor expansion to estimate gradients.

We have shown that dimension reduction can yield subspaces that potentially improve
classification accuracy, as was demonstrated with the digits data experiment. However, we
do not believe that gradient methods for dimension reduction will always or necessarily
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outperform state-of-the-art classification methods such as support vector machines. In some
situations classification accuracy is paramount, over and above inference of dependency
structure, thereby requiring a parsimonious model with respect to the number of estimated
parameters, i.e. Occam’s razor. In this paper, the point of classification was to emphasize
the relevance of the subspaces obtained for the joint distribution p(X, Y), and that explicit
modeling of the response variables for dimension reduction can outperform cases where
only the marginal distribution p(X) is considered.

Moreover, we believe a single, consistent framework is more desirable than multiple dis-
jointed models. While we can imagine methods that consider single tasks separately which
then combine results in a post-hoc manner, the efficiency and interpretability gained by a
conjoint analysis makes hierarchical and multitask models generally preferable.

The method presented in this paper is based on Tikhonov regularization with an RKHS
norm. This allows for the estimates to be effective in high-dimensional problems. How-
ever, the use of regularization introduces added parameters that must either be learned or
set given some a priori knowledge. In the case of classification or regression, the accu-
racy of the model assessed by cross-validation or generalized approximate cross-validation
(GACV) can be used to set the parameters. The MTGL setting introduces additional com-
plexity where decisions concerning emphasis of common or task specific structure must be
made. We do not believe prediction accuracy alone is capable of resolving this in many
circumstances, and remains an area of open research.

Parametrization choices need not reflect a priori knowledge of task similarity; another
consideration is the a posteriori analysis. This suggests the development of a coherent
Bayesian framework for MTGL to allow for a posterior distribution on the regularization
parameters and to generalize the types of norms in the regularization terms to a broader
class of priors. For MTL a Bayesian model was explored in Xue et al. (2007). Integrating
the ideas from Xue et al. (2007) with the non-parametric Bayesian kernel models developed
in Liang et al. (2008) should provide a modeling framework for a Bayesian analysis and
estimates of uncertainty.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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